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The rodent whisker system as a model 
to study sensorimotor integration

1



in vivo and in vitro (8–10), the sensory periphery (whiskers) can be manipulated (trim-

med, passively deflected, etc) and the resulting mechanical forces at the follicle can 

be estimated using mathematical analysis of the whisker shape and deformation (11–

13), single neurons in a specific barrel column can be monitored and manipulated in 

vivo using e.g. electrophysiology and optogenetic (4, 14) specific neuronal cell types 

located in a selected cortical layer can be targeted by genetic manipulations (15).

In this chapter I review the whisker sensorimotor system, starting with feedforward 

and feedback pathways and nuclei involved in the sensory processing. Then, I look 

at the whisker control motor-related pathways, specifically focusing on the anatomical 

connections between the sensory and motor nuclei and their cellular organization. In 

the last part, I review the postnatal development of the barrel system and the role of 

serotonin in its development and function. A part of this content has been submitted 

for publication (2) .

THE WHISKER-BARREL SYSTEM STRUCTURE

Tactile sensory information perceived by the mechanoreceptors, located in the folli-

cle, passes through several centers in the nervous system including the dorsal root 

ganglion, the brainstem, the thalamus, and ultimately projects to the cortex (Figu-

re 1). This sensory processing system consists of parallel pathways that transfer the 

information from snout to cortex, each with distinct input-output organization. Data 

suggests that these pathways serve different roles in processing and relaying the 

signal (6, 16, 17). While the information ascends towards higher processing areas in 

the cortex in a bottom-up fashion, it passes through multiple interconnected structu-

res which suggests processing loops connecting the sensory and motor circuits (2, 

18). Processing of complex information in the primary somatosensory whisker-related 

cortex is performed by laminar and columnar interactions across the six layered neo-

cortical columns. These columns are defined morphologically as an extension of the 

‘barrel’ structure within L4 across the supragranular layers above L4 (i.e. L1-3) and the 

infragranular layers (i.e. L5-6) below. A great number of studies have revealed many 

aspect of this complicated processing system, however, yet an overall understanding 

remains elusive.

Vibrissal Follicle Innervation
Vibrissal follicles are innervated by two distinct neuronal pathways in animals that 

whisk: superficial pathway (SVN) and a deep pathway (DVN) (19). These pathways have 

The sense of touch is one of the prominent sensory modalities that help form the neu-

ral representations of our worlds. Mice and rats, due to their nocturnal habits and living 

environment, commonly utilize touch to navigate, locate and/or discriminate objects 

(1). Among the touch receptors in the body, those embedded in the whisker follicles 

are particularly of interest to whisking rodents, as they sweep their whiskers in the 

air to examine their surroundings. The perceived sensory signals by the whiskers are 

transmitted through brainstem and thalamus into the barrel cortex: a highly developed 

part of the sensory cortex in rodents devoted to the spatiotemporal representation 

of whisker touch (2). The barrel cortex of rodents has emerged as an excellent mo-

del system to study active sensory processes and sensorimotor integration. Because 

rodents start whisking at the end of the second postnatal week, the barrel cortex of 

neonatal rodent is also an attractive system to investigate the effect of early cortical 

activity during the developmental period and maturation of sensorimotor integration. 

The somatosensory cortex of rodents is extensively used to study sensory informati-

on processing due to its unique relationship between the vibrissae and the barrel co-

lumns: each whisker on the snout transmits tactile information to one particular barrel 

in layer 4 of the primary somatosensory cortex (1). This one-to-one relationship provi-

des the opportunity to correlate the physical information obtained at the vibrissae, with 

its corresponding neural representations in the cortex (3–5). Whisker deflection upon 

contact with a tactile surface (touch) is detected by the mechanoreceptors within the 

whisker follicles and transmitted through the infraorbital nerve into the brainstem. This 

sensory signal travels further into the thalamus and finally reaches the whisker-related 

somatosensory cortex (1, 4, 6). The layer 4 (L4) of the cortex receives the main input 

from the thalamus among this six-layered structure. Woolsey and Van der Loos (7) in 

1970 characterized the so-called barrel cortex in L4 of somatosensory cortex in mice, 

which takes its name from the barrel-shaped structures that are recognisable when 

taking a tangential section through layer 4 upon staining with cytochrome oxidase, 

a mitochondrial enzyme enriched in the thalamocortical projections originating from 

the thalamus (7). The barrels and their associated cortical columns are somatotopical-

ly organized as such neighboring columns in the periphery are represented by the 

neighboring cortical columns in the primary somatosensory cortex.

The rodent barrel cortex provides a useful model to investigate the neural network 

mechanisms underlying the sensory processes, structure, organization, plasticity and 

development of the neocortical column. This is due to the combination of practical 

experimental advantages and its similarity to other cortical columnar structures: the 

barrel cortex is located superficially and its cortical column can be identified easily 

12 13

11

CHAPTER 1 THE RODENT WHISKER SYSTEM AS A MODEL TO STUDY SENSORIMOTOR INTEGRATION



FIGURE 1. A simplified representation of the whisker-to-barrel cortex pathway which encodes, transforms and 

transfers the sensory information from the periphery to the cortex. This somatosensory axis creates the neural 

representations of the tactile world. Adapted from (2). See the main text for details. Note that the color code for 

circuit connectivity specifies the approximate terminal locations for each pathway. 

The feed-forward projections in the lemniscal pathway mostly innervate L4 as they 

reach the barrel cortex (31–33). L4 neurons project to the superficial layers, layers 2 

and 3 (L2/3). L2/3 neurons primarily project to superficial layers of neighboring barrel 

columns, other cortical areas, and/or descend into L5 within the same barrel-related 

column (10). L5 neurons heavily project to numerous areas mostly out of cortex such 

as striatum, thalamus, and/or brainstem. Secondary somatosensory cortex and pri-

mary motor cortex send strong projections to L5 and L6 in S1. L6 excitatory afferents 

come from L4 and L5 within the same column, and other L6 neurons. L6 projects to 

VPM, posteromedial thalamic (PoM) and other cortical areas, such as the primary mo-

tor cortex (M1) and S2 (1, 34).

Paralemniscal pathway
The second ascending pathway involved in whisker sensorimotor processes is the 

paralemniscal pathway that involves brainstem, thalamus and cortex. Besides PrV, 

trigeminal ganglion projects to the subnucleus interpolaris division of the trigeminal 

nucleus (SpVi) in brainstem (see figure 1). The posteromedial (PoM) thalamic nucleus 

receives afferent from SpVi and projects to S1 and to the primary motor cortex (M1). 

Unlike the lemniscal pathway that enables rapid (short latency) bottom-up propagati-

on of sensory information, majority of sensory projections to PoM comes from S1 and 

with a large latency (35–37). Receiving projection from S1 cortex and projecting to M1 

suggests a sensorimotor integration role for PoM (38). 

distinct projections to the trigeminal complex. Superficial Vibrissal nerves (SVN) ter-

minate in the upper regions of the inner-conical body and form neural rings. Deep 

vibrissal nerve terminates in the mid-lower region of the inner-conical body (20). The 

absence of SVN is observed in animals that do not whisk, which argues that SVN might 

be specialized in transmitting proprioceptive signals related to vibrissa motion (21). 

Superficial and deep vibrissal nerves target distinct areas within the brainstem trige-

minal complex of rodents. The trigeminal complex has four main nuclei: Principalis, 

Oralis, Interpolaris, and Caudalis. Principalis and Interpolaris constitute two major sen-

sory pathways designated as lemniscal and paralemniscal respectively. Both lemnis-

cal and paralemniscal pathways receive somatotopically organized input from the 

DVN (22). Most SVN axons terminate in Caudalis, but a few also innervate Principalis 

but these projections are not somatotopically organized (22, 23).

Lemniscal pathway
The lemniscal system is the primary whisker-to-barrel sensory pathway. Through 

this pathway, the information from whisker follicle transmits via the infraorbital nerve 

by primary afferent neurons to the trigeminal ganglion (see Figure 1). The trigeminal 

ganglion projects to the principal nucleus of the trigeminal nuclei (PrV) in the brain-

stem, and thereafter, the information flows to the ventral posterior medial (VPM) thala-

mic nucleus, where VPM neurons project to the cortex (S1). In the lemniscal pathway, 

the topographic representation of the whisker pad can be distinct in each stage, from 

whisker pad to barrelets in brainstem, to barreloids in the thalamus and finally to bar-

rels in the primary somatosensory cortex (S1) (2).

The receptive field organization and the topographical representations are preserved 

throughout the lemniscal pathway, from brainstem to cortex. The trigeminal ganglion 

neurons respond to the whisker deflection with a short latency and encode whisker 

deflection direction, amplitude and velocity (24, 25). Neurons in brainstem (Prv) and 

thalamus (VPM) mimic the response of their prior afferent nuclei, although they have 

larger receptive fields and lower response magnitude (26, 27). The L4 of barrel cortex 

fires action potentials by a delay of 2-4 ms after thalamus, however, have smaller re-

ceptive fields, and respond sparsely to whisker deflection. This transformation might 

be a key to determine the computational principles that lead to sense of touch (28–

30). All in all, the mechanical information in a whisker follicle is relayed in a spatially 

and temporally precise manner in the lemniscal pathway, and response transformati-

ons occur at each level.
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trol system that governs the whisker sensory computation. 

Main corticothalamic feedback projections originate from L5 and L6 in S1. L5 efferents 

reach PoM, while L6 efferents target VPM and/or PoM. Studies suggest two different 

roles for these pathways. L5 excitatory projections rapidly adapt to repetitive whisker 

deflections, while L6 projections tend to facilitate upon repetitive activation (1). L6 

mediated facilitation, however, might be topographically constrained as local pharma-

cological activation of L6 in a single column enhances sensory responses in aligned 

barreloids while causing suppression of activity in non-aligned barreloids (43). It may 

propose a ‘driver’ role for L5 and a ‘modulator’ role for L6 (44). L5 can be considered 

as a part of the feedforward system, acts as a gate to pass the information, and L6 as 

a part of the feedback loop. However, yet the contribution of these corticothalamic pa-

thway in sensory processing is unclear (34). Both SpVi and PrV in the brainstem recei-

ve projections from S1 (34), but only projections onto SpVi are topographical (45, 46).

Secondary somatosensory cortex (S2)
Whisker-related secondary somatosensory cortex (S2) is located in the parietal cortex 

posterolateral to the barrel cortex in S1. Vibrissal S2 is also somatotopically organized 

and occupies 14% of the total area of the S2 (23, 47–50). In relation to barrel cortex, 

receptive fields of S2 neurons are larger, whisker evoked responses are relatively 

weaker; onset latencies of S2 neurons are comparable to S1 neurons but the former 

show stronger direction selectivity (51). VPM, PoM, barrel and septa columns project to 

S2 (52–56). There are reciprocal connections between barrel cortex and vS2 like M1 

and S2 reciprocal projections (54, 57). S2 projects to the striatum, the pontine nuclei, 

VPM and PoM (23, 58).

Motor system and control of whisker
Active touch requires the integration of motor and sensory systems. Efferent signals 

(the motor commands) give rise to rhythmic motor activity that creates stereotypical 

whisking behavior (59). Whisker movement generates robust reafference (sensory) 

signals that track vibrissa motion and touch (60–62). One of the cardinal questions in 

systems neuroscience is to determine the role(s) of internally generated motor com-

mands to perception.

A large area of motor cortex in rodent represents the facial motor muscles, including 

those connected to whisker follicles. Anatomical studies have shown monosynaptic 

connections between vibrissal M1 and several subcortical nuclei (58, 63, 64). It has 

been suggested that higher-order areas initiate and/modulate active whisking mo-

Projections originating from PoM and targeting the barrel cortex, like other non-VPM 

projections, largely avoid barrels and innervates either superficial and/or deep layers 

in S1 or the inter-barrel septa in L4: thalamocortical axons from PoM neurons heavily 

target L5A and L1 (34, 39).

Besides lemniscal and paralemniscal pathways, subnucleus caudalis (SpVc) n trige-

minal nucleus project to VPM and form extralemniscal pathway (see figure 1) which 

carries information about whisker contacts (6, 40).

FIGURE 2. Simplified diagram of the sensorimotor loop. Only the Lemniscal (red) and Paralemniscal (green) path-

ways are shown. See (6, 41, 42) for detailed reviews on sensorimotor circuits in the rodent brain. 

Feedback projections
Besides feedforward projections discussed above, whisker related sensory system 

involves series of feedback afferents to lower nuclei in the hierarchy (see figure 2). 

S1 sends cortical feedback to PrV and SpVi in brainstem and to VPM and PoM in 

thalamus. Moreover, S1 projects to other midbrain and brainstem structures including 

the superior colliculus, pons, and the spinal cord (1). These feedback control systems, 

next to the feedforward information flow construct a complicated interconnected con-
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govern the sense of touch. Approximately 80-85% of the barrel cortical neurons are 

excitatory and remaining are inhibitory (34). Excitatory neurons’ projection target both 

distant nuclei, e.g. barrel cortex to vM1 projections, as well as the other neurons in 

their vicinity, let it be a cortical column or layers. Majority of inhibitory neurons project 

locally within or across layers in vS1. The role of each cell type in the network dynamic 

is unknown. However studying their behavior is of great importance to understand 

the system.

Main excitatory neurotransmitter in the central nervous system is the glutamate. The 

main glutamatergic neurons in S1 are spiny stellate, star-pyramidal, and pyramidal 

neurons, which their morphologies and connectivities in the barrel system are well 

studied (3, 83–87). VPM and other L4 neurons project to spiny stellate neurons in L4 

(88) and the spiny stellate cells project to superficial layers within the same barrel co-

lumn (85). Star-pyramidal neurons in L4 have similar morphology to spiny stellate cells, 

while their projections are mainly vertical across the barrel layer (84). Most of the cells 

in cortical Layer 2/3, 5, and 6 are pyramidal neurons. These neurons mostly project 

to other layers within the ipsilateral barrel cortex or cortico-cortically to contralateral 

S1, M1, or S2 (86).

The inhibitory neurotransmitter Gamma-aminobutyric acid (GABA) is released from 

interneurons which is comprised of a diverse population of neurons (87). GABAergic 

neurons can be subclassified based on active and passive membrane properties, 

axonal and dendritic projection patterns, and the molecular markers (mostly calcium 

binding proteins) they express interneurons can be classified based on the cluster 

analysis (89). Besides, interneurons in L2/3 can be grouped into seven groups based 

on their dendritic excitability, including basket cells, chandelier cells, double bouquet, 

bitufted, Martinotti cells, Cajal-Retzius cells and neurogliaform cells (1, 90).

Given the diversity of the cell types, subclasses, their columnar distribution and pat-

tern of projections (both afferents and efferents) one goal in systems neuroscience 

is to describe the sensorimotor integration for each cell-type in a cortical column 

and layer resolution. Although advancements in targeting single cell populations for 

optogenetic neural control is now broadly utilized, understanding the principles of 

sensorimotor control at the neuronal level will necessarily requires targeted modu-

lation of the top-down neuromodulatory neurotransmitters (e.g. serotonin, dopamine, 

norepinephrine (noradrenaline)) which control the neuronal processing in a context 

specific manner. 

vement, however the rhythmicity of the whiskers is caused by a brainstem central 

pattern generator (6). Physiological evidence argues that activity in vibrissal M1 is 

correlated with whisker movement and it increases prior to whisking onset (65); indi-

cating a role of M1 in initiating and modulating whisking (6, 66, 67). On the other hand, 

rhythmic whisking persists after inactivation of vibrissal M1, although whisking kinetics 

is changed (68). The signal generated in M1 ultimately passes through lower nuclei to 

reach facial motor nucleus which process and relay the information coming from M1 to 

the whiskers. There is also a sparse, but direct M1 projections, to motor neurons in the 

facial nucleus (69), but most M1 corticofugal axons innervate other brainstem nuclei, 

such as the reticular nucleus and superior colliculus, that in turn innervate the facial 

motor nucleus (58, 63, 64).

Most of the vibrissal cortical areas are reciprocally connected. Vibrissal M1 is con-

nected to the barrel cortex, S2 and M1 in the contralateral hemisphere (70). Barrel 

cortex-M1 reciprocal projections are the main sensorimotor cortical connections, ori-

ginating mainly from L2/3 and L5a and targeting mostly the deeper layers but also L1 

and the septal regions in L4 of S1 (71–73). S1 projections are most probably the main 

source of sensory information for M1, next to the strong afferents from S2 (57, 74, 75). 

The M1 efferent reach S1, S2 and collateral M1 (58, 76). 

Multiple ipsilateral thalamic nuclei project reciprocally to M1: the mediodorsal group of 

nuclei (MD), the centrolateral group (CL) and the PoM (58, 77–79). Besides, M1 projects 

to other thalamic regions ipsi- and contralaterally including to the inner anteromedial 

(IAM), the anteromedial (AM) and VPM (58, 77–79) thalamic nuclei. As mentioned in the 

previous section, it has been proposed that M1 projections to PoM may play a role in 

gating of ascending sensory information. 

Besides thalamus, M1 projects to other subcortical regions such as the pontocerebel-

lum (80), dorsolateral neostriatum (81), intermediate and deep layers of the superior 

colliculus (58) and the claustrum (82). Many of these postsynaptic targets of M1 projec-

tions also receive sensory projections originating from the barrel cortex, thus senso-

rimotor information converge multiple times along cortical and subcortical pathways. 

CELLULAR ORGANIZATION OF THE BARREL CORTEX

Barrel cortex is complex circuit that consists of variety of cell types whose integra-

tive properties, including input-output relationship with the rest of the brain, plausibly 
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cal territories, neural activity therein is vital for the anatomical and functional develop-

ment of the sensory areas (93). 

TCAs communicate with their postsynaptic neurons through glutamatergic neurot-

ransmission which is regulated by monoamines (such as serotonin) while GABAergic 

projections shape overall excitation to inhibition ratio in the network(100). Genetically 

modified animal models targeting serotonin showed that changes in serotonin ho-

meostasis results in permanent changes in adult behavior and alters the brain neu-

ral network. Different serotonin receptors at different developmental stages affect 

various developmental processes such as neurogenesis, apoptosis, axon branching 

and dendritogenesis (97). These modulations causes irreversible changes in the net-

work.

Barrels appear after TCA projections and cortical sensory areas form. The clustering 

of L4 neurons around TCAs is seen as early as P3 and matures by P7 (39, 101). From 

P10-14, TCA projections fine tune their structures and their innervation of the layer IV 

barrel neurons (102). With the initiation of active whisking around P14 central pattern 

generators located in the brainstem start controlling the whisker motor fibers on the 

snout (103). The pattern of GABA immunoreactivity reaches maturity in the third week 

(P16– P21) as the receptive field of excitatory neurons and their axodendritic projec-

tions reach “maturity” by P21 (102, 104). Therefore P21 onwards the barrel cortical 

neurons are considered to be mature (105). 

These developmental processes in the critical period are crucial for normal neural 

structure/function. However, this period is not a closure to plasticity and changes in 

the neural structure and network. An essential property of sensory maps is to adapt 

to changes and optimize the processes which continues after P21. 

THE SEROTONERGIC SYSTEM: 
A KEY REGULATOR OF SENSORIMOTOR CIRCUIT DEVELOPMENT 

Whisker sensorimotor system is shaped during early postnatal brain development 

by neuromodulatory neurotransmitters and in particular by the three principal mo-

noaminergic neuromodulators: serotonin (5-HT), dopamine and norepinephrine (no-

radrenaline). Among them the contribution of serotonin (5-HT) to the development of 

sensorimotor circuits are best studied. 

POSTNATAL DEVELOPMENT OF THE BARREL CORTEX

Normal development of brain is associated with a time span termed “critical periods” 

in which nature and nurture jointly ensure orderly development of neural organizati-

on and function. Animal behavior is determined through animals’ interaction with the 

environment and the developmental regulation of the genetic code. Maturation of 

cortical area in charge of a certain behavior depends on the experience-dependent 

neuronal processes together with experience-independent molecular mechanisms. 

Altered circuit development results in irreversible alterations in the organism, impai-

ring function also in adulthood. The concept of critical period was first studied in the 

ocular dominance plasticity studies in cats, where depriving afferent input to one eye 

immediately after birth causes irreversible loss of visual acuity and shift in the organi-

sation of V1 cortical columns (91–95).

Maturation of cortical areas arises due to the combination of molecular cues within the 

cortex and neuronal activity-dependent cues provided by sensory projections from 

the thalamus (93). Molecular mechanisms predominate at early stages of network 

formation, while activity-dependent processes modulate it at later stages of develop-

ment (91). Network development in the barrel system in rodents and its topographic 

representation has been extensively studied. The barrel formation starts at E9 (prena-

tal) and its maturation continues to (p21) postnatal; the initial formation of the network 

relies on molecular cues, however the refinement of its topography depends on neu-

ronal activity (93).

The critical periods for the somatosensory system is firmly related to the developmen-

tal phases for corticogenesis and cortical innervations. The intrinsic genetic programs 

determine cortical arealization (96). Thereafter, thalamocortical axonal (TCA) inner-

vation to the cortical plate is governed by molecular cues, intrinsic activity (93), and 

neuromodulatory systems including the serotonergic system (97). TCA projections 

govern the functional characteristic of the primary sensory areas. Activation of thala-

mic efferent to S1 during development shapes the barrel patterns and network during 

postnatal development (93). Whisker manipulation (e.g. plucking, trimming, sparing 

or exposure to enriched environment to increase utilization of whiskers) during the 

critical period, induces plastic changes in the size of the barrel cortical area and its 

network architecture (39). It has been suggested that subplate (SP) neurons partici-

pate in sensory map formation through TCA targeting and patterning. They innervate 

subcortically to the primitive striatum where they reach TCA project and superficially 

to transiently target layer IV (98, 99). Once TCA projections reach the assigned corti-
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Serotonergic modulation of sensorimotor function might be mediated by various sub-

cortical and cortical networks (see Figure 3).  Dorsal raphe (DR) projects to both ipsila-

teral S1 and M1, the principal trigeminal nucleus (Pr5) in the brainstem and the ventral 

posterior medial (VPM) as well as ventrolateral nucleus (VL) in the thalamus (112, 113). 

Because DR nucleus neurons also innervate collateral facial motor nuclei (Mo7) in the 

brainstem (114) serotonergic release by DR could potently alter sensorimotor proces-

ses throughout the sensorimotor axis. These wide range of axonal projection also 

suggests multiple modulatory roles for DR including synaptic integration and regula-

tion (brainstem and thalamus) together with signal processing and signal propagation 

(cortical sensorimotor networks). Beside the proposed modulatory role of serotonin in 

the mature brain, the change in innervation pattern and number of collaterals during 

brain development also suggest that serotonergic system might be involved in the 

development of the sensorimotor circuits (115).

Serotonergic neurons in the raphe nuclei project to brain regions starting already from 

E11-15 (109, 110, 115). During the first three weeks after birth, the density of serotonergic 

axon arborisation in the cortex and number of their synapse into cortical areas incre-

ase. During the first two postnatal weeks, serotonergic axons form dense clusters 

in S1 L4 (barrel structures) reaching their peak at P7, as thalamocortical projections 

mature. By the end of the second postnatal week, the density of the serotonergic pro-

jections gradually reduce. The hyperinnervation by DR serotonergic neurons coinci-

des with the critical period of cortical network formation in the barrel cortex. Because 

activation of HT1B receptors, which are located on the thalamic axonal projections tar-

geting cortical L4, impairs the probability of glutamate release (116, 117), serotonergic 

neurotransmission can shape propagation of information originating from the sensory 

periphery. Blockage of the serotonin uptake by the serotonin transporter during this 

period results in impaired thalamocortical innervation and the organization of the bar-

rels in the L4 (97, 118), as well as reduction of GABAergic signalling molecules critical 

for inhibitory synapse formation (119). These results argue that serotonergic neuromo-

dulation during the first weeks of postnatal development controls the propagation of 

the sensory input along the thalamocortical network by both modulating the excitatory 

feed-forward drive along the thalamocortical projections and the cortical inhibitory 

drive. Considering this period of postnatal development also coincide with onset of 

whisking (around P12-P14) serotonin might powerfully shape the functional maturation 

of the active whisking and adaptive motor control in the whisker system.

The first indirect evidence of serotonin playing a role in the development of the so-

matosensory cortex was the observation of transient serotonergic innervations, over-

lapping the layer IV barrel pattern during the first postnatal weeks (106, 107). Further 

studies suggested that altered development of monoaminergic systems leads to 

malfunction in sensorimotor function and sensory perception (108), in particular during 

the first 3 weeks of the postnatal development, during which sensorimotor circuits 

mature (109, 110). 

Serotonin (5-HT) that is released in the barrel cortex is synthesized in the raphe nuclei 

of the brainstem (see Figure 3). Dorsal and median part of the raphe nuclei project 

to multiple targets making the serotonin an important player in many central proces-

ses such as regulation of emotion (amygdala), cognitive functions (prefrontal cortex), 

sleep, sexual and eating behavior (hypothalamus), learning and memory (hippocam-

pus), as well as sensorimotor perception/action (the brainstem, thalamus, spinal cord, 

sensory and motor cortices) (108). The availability of the serotonin is regulated by 

the serotonergic release as well as the rate of clearing from the synaptic cleft by the 

presynaptic 5-HT transporter (SERT). The SERT protein terminates serotonin signaling 

and recycles it in a sodium-dependent manner while monoamine oxidase A (MAOA) 

mediated the degradation of 5-HT in the presynaptic neurons (111).

FIGURE 3. Simplified overview of the serotonergic innervation along the rodent whisker sensorimotor axis. 

Dark blue and purple shows the main origins and projections of the serotonergic system targeting the sensorimotor 

system. Dorsal Raphe (DR) nucleus projects to S1 and M1 in cortex, to ventrolateral (VL) and ventral posterior medial 

(VPM) in thalamus, principal trigeminal nucleus (Pr5) and facial motor nuclei (Mo7) in brainstem. Green shows the the 

lemniscal pathway and main processing structures of this somatosensory system and light blue shows the motor 

processing units and their related projections to thalamus (VL) and brainstem (Mo7) (adapted from (108)). 
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chapter adaptive motor control of whisker position for goal-directed action develops 

postnatally after the maturation of intracortical circuits. During and after developmental 

period, changing serotonin level could potentially alter the maturation of sensorimo-

tor computation. Altering sensorimotor network connectivity in turn changes signaling 

in the network, and could potentially alter the maturation of sensorimotor computa-

tion. In this chapter, I investigate this hypothesis in serotonin transporter knock-out 

animals and after transient intervention with serotonin signaling during postnatal de-

velopment. Using a heuristic graph-based computational model of whisking system, 

I attempt to explain the minimum circuit requirements for adaptive control of whisker 

position and predict how changes in this network affects sensory experience. 

Finally, Chapter 5 summarises all the observations and proposes a novel view of the 

adaptive whisker positional control. Here, I suggest that the brain utilizes sensorimo-

tor computation as a filtering process. It implements the filter iteratively by dynamically 

updating its internal model of the body, world as well as the body in respect to world. 

This computation ultimately enables two way communication between the body and 

the world.

THE OUTLOOK

Understanding the fundamental principles of sensorimotor computation is one of the 

cardinal questions in systems neuroscience. The present work takes advantage of 

the well studied rodent whisker system to address the behavioral and computational 

principles of adaptive whisking, a popular model of sensorimotor computation. Here, I 

investigate the object localization as a sensorimotor process and specifically address: 

In Chapter 2, I deploy a custom robotic apparatus to train animals on an object loca-

lization task. This robot enables us to train animals and later perform experiments in 

environments where the sensory environment is dynamically modified while animals 

performing the object localization task. To comprehend the mechanisms of sensori-

motor computations an essential step is to quantify the sensory input and motor out-

put behaviorally. In our whisker system model this could be achieved by quantifying 

whisking characteristics (such as whisker position, frequency, amplitude, velocity) and 

capture the touch statistics (e.g. touch position, contact induced displacement of whis-

kers, touch duration). This robotic platform is equipped with high-speed imaging and 

motion sensing that enables precise quantification of sensorimotor behavior. Using 

the robot to train rats and mice across various experimental conditions, here I present 

a big dataset that is made publically available. The data presented herein could be 

used in describing the principles of sensorimotor computation during navigation as 

exemplified in chapters 3-4.

In Chapter 3, I address the development of the sensorimotor computation in tactile 

object localization task. Nature and nurture together architect organization of cortical 

neural networks throughout life. In particular the first three postnatal weeks are critical 

for the anatomical, functional and behavioral maturation cortical circuits. In this chap-

ter I study the development of sensorimotor computation in juvenile rats (~P21) and 

after they reach adulthood (~P65) while they performed a tactile object localization 

task. Here, I first show how various parameters of whisking and body locomotion as 

building blocks of sensorimotor computation matures through time. Then, I introduce 

a holistic model which simulates object localization computation by whiskers. Using 

this mode, I demonstrate that object localization is an adaptive motor control problem, 

in which brain uses learned transfer functions to translate sensory information into 

motor action to generate adaptive sensing during goal-directed action. 

In Chapter 4, I look into serotonin as one of the cardinal influencers on network for-

mation, during and after developmental period. Based on the results in the previous 
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videography database to study the principles of 

active sensing in freely navigating rodents
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control for whisker position emerge. Moreover, the mechanisms responsible for the 

development and plasticity of sensorimotor computation are largely unknown. Becau-

se sensorimotor integration is contextually regulated (8–12), altered by the change in 

neuronal excitability along the sensorimotor circuits (13) and based on experience and 

the current state of the sensory organs (1), identification of the principles of sensorimo-

tor computation will require large scale behavioral experiments where sensory input 

on whiskers and motor control of whisker position are studied at high spatiotemporal 

resolution. Here we introduce the first iteration of such a dataset as freely moving 

rodents locate a tactile target under infrared light. The dataset includes independent 

variables of species (rat vs mouse), developmental age (juvenile vs adult, i.e. 3-5 post-

natal weeks and >6 weeks, respectively), sensory deprivation (single vs multi whisker) 

and genetic background (i.e. SERT knock-down vs control, see below). The database 

might serve researchers across a broad range of disciplines, including cellular, beha-

vioral, systems, cognitive neuroscience, and ethology, biomimetics, robotics, artificial 

intelligence, computer vision and active sensing communities, to study and model the 

principles of active sensing.  

Animals
All experiments have been performed according to the Dutch law concerning animal 

welfare and the guidelines for the care and use of laboratory animals upon institutio-

nal ethical committee approval. All efforts have been made to minimize animal suffe-

ring and discomfort, and all precautions were taken to reduce the number of animals 

used. 

The experiments were performed on 38 male rats and 10 male mice. Rats were either 

genetically engineered or pharmacologically treated to alter serotonergic neurotrans-

mission, a neuromodulatory neurotransmitter that contributes to motor control (14), 

stimulus encoding in the barrel cortex (15), and is believed to modulate development 

and maturation of sensorimotor circuits (16). Experiments in rats also included cor-

responding wild type and vehicle injection controls. Mice were on the C57Bl6 back-

ground (B6;129P2-Pvalbtm1(cre)Arbr/J, The Jackson Laboratory, RRID:MGI:5315557). 

Parvalbumin neurons in this line express Cre-recombinase but the mice were other-

wise not genetically or pharmacologically altered. The founder line was outcrossed 

to C57Bl6 for 20+ generations before the start of experiments. All mice were studied 

between 2-4 months of age.  

Serotonin transporter knockout rats (Slc6a41Hubr) were generated on a Wistar back-

ground by N-ethyl-N-nitrosurea (ENU)-induced mutagenesis as described before (17). 

Active sensing is crucial for navigation. It is characterized by self-generated motor 

action controlling the accessibility and processing of sensory information. In rodents, 

active sensing is commonly studied in the whisker system. As rats and mice modulate 

their whisking contextually, they employ frequency and amplitude modulation. Un-

derstanding the development, mechanisms and plasticity of adaptive motor control 

will require precise behavioral measurements of whisker position. Thanks to the ad-

vances in high-speed videography and analytical methods, it is now possible to ad-

dress these questions from a big-data perspective, by collecting and analysing large 

datasets for high-dimensional quantification of behavior. Here we provide a dataset 

of 6642 videos as hundreds of freely moving juvenile (3rd-4th postnatal week) and 

adult (P65+) rodents explored their environment in darkness to locate a stationary 

tactile object while being constrained on an elevated platform. The dataset includes 

sensory exploration with single- or multi-whiskers in wild-type animals (rat and mice), 

serotonin transporter knock-out rats, rats that received pharmacological interventi-

on targeting serotonergic signaling. The dataset includes varying background illumi-

nation conditions and signal-to-noise ratios (SNRs), ranging from homogenous/high 

contrast to non-homogenous/low-contrast. A subset of videos has been whisker and 

nose tracked, and are provided as reference for image processing algorithms. The 

behavioral data can be directly used to study (1) development of sensorimotor compu-

tation, (2) top-down mechanisms that control sensory navigation and whisker position, 

(3) cross-species comparison of active sensing. It could also help to address contex-

tual modulation of active sensing during touch induced whisking in head-fixed versus 

freely behaving animals. And finally, it provides the necessary data for machine learn-

ing approaches for automated analysis of sensory and motion parameters across a 

wide variety of SNRs with accompanying human observer determined ground-truth. 

DATA DESCRIPTION 

Context 
Whiskers, or mystacial vibrissae, are sensory hairs that are densely organized as a 

grid on the snout. Rats and mice actively move their whiskers in an oscillatory motion 

to explore their environment as they integrate sensory information spatiotemporally 

across whiskers and whisk cycles (1–5). The motor control of whisker position is a re-

sult of sensorimotor computation where sensory information collected during the last 

~3 whisk cycles is used to plan the whisker motion for the subsequent whisk cycle (6). 

Although animals can perceive passive touch before the onset of whisking (7), it is not 

known when and where in the brain the sensorimotor computation for adaptive motor 
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FIGURE 1. The timeline of experiments and handling. See main text for details.

The behavioral paradigm: Tactile object localization
We observed animals, under infrared light, as they shuttled between two elevated 

platforms with a variable gap-distance in between them. The animals were not food 

deprived; neither did they receive any reward for successful task execution. In this, so 

called spontaneous gap-crossing task (1, 6, 8, 13), the distance between the platforms 

is varied to enable observation of whisker dependent tactile object localization. In our 

training protocols, the gap-distance was randomly selected from a normal distribution 

whose mean increases and variance reduces with repeated training (i.e. increased 

number of training sessions) as described before (15). Catch trials, where the target 

platform is positioned just outside of the animal’s reach, were randomly introduced 

(~15% of successful trials) to ensure that the task execution required tactile exploration 

and was not a result of expectation and sensorimotor habit formation. 

The experimental set-up and data acquisition
The experimental set-up consists of two elevated platforms and a high-speed camera 

that are mobilized by linear actuators (Figure 2A). The animal position on the platforms 

are tracked using motion sensors. Motion sensors also provide real-time feedback for 

robotic actions including closure of doors, limiting the animal’s access to the gap, ga-

ting the sequence that control the position of tactile targets, triggering the streaming of 

high-speed videography data to disk, repositioning the camera to ensure optimal field-

of-view independent from the target location, and, if required, delivery of the reward.

Each session starts with the experimenter positioning the animal on one of the two 

platforms. The task of the animal in any given trial is to locate the other platform, if it 

is within tactile reach. The success on the task is defined as the animal traveling be-

tween the two far ends of the platforms, as assessed by motion sensors in real-time. 

If an animal starts and returns to the same starting position without interrupting the 

middle motion sensor on the other platform, the trial is classified as a failure. Animals 

are allowed to visit the gap as many time as they require before making a decision 

Experimental animals were derived from heterozygous 5-HT transporter knockout 

(5HTT-/-) rats that were outcrossed for 12+ generations with wild-type Wistar rats ob-

tained from Harlan Laboratories (Horst, The Netherlands). Ear punches were taken 

at the age of 21 days after weaning for genotyping and 5HTT-/- and 5HTT+/+ rats were 

randomly assigned to SERT KO (N=14 rats) and WT groups (N=14 rats), respectively. 

5-HT transporter deletion alters neural function starting from embryonic brain deve-

lopment (17). Thus, in a second group of rats, we interfered with the serotonergic 

system after birth, and only transiently when serotonergic innervations appear in the 

barrel cortex [9]. Fluoxetine hydrochloride (10 mg/kg/day, Sigma Aldrich), a selective 

serotonin reuptake inhibitor, was dissolved in water and administered orally. Age mat-

ched dams in a separate cage received tap water and were considered as Vehicle 

controls. The fluoxetine administration started after birth (P1) and continued for 7 days, 

corresponding to the period of postnatal development critical for the maturation of 

thalamocortical projections (18). The pups of all groups (Fluoxetine, N=5; Vehicle, N=5) 

were kept together with their mothers until weaning.

Animal handling and behavioral observations 
Animal behavior was studied as they located (or attempted to locate) a tactile target 

under infrared light between postnatal days (P) 21-P30, i.e. as juveniles, and/or after 

they reached sexual maturity (Figure 1). Animal handling protocols were similar to tho-

se employed previously (1, 6, 8, 13). Experiments started with a familiarization session 

(20 min/animal) where P18 pup (in rats) or adult mouse subjects were introduced to 

the experimenter and the experimental room the first time. Habituation to the set-up 

consisted of two 20 minute sessions under no visible light but with white noise. The 

training sessions (N=10/rat; N=30/mouse) lasted 30 minutes (or 30 successful trials) in 

which the gap distance (see below) was randomly drawn from a Gaussian distribution. 

With increasing number of sessions, the mean of the distribution was increased and 

variance reduced, adapting each animal’s individual learning curve, to ensure animals 

preferentially use their whiskers for target localization in majority of the trials. The set-

up was cleaned with ethanol between sessions. 

One day before the sessions that required animals to perform the task with a restric-

ted set of whiskers, animals were anesthetized using isoflurane. Half of the animals 

received whisker plucking sparing a single (C2) whisker or single (C) row bilaterally; 

the other half received “sham plucking” during which they were handled similarly to 

the whisker deprived animals, however their whiskers were left unplucked. Whisker 

regrowth was assessed every day, and if needed whisker plucking was repeated.
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The videography data can be used to track body and whisker position in high spa-

tiotemporal resolution. To provide the ground-truth data for future machine learning 

approaches for whisker tracking, three human observers tracked whisker and nose 

position in a non-overlapping subset of videos (>150 tracked frames/video). Corres-

ponding raw data are provided in .mat (MATLAB) format, see Figure 2C and 2D for 

sample traces, see Supplemental Table 1 for list of files that include ground-truth trac-

king data. If animals made multiple attempts to locate the target, which is common es-

pecially during the early phases of object localization training (1), the human observers 

were instructed to focus on the last epoch of exploration. 

Data format and online database organization 
All video files are stored as 4D matrices in .mat files as well as .mp4 files for streamlin-

ed navigation in standard browsers. The .mat formatted data can be visualized using 

“implay” function in the Image Processing Toolbox or using the standard “movie” func-

tion in MATLAB. Movies can be converted to other formats using built in functions 

“movie2avi” or “videowriter”. The videos can be manually or automatically segmented 

using open source software1. The dataset is available online at https://goo.gl/rooNk9 

and distributed under Creative Commons BY (attribution alone) license. This is an 

open access license without any restriction on the copy, distribution or data display. 

Users can freely derive from the dataset but are kindly requres to cite the data source, 

i.e. the publication that announced the dataset (Azarfar et al, Gigascience, revised). 

The database is mirrored on Gigascience servers (DOI to appear upon publication). 

The hierarchy in the data organization is shown in Figure 3 and include, in a descen-

ding order, species (rat vs mouse), age (juvenile vs adult), sensory exploration with 

single or multiple whiskers (e.g. single row or all whiskers intact) and transgenic, me-

thods of intervention with serotonergic signaling along with corresponding controls. 

A tabulated excel document (available for download at https://goo.gl/rooNk9 and as 

Supplemental Table 1 in the published version of this article) provides the metadata 

about the experimental details including date of experiment, session and trial num-

bers, gap-distance, trial outcome (success vs failure), and whether the ground truth 

data is provided. 

Application scenarios 
This database will help to address numerous fundamental questions in systems neu-

roscience, including but not limited to (1) development of sensorimotor computation, 

1  Matlab Whisker Tracker (github.com/DepartmentofNeurophysiology/Matlab-Whisker-Tracker) VideoViewer 
    (bitbucket.org/benglitz/controller-dnp/downloads/) 
    DeepLabCut (github.com/AlexEMG/DeepLabCut)

on whether or not to gap-cross. Upon decision, the door attached to the only access 

point of the platform that the animal is located upon is closed and the target platform 

is positioned in its new position as described above. 

Animals’ sensorimotor behavior as they attempt to locate the target is recorded using 

a high-speed camera. The camera is mobilized using a linear actuator to ensure com-

parable field of view across trials. An infrared backlight is positioned below the gap to 

provide the necessary contrast for imaging (Figure 2B).  

FIGURE 2. Experimental set-up and sample behavioral data. (A) The experimental set-up is installed in a sound 

attenuated chamber. Three linear actuators (a-c) mobilize a high-speed camera and tactile targets. Infrared motion 

sensors (d; 3x/platform) provide positional information about the animal and gate all actuators. Servo motors (e) in-

stalled at the ends of the platforms by the gap mobilize PVC panels (f) that act as gates. Gates are closed between 

trials and during tactile target motion. A custom made infrared (890 nm) panel provide background illumination for 

the video recordings.  (B) A sample still image with human observers’ ground truth data about whisker positions are 

overlaid. Images were acquired at either 480fps with a resolution of 512x640 (110 microm/pixel) using a PointGrey 

Flea3 (FLIR, Germany) camera (in mice) or at 220fps (240x320 pixels; 625 microm/pixel) using an AVT Pike (Allied 

Vision, Germany) camera (in rats). (C) Whisker tip position for 6 whiskers as a rat located the target. Each color cor-

responds to one whisker. (D) Similar to C but for single whisker along with the corresponding trace of nose position. 
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Figure 3. Organization of the dataset. See main text for details.

(2) top-down mechanisms that control sensory navigation and whisker position, (3) 

cross-species comparison of active sensing. By comparing the sensorimotor explora-

tion across wild-type juvenile and adult animals one could address how adaptive 

control of body and whisker position develop. Because adaptive motor control of 

whiskers is likely to be an outcome of a vector computation that ensures spatial con-

stancy despite the coupled changes in the body [2], developmental changes in body 

positional control in respect to whisking might unravel the sequential development 

of motor control. Repeating the same analysis across SERT KO, Fluoxetine and the 

corresponding control animals would help to address the role of serotonin in shaping 

motor development and consequences of altered serotonergic signaling in sensori-

motor control in adulthood. Finally, by comparing the sensorimotor exploration bet-

ween the multi-whiskered rats and mice one could address cross-species differences 

in adaptive motor control during object localization.

The data provided could serve the on-going machine learning efforts that will ulti-

mately allow automated segmentation of whiskers in near real-time, i.e in temporal 

resolution shorter than the duration of a whisk cycle. To ensure the usability of the 

database as a training set, we have included ground-truth data from a subset of video 

recordings. Understanding the principles of active sensing in biological systems might 

help to instruct adaptive solutions for artificial systems to adapt sensory navigation to 

the ever-changing motor demands of the navigating agent. 

Limitations
Freely behaving animal experiments are often burdened by high-dimensionality and 

the associated sampling limitations. Even if animals execute behavior in a constrained 

environment, e.g. exploring a stationary target while standing on an elevated platform, 

as in the behavioral experiments described herein, animals could change their ap-

proach angle, kinematics of whisking, duration of exploration, number of whisker used 

to sample the target, head angle and head elevation among other variables across 

different trials. Previous studies quantifying the sensory, motor and perceptual beha-

vior during whisker based object localization showed that both rats and mice perform 

spontaneous gap-crossing in a stereotypical manner and that ~100 trials (10 trials/ani-

mal) is sufficient to gather reproducible statistics of sensory and motor behaviors (1, 6, 

8, 13, 15, 19).  Thus the current dataset with 6642 independent observations across 11 

independent conditions (including species, age, genetic, pharmacological and sensory 

deprivation interventions) should provide sufficient sampling to address fundamental 

questions outlined in the previous section. However, we would like to attract the atten-

tion of the reader that the dataset does not include data from female animals. 
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Development of adaptive sensorimotor 
control for active sensing

3



INTRODUCTION

Rodents predominantly rely on sense of touch to navigate in darkness. Actively whis-

king rodents, e.g. rats and mice, highly depend on their whiskers (vibrissae) due to 

their nocturnal habits and sub-terrenial habitat in the wild. The sensory information 

collected by whiskers are transmitted through brainstem and thalamus into the barrel 

cortex, a sub region of the primary sensory cortex in rodents (1, 2). During active whis-

king, motor commands are iteratively updated based on the prior sensory information, 

propagating through the sensory axis (2–4). The motor controls are adaptively regu-

lated to enhance sensory acquisition, and thus reinforce sensorimotor computation 

and perception. 

In the whisker system, the adaptive sensorimotor control is gated by whisker touch 

and regulates the spatiotemporal pattern of whisking (3). In rodents this process takes 

about 90 ms and requires integration of the sensory information acquired over the 

last three contacts with the target (4). The end result of this computation is the protrac-

tion of whiskers to the position where the animal thinks the target object is located (4). 

Motor dynamics of whisker positional control is not the only parameter that governs 

sensorimotor computation during navigation. Body position and head angle are itera-

tively controlled to optimize tactile navigation. Locomotion and postural aspects of na-

vigational sensorimotor computation (how the animal supports, moves, and controls 

particular body parts) develop alongside the maturation of relevant neural circuitry 

(5–7), similar to whisking behavior (8–13). 

Coincidental to the development of cortical neural networks (14), most behavioral as-

pects of sensorimotor computation matures by the third postnatal week. Rat pups 

exhibit a flutter response to passive whisker contacts starting from P3 (15). They can 

retract their whiskers starting from P4 and protract them P7 onwards (13). Active whis-

king emerges around the second postnatal week (12). Thereafter, whisking gradually 

increases in frequency and amplitude, and reaches the adult form by the end of the 

third week (12, 13, 16) as animals start whisking in a stimulus dependent manner (17). 

Complimentary changes in the body positional control also appear during this period. 

Prior to P11, whisker movements are largely limited to unilateral retractions followed 

by head turns (12). Between P11 and P13 bilateral whisking develops along with en-

hanced forward locomotion and improved control of the head (12). Contact-induced 

modulations of whisking symmetry, synchrony, and whisking amplitude modulation 

emerge shortly thereafter and continue to develop at least until ~P18 when adult-like 

Navigation is a complex sensorimotor computation which requires integration of allo-

centric and egocentric information. In darkness, rodents commonly rely on their tac-

tile senses, in particular to their whiskers, to gather sensory information and instruct 

navigation. In this active sensing process, motor commands are adaptively regulated 

based on prior sensory information. This sensorimotor adaptation is implemented by 

independently controlling body and whisker position. The development of cortical 

neural networks during the first three weeks after birth is critical for the maturation of 

sensorimotor computation as animals gain their mobility and actively start collecting 

sensory information. However, whether sensorimotor computations for adaptive mo-

tor control develop during this period is unknown. Here, I addressed this question in 

rats longitudinally, during the last week of postnatal development and in adulthood, as 

freely behaving animals searched for a stationary target in darkness. The results sho-

wed that juvenile rats are capable of successful object localization but the adaptive 

sensorimotor strategies mature later in life. Adult rats adaptively control the mid-point 

and amplitude of whisking, and employ mature goal-directed locomotion strategies to 

perform sensorimotor computation, whereas, juvenile rats lack adaptive motor control 

of whisker position based on the recent sensory information. Computational model-

ling of the adaptive whisking argues that emergence of reactive retraction, i.e. whis-

ker retraction that depends on sensory feedback and ensures constancy of duration 

of tactile sampling, participates in the development of adaptive sensorimotor control 

for active whisking.   
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used to calculate the head angle. Whiskers were tracked manually (N=6 whiskers/ani-

mal; N=3 whiskers/snout) (Fig.1B,C). Whisker tracking was performed in animals which 

had all of their whiskers intact. Angular disposition of the base of the whisker was ana-

lyzed temporally and spatially (in respect to body-to-target position, i.e. nose to edge 

of the target platform (Fig.1A)). The speed with which animals approached the platform 

was quantified using the time derivative of the distance between the animal’s nose 

and edge of the target platform. Frequency of whisking was calculated using FFT 

(Fig.2A) and cycle duration (i.e. the time it takes for the whisker to travel between two 

protraction set-point; Fig.2B). Gap-crossing was defined as the moment the animal’s 

nose has passed the platform edge by more than 6 mm. Videos were then grouped 

by age and gap distances. The minimum gap distances of the analyzed movies were 

14.5 cm for adult and 9 cm for juvenile, i.e. whisker distances. These distances were 

selected to ensure that only tactile exploration of whisker touch was quantified, as 

animals also use the touch receptors around their nose in shorter gap-distances (3, 

4, 18–21). Whisker protraction was quantified in respect to the mid-point of the whisk 

space which was defined by the most protracted and retracted positions within the 

field (Fig.1D) 

RESULTS

Quantitative analysis of the interplay between motor controls and sensory acquisition 

strategies will help to unravel the principles of sensorimotor computation. Here, using 

localization of stationary targets by freely behaving animals as a model system, I des-

cribe the development of adaptive motor control in the whisker system.

Motor strategies for tactile navigation across development
On the gap-crossing task, animals navigate between two elevated platforms with a 

variable distance between them in darkness (3, 4, 18–21). They extend their body over 

the gap to reach the tactile target using their whiskers (Fig. 1A). To analyze animals’ 

locomotive strategies, I studied the speed at which they approach the target in the 

rostrocaudal orientation. This maneuver towards the target is a goal directed behavi-

our that minimizes the relative distance to the target, maximizing the likelihood of first 

contact with the target. The data shows that locomotion aspect of object localization 

develops in later ages in rats. 

Spatially resolved speed of approach to the target shows that juvenile animals do not 

vary the speed of approach (Fig.1E, top) although adult animals approximately double 

locomotion patterns, such as rearing, develops. 

Considering that both body and whisker positional control mature in parallel, it’s temp-

ting to speculate that sensorimotor computations in the whisker system emerge by 

the end of third week. Here, I experimentally addressed this question using publicly 

available high-speed videography recordings of rats performing a tactile object lo-

calization task (3, 4, 18–21). Rats performed object localization first as a juvenile (P21) 

and later as adults (~P65). Quantitative analysis of whisking, body position and tactile 

exploration showed that juvenile animals fail to utilize sensory information to drive 

adaptive motor control of whisker position. They continue whisking without altering 

the whisk amplitude and set-points in the whisk cycle. Adult rats, however, perform 

motor computation based on recent sensory information to adaptively control the 

mid-point and amplitude of whisking. Computational simulations of the active and 

adaptive motor control of whisker position argue that the brain must utilize a neural 

code that allows reactive retraction of whiskers that keep the duration of contact 

roughly constant across touch events. I propose that emergence of the reactive re-

traction and the modulation of the whisker protraction are essential for maturation of 

adaptive motor control.  

MATERIALS AND METHODS

The experiments in this chapter were performed using 11 male wistar rats. To ensure 

the data is not confounded by repetitive sensorimotor training at large gap-distances 

(see below) and that it comes from a single day, we constrained the data to <3 trials/

animal (N=30 per age condition). Animal handling, behavioral observations and beha-

vioral experiment paradigm were as described in Chapter 2. In short, on the sponta-

neous gap-crossing task (3, 4, 18), animals shuttled between two elevated platforms 

with a variable gap-distance in between in darkness (Fig.1A). A mobilized high-speed 

camera recorded animals behavior during tactile object localization. Gap-distance 

was randomly selected from a normal distribution.

Automated analysis of tactile exploration statistics 
All images were analyzed in MATLAB. A background image was selected before the 

animal entered the field of view and was subtracted from all subsequent frames. Plat-

form edges were detected in the background picture as the transition points on a 

back-lit background. To determine the head angle, a triangle was created between 

the two ears and nose. Deviation of the nose from head center (between the ears) was 
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FIGURE 1. Motor strategies for tactile navigation across development. (A) The Gap-crossing paradigm (dn : nose 

distance to target, dw whisker’s tip distance to target). (B) An example representative dataset of target position, 

animal position, approach curve and whisker tracking results. (C) Overlay of the tracked whiskers. Data from a sin-

gle trial is shown. (D) Graphical representation of the protraction angle (𝛂). Grey shaded area represents the most 

protracted and most retracted whisker positions during a trial, normalized to the change in the body and head positi-

on. (E) Speed of locomotion during the last 1.5 seconds prior to gap-crossing. The upper figure illustrates the speed 

of approach for juvenile rats (F = 1.36; p =0.13 ANOVA); the lower is for adults (F = 49; p <0.01 ANOVA). (F) Whisker 

tip distance to target (dW) in relation to body-to-target position. Left: Juvenile rats -- r2 = .52, Nose distance effect: F = 

4.82; p<0.001; Right: adult rats -- r2 = .47, Nose distance effect: F = 2.92; p<0.001. (G) Most protracted angle at each 

whisk cycle in relation to the set point versus the nose distance dn from target. Left: Juvenile rats -- Fit slope= 0.03 

deg/mm, Nose distance effect: F = 0.85; p=0.09. Right: Adult rats (Fit slope= -0.17 deg/mm, Nose distance effect: F 

= 1.59; p<0.01). Black lines are the fit to the data, red lines are no correlation fit, i.e. the trend expected if the dn and 

𝛂 were not correlated. 

their speed every 100 ms prior to ~400 ms to gap-cross (Fig.1E, bottom). Although this 

approach profile could be interpreted as juvenile rats navigate towards the target 

without adapting their search strategy, increased mobility could be also be a by-pro-

duct of non-motor variables (e.g. change in exploration vs exploitation strategies du-

ring development).  

In both groups of animals whisker tip position correlates with the relative distance to 

target. Whisker tip position in relation to target (dw) is determined by body position 

to target and whisker positional control. Analysis of whisker tip position in respect to 

target (dn) revealed that whisker tip position converges to the tactile target in both ju-

venile and adult animals as the animal approaches to the target (Fig.1F). To decode the 

contribution of whisking motor pattern modulations on the sensorimotor computation, 

angular disposition at the base of the whisker during the task was studied.

Adaptive whisking sensorimotor control develops postnatally and matures after P21. 

Angular disposition at the whisker base is a principal component of the egocentric 

motor control strategies. Rats actively control their whiskers to augment the collected 

information by adaptively setting their whiskers protraction and retraction angle. Here, 

I studied the whisker protraction angle to evaluate these strategies. The whisking 

patterns were screened throughout each trial to determine the maximally protracted 

and retracted positions, middle of this range was set as zero degree set-point (also 

called mid-point, or whisker position at rest (3, 4, 18–21)). The protraction angle (𝛂) in 

each trial was calculated in respect to the zero degree set-point. The results (Fig.1G) 

showed that adult mice position their whiskers more rostrally (bring them forward) as 

they approach the target. Juvenile animals, on the other hand, do not regulate their 

whisker protraction based on their relative distance to the target.

Frequency and amplitude modulation across development
In active sensing, sensory exploration is contextually modified in a task and goal spe-

cific manner. Adjusting whisking frequency is one of the factors that regulates adap-

tive control of sensory acquisition and integration in the whisker system (22–25). Berg 

and Kleinfeld (26) reported an increase in the whisking frequency range when animals 

change their whisking mode from ‘exploratory’ (range 5–15 Hz) to ‘foveal’ whisking 

(15–25 Hz) in search for reward. However, it is not yet known whether tactile sampling 

strategies adapt after the first contact with the target. Considering that the higher the 

whisking frequency, the shorter the duration of tactile exploration at a given whisk cy-

cle, reduction in whisk frequency during tactile exploration will maximize the contact 

duration.  
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Sensorimotor adaptation and sensory acquisition across development
In active sensing, motor control is systematically modulated to optimize sensory ac-

quisition as animals (neural circuits) maximize the inflow of task-related sensory infor-

mation (27, 28) while minimizing energy consumption (29, 30). In the previous secti-

ons, I studied the active motor control of this adaptive computation. In this section, I 

analytically investigate the development of sensory acquisition strategies. 

Juvenile rats collect more sensory information prior to successful gap-crossing. Ana-

lysis of the tactile exploration duration showed that young adult rats spend signifi-

cantly less time collecting sensory information compared to juvenile rats prior to suc-

cessful object localization (Fig. 3A) although the duration of single touch event was 

statistically comparable between the two groups (Fig. 3B). Considering that the total 

exploration duration is higher in juvenile animals, although single touch events are 

comparable across juvenile and adults, the difference in sensory exploration is likely 

to be due to increased number of whisker contacts in the juvenile animals, which is 

supported by the experimental observations (Fig. 3C). Deconvolution of the contact 

duration with number of whiskers simultaneously in contact with the target showed 

that, in juvenile animals, contact duration increased when there were multiple whis-

kers palpating on the target (Fig. 3F). 

Juvenile rats collect most of the sensory information closer to target, recruiting larger 

number of whiskers in comparison to adults. Juvenile and adult rats employ two dif-

ferent strategies to harvest sensory information. Adults make most of their contacts 

within 2-5 cm from target. In juveniles, likelihood of sensory exploration increased 

as the juvenile rats approached the target (Fig. 3D). Deconvolution of the number of 

simultaneous whisker contacts with the relative distance to the target (Fig. 3E) showed 

that juvenile rats gather most of the sensory information closer to target while keeping 

higher number of whiskers simultaneously in contact with target. Adults gather most of 

the sensory information further away from the target (2-4 cm) and with lesser number 

of whiskers simultaneously in contact at any given time (Fig.3E, right). Accordingly the 

duration of contact varied with relative distance to the target across groups (Fig.3H). In 

adult animals the contact duration remained constant (and brief) while they were within 

2-5 cm of the target (Fig.3H). As they got closer to the target, the contact duration in-

creased, probably because at this range they keep their whisker protracted, increasing 

the contact duration without regulating the whisk cycle (Fig.3H, right). Finally, the ana-

lysis of the approach speed showed that while juvenile animals approach the target 

with a relatively constant speed, adults increase their speed as they get closer to the 

target (Fig. 3I). Accordingly they spent relatively less time closer to the target (Fig. 3J). 

Adaptive frequency modulation develops postnatally and after P21. Whisking fre-

quency distribution mostly lies between 5 and 20 Hz for both juvenile and young 

adult groups during stationary target localization, independent from the animals’ lo-

cation in respect to the target (Fig.2A). In juvenile animals tactile exploration does not 

change the whisking frequency (Fig.2B, top), although adult rats reduce frequency of 

whisking upon whisker contact (Fig.2B, bottom). Considering that protraction and re-

traction amplitudes are comparable across animals (Fig.2C), contact induced change 

in whisking frequency is likely to be mediated neuronally, by controlling the phasic 

regulation of whisking, for example by a delay line.  

FIGURE 2. Frequency and amplitude modulation in juvenile and adult rats. (A) Histogram of whisking frequency 

binned (5 mm) in relation to the body-to-target distance (Top: Juveniles, F = 1.36; p =0.07 Two-way ANOVA; Bottom: 

Adults, F = 12; p=0.01; Two-way ANOVA). (B) Normalized power of frequency range in free whisking versus during 

tactile exploration. Top: Juvenile rats (whisking mode effect: F = 0.75; p=0.22, ANOVA); inset shows the cumulative 

frequency distributions (whisking mode effect: F = 0.57; p=0.79, ANOVA). Bottom: Adult rats (whisking mode effect: 

F = 13.83; p<0.01, ANOVA); inset: whisking frequency binned by touch (data from rats with single whisker, N= 5 rats; 

N=30 trials). (C) Normalized distribution of protraction and retraction angles in each whisk cycle (Top -- Protraction: 

developmental effect, F = 1.78; p=0.27, ANOVA. Bottom -- Retraction: developmental effect, F = 3.43; p=0.18, ANOVA).
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Histograms of contact duration grouped by the relative distance to target (developmental effect (observed variable 

distance): F =198; p<0.01). (I) Distribution of speed of approach by relative distances to target (developmental effect 

(observed variable distance): F =369; p<0.01). (J) Normalized distribution of time spent in respect to relative distance 

to target (F =183; p<0.01). All statistical comparisons are made using (two-way) ANOVA.

An in silico model of active whisking
The results outlined above show that juvenile animals do not utilize the sensory in-

formation they acquire to adapt their whisking pattern. There are several plausible 

mechanisms how adaptive motor control can be implemented during active sensing. 

To systematically address these mechanisms, I have developed an in silico model of 

whisking. The whisking module of the model is based on a pair of coupled oscillators 

driving protraction and retraction, functionally mimicking the central pattern genera-

tors in the brainstem (31, 32). As in the the biological circuits of sensorimotor control 

these oscillators receive top-down hierarchical input that could modulate whisk cycle 

(31, 32). The model integrates body locomotion and whisking motor control, thus can 

decouple the two active motor control processes to address how adaptive changes 

in body positional control relate to adaptive whisking. Sensory feedback, e.g. duration 

of contact (tactile exploration), can be integrated to establish close-loop sensorimotor 

control. 

Using this model, non-adaptive (uniform) whisking, as observed in juvenile animals, 

can be simulated by driving the oscillators as an open-loop, i.e. the whisk frequency, 

protraction and retraction onsets are not modulated by sensory information but in-

trinsically regulated (Fig.4C-E). The result is in silico whisking at a constant frequency 

independent from the exploration state, relative distance of the animal to the target or 

the history of tactile exploration -- all behaviorally shown in juvenile animals (Figs.1-3). 

Adult animal, on the other hand, perform adaptive whisking, systematically protract 

their whiskers further as they get closer to the target. In silico such a control system 

requires close-loop integration of sensory and motor circuits which is implemented 

through recursive increase in protraction angle and decrease in whisking amplitude 

upon emergence of novel sensory information. This implementation successfully re-

plicates the observed properties of adaptive motor control in adult animals (Figs.1-3) 

as adaptive whisking in silico results in forward placement of the whiskers, incre-

ased whisker protraction amplitude, reduced amplitude and frequency of whisking 

(Fig.4C-E).

FIGURE 3. Statistics of whisker guided tactile exploration across development. (A) Adult animals spend signifi-

cantly less time exploring the gap compared to juvenile rats prior to successful object localization (developmental 

effect: F = 87; p<0.01). (B) Normalized count of duration of single touch, Grey: juvenile, white: young adult (develop-

mental effect: F = 0.74; p=0.49). The inner figure shows the total duration of contact within a whisk cycle across all the 

whiskers (developmental effect: F = 2.45; p=0.21). (C) Normalized count of the number of whiskers being simultane-

ously in contact (developmental effect: F = 27; p<0.01). (D) Spatial probability distribution of contacts (developmental 

effect: F =251; p<0.01). (E) Spatial distribution of likelihood of simultaneous number of contacts (developmental effect 

(observed variable distance): F =221; p<0.01). (F) Histograms of average contact duration grouped by the number of 

whiskers simultaneously in contact with the target (developmental effect (observed variable contact duration): F =73; 

p<0.01). (G) Normalized distribution of contacts in the horizontal plane (developmental effect: F =0.364; p =0.546). (H) 
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constant (Fig.5A), although the duty cycle remains constant across all touch events 

(Fig.5B). These results suggest that the sensory information is used for both creation 

of a close-loop sensorimotor control that modulates the amplitude of whisking, but 

also for enabling “reactive retraction” to ensure constancy of whisker contact duration 

across touches.  

FIGURE 5. Animals actively control the contact duration and duty cycle. Data from animals with single whisker 

(unilateral C2; N=5 animals and 30 trials). (A) Touch duration as a function of touch index. Note that after the first 

contact, the contact duration is stabilized. (B) The duty cycle of whisking, i.e. duration of contact in respect to the 

duration of a whisk, across the different touch events. 

To validate our in silico model of whisking, I performed simulations with behavioral 

variables observed in juvenile and adults animals which successfully created uniform 

and adaptive whisking in silico (compare Fig.6A-B to Fig1.F-G).  

This model provides a valuable platform to study the contribution of different whisking 

attributes to sensory information acquisition. Figure 6 C-F compare the contact dura-

tions between the adaptive sensorimotor scenario with non-adaptive whisker control. 

Contact durations are shown in each figure for five consecutive touches during ob-

ject localization task (see Fig. 6C). The simulation provides means to decouple each 

motor control variable study their effect on sensory information individually. The body 

locomotion strategies are the same across the first three experiments (Fig.6 C-E) and 

similar to nose distance to target shown in Figure 4E. In these sets of experiment the 

reactive retraction is disabled to observe solely the effect of adaptive motor control 

on touch duration. In Figure 6C, the effect of sensory driven adaptive gradual incre-

ase of mid-point is studied. 

Figure 4. Whisking in silico (A) Uniform versus adaptive whisking as observed in juvenile and adult animals, res-

pectively. Color code represents the relative distance to the target and the motor control phenotype at the corres-

ponding distance. See Figures 1-3 for the behavioral data. Adaptive whisking is characterized by reduction in whisk 

amplitude, forward placement of whisker, increased protraction amplitude. During uniform whisking animals whisk 

at constant frequency and amplitude. (B) Sensorimotor variables of interest. Red dots denote the whisker tip (actual 

vs virtual); α is the angular displacement from the mid-point between the most retracted (i.e. retraction set-point, α) 

and protracted positions (protraction set-point, -α) of the whisker during whisking. dn represents nose distance to 

target, dw symbolizes the whisker’s tip distance to target. dw is negative when the virtual whisker passes through the 

target. dbt is the distance between whisker’s base on the snout and whisker’s tip. (C) Angular displacement at the 

whisker base for adaptive whisking (red) versus uniform whisking (black). (D) Evolution of dbt patterns during adaptive 

whisking (red) versus uniform whisking (black). (E) Whisker tip and body (nose) position in relation to target during a 

gap-crossing trial. (F) “Reactive” and “compliant” retraction as a part of adaptive sensorimotor control.

Next to this recursive adaptation, recent sensory information might regulate the whisk 

cycle to keep the duration of whisker contacts constant through “reactive retraction” 

of whiskers during close-loop control of sensorimotor control. Alternatively, if the sen-

sory input does not have any influence on the retraction of whisking, the retraction 

would be compliant to the protraction thus as the animal gets closer to the object, the 

contact duration would be systematically increased (Fig.4F, inset). To experimentally 

address which of the two models of retraction is employed by animals, I have quan-

tified the touch duration and duty cycle across consecutive touches (N=5 animals 

and 30 trials; Fig.5). The results showed that touch duration increases after the first 

contact, plausibly because the animals get closer to the target, after which it remains 
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effect of whisking frequency on touch duration. Whisking frequency directly gauges 

contact duration. 

One of the parameters in this model is the maximum whisking retraction and protracti-

on angle. Figure 6E shows the result of changing maximum protraction angle on touch 

duration. The locomotive strategies (speed of approach) of juvenile and adult rats in 

relation to time and space was studied in the earlier sections and shown in Figures 1 

and 3. Adults approach the target slowly prior to acquisition of the early sensory in-

formation but then maneuver quickly to the target platform, while the Juvenile group 

approach the target with a uniform speed. In Figure 6F, the effect of these locomotive 

strategies on touch duration is shown.

Figures 6 G-J compare the contact duration between compliant retraction and reac-

tive retraction. Note that second to fifth touch durations are not asymptotic (unlike the 

behavioral observations, Fig.5) because the model predicts the retraction time based 

on the sensory information in the previous cycle and reference motor copy of the 

current whisk cycle. Thus, body dispositions during the current whisk cycles, and their 

effect on touch duration are not included but could be integrated as an error term. 

And finally, Figure 6G-J show the role of mid-point adaptation, frequency variation, 

maximum protraction angle and approach trajectory on contact duration for compliant 

retraction and reactive retraction. 

DISCUSSION

In whisking, similar to other active sensing paradigms, sensory information alone is 

not sufficient to form a percept of external world. This percept hinges on the interplay 

between motor controls and sensory information. The sensory information coming 

from whiskers, together with the spatial position of the whisker at the time of contact 

contains the necessary information required for object localization. Here, using high-

speed infrared videography, I studied rats locating a stationary tactile target in two life 

stages juvenile (P21) and adults (~P65). I simultaneously quantified the sensory input, 

the whisking motion and body locomotion. This is the first study which addresses de-

velopment of whisker-based navigational adaptive sensorimotor control in rats.

Early postnatal development of the somatosensory cortex
For my experiments in juveniles I focused on P21 primarily because, at this age, the 

whisker system of the rats is believed to be functionally (see introduction) and ana-

FIGURE 6. Simulated whisking in silico. (A) Simulated tip distance to target dW in relation to body-to-target po-

sition. Left: uniform whisking, right: adaptive whisking. (B) Adaptive motor control of whisker angular protraction. 

Left: uniform whisking, right: adaptive whisking. C) Contact duration in adaptive versus uniform whisking. Sensory 

driven adaptive gradual increase of mid-point increases the contact duration. Touch sequences are as shown in the 

figurine. The dashed line shows the result for uniform whisking with zero mid-line adaptation. (D) Contact duration 

in adaptive versus uniform whisking. Increasing the frequency decreases the contact duration. (E) Contact duration 

in adaptive versus uniform whisking. Increasing the maximum protracted angle increases the contact duration. (F) 

Contact duration in adaptive versus uniform whisking. Approach (gray) pattern entrained by juvenile rats results in 

higher contact duration. (G) Contact duration in compliant versus reactive retraction (investigating the effect of rate 

of mid-point adaptation). (H) Contact duration in compliant versus reactive retraction (effect of whisking frequency). 

(I) Contact duration in compliant versus reactive retraction (effect of maximum protraction angle). (J) Contact duration 

in compliant versus reactive retraction (effect of approach trajectory, juvenile (gray) versus adult (black)). 

As mid-line adaptation gradually increases from 0.5 to 5 degree per cycle (touch) ani-

mal pushes the whisker further towards the object which in lack of adaptive controls 

for retraction and adjusting the touch duration results in longer touch durations. On 

the other hand, in uniform whisking touch duration is only a function of nose distan-

ce to target and frequency of whisking, for instance it is evident that in the third and 

fourth touch contact duration is identical in uniform whisking. Figure 6D studies the 
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suggest that in addition to exploratory and foveal whisking, there is another mode of 

active whisking regulated by contact. 

Experiments also showed that juvenile rats collect more sensory information prior to 

successful object localization. They make most of the contacts closer to target, with 

higher number of whiskers simultaneously in contact, and these contacts are longer 

in duration (Fig. 3). This exploratory pattern could be explained by body locomotion; 

adults position themselves away from the target during the exploration, while juvenile 

rats spend most of this time closer to target. 

Function of adaptive whisking
During active sensing, adaptive sensorimotor computations aim to optimize the sen-

sory information acquisition to maximize the task-related sensory information and mi-

nimize the energy consumption (29, 30). When rats palpate onto the target platform 

during gap-crossing task with multiple whiskers, they collect redundant information 

(18): platform´s edge structure is uniform and its elevation along the edge is constant, 

thus information available across different whiskers in contact are redundant. One 

of the principal functions of this adaptive whisking could be to compensate for the 

redundant sensory information, as our results demonstrate that in adaptive whisking 

strategy less number of whiskers are simultaneously in contact. Reduced redundancy 

is proposed to increase the channel capacity and increase the speed of information 

processing (39, 40). Moreover, the simultaneous touches are shown to integrate su-

blinearly and add minimal information at the network level (41–43). Thus an outcome 

of this adaptive sensorimotor computation could be to optimize sensory acquisition 

by avoiding making contact with excessive number of whiskers simultaneously which 

add minimal information. Besides reducing redundancy, adaptive motor control go-

verns pattern of whisker movement, which dictates the sensory signal transmitted 

along each whisker and the exploratory field of each whisker. This, could potentially 

influence the sensory information available to brain to solve the control task.

I found that whisker retraction is actively controlled to keep the whisking duty-cycle 

constant (Fig. 5). I observed that touch duration increases from first touch to the se-

cond, and there on the duration of touch stays constant. These results are in agree-

ment with the reduction in the frequency of contact after the first touch (Fig.2). In ad-

dition, the data indicates that rats keep the duty cycle constant during the navigation 

task. Together, the results propose an active mechanism for controlling the whisker 

retraction to keep the touch duration and its duty cycle constant in a whisk cycle. 

Body locomotion changes body to target distance between each whisk cycle, the-

tomically mature. The barrels begin to emerge at E9 (prenatal) and continue to form 

characteristics of its mature network until (P21) postnatal (14). Patterning and plasticity 

of the barrel cortex, the targeting of ventrobasal thalamic axons, the formation and 

functional maturation of synapses during the initial critical developmental periods are 

extensively investigated (8–11). Initially, through corticogenesis, the intrinsic genetic 

programs determine cortical arealization. Thereafter, thalamocortical axons innervate 

the cortical plate (33, 34). Then, barrels start to form around P3 and matures by P7 (35, 

36). Around P14, TCA projections innervate the barrel cortex (37) and central pattern 

generators in the brainstem start controlling whisker motion (13). In the third postnatal 

week, the pattern of GABA immunoreactivity, the receptive field of excitatory neurons 

and their axodendritic projections reaches maturity (37, 38). This is the time that the 

barrel cortical neurons are considered to be mature (14). Considering that both body 

positional control and the whisker motion mature during this period (see introduction), 

this age group is the earliest time course that one can address the question when the 

adaptive control of whisker position matures. 

Juvenile rats do not utilize sensory information for motor control: Open-loop whis-
king 
I found that goal-directed body locomotion and whisking both are controlled proces-

ses independent from the developmental age however adaptive whisking matures 

later after P21 (Fig. 1). Juvenile rats navigate towards target with uniform speed while 

young adults body locomotion changes based on the relative distance to the tar-

get. The experiments showed that adults increase their protraction angle as they ap-

proach the target (driven by touch), and this adaptation happens through advancing 

the mid-point around which the whisker swings at each cycle, while juvenile rats whisk 

uniformly the entire exploration period.

Sensory information modulates whisking frequency as a part of the adaptive sensori-

motor control and this modulation develop after P21 (Fig. 2). Adults whisk with lower 

frequencies during tactile exploration in comparison with free whisking mode, while 

sensory information does not modulate whisking frequency in juvenile group. In con-

trary to our results Berg and Kleinfeld (26) reported increased whisking frequency 

when rats change their whisking mode from ‘exploratory’ (range 5–15 Hz) to ‘foveal’ 

whisking (15–25 Hz) in search for reward. In their experiment female Long-Evans rats 

were trained to whisk in search of a food reward, while in this chapter male wistar rats 

were trained to perform spontaneous gap-crossing task. More importantly, our results 

are specifically looking at touch induced changes in sampling frequency, although 

the previous results were limited to free-whisking and search behaviors. Therefore I 
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Serotonergic regulation of adaptive motor control

4



INTRODUCTION

During active sensing the position of sensory organs is adaptively controlled based 

on sensory and contextual information as well as learned task requirements (1–3). In 

the whisker system, for example, the pattern of whisking during object localization is 

modulated by whisker touch as animals protract their whiskers towards the presumed 

tactile target location (4). Modulation of motor (whisking) pattern by sensory input 

allows compensation for the change in body position in respect to the target (5–7). 

A recent study, see Chapter 3, showed that this adaptive motor control develops 

postnatally after the 4th postnatal week, but developmental mechanisms of adaptive 

sensorimotor control are yet to be unraveled. 

Postnatal development of sensorimotor circuits relies on the combination of intrinsic 

molecular cues and neuronal activity that is coherent across population of neurons; 

while intrinsic cues ensure orderly development of the sensorimotor circuits, activi-

ty-dependent processes fine-tune the circuits thereafter (8–12). Emerging evidence 

suggests that neuromodulator neurotransmitters, in particular serotonin (13), power-

fully regulate the development of sensorimotor circuits. Altered serotonergic signa-

ling during early postnatal development impairs the structure and function of neural 

circuits (14–19), results in anxiety and depression like behavior (14, 19, 20) and hinders 

goal directed navigation and object recognition (14, 19). Increasing extracellular sero-

tonin availability during development impairs sensorimotor behavior well into adoles-

cence (19) while administration of select SSRIs (e.g. Fluoxetine, Sertraline, citalopram) 

during a critical period causes delayed development of several reflexes and muscle 

strength (18, 21, 22) as well as sensorimotor coordination (23–25) and motor explora-

tion (26, 27), (28). These findings argue that changes in the serotonergic drive early 

in life might be critically involved with the maturation of sensory and motor circuits.

 

In agreement with these observations, we previously showed that serotonin transpor-

ter knockout (Sert-/-) rats display behavioral and neuronal sensory hyperexcitability 

(27) in the whisker system. At the functional level a major consequence of network 

excitability is the faster integration of sensory information during whisker based tactile 

navigation (27). Because the barrel cortex and the primary motor cortex have reci-

procal monosynaptic communication, altered serotonergic signaling could potentially 

dysregulate whisker positional control during sensory navigation. Here I addressed 

this question using publically available high-speed videography database of rats per-

forming a tactile object localization task, introduced in Chapter 2. Quantitatively analy-

zing the motor control of whisker and body position, I show that sustained alterations 

Active sensing requires adaptive motor (positional) control of sensory organs based 

on contextual, sensory and task requirements. In Chapter 3, I have shown that adap-

tive motor control for whisker based exploration develops postnatally after the matu-

ration of intracortical circuits. Altering sensorimotor network connectivity during this 

period is likely to shape sensorimotor computation also in adulthood. Serotonin is 

among the cardinal developmental regulators of network formation, thus changing 

the serotonergic drive might potently control the emergence and maturation of sen-

sorimotor computation. Here I tested this hypothesis on an object localization task by 

quantifying the motor control dynamics of whiskers during active sensing. The results 

showed that sustained alterations of the serotonergic signaling in serotonin transpor-

ter knockout rats, or the transient inactivation of the transporter during early postnatal 

development, impairs the emergence of adaptive motor control of whisker position 

based on recent sensory information. A direct outcome of this altered motor control 

is that the mechanical force transmitted to whisker follicles upon contact is reduced, 

suggesting that increased hyperexcitability observed after altered serotonergic sig-

naling is not due to increased synaptic drive originating from the periphery upon whis-

ker contact. Graph based neural circuit simulations showed that these observations 

can be explained by a heuristic network model of sensorimotor computation which 

links the change in feed-forward excitatory drive propagating from the sensory perip-

hery to reduced synaptic inhibition in the central nervous system. These results argue 

that postnatal development of adaptive motor control requires intact serotonergic 

signaling, and that even its transient dysregulation during early development causes 

long-term sensorimotor disturbances in the adulthood. 
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before the subject’s entrance to the field of view, was subtracted from all other frames 

to aid with moving object detection. This background image was also used to identify 

the stationary tactile target, i.e. the elevated platform animals are searching for, by 

finding the transition point from low to high brightness in the illumination. 

For the analysis of the head (body) and whisker position, the head contour was extrac-

ted using a standard contrast based edge detection approach. The positions of ears 

and nose were used to triangulate the head direction. Angular deviation of the nose 

from head center plane (between the ears) allowed calculation of the head angle in 

respect to the tactile target and the relative nose distance to target. Whiskers (N=6 

whiskers/trial, N=3 whiskers/snout) were tracked manually. Whisker contacts with the 

target were marked manually for all whiskers. Animals had all of their whiskers intact 

throughout the experiments. Angular displacement of the whisker base in respect to 

target was computed for each tracked whisker. Only data from whisker distances (gap 

distance >14.5 cm), where animals collected tactile information from the target using 

solely their whiskers prior to decision-making, were analyzed. Thus tactile exploration 

using the touch receptors embedded in the skin (as it invariably happens at short 

(nose) distances (29)) do not interfere with the sensorimotor behavior (29) and the 

adaptive sensorimotor control of whisker position during tactile navigation (1, 4).

Whisker position in respect to the target platform was calculated as described previ-

ously (1, 4). Angular protraction of the whisker was quantified at the whisker base, in 

respect to the position of the whisker at rest, i.e. the mid-point between the protrac-

tion and retraction set-points in a whisk cycle (Figure 1A). Whisker tip position and 

relative position of the tip of the nose in respect to the tactile target were extracted 

using custom routines. Absolute distance between the two platforms was defined as 

the target distance (in respect to the home platform).  

Mechanical modeling of whisker bending
Whiskers can be modeled as a flexible beam that transmits mechanical information 

to mechanoreceptors in the follicle. Whisker geometry, density and its elastic moduli 

govern the mechanical information at the follicle. This mechanical “simplicity” allows 

mathematical approximation of the tactile (mechanical) inputs transmitted by the vi-

brissae during active tactile exploration. 

Whisker shape can be approximated by a quadratic fit (a parabola) (31). Given that the 

density of the keratinized tissue diminishes almost linearly from base to tip (32, 33), 

whisker’s elastic moduli govern its bending stiffness. The two most relevant moduli 

of serotonergic signaling in serotonin transporter knockout rats, or the transient in-

activation of the transporter during early postnatal development, impairs emergence 

of adaptive motor control of whisker, but not the body positioning in the adulthood. 

Simulation of the mechanics of the whisker displacement showed that the absence of 

goal-oriented adaptive whisking reduces the mechanical forces at the whisker follicle. 

These results argue that previously described sensory hyperexcitability upon altered 

serotonergic signaling (27) is not due to increased mechanosensory drive, and that 

hyperexcitability originates in the central nervous system. In short, postnatal deve-

lopment of adaptive motor control requires intact serotonergic signaling, and that 

even transient changes in serotonergic signalling during development cause long-

term sensorimotor disturbances in the adulthood, impairing close-loop sensorimotor 

control of whisker position, reducing the precision in motor control during goal-direc-

ted navigation, and reducing touch induced force transmitted to the whisker follicles.   

MATERIALS AND METHODS

The experiments in this chapter were performed using 38 male wistar rats as descri-

bed in Chapter 2. In short, animals shuttled between two elevated platforms with a 

variable gap-distance in between them as they searched for a tactile target in their 

immediate environment in the absence of any visible light. Animal behavior on this 

so-called spontaneous gap crossing task (1, 4, 29) was recorded by a robotic high-

speed camera using infrared back-lights. Videos were analyzed using custom written 

routines in Matlab to extract whisking and body locomotion dynamics at a sampling 

resolution of 5 ms. 

Animals
Animals were randomly assigned to two groups: Half of the rats were genetically mo-

dified (N=14) or pharmacologically treated (N=5) to alter serotonergic neurotransmissi-

on. Serotonin transporter knockout rats (Slc6a41Hubr, N=14) were originally generated 

on a Wistar background by N-ethyl-N-nitrosurea (ENU)-induced mutagenesis (30). To 

transiently interfere with the serotonergic signalling after birth, fluoxetine hydrochlori-

de (10 mg/kg/day, Sigma Aldrich), a selective serotonin reuptake inhibitor, was dissol-

ved in water and administered orally to wild type Wistar rats (N=5) for 7 days after P1. 

The other half of the rats were wild type (N=14) and vehicle (tap water) controls (N=5).

Analysis of tactile exploration statistics 
All recorded images were analyzed off-line in Matlab. A background image, acquired 
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body position for integration of sensory information in space and time. In the adult 

whisker system this is achieved by adapting whisker protraction angle to the change 

in body position in respect to tactile target to perform a form of vector computation 

where whiskers and body are treated as coupled manifolds (1). This computation is 

learned after the first postnatal month (see Chapter 3), upon sequential emergence of 

motor control of body and whiskers (39). If serotonergic signalling is required for the 

adaptive sensorimotor computation, body or whisker motion control might be impai-

red by altered serotonergic signalling during development. 

To observe the motor control dynamics during or following altered serotonergic sig-

nalling, four groups of rats were studied on the gap-crossing task (1, 4, 27, 29, 40, 41) : 

Serotonin transporter knock-out (SERT-/-, N=14) had constitutive deletion of the trans-

porter, while transient pharmacological inactivation of the transporter during develop-

ment (N=5) allowed the assessment of serotonergic contribution to the emergence of 

sensorimotor control. Wild-type controls (SERT+/+, N=14) and vehicle treated groups 

(Vehicle, N=5) served as controls.   

All groups successfully acquired the task. Animals increased the maximum gap-dis-

tance at which they successfully located the tactile target by four-folds over the cour-

se of 10 training sessions (Figure 1B). In every session animals were tested at multiple 

gap-distances (range: 3-18 cm), each constituting a trial. After the completion of a trial, 

gap-distance was randomly selected from a normal distribution where the distribution 

mean increased and the variance is reduced with increased number of training sessi-

ons completed on the task (27).  

All groups employed a similar locomotive motor strategy to accomplish the task.  
Animals approached the target at a comparable rate (Fig. 1C) and speed (Fig. 1D). 

Despite the similarity in their approach to the target, animals that received transient 

(with Fluoxetine injections) or chronic (SERT-/-) intervention with serotonergic signal-

ling made significantly less number of contacts with the target during the last phase of 

the approach (i.e last 29 mm; Figure 1E, 1F) as previously shown in adult SERT -/- ani-

mals (27). Since serotonergic intervention does not change animals’ basic locomotion 

strategies, the reduction in sensory exploration might be due to distinct whisking 

strategies employed by the different groups of animals.

to whisker mechanics are the Young’s modulus (E) and shear modulus (G). Young’s 

modulus is essential to model the whisker in 2D, as shear modulus is significant only 

when a force is applied to the whisker surface while the opposite site of the whisker 

is held constant by another equal force. Equation below translates the curvature (k) 

at each point (s) along the whisker to bending moment (M), given the stiffness of the 

whisker at each point. This bending moment (the product of stiffness and the curva-

ture), is used to estimate the signals that rats experience during whisker deflection 

(34–38). 

			 

Whisker contact induced mechanical information at the whisker follicle can be ap-

proximated by calculating the bending moment (M), the axial force (Fx) which is the 

force directed along the length of the whisker near the base, and the transverse force 

(Fy) that is perpendicular to the axial force (Fig.4A) as described previously (34). 

To analytically quantify the sensory consequences of adaptive motor control, I simula-

ted the force transfer along the whiskers during active sensing across the four groups 

using elastica 2D in MATLAB (34, 36). The body locomotion towards the object is 

modeled by coordinating the contact point of the whisker to the target. Body-to-tar-

get position together with egocentric whisker position (alpha of the parabola fit to 

the whisker) govern the location on whisker that contacts the object (the location on 

whisker that bending force applies). 

RESULTS

Serotonergic signalling is critically involved in development and maturation of sen-

sorimotor circuits however whether serotonin contributes to the emergence of clo-

se-loop sensorimotor computations for adaptive motor control is unknown. Here, I 

studied genetically engineered or pharmacologically treated rats exploring a tactile 

target to address this question. 

Task performance and development of goal-oriented motor control strategies
During goal-oriented navigation, sensorimotor transformations require integration of 

information in self- (egocentric) and world-centric (allocentric) coordinates. Sensory 

circuits represent the world in egocentric coordinates but body motion and moving 

appendages (e.g. whiskers, limbs and head) necessitate discounting the changes in 
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ced independent from whether animals received acute or chronic intervention with 

serotonergic signalling (Fig. 2A). 

The adaptive control of whisker position is a function of the coupling between two 

moving manifolds, i.e. body movement and whisker motion. It was suggested that the 

functional contribution of the adaptive changes in whisker protraction might be to ac-

count for the changes in body position (1). If the brain were to perform vector compu-

tation to calculate the relative distance of the target by considering the displacement 

of the body and the whisker position, reduction of the protraction angle would allow 

to minimize the error in stimulus location estimates. The observation that for all groups 

whisker’s tip position converges to the expected target position (Fig. 2A), however, 

does not imply that animals adaptively control the whisker protraction as the whisker 

tip position is also a product of the body position across whisk cycles. Therefore, I 

next quantified the change in whisker protraction as animals approached to target. 

As it was shown previously (1, 4) and confirmed in Chapter 3, the animals utilize adap-

tive sensorimotor control by increasing the maximum whisker protraction angle while 

decreasing whisking amplitude as they get closer to target. This protraction angle 

maximization is mediated through advancing the mid-point around which the whisker 

swings at each cycle. Groups with the modified serotonergic systems lack adaptive 

sensorimotor computation in respect to their corresponding control groups (Fig. 2B). 

This result argue that serotonergic signalling is required for maturation and execution 

of adaptive control of whisker position during development.

For tactile localization of stationary objects, animals integrate sensory information 

across the last ~3 whisk cycles as they use this “prior” to control whisker position 

(1). The progressive adaptation of the whisker protraction angle upon successive 

contacts with the target (Fig. 2C) indicate that wild-type and vehicle groups perform 

motor planning based on the recent sensory information. By integrating the sensory 

knowledge iteratively by the third touch, they increase the protraction angle, extend 

their whiskers towards the target (Fig. 2D). In SERT-/- and fluoxetine groups, however, 

whisker protraction angle was independent from the prior whisker contacts, and the 

relative location of the target. Because fluoxetine animals received the pharmacolo-

gical intervention for a brief period of time during early postnatal development and 

they were behaviorally tested in the adulthood, these results also show that transient 

changes in serotonergic signaling during development have long lasting consequen-

ces for motor control in the adulthood.

FIGURE 1. The role of serotonin in goal-directed sensorimotor navigation. (A) Behavioral parameters of interest. 

Red dot denotes the whisker tip; α is the angular displacement from the mid-point between the most retracted (i.e. 

retraction set-point, α) and protracted positions (protraction set-point, -α) of the whisker during whisking. dn is the 

relative nose distance to target and dw symbolizes the whisker’s tip distance to target. (B) Learning curves for the 

four groups (Group effect: F = 1.83; p =0.141, 2-way ANOVA with df=3). (C) Normalized distance from target during the 

last 2 seconds of the exploration task (Group effect: F = 0.835; p=0.475, 2-way ANOVA with df =3). Note that average 

tactile exploration duration was less than a second. (D) Speed of locomotion during the last one second of the object 

localization task (Group effect: F = 0.670; p=0.517, 2-way ANOVA with df =3). (E) Normalized probability of contact 

with the target platform as a function of the relative distance to the target (Group effect: F = 22.931; p <0.001, 2-way 

ANOVA with df =3). (F) Normalized probability of touch based on the relative position of the animal to the target. 

Animals with altered transient (fluoxetine) and sustained (SERT-/-) serotonergic signalling required less number of 

contacts with the target platforms prior to successful object localization (Vehicle vs Fluoxetine, p<0.05; Wild type vs 

SERT, p<0.05; t-test). Data is presented as mean and the standard deviation from the mean, unless stated otherwise.

Adaptive sensorimotor control of whisker position 
During tactile exploration of stationary objects animals protract their whiskers to the 

position in space where they recall as the location of the tactile target (1). In agree-

ment with these observations, we found that as animals approached a stationary tar-

get, the relative distance between the target and their whisker tip position was redu-
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angle between free-whisking and the third whisker contact with target (ANOVA, Wild-type touch sequence effect: F 

= 10.126; p<0.001 with df =1, Knock-out: F = 2.13; p=0.147 with df =1, vehicle: F = 26.369; p<0.001 with df =1, Fluoxetine: 

F = 1.55; p=0.214 with df =1). 

Mechanical forces transmitted to the whisker follicle upon whisker contacts are re-

duced upon serotonergic dysregulation. Whiskers are specialized sensory hairs as 

such they do not contain any sensory receptors along their shanks; the mechanical 

displacement of the whisker is transmitted to the whisker follicle for sensory transduc-

tion. During non-adaptive whisking (as observed in SERT-/- and fluoxetine animals) the 

changes in follicle displacement upon whisker contact is solely due to change in body 

position (e.g. distance, head angle) in respect to the target. During adaptive whisking 

(as performed by wild type and control animals), the changes in whisking pattern also 

contribute to the mechanical forces at the follicle. Thus the quantification of the force 

in the follicle across non-adaptive and adaptive whisking could help to unravel the 

sensory contribution of adaptive motor control. 

To quantify the force that arrive at the whisker follicle I implemented a mechanical 

model of the rat whisker (see Methods for details). I simulated whisker displacement 

during active palpation onto a stationary target as animals gradually approached to 

target based on the experimental data. In all in silico experiments only the last 3 cm of 

the approach was simulated where animals with serotonergic dysregulation contact 

target less often than their counterparts in the control groups (Fig.1E-F). For the simula-

tion of non-adaptive whisking, the maximum protraction angle of the whisker was kept 

constant (~ 27∘). During adaptive whisking the protraction angle gradually increased 

from 27∘ to 37∘ along the locomotion path as per experimental observations (Fig.2). 

The results showed that mechanical forces transmitted to the whisker follicle upon 

whisker contact is increased as the animal approached the target (see red traces, 

Fig.3) due to the reduction in the relative distance between the target and the body. 

Lack of adaptive whisking resulted in systematic reduction of the force transmitted 

to the whisker along three axis (blue traces, Fig.3). These results argue that adaptive 

whisking increases the force transmitted to the whisker base, increasing the feed-for-

ward excitatory drive upon whisker contact. Lack of adaptive whisking after fluoxetine 

treatment or in the SERT-/- reduces forces in the whisker base upon whisker contact, 

thus reducing the sensory information originating from the periphery. 

FIGURE 2. Serotonergic regulation of adaptive sensorimotor control of whisker protraction. (A) Whisker tip 

distance to target dW in respect to the relative distance to target. From left to right: Wild-type (r2 = .47, Nose distance 

effect: F = 2.92; p<0.001), Serotonin knockout (r2 = .50, Nose distance effect: F = 5.42; p<0.001), vehicle (r2 = .75, 

Nose distance effect: F = 9.29; p<0.001) and fluoxetine (r2 = .72, Nose distance effect: F =7.58; p<0.001). (B) Most 

protracted angle at each whisk cycle in respect to the relative distance to target. From left to right Wild-type (Fit slo-

pe: -0.17 deg/mm, Nose distance effect (ANOVA): F = 10.59; p<0.01), Serotonin knockout (Fit slope: 0.02 deg/mm, F = 

0.925; p=0.061), vehicle (Fit slope: -0.22 deg/mm, F = 47.46; p<0.01) and fluoxetine (Fit slope: 0.02 deg/mm, F =1.649; 

p=0.017). The 2D histogram of the data is represented at the background and a representative sample data is plotted 

on top. (C) Normalized histograms of protraction angles binned across consecutive whisker contacts with the target 

(Touch sequence effect (2-way ANOVA) -- Wild-type: F = 16.84, p<0.001 with df =2; Knock-out: F = 1.46, p=0.098 with 

df =2; vehicle: F = 7.98; p<0.001, df =2, Fluoxetine: F = 2.99, p=0.053 df =2). Light grey, light blue and black, represent 

the protraction angles related to the first, second and third contacts, respectively. (D) Change in whisker protraction 
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Given the observations outlined in Chapter 3 and 4, a computational circuit that could 

perform adaptive sensorimotor control necessarily requires information from sensory 

circuits about the stimulus availability as well as motor control circuits that perform 

phase to motor signal transformation given the current state of the sensory informati-

on. Based on the known coding properties of the neurons along sensorimotor circuits, 

and the connectivity between them (see Discussion), the graph network consists of 

the following nodes (Fig.4A): 1) primary somatosensory cortex (S1; barrel cortex) where 

stimulus properties are encoded (42–48); 2) primary motor cortex (M1) which provides 

adaptive motor control for whisker protraction (49–53), through recursively adjusting 

the amplitude and midpoint of whisking envelope (54); 3) central pattern generators 

(CPGs) that control phasic motion of whiskers (55–57); 4) superior colliculus (SC) which 

translates phase and amplitude information to motor control commands for facial mo-

tor nucleus (FMN) to drive whisking (58); 5) dorsal raphe nucleus (DRN) that regulates 

excitability in cortical and subcortical (sensorimotor) nuclei (59); and 6) a control cir-

cuit, plausibly the barrel cortex (60), that triggers whisker retraction upon stimulation 

to maintain touch duration (Chapter 3). In this model output of each node is a transfer 

function rather than a time and/or rate varying action potentials. Please note that the 

aim of this model is not to mechanistically explain how the brain performs sensorimo-

tor computation, it is rather to provide the minimal circuit requirements for adaptive 

control of whisker position (see Discussion). 

Simulations in this circuit showed that adaptive whisker protraction (Fig.4B, left) is an 

emergent computation and can be dysregulated by either removal of the serotoner-

gic release or increasing the excitability in the sensory cortex, which was previously 

shown in SERT-/- animals (27) (Fig.4B, right). Although simulated animals, similar to 

rats (Fig.2), continue remapping whisker position as they approach the tactile target 

(Fig.4C), in circuits simulations without adaptive sensorimotor control do not result in 

change in increased whisker protraction, similar to the observations in SERT-/- and 

fluoxetine animals (Fig.4D, compare it to Fig.2B).  

A network model of adaptive whisking
Sensory exploration and motor control are coupled processes. Considering that lack 

of adaptive whisking reduces mechanical forces traveling along whiskers upon whis-

ker touch (Fig.3), this change in the sensory drive could potentially alter the motor con-

trol of whisker position in subsequent whisk cycles. To address this question, without 

the confounding variables (including compensatory change in body position) of navi-

gation in freely behaving animals, I built a graph based network model of whisking. 

FIGURE 3. Lack of adaptive sensorimotor control upon altered serotonergic signaling reduces the force trans-

mitted along the whisker upon contact with a tactile target. (A) Whisker contacts with objects in the plane of 

whisking change the axial force (Fx), transverse force (Fy) and the reaction moment (Mz) at the whisker base, and leads 

to mechanoreceptor activation to initiate bottom-up propagation of the sensory information. (B) Mechanical forces 

at the whisker base upon whisker contacts as the animal approached the target (Axial force genotype effect: F = 88; 

p <0.001, 2-way ANOVA with df =1, Transverse force genotype effect: F = 113; p <0.001, 2-way ANOVA with df =1). (C) 

Change in Moment (Mz) at the follicle upon whisker contact (Genotype effect: F = 56; p <0.001, 2-way ANOVA with df 

=1). The data presented as mean ∓ std, blue denotes non-adaptive whisking conditions (SERT-/-, fluoxetine) and red 

adaptive whisking conditions (wild type, vehicle). 
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The simulations showed that tactile navigation using adaptive whisker protraction 

results in in silico whiskers being positioned at the virtual target (Fig.5A, left) while 

non-adaptive whisking introduce localization errors (Fig.5A, right). These results could 

potentially explain the reduced tactile exploration observed in animals experiments 

(Fig.1E) with SERT-/- and fluoxetine injected animals. Indeed the likelihood of whisker 

contacts with the target observed in silico closely resemble the experimental ob-

servations (compare Fig.1E to Fig.5B). After the first touch event, the whisker motor 

commands are modulated and directed towards the target in adaptive whisking. This 

target alignment directly increases the probability of touch events. 

 

Considering that the body locomotion together with whisking pattern govern the 

forces at the follicle, the localization errors observed during non-adaptive whisking 

could contribute to the reduction in mechanical forces transmitted to the follicle upon 

whisker contacts. Simulations showed that the contact induced forces were indeed 

significantly smaller during non-adaptive whisker protraction (Fig.5C). Larger touch in-

duced mechanical information (i.e. force) at the follicle, improved tactile resolution (re-

duced localization error), and increased likelihood of sensory exploration argue that 

adaptive whisking results in higher signal to noise ratio during sensory acquisition.

FIGURE 5. Lack of adaptive motor control alone is sufficient to explain the sensory exploration pattern after 

alterations in serotonin transmission. (A) Whisker tip position during exploration of a stationary target in silico. 

Grey shaded area represents the edge of tactile target. Density plots quantify the relative position of the whisker tip 

during tactile exploration with (Wild type: Contours are drawn with a step size of 16.5%, range: 16.5-100%) and in the 

 

FIGURE 4. A computational circuit model of adaptive sensorimotor control. (A) Circuit components in the net-

work: Barrel cortex subregion of the primary somatosensory cortex (S1), vibrissal motor cortex (M1), dorsal raphe 

nuclei (DRN), Superior colliculus (SC), central pattern generator (CPG) and facial motor nuclei (FMN) are modeled. 

See Discussion for details on the known anatomical and functional projections along this computational network. 

(B) Relative distance of a whisker tip to the tactile target during simulated adaptive whisking (red; left figurines) and 

simulated non-adaptive whisking (blue; right). The black line is an experimentally observed, randomly selected ap-

proach trajectory in a 2D plane, i.e. change in relative Euclidean distance to the target (dn) as a freely behaving ani-

mal approaches a stationary tactile object. In adaptive whisking, sensory information modulates the motor command: 

protraction angle increases given the sensory information collected prior to the current whisk cycle, whisking ampli-

tude decreases, and whisker retraction is actively controlled to keep the touch duration constant. (C) Simulated tip 

distance to target (dW) in relation to body-to-target position. Left: adaptive whisking (red, r2=%89); right: non-adaptive 

whisking (blue, r2=%78). (D) Protraction amplitude, in respect to mid point, versus the nose distance dn from target in 

silico. Left: adaptive whisking (red, r2=%40); right: non-adaptive whisking (blue, r2<%1). 

Adaptive whisking improves tactile scanning resolution and this difference in whis-

king pattern is sufficient to explain the reduced sensory exploration during seroto-

nergic dysfunction (seen in Fig. 1). The aforementioned computational model might 

help to unravel whether the reduced likelihood of tactile exploration observed in the 

SERT-/- and Fluoxetine groups is a product of the lack of adaptive motor control. To 

address this question I simulated sensorimotor exploration of a stationary target in si-

lico (Fig.5). In this experiment the object was “touch transparent”, as such contact with 

target did not change whiskers’ motion trajectory. This is akin to the “virtual whisker 

tip position” mapping described previously (1) and ensures that intended whisker tip 

position could be visualized (Fig.5A). 
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duction in body weight (14, 61), increased anti-social behavior (19), reduced sexual mo-

tivation (19, 63, 64), increased aggressive (14, 19), and might impair reward processing 

and learning & memory (19). Impaired sensorimotor integration, upon serotonergic 

dysregulation, might contribute to expression of these phenotypes (14, 62). Therefore 

serotonergic contribution to sensorimotor and cognitive processes might be causally 

related. 

Altered serotonergic drive might result in miswiring of sensorimotor circuits, and thus 

cause sensorimotor deficits. Studies have shown that exposure to elevated serotonin 

level during the critical period disrupts locomotion (14, 19, 21, 23, 65), decreases novel 

object exploration (14, 19, 26) and causes delay in development of several reflexes 

and muscle strength (14, 18, 21, 22) possibly via structural changes in the circuit orga-

nization (19). Alternatively, the sensorimotor deficits might be a by-product of altered 

balance between the excitation and inhibition. In our previous study (27), we demon-

strated that high serotonin levels during development impair feedforward inhibition 

and facilitate excitatory drive in the somatosensory cortex. Disruption in the inhibitory 

drive can lead to malfunction of the network as these sensory evoked inhibitions par-

ticipates in many aspect of sensory computation including: controlling precise timing 

of the response, preventing runaway excitation, sharpening stimulus selectivity, and 

increasing the overall sparseness of sensory response (48).

Network model of whisking
To provide a simplified circuit model of adaptive computation where serotonergic dys-

regulation to sensorimotor integration can be quantitatively studied, I have introduced 

a graph based network model whisking. The model is based on the known principles 

of neural representations and circuit connectivity across sensorimotor nuclei (see re-

sults and below). We have repeated the experiments in this chapter in silico to validate 

our model, and finally used it to address the circuit mechanisms of adaptive whisking. 

Behavioral and in silico experiments showed that control animals (wild-type and vehi-

cle groups) modulate the whisker protraction based on the recent sensory information 

by adjusting the midpoint of the whisking. While peak to peak amplitude of whisking 

decreases and whisking rhythm is regulated to keep the contact duration constant 

independent from the relative position of the body and whiskers in respect to the 

target. M1 is a possible candidate that controls the amplitude and midpoint of the en-

velope of whisking (49, 50, 53). Hill et.al (54), found that majority of single units in vM1 

cortex code for variation in amplitude and midpoint of whisking. Since these motor 

representations were not influenced by inactivation of the trigeminal sensory input, 

absence of (SERT-/- contours: step size of 12%, range: 9-100%) adaptive control of whisker protraction. (B) Probability 

of whisker contact with target in silico. Red: Adaptive whisker protraction (as seen in rats in wild type and vehicle in-

jected groups); Blue: Non-adaptive whisker protraction (as performed by SERT-/- and after transient pharmacological 

intervention. (C) Mechanical forces (Fx and Fy) and Momentum (Mz) evolution at the whisker base (mean ∓ std) during 

simulated whisker contacts with tactile target in silico. Color code as in B. The approach trajectory for the adaptive 

and non-adaptive whisker protraction are based on behavioral observations. Touch number 0 in the X axis refers to 

the last whisking cycle prior to first contact with the target.

DISCUSSION

The present study demonstrated that genetically targeted or transient 5-HTT inacti-

vation induce long-term impairment of sensorimotor computation, and interfere with 

the development of adaptive sensorimotor control during tactile object localization 

(Fig.2). Specifically, after serotonergic interventions animals failed to integrate sen-

sory information to regulate the whisker positions in the subsequent whisk cycles. 

Nonetheless these rats were able to perform the object localization task successfully, 

similar to the wild-type and vehicle groups (Fig.1). In addition, results indicated that all 

animals across groups (wild-type, 5-HTT knockout, vehicle and Fluoxetine) had de-

veloped comparable goal-oriented locomotive strategies (Fig.1). To address whether 

changes in sensorimotor strategies alter sensory information mechanically transmit-

ted along the whisker upon whisker contact, I analyzed the forces created at the 

follicle during active whisking. The results showed adaptive whisking maximizes the 

forces transmitted along the whisker (Fig.3). A computational circuit model of adap-

tive versus uniform (non-adaptive) whisking showed that inactivation of the commu-

nication between primary somatosensory and primary motor cortices impairs adap-

tive whisking sensorimotor control (Fig.4). The results also indicated that adaptive 

whisking improves tactile scanning resolution and confirmed the finding that adaptive 

whisking strategy increases sensory information transmitted during contact (Fig.5). 

Higher scanning resolution and stronger signal representation at the follicle translates 

to higher signal to noise ratio in sensory acquisition. The outcome of the simulation 

further proposed that the difference in whisking pattern between the two groups is 

sufficient to explain the sensory exploration pattern (seen in Fig.2) after alterations in 

serotonin transmission.

Serotonin plays an important role in development (see introduction and Chapter 1). 

Changes in the serotonergic drive might have long term behavioral consequences 

such as depression and anxiety (14, 19, 61, 62), deficit in circadian rhythmicity (19), re-
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The final motor command (whisker angle/phase) is connected to a virtual model of 

whisker (31, 34). Our whisker is modeled with a parabola and bends upon contact. 

We use the egocentric information of the whisker position combined with allocentric 

information of body-to-target position of the animal in the simulation as input to our 

whisker model. Using this model we calculate the bending along the whisker and the 

forces at the whisker’s base. The body locomotion (allocentric) information in simu-

lation is learned and determined through experimental data of rats performing gap 

crossing task. Using this in-silico whisker model, the consequences of adaptive motor 

control on sensory acquisition is simulated. 

OUTLOOK

The present study demonstrates that reduction of 5-HTT during early development, 

either by blocking 5-HTT using an SSRI (fluoxetin) or constitutively by genetic deletion 

of 5-HTT, have long-term effects on sensorimotor computation and impairs emergen-

ce of adaptive whisking. As a result whisker contacts transmit less mechanical infor-

mation to whisker follicle. Considering our previous observations on the reduction of 

inhibitory drive and increased feedforward excitation in the primary somatosensory 

cortex (27), and the observations that SERT-/- deletion reduces the thalamocortical 

projections targeting the cortical layer 4 (76), it is tempting to speculate that the chan-

ge in cortical excitability is an compensatory change to facilitate the detection of weak 

signals originating from the periphery. Regulating the excitability of the inhibitory neu-

rons in Layer 4 in a cell type specific manner during object localization will provide a 

mechanistic insight on the neural basis of touch sensation. Re-balancing the excitato-

ry and inhibitory drive in the somatosensory cortex will also alter the communication 

between S1 and M1, thus might rescue the motor phenotype described herein.  

these signals are generated by a central source in M1. In our whisking network model, 

we have modulatory unit that applies the same controls on whisking pattern upon 

activation (see Figure 4A). When simulated whiskers contact the target, incoming sen-

sory information drives the M1 module to apply goal-oriented modulation on whisking 

pattern. The peak to peak amplitude decreases and the maximum protraction angle 

increases.

Touch event influences the whisking pattern by driving the adaptive motor control as 

well as through a regulatory circuit that keeps the duration (duty cycle) constant (see 

Chapter 3). S1 (barrel cortical) neurons encode the touch event and its duration both 

at the single-cell and population levels (42, 46, 47, 66–69). S1 spiking correlates with 

rapidly varying signal that represent the phase of the motion during rhythmic whisking 

(42–45). In addition S1 is linked to adaptive whisking, as this mode of whisking increa-

ses phase-locking between vibrissa movement and electrical activity in barrel cortex 

(42, 46, 47, 66–69) while targeted stimulation of S1 results in whisker retraction (60). 

In our in silico model, S1 module senses the timings and whisker phase during a touch 

event. Information from S1 is ultimately integrated with the reafference copy (70) of the 

control signal in M1 to calculate the error between the planned whisking path and the 

current location (i.e. interrupted path) upon a contact event. Touch duration in S1 is fu-

rther used to retract the whisker which ensures the constancy of touch duration. This 

calculation could originate in variety of brain regions (60). Mohan et.al (71), propose 

that the posterior parietal cortex might be the integrative hub.

In free whisking, rhythmic motion is the dominant mode of whisking (72). However, in 

adaptive whisking this rhythmic movement is altered by adjusting the whisk amplitude 

and midpoint of whisk cycle (73, 74). M1 could have instructive role over this cyclical 

pattern of whisking (75). In our model we have two central pattern generator (CPG) 

modules, one for protraction, the other retraction generation. In the absence of sen-

sory input (free whisking), the output of these two modules directly govern the whis-

king pattern. In case of contact, the M1 modules manipulates their output to instruct 

adaptive whisking, possibly via superior colliculus (58). 

Serotonergic system contributes to sensorimotor system prominently through its pro-

jections via DRN (see Chapter 1 for review). Altered serotonin level, could disturb 

the sensorimotor network configurations and its within communication. In the current 

model, DRN governs the communication among our modules. Here, the effects of dis-

rupted communication among whisking related nuclei on sensorimotor computation 

is simulated. 
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Adaptive sensorimotor control as a filtering process

5



In Chapter 3, I longitudinally studied the development of sensorimotor computation in 

juvenile rats (~P21) and after they reach adulthood (~P65) as they performed tactile object 

localization. The results showed that adaptive sensorimotor control does not mature 

during the first three weeks of the postnatal development, a period known to be critical  

 

for functional neural circuit formation along the sensorimotor axis. Juvenile rats suc-

cessfully located tactile targets, adapting their body position to locate stationary tar-

gets in darkness. Unlike adult animals, however, juvenile rats failed to adapt their 

whisker protraction to sensory information they collected in preceding whisk cycles. 

As a result juvenile rats continue to whisk at a constant amplitude independent from 

their distance to the tactile target (see Figure 1). 

FIGURE 1. Adaptive sensorimotor control of whisker protraction develops later in life. (A) Whisker protraction 

amplitude and whisker position at rest (i.e. mid-point between the protraction and retraction set-points) during stati-

onary object localization. Animals younger than 1 month old whisk with constant protraction amplitude independent 

from their distance to the tactile target. Adult animals utilize adaptive whisking, modulate where they position their 

whiskers and how much they protract them, based on recently acquired sensory information. (B) Whisker tip position 

(which is a result of the change in body position and active whisking) and whisker protraction amplitude across the 

developmental ages. Note that juvenile animals do not adapt their whisker protraction based on the change in the 

body position, although they adaptively adjust their body to target distance at this age. See Chapter 3 for details.

Chapter 3 is concluded with a computational model of adaptive control of whisker 

position. Based on the experimental observations, the model heuristically links the 

different stages of sensorimotor computation for object localization. It numerically mo-

dels the actual (sensed) haptic feedback as rodents form a percept of target location, 

Humans exhibit mastery in solving complicated sensorimotor control behaviors from pic-

king up an egg to hitting a tennis ball. This adaptive computation solves complexities in-

herent in motor control such as conduction delays and (neural) noise in sensory and motor 

circuits, while accounting for the nonlinearity, nonstationarity and uncertainty of the control 

plant and environment (1–3). 

The optimal solution for adaptive motor control requires coupling of motor control 

to sensory feedback (3, 4). These sensorimotor transformations are the first complex 

computations that neural circuits learn. As baby brains perform thousands of trial and 

error to generate stimulus (and eventually context) specific actions, distributed net-

works in the brain implement a set of forward models2 (3, 5, 6) to excel in sensorimotor 

transformations. Although these computations are at the basis of all goal-directed be-

havior throughout life, and decoupling of sensory feedback from motor control results 

in failure of sensorimotor transformations (7, 8), their unifying computational principles 

are yet to be discovered.

In this thesis, I addressed the development and computational principles of adaptive 

sensorimotor control in the whisker system. Mice and rats commonly utilize their whis-

kers to navigate, locate and/or discriminate objects in darkness (9–13). In Chapter 1, 

I reviewed the whisker sensorimotor system, including its ascending and descending 

pathways together with the postnatal development of the barrel system, and the role of 

serotonin in its development and function. This Chapter also gave rise to a critical review 

(14) that addresses the principles of information processing along sensorimotor systems 

(see Publications for the details of all manuscripts originating from this doctoral research). 

To study principles of sensorimotor computation one needs to precisely quantify be-

havior. Therefore I deployed a custom robotic apparatus to train animals on an object 

localization task. The robotic trainer has integrated high-speed imaging and moti-

on sensing capabilities that enables observation of sensorimotor behavior with high 

spatial (i.e tens of micrometers) and temporal (~2.5 ms) resolution. Using this robot, 

hundreds of rats and mice across various experimental conditions and developmen-

tal ages were trained. A total of 6642 trials of experimental data, i.e. freely moving 

animals spontaneously exploring their environment and successfully locating a sta-

tionary object in darkness using their whiskers, were collected. The behavioral data 

from these experiments are described in Chapter 2 and made publically available. 

Chapters 3-4 make use some of the data provided in this database.

2  Forward model is a control process to predict the next state of an actor, e.g. a robotic agent, body, appendage or whisker position. 
    It requires knowledge about the current state of the actor and the motor command.  
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this environment (12, 19–23). With each whisker contact, they presumably compose 

a percept of the object, including its location, and integrate these precepts across 

iterations to form a decision and update it as necessary. Therefore, the motor control 

plant that performs whisker positional control should be calculating a state estimate of 

target location in the nth iteration, using prior (n-1) location estimate, efference copy of 

whisker motor command, and sensory information available at the periphery. 

A filtering framework that grants such an integration could be represented by Bayesi-

an inference (2, 24, 25). Bayesian inference provides the utilities to combine the sta-

tistical distribution of possible states of the world a priori (also termed as an internal 

model of the external world), with sensory information and motor commands (24, 25). 

Although its neuronal mechanisms are currently unknown, the brain might implement 

this inference by updating its prior knowledge (learned transformations), given the 

current/recent or predicted sensory information along with the efference copy of in-

ternally generated motor commands (motor intentions) (4). In terms of adaptive motor 

control, the posterior in this process is the brain’s best guess for the current state of 

the body and world, as well as how to act on the world given the current state of the 

body. In this chapter, I propose that adaptive motor control and its sensory conse-

quences are “filtering” processes that ultimately enable sensation-perception-action 

and two-way communication between the body and world. By postulating the sen-

sorimotor computation as a Kalman filter (24), an expansion of Bayesian inference 

for multivariate (normal) distributions (26), the results obtained in this thesis could be 

implemented recursively, modifying motor commands used for predictive control, and 

consecutively altering the processing of both the (near) future sensory information 

and brain’s certainty about the state of world. 

INTERNAL MODELS OF THE BRAIN AS BASIS FUNCTIONS FOR THE 
FILTERING PROCESS

During sensorimotor computation, motor behavior adapts to the context and task re-

quirements as sensory information is used to plan and update the motor command to 

enable adaptive sensing. Extraction of task related information (27) has been studied 

extensively, e.g. during saccadic eye movement and inattentional blindness (28) in 

humans, and during whisker based active sensing in rodents (19). This motor adapta-

tion might be implemented by forming internal models of the action, which could be 

constructed through measuring the difference between predicted (intended, internal-

ly generated) and actual (sensed) motor action (3, 18, 29–31). Adaptive sensorimotor 

while novel sensory information recursively modulate motor control. Simultaneously, 

haptic feedback interrupts motor plans through reactive retraction of whisker to main-

tain touch duration.

Considering that sensorimotor computation for adaptive whisker positional control 

matures postnatally, I reasoned that alterations in neural circuit formation during early 

postnatal development could shape maturation of active sensing. Sensorimotor inte-

gration is modulated both during development and in the adulthood by top-down pro-

cesses, including animal’s state, context, expectations, and task requirement which 

are, neuronally, maintained by neuromodulatory neurotransmitters (15, 16). Among the 

neuromodulatory transmitters, serotonin contributes to motor control both at the level 

of rhythmic motor control via modulation of CPG action, as well as in the context of 

motor learning (17). In addition, serotonin potently alters network formation thus chan-

ging serotonin levels during development could potentially impair the maturation of 

sensorimotor computation (17). Therefore, in Chapter 4, I quantified adaptive whisking 

behavior upon transient and during sustained impairment of serotonergic signaling. 

The results showed that postnatal development of adaptive motor control requires in-

tact serotonergic signaling and even transient modulation of serotonergic signalling, 

early during development, impairs sensorimotor computations in adulthood. In silico 

experiments performed on a computational model of whisker sensorimotor system 

introduced in the Chapter showed that these observations can be explained by a 

simplified network model of sensorimotor control, and detailed the sensory conse-

quences of adaptive motor control. 

SENSORIMOTOR CONTROL AS A FILTERING PROCESS

The optimal control solution for tactile navigation necessarily requires coupling of 

motor control to sensory information and feedback, as the sensory world is often 

unpredictable and rarely constant (3, 4, 18). This integration enables recursive update 

of various internal models (let it be the target location, stimulus percept or action 

plan) using any knowledge available to the brain, e.g. incoming sensory information, 

internally generated (top-down) information, and contextual knowledge (3). This type 

of computation is frequently defined as a filtering problem. 

During stationary tactile object localization on the gap-crossing task (12, 19, 20), for 

example, rats and mice sample (palpate onto) the tactile target multiple times be-

fore forming a decision about where the target is, and where to navigate next in 
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combined with prior beliefs. Since prediction based on forward models suffer from noi-

se, uncertainty, and non-stationary nature of the system (2, 3, 18, 35, 36), in the absence 

of sensory feedback the predicted state will drift from the actual state over time. In our 

sensorimotor task for instance, Bayesian inference provides a numerical estimate of 

the probability of receiving certain sensory feedback (location of an object) given ani-

mal’s current position, knowledge (allocentric and egocentric), expectation (state) and 

a copy of the last motor command generated. This estimation also requires an internal 

model of the control plant, which could be inferred from whisking kinematics, to predict 

the prior-posterior transformations. Assuming that relevant variables are sampled from 

a normal distribution the Bayesian filter could be represented by Kalman filter (24, 26).

Kalman filter is a recursive filter that estimates the internal state of a system through 

a two-step process of prediction and update (see Information box; to the right). For 

prediction, Kalman filter determines the estimates of current state variables, and their 

uncertainties (accuracy of the state estimate). When novel (sensory) information ari-

ses those predictions are updated (integrated with sensory state estimates) using a 

weighted average, with higher gain assigned to estimates with higher certainty. Kal-

man filter is similar to hidden Markov layer (41), since its current state solely depends 

on the previous state, current measurements and an uncertainty matrix. Kalman filter 

naturally lends its computations for sensorimotor control since it employs a system 

transition model to update its state estimates when new (sensory) information arises. 

This way the system considers the delay between motor command and the subse-

quence sensory feedback. Combining the prediction with measurements results in 

more accurate estimations than those based on a single measurement alone, through 

estimation of a joint probability distribution. 

Kalman filter and its extensions perform not only filtering (i.e. estimating the current 

value given past and current observations), but also smoothing (i.e. estimating past 

values given present and past observations to update internal models) and prediction 

(i.e. estimating the future information given the present and past observations). The-

refore it could be used to formalize and numerically study sensorimotor computation, 

behaviorally, neuronally and statistically. Accordingly, the Kalman filter is commonly 

used to model Bayesian decision making in cognitive neuroscience (24, 42, 43). It has 

been used to model, predict and replicate human behavior while behavior evolves 

over time (43–46). In addition, Kalman filters have been used to optimally predict 

sensory consequences of motor control, integrate sensory and body posture signals, 

and estimate motor control commands (43). Neuronally, they have been deployed to 

simulate dynamics of a single neuron, to address the modulatory dynamics of oscil-

computation enables the system to decode the causality between its motor actions 

and corresponding sensory feedback, results in sensory consequences of motor ac-

tions to be predicted with higher accuracy and lower computational cost (19, 32) and 

ultimately enables the body to act and react on the world. 

Adaptive sensorimotor control assumes co-maturation of sensory and motor systems 

to optimize task performance and predictive models of action generation (3, 33). Ho-

wever results in Chapter 3 argue that afferent (sensory) pathways mature prior to 

emergence of adaptive sensorimotor control (at least in the whisker system). Given 

that i) rodents can detect whisker touch and learn to relate passive whisker contacts 

to task outcomes prior to whisking onset (34), ii) transient disturbance of network 

formation during early postnatal development results in long-lasting impairment of 

adaptive sensorimotor control (Chapter 4), adaptive motor control emerges only after 

functional maturation of the afferents.   

During the formation of internal models of the body and world, relying on sensory 

feedback alone exposes the system to delay, noise and uncertainty (2, 3, 18, 35, 36). 

To overcome these limitations brain uses higher order (internal) models of conse-

quences of its actions for inference and prediction (2–4, 37). Sensorimotor learning in 

its essence involves optimization of these models (25, 37). Predictive control through 

forward models can improve the system’s sensitivity to delays in sensory feedback, 

reduce its vulnerability to noise, accounts for the sensory consequences of self-ge-

nerated motion, and can facilitate learning of sensorimotor transformations by gene-

rating an error signal (25, 37). To perform these computations, predictive control uses 

an efference copy of the motor command and ultimately estimates the sensory and 

motors states, predict the sensory feedback (1, 3, 4). In principle, in predictive control, 

detecting the difference between predicted and actual sensory information (i.e. error 

signal) enhances task related knowledge and improves the precision of future action 

(16). If the brain were to rely solely on the predictive control, however, the internal 

models would be updated (relatively) slowly as the only sensory information relevant 

for motor control would be the information collected in the past (19). Instead the brain 

also utilizes the current sensory information to update its internal models in real-time 

using reactive control. This control scheme relies on fast reactive feedback loops 

which bypass previously generated command and is based on the stimulus valence 

of the current sensory information (chapter 3, (38–40)). 

In a control system that utilizes two schemes (predictive vs reactive), Bayesian infe-

rence could play an integrative role to define how new information might be optimally 
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whisker (Chapter 4) which results in higher signal to noise ratio and lower covariance 

of the sensory acquisition noise. 

Kalman filter framework demonstrates how these results manifest, and that adaptive 

whisking reduces uncertainty during whisker based object localization. My objective 

here is not to propose that central nervous system adopts strategies identical to Kal-

man filter, I rather suggest that both are strongly similar in their Bayesian nature of 

integrating forward model predictions with sensory information. Unscented Kalman 

filtering or Particle Filtering might simulate cognitive processes more accurately due 

to their ability to handle nonlinear and multivariate systems, however, their Bayesian 

framework is similar to Kalman filtering (47).

For adaptive control of whisker position during tactile navigation the current state (for-

ward model, F in Kalman equations, see the information box in the preceding section), 

previous state estimate (a memory term), and efference of motor command (B*u) need 

to approximated. Recursive update of motor commands results in lower process (Q) 

and sensory noise (R) which increase the Precision of prediction and sensory update, 

respectively (Chapters 3 and 4). The state estimate can be realized as the joint proba-

bility distribution of prediction and update; its error covariance (P) is thus related to Q, 

R and F. In each iteration, past state estimation (based on n-1 observation) is used to 

predict the current state and the outcome is combined with novel sensory information 

to increase the certainty of object location. This process is akin to decreasing the 

standard deviation of the state estimate distribution and increasing the animal’s cer-

tainty about target location. Lower covariance between the sensory acquisition noi-

se and the process noise reduces the error covariance and innovation (the residual 

between predicted state and measured state) in Kalman filter (see Figure 2 simplified 

flow-chart). In the framework of feedforward control, this is functionally equivalent to 

reduced uncertainty about the target location and increased redundancy of the future 

sensory information (given the reduced innovation).

The proposed Kalman filter, predicts nth state estimate using solely the previous (n-1) state 

estimate and efference copy of motor control, significantly simplifying the design of the 

controller. This prediction will be updated with sensory information using optimal Kalman 

gain to form a posteriori state estimate of object´s location. In every iteration, integrati-

on (joint probability distribution) of priori state estimation and novel sensory information 

forms a more accurate percept of the location with reduced standard deviation of the 

error distribution (σE) around the perceived location. This iterative procedure continues 

until the standard deviation of decision error is reduced below a (dynamic) threshold.

latory waves in brain, to develop a control framework for Parkinsonian dynamics (see 

(47) for a review), and to decode neural activity to infer movement kinematics (48–50). 

ADAPTIVE WHISKING REDUCES NOISE AND INCREASES CERTAINTY 
ABOUT STIMULUS: A LINEAR UNIVARIATE IMPLEMENTATION OF THE 
KALMAN FILTER 

In sensory driven adaptive motor control paradigms, motor commands are continuo-

usly updated to maximize task performance. In the whisker system, this adaptation 

is implemented recursively based on sequential emergence of sensory information 

(chapters 3 & 4, 19). During adaptive whisking, rats/mice actively control the mid-point 

and amplitude of whisking which results in incremental increase of protraction angle 

and decrease in the amplitude of whisking (Chapter 3). It has been shown that this 

behavior maximizes the spatial resolution in whisker touch and minimizes the locali-

zation errors (or lowers process noise) during whisker protraction (Chapter 4). In ad-

dition, adaptive whisking increases the mechanical information transmitted along the 
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FIGURE 3. Learned transfer functions in adaptive versus non-adaptive sensorimotor control. Inferred transfer func-

tions are based on the behavioral data. Young adult and juvenile rats employing adaptive versus non-adaptive sen-

sorimotor control are demonstrated. These transformations might explain how locomotion strategies together with 

adaptive whisking explain the difference in sensory acquisition.

OUTLOOK

This thesis provided an in-depth and quantitative insight on how rodents locate stati-

onary objects using their whiskers. The control theory outlined in the current chapter 

opens new avenues in research where distributed neural recordings across neural 

loci of interest together with targeted modulation of neural activity will help to deter-

mine the neural basis of sensorimotor computation by taking advantage of the predic-

tive nature of these control models.  

FIGURE 2. Adaptive control of whisker position from a Kalman filter perspective. See main text for details. 

During adaptive whisking, motor controls are being recursively modified by sensory 

inputs, which reduces the standard deviation of prediction (σP) and sensory input (σI) 

error probability distributions. Reduction in the error covariance grants the system 

higher certainty in comparison to a non-adaptive system where error covariances 

stay constant across iterations. Thus, in the absence of adaptive sensorimotor con-

trol, system requires more iterations of sensory acquisition to achieve similar decision 

certainty, explaining the empirical observations in Chapter 3. 

In solving sensorimotor control problem, the system should be able to deal with 

nonstationarity and noise. In the proposed model the filter adapts to such changes 

by iteratively adjusting its error covariance and reaches an optimal solution through 

balancing the gain between prediction (performed by the feedforward model) and 

update (via sensory information). Alternatively the computation can integrate informa-

tion across domains (e.g. body position vs whisker position vs absolute and relative 

target location). This is particularly relevant during tactile navigation in freely beha-

ving animals as the animal needs to encode the target location both in egocentric 

and allocentric coordinates while discounting the changes in body position from the 

amplitude of whisker protraction to ensure constancy of the tactile space. Change in 

one domain requires optimization in others to achieve optimal solution. This could 

be achieved by transfer functions that enable transformations across domains (see 

implementation example in Figure 3). These transfer functions could be a possible 

framework to pass the knowledge through the network and reduce cost of optimiza-

tion in all network levels. 
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SUMMARY	

How does brain perform sensorimotor computations is a cardinal question in sys-

tem neurosciences. To calculate this complex task, brain uses its prior knowledge, 

e.g. current/recent or predicted sensory information as well as the efference copy of 

internally generated motor commands. Action execution based on this computation 

results in sensory exploration, creating a perpetual interaction between the sensory 

and motor streams in the brain. 

During the sensorimotor computation, motor behavior adapts to context and task re-

quirements as sensory information modulates the motor command to enable adap-

tive sensing, and presumably to optimize the behavioral performance. In an object 

localization task, for example, this adaptive modulation enables goal-directed motor 

control which increases signal to noise ratio in neural representations while reducing 

the processing load in sensory organs. This active sensorimotor process takes into 

account the entire body motion, as neural computations compensate for the change 

in body position including the sensory organ motion. Integrated sensory information 

in the context of internally generated action motor commands enable the brain to 

form a prediction of object location in relation to the body (in egocentric coordinates) 

as well as in respect to the sensory world (i.e. in allocentric coordinates). 

The rodent haptic system provides an excellent model to study sensorimotor com-

putation. In the absence of auditory and visual information, mice and rats, due to 

their nocturnal habits and subterranean habitats in the wild, commonly utilize touch to 

navigate, locate and/or discriminate objects. Among the touch receptors in the body, 

those embedded in the whisker follicles are particularly of interest to whisking ro-

dents, as they sweep their whiskers in air periodically to examine their surroundings. 

This thesis is an endeavor to decode how brain performs sensorimotor control as 

freely moving animals perform object localization by active whisking. The questions 

addressed include how does brain combine feedforward motor predictions with sen-

sory feedback to execute goal oriented movements? How do these computations 

emerge during postnatal development as animals learn to integrate sensory informa-

tion to generate motor action? What are the possible neuromodulatory mechanisms 

behind the development of sensorimotor computation? And, how does the adapted 

motor control alter sensory experience? 

The whisker sensorimotor system, including its ascending and descending pathways 

is reviewed in Chapter 1. This chapter further elaborates on the postnatal develop-

ment of the barrel system and the role of serotonin in its development and function. 

Understanding the mechanisms of tactile sensorimotor computations during active 

sensing necessarily requires precise quantification of the sensory input and motor 

output behaviorally. In the whisker system this could be achieved by quantifying 

whisking characteristics (such as whisker position, frequency, amplitude, velocity) 

and capture the touch statistics (e.g. touch position, contact induced displacement 

of whiskers, touch duration). In Chapter 2 using a robot to train rats and mice across 

various experimental conditions, I present a big dataset that includes over 6000 high-

speed videos of animals locating stationary object in space. This data are used to 

describe the principles of sensorimotor computation during navigation as exemplified 

in Chapters 3-4. 

Nature and nurture influence the development of cortical neural networks. Experi-

ence dependent and independent cues together govern formation of these networks 

throughout life. In particular the first three postnatal weeks are critical for the anatom-

ical, functional and behavioral maturation of cortical circuits. In Chapter 3, I longitudi-

nally studied the development of sensorimotor computation in juvenile rats (~P21) and 

after they reach adulthood (~P65) while they performed a tactile object localization 

task. The results indicate that although juvenile rats are capable of successful object 

localization, their sensorimotor strategy matures only later in life; (young) adult rats 

employ adaptive strategies for sensorimotor computations, which juvenile rats lack. 

Juvenile rats whisk uniformly throughout the entire object localization epoch, and do 

not adapt their locomotion strategies according to sensorimotor task requirements. 

On the other hand, adult rats actively control the mid-point and amplitude of whisking, 

and incorporate body locomotion to calculate whisker position in the next whisking 

cycle, resulting in adaptive positional control of whiskers during tactile navigation. A 

computational model of the adaptive motor control of whisker position is provided 

to heuristically link the different stages of sensorimotor computation during object 

localization. 

Active sensing requires adaptive positional (motor) control of sensory organs based 

on the contextual, sensory and task requirements. As discussed in Chapter 3, in the 

whisker system, adaptive motor control for goal-directed action develops postnatal-

ly after the maturation of intracortical circuits. Perturbations with sensorimotor net-

work connectivity could potentially alter the maturation of sensorimotor computation. 

Serotonin has been shown to be among cardinal influencers on network formation, 

during and after developmental period, thus changing serotonin level during develop-
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ment could potentially alter the maturation of sensorimotor computation. In Chapter 
4, I tested this hypothesis in serotonin transporter knock-out animals and after tran-

sient intervention with serotonin signaling during postnatal development. The results 

showed that sustained alterations of serotonergic signaling impairs emergence of 

sensorimotor adaptation in adulthood. A direct outcome of this altered motor control 

is that mechanical forces transmitted to the whisker follicle upon whisker contacts are 

reduced, suggesting that increased neocortical hyperexcitability after altered seroto-

nergic signaling (Miceli et al, 2017) is not because of a peripheral change in sensory 

organ use. These results argue that postnatal development of adaptive motor control 

requires intact serotonergic signaling, and that even transient alterations in serotoner-

gic signalling early during development causes long-term sensorimotor disturbances 

in the adulthood. Experiments using the computational model of whisker sensorim-

otor system showed that these observations can be explained by a holistic network 

model of sensorimotor computation, and detailed how this alteration in network con-

trols forces created at the follicle and decreases the tactile resolution. 

In Chapter 5, I provide an overall discussion of the research presented herein and 

postulate object localization as an adaptive motor control problem that could be ex-

plained by Bayesian filtering. Supported by the empirical observations in this thesis, I 

propose that the brain solves this problem using an iterative process that involves dy-

namic update of an internal model of the sensory world. I further argue that adaptive 

whisking increases certainty in object localization task by reducing the sensory and 

process noise. While performing this computation, brain encodes sensory information 

first in egocentric coordinates and subsequently utilizes learned transfer functions to 

translate sensory information into motor action. The behavioral outcome of this com-

putation is the adaptive sensorimotor control for navigation. 
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Adaptive sensorimotor control for navigation
Adaptieve sensomotorische controle voor navigatie
Één van de hoofdvragen binnen de systeem-neurowetenschap is hoe het brein sens-

omotorische berekeningen uitvoert. Om deze complexe taak te volbrengen, gebruikt 

het brein voorgaande kennis, zoals huidige, recente of voorspelde sensorische in-

formatie, samen met intern gegenereerde efferente kopieën van motorische hande-

lingen. Uiteindelijk zorgen deze computaties ervoor dat een dier z’n omgeving kan 

verkennen, waardoor de interactie tussen sensorische en motorische informatie in 

het brein in stand wordt gehouden.

Tijdens de sensomotorische berekeningen wordt de motoriek aangepast aan de con-

text en de taak, waarbij sensorische informatie gebruikt wordt om de motoriek te 

moduleren. Op deze manier kan op een adaptieve manier worden waargenomen, 

en wordt waarschijnlijk het resultaat van het gedrag geoptimaliseerd. Tijdens een 

taak waarbij waarbij een object moet worden gelokaliseerd, bijvoorbeeld, zorgt deze 

‘adaptieve modulatie’ voor een doelmatige motorcontrole, wat de signaal-ruisverhou-

ding verhoogt en tegelijkertijd de werkdruk van de zintuigen verlaagt. Tijdens dit 

actieve sensomotorische proces wordt rekening gehouden met bewegingen in het 

gehele lichaam, zodat neuronale berekeningen compenseren voor veranderingen in 

zowel de positie van het lichaam als die van het zintuig. Geïntegreerde sensorische 

informatie, in de context van intern gegenereerde motorbevelen, zorgen ervoor dat 

het brein een voorspelling kan maken over de locatie van een object ten opzichte 

van het lichaam (d.w.z. in egocentrische coördinaten) en de sensorische wereld (in 

allocentrische coördinaten).

Het haptische systeem van knaagdieren is een uitstekend model om sensomotori-

sche computatie te bestuderen. In de afwezigheid van auditieve en visuele informatie 

gebruiken ratten en muizen, omdat het nachtdieren zijn die vaak ondergronds verblij-

ven, vaak aanraking (haptiek) om te navigeren en om objecten te lokaliseren en/of te 

onderscheiden. Van alle tastreceptoren in hun lichaam zijn die in de snorhaarfollikels 

van bijzonder belang voor knaagdieren die hun snorharen actief bewegen om hun 

omgeving te verkennen.

In dit proefschrift wordt gepoogd om te decoderen hoe het brein sensomotorische 

controle uitoefent als vrijelijk bewegende dieren een object lokaliseren door middel 

van hun snorharen. De vragen die aan bod komen zijn: “Hoe combineert het brein 

motorische voorspellingen met sensorische feedback om doelgerichte bewegingen 

uit te voeren?”, “Hoe komen deze computaties tot stand tijdens de postnatale ontwik-

keling, wanneer dieren leren om sensorische informatie te integreren om motorische 

taken uit te voeren?”, “Wat zijn de mogelijke neuromodulatie-mechanismen achter 

de ontwikkeling van sensomotorische computatie?” en “Hoe beïnvloedt adaptieve 

motorcontrole de zintuiglijke ervaring?”. 

Het sensomotorische systeem van de snorharen, inclusief de opwaartse en neer-

waartse routes, wordt besproken in Hoofdstuk 1. Dit hoofdstuk wijdt ook uit over de 

postnatale ontwikkeling van het barrel-systeem en de rol van serotonine in de ont-

wikkeling en functie ervan.

Een begrip van de mechanismen achter sensomotorische computaties van de tastzin 

tijdens actieve waarneming vereist een precieze kwantificatie van de sensorische in-

put en de motorische output in de vorm van gedrag. In het haptische systeem zou dit 

kunnen worden bereikt door kwantificatie van de karakteristieken van snorhaarbewe-

gingen (zoals hun positie, frequentie, amplitude en snelheid) en tegelijkertijd de sta-

tistieken van de tast (bijvoorbeeld aanrakingspositie, buiging van de snorharen, duur 

van de aanraking) vast te leggen. In Hoofdstuk 2 gebruik ik een robot om ratten en 

muizen te trainen in verschillende experimentele condities, en presenteer een grote 

dataset met daarin ruim 6000 hogesnelheidsvideo’s van dieren die een stilstaand 

object in de ruimte trachten te lokaliseren. Deze data kunnen worden gebruikt om de 

principes van sensomotorische berekeningen tijdens navigatie te beschrijven, zoals 

wordt gedaan in Hoofdstukken 3 en 4.

Aanleg en opvoeding (nature en nurture) beïnvloeden de ontwikkeling van corticale 

neurale netwerken. Ervaringsafhankelijke en -onafhankelijke signalen bepalen samen 

de formatie van deze netwerken gedurende het leven van een organisme. Vooral 

de eerste drie postnatale weken zijn kritisch voor anatomische, functionele en ge-

dragsgerelateerde maturatie van corticale circuits. In Hoofdstuk 3 heb ik over een 

lange termijn de ontwikkeling gevolgd van de sensomotorische computaties in ratten 

op jonge leeftijd (~P21) en nadat ze volwassen waren (~P65) bij het uitvoeren van 

een object-lokalisatietaak. De resultaten geven aan dat hoewel jonge ratten objec-

ten succesvol kunnen lokaliseren, ze hun sensomotorische strategie gedurende hun 

leven aanpassen. (Jong)volwassen ratten gebruiken adaptieve strategieën voor hun 

sensomotorische berekeningen, die bij jonge ratten nog ontbreken. Jonge ratten ge-

bruiken hun snorharen op uniforme wijze gedurende de taak, en passen hun bewe-

gingsstrategieën niet aan op basis van de vereisten van de taak. Volwassen ratten, 
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daarentegen, bepalen actief het middelpunt en de amplitude van de bewegingen van 

hun snorharen, en incorporeren bewegingen uit het gehele lichaam om de positie 

van snorharen in de volgende bewegingscyclus te berekenen, wat resulteert in een 

adaptieve controle over de positie van hun snorharen tijdens het gebruik van de tast-

zin. Ook wordt in dit hoofdstuk een computermodel van de adaptieve motorcontrole 

over snorhaarposities voorgesteld, waarmee de verschillende stadia van sensomoto-

rische computaties tijdens object-lokalisatie kunnen worden verkend.

Actieve waarneming vereist een adaptieve positionele controle over de zintuigen die 

gebaseerd is op context en de vereisten voor de waarneming en het uitvoeren van 

een taak. Zoals besproken in Hoofdstuk 3, ontwikkelt adaptieve motorcontrole voor 

doelbewuste acties zich in het ‘snorhaarsysteem’ van knaagdieren na de maturatie 

van intracorticale circuits. Verstoringen binnen de connectiviteit van het sensomoto-

rische netwerk zouden mogelijk ook de ontwikkeling van sensomotorische computa-

ties kunnen veranderen. Serotonine staat bekend als één van de grootste invloeden 

op netwerkformatie tijdens en na de ontwikkelingsperiode. Het veranderen van de 

serotonine-niveaus tijdens de ontwikkeling zou daarom mogelijk de ontwikkeling van 

sensomotorische berekeningen kunnen beïnvloeden. In Hoofdstuk 4 heb ik deze 

hypothese getest in serotoninetransporter-knockout-dieren en na een tijdelijke beïn-

vloeding van serotonine-communicatie tijdens de postnatale ontwikkeling. De resul-

taten laten zien dat langdurige verandering van serotoninesignalen de totstandko-

ming van sensomotorische adaptaties in het volwassen dier remt. Een direct resultaat 

van deze veranderde motorcontrole is dat er minder mechanische kracht wordt door-

gegeven aan de snorhaarfollikel als snorharen objecten aanraken, wat aangeeft dat 

een verhoogde exciteerbaarheid in de cortex van jonge dieren (Miceli et al., 2017) 

niet wordt veroorzaakt door veranderingen in het gebruik van de zintuigen zelf. Deze 

resultaten geven aan dat postnatale ontwikkeling van een adaptieve motorcontrole 

een intact serotoninesysteem vereist, en dat zelfs korte veranderingen binnen de 

serotonine-communicatie tijdens de vroege ontwikkeling al langdurige sensomotori-

sche verstoringen teweeg kunnen brengen in het volwassen dier. Experimenten met 

het computermodel van het sensomotorische systeem van de snorharen laten zien 

dat deze observaties kunnen worden verklaard door middel van een holistisch net-

werkmodel van de sensomotorische computaties, en laten zien hoe de veranderin-

gen in het netwerk de mechanische kracht bij het snorhaarfollikel beïnvloeden en de 

resolutie van de tastzin verminderen.

In Hoofdstuk 5 wordt het onderzoek in dit proefschrift in z’n geheel nabesproken en 

stel ik dat objectlokalisatie een probleem is dat adaptieve motorcontrole aangaat en 

dat verklaard kan worden door middel van Bayesische filtering. Met ondersteuning 

van de empirische observaties in dit proefschrift stel ik dat het brein dit probleem 

oplost door middel van een herhalend proces met een dynamische vernieuwing van 

een intern model van de waargenomen wereld. Verder stel ik dat adaptief gebruik 

van de snorharen de zekerheid tijdens objectlokalisatie vergroot door de hoeveel-

heid ruis te verminderen. Bij het uitvoeren van deze computaties zet het brein sen-

sorische informatie eerst om in egocentrische coördinaten en gebruikt vervolgens 

aangeleerde transferfuncties om sensorische informatie te vertalen naar motorische 

acties. Het gedrag dat uit deze berekeningen voortkomt is de adaptieve sensomoto-

rische controle voor navigatie.
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