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Abstract: The reproduction of emergent behaviors in nature
using reaction networks is an important objective in synthetic
biology and systems chemistry. Herein, the first experimental
realization of an enzymatic reaction network capable of an
adaptive response is reported. The design is based on the dual
activity of trypsin, which activates chymotrypsin while at the
same time generating a fluorescent output from a fluorogenic
substrate. Once activated, chymotrypsin counteracts the trypsin
output by competing for the fluorogenic substrate and
producing a non-fluorescent output. It is demonstrated that
this network produces a transient fluorescent output under out-
of-equilibrium conditions while the input signal persists.
Importantly, in agreement with mathematical simulations, we
show that optimization of the pulse-like response is an inherent
trade-off between maximum amplitude and lowest residual
fluorescence.

Living organisms have remarkable capabilities such as self-
healing, adaptation to the environment, homeostasis, and
converting chemical energy into motion, growth, and division.
To harness these capabilities in a synthetic framework is one
of the ultimate goals in the fields of synthetic biology and
systems chemistry,[1, 2] in which we seek inspiration from the
metabolic, signaling, and genetic networks of coupled chem-
ical reactions ubiquitous in nature.[3] These networks are often
based on well-established network motifs; recurring patterns
of interconnections between network components that lead to
a certain dynamic behavior.[4] In recent years, striking
examples of synthetic reaction networks showing impressive
temporal outputs have been reported. These include the so-
called repressilator network,[5] a synthetic gene oscillator
based on a dual-feedback circuit,[6] spatiotemporal program-
mable in vitro genetic and toehold-mediated strand displace-
ment networks,[7–9] as well as enzyme- or small molecule-
based reaction networks.[10–17]

Adaptation is a type of dynamic behavior that allows
a biological system to sense a persistent change in the
environment, produce a transient output, and return to
(nearly) basal levels of activity.[18] Signaling pathways are
often characterized by adaptive responses, which can effi-
ciently propagate signals through a network. One of the
network motifs underlying this response, consisting of only

three components, is the incoherent type 1 feed-forward loop
(I1-FFL, Figure 1a).[19, 20] In an I1-FFL, the output is directly
positively controlled by the input. This is counteracted by an
indirect negative control. The time delay between the positive
and negative control enables this network motif to generate
a pulse-like, adaptive output in response to a persistent input
(Figure 1b).

Figure 1. a) Network motif of the incoherent type 1 feed-forward loop
(I1-FFL), in which the output is positively controlled in a direct manner
but negatively controlled in an indirect manner. b) The typical shape of
an adaptive or pulse-like response (blue line) in response to a persis-
tent input (dashed black line). Sensitivity and relaxation are indicated
by arrows. The sensitivity is a measure of the strength of the response
relative to the input. Relaxation compares the steady-state response to
the maximum response. c) Our adaptive enzymatic reaction network,
which was inspired by the I1-FFL network motif, with trypsin (Tr) as
a persistent input.
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The adaptive response has been studied both in silico and
experimentally. Computational studies mainly focused on the
design and optimization of the adaptive response,[21–23] and
demonstrated feed-forward loop-based logic gates in a sys-
tems chemistry context.[24] In addition, several experimental
studies succeeded in constructing synthetic adaptive genetic
networks using the I1-FFL network motif both in vivo and
in vitro.[25–27] Surprisingly, as adaptation is one of the most
prevalent functional modules in natural systems, the con-
struction of adaptive enzymatic reaction networks has been
lagging behind.

In contrast to genetic networks, enzymatic reaction net-
works encompass a wide variety of species with different
activities, shapes, and sizes. Additionally, they can be applied
to create functional molecular systems such as autonomously
moving nanoparticles,[28] transiently self-assembling mole-
cules that result in polymer growth and changes in supra-
molecular chirality,[29] responsive gels,[30–32] and reversibly
forming coacervate droplets.[33] Herein, we present the first
adaptive enzymatic reaction network inspired by the I1-FFL
network motif (Figure 1c). In contrast to previous work in
which both the input and response are transient,[14,15, 17, 29, 32,33]

our enzymatic network transiently responds to a persistent
input signal that is not consumed or converted during the
response. Therefore, our network is adaptive rather than only
generating a pulse-like response, and its realization signifi-
cantly expands the functional dynamic behaviors that can be
achieved using enzymatic reaction networks.

The network is based on the endopeptidase trypsin (Tr),
which acts as an input, the proenzyme chymotrypsinogen
(Cg), and a fluorogenic substrate (Z-Phe-Arg-AMC). Trypsin
cleaves the fluorogenic substrate, producing a short peptide
fragment and the fluorescent product 7-amino-4-methylcou-
marin (AMC). On a comparable timescale, Tr activates Cg,
producing the active enzyme chymotrypsin (Cr). Activated Cr
competes with Tr for cleavage of the fluorogenic substrate.
Since Tr and Cr have different cleavage sites, the products of
the cleavage by Cr are non-fluorescent, and AMC cannot be
produced as a result of any further cleavage by Tr (as Tr is an
endopeptidase). Importantly, to obtain the desired adaptive
response, the network needs to be assembled under out-of-
equilibrium conditions in a continuously stirred-tank reactor
(CSTR). In a CSTR, the inflow of fresh reagents (Tr, Cg, and
Z-Phe-Arg-AMC) is counterbalanced by the outflow of
reagents and reaction products. Flow is herein described as
kflow (the ratio of the flowrate to the reactor volume) in units
of h@1. If the reaction rates of all the individual reactions
within the network are sufficiently balanced, AMC is directly
produced in response to a constant input of Tr. After some
time, a sufficient amount of Cr is produced, that competes
with Tr for the fluorogenic substrate, causing the concen-
tration of AMC to decrease as all components in the CSTR
are continuously refreshed. To obtain perfect adaptation, the
concentration of AMC in the steady state has to be equal or
close to its pre-input concentration.

To find the experimental conditions needed to obtain such
a response, we determined the rates of all the known
individual reactions within the network and constructed
a computational model. This model, which also takes into

account the flow of reactants in and out of the reactor, uses
a set of ordinary differential equations (ODEs) given by the
rate equations for each reaction. We subsequently searched
the control parameter space (kflow, [Cg], and [Tr]) in silico to
determine the effect of these different parameters on the
response, which was then experimentally verified. The
reaction rates were optimized in silico using experimental
data, and these optimized rates were used to find and test
a series of optimal adaptive responses in experiments.

Figure 1c shows the enzymatic I1-FFL, using commer-
cially available Z-Phe-Arg-AMC as a fluorogenic substrate.
Trypsin, the input, cleaves amide bonds at the C-terminal end
of positively charged amino acids (in this study, arginine)
producing the dipeptide Z-Phe-Arg-OH and the fluorescent
product AMC. Trypsin also activates Cg, thereby producing
Cr. Chymotrypsin preferably cleaves amide bonds after
hydrophobic, aromatic amino acids (in this study, phenyl-
alanine), producing two fragments, Z-Phe-OH and H-Arg-
AMC. We determined the catalytic efficiencies (kcat/KM) of
enzymatic cleavage reactions by Tr and Cr to be 842 mm@1 h@1

Figure 2. In silico approximated phase diagrams and the result of the
corresponding experiment. a) Phase diagrams of the sensitivity and
relaxation as a function [Tr] and [Cg]0 ; [Z-Phe-Arg-AMC]0 = 100 mm and
kflow =2 h@1. Whereas the score for sensitivity increases with decreasing
[Tr] and [Cg]0, the score for relaxation increases with increasing [Tr] and
[Cg]0. Experimental conditions that would favor both were chosen
(indicated by the white circle). b) Experimental results corresponding
to the conditions indicated by the white circles in the phase diagrams
([Tr] =0.1 mm, [Cg]0 = 10 mm, [Z-Phe-Arg-AMC]0 =100 mm, and
kflow =2 h@1). The experiments were performed at 30 88C in buffer at
pH 7.7, containing 100 mm Tris-HCl and 20 mm CaCl2. The top graph
shows the stepwise increase in [Tr]. The solid black line in the bottom
graph is the average response of six experiments; the shaded area
indicates the standard deviation of the response. Simulations of the
response using the same initial conditions are given by the dashed
black line.
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and 720 mm@1 h@1, respectively, indicating that Tr and Cr cleave
Z-Phe-Arg-AMC at comparable rates. We measured a value
for kcat/KM of 8 mm@1 h@1 for the activation of Cg by Tr, creating
a somewhat delayed indirect negatively controlled node in
our network (Section S2 of the Supporting Information).

With these rates we could approximate the phase
diagrams of this network in silico (Figure 2a). These diagrams
depict the sensitivity and relaxation (Figure 1b), which are
the two characteristics that we used to quantify the response
of our network, as a function of [Tr] and [Cg]0. For practical
reasons, we fixed the [Z-Phe-Arg-AMC]0 at 100 mm and set
kflow at 2 h@1. The corresponding scoring functions for
sensitivity and relaxation related to the response of the
network as depicted in Figure 1b are defined, respectively, in
Equations (1) and (2):

Sensitivity ¼ Output t ¼ maximum responseð Þ
DInput

ð1Þ

Relaxation ¼ 1@ Output t ¼ steady stateð Þ
Output t ¼ maximum responseð Þ ð2Þ

A high score for sensitivity corresponds to a high initial
response relative to the input, whereas a high score for
relaxation indicates that the response of the network returns
close to pre-input levels (Section S4.2.4 of the Supporting
Information). The phase diagrams in Figure 2a show that the
score for sensitivity increases with a decrease in [Tr] and [Cg]0,
whereas the score for relaxation increases with an increase in
[Tr] and [Cg]0. This demonstrates that these characteristic
quantities are competing objectives.

We opted for experimental conditions that would favor
both sensitivity and relaxation more or less equally. A fully
transparent CSTR, which was fabricated from polydimethyl-
siloxane and bonded onto a glass slide, was used to carry out
the experiment. The production of AMC in the CSTR was
measured directly through the glass slide using fluorescence
readout (Section S3 of the Supporting Information). We
tested our network experimentally under flow conditions
using [Tr] = 0.1 mm and [Cg]0 = 10 mm, as indicated by the
white circles in Figure 2a. In accordance with model simu-
lations, a steep initial rise in fluorescence intensity, corre-
sponding to the production of AMC, was followed by a more
gradual decrease (Figure 2 b). A stable steady state was
reached after between 2.5 and 3 h.

Encouraged by these results, we probed the effect of
different control parameters (kflow, [Cg]0, and [Tr]) on the
sensitivity, relaxation, and shape of the peak. We observed
experimentally that kflow mainly has an effect on the timescale
of the adaptive response, where higher values for kflow result in
a faster response with comparable sensitivity and relaxation
(Figure 3a). Changing [Cg]0 has a bigger effect on the
sensitivity than on the relaxation (Figure 3b), whereas
changing [Tr] has an effect on both the sensitivity and
relaxation (Figure 3c). Increasing [Cg]0 worsens the sensitiv-
ity, whereas the relaxation remains more or less the same.
Increasing [Tr] also worsens the sensitivity of the response, as
the increase in amplitude does not scale linearly with the
increase in [Tr] (Section S3.4 of the Supporting Information).
Again, the obtained experimental results are in good agree-
ment with model simulations, although the relaxation devi-
ates from what was expected based on the model. These

Figure 3. The effect of kflow, [Cg]0, and [Tr] on network response. Top figures (solid lines) show the experimental results and the bottom figures
(dashed lines) show simulations. a) Effect of kflow (kflow =1 h@1, 2 h@1, and 4 h@1); [Tr] = 0.1 mm, [Cg]0 =10 mm, and [Z-Phe-Arg-AMC]0 = 100 mm.
b) Effect of [Cg]0 ([Cg]0 =5 mm, 10 mm, and 20 mm); [Tr] = 0.1 mm, [Z-Phe-Arg-AMC]0 = 100 mm, and kflow =2 h@1. c) Effect of [Tr] ([Tr] =0.05 mm,
0.10 mm, and 0.20 mm); [Cg]0 = 10 mm, [Z-Phe-Arg-AMC]0 = 100 mm, and kflow = 2 h@1. All experiments (except [Tr] = 0.1 mm, [Cg]0 =10 mm, [Z-Phe-
Arg-AMC]0 =100 mm, and kflow = 2 h@1, which was performed six times) were performed in triplicate at 30 88C in buffer of pH 7.7 containing 100 mm
Tris-HCl and 20 mm CaCl2.
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results demonstrate that an adaptive response is obtained
within a relatively broad parameter space, which means the
network is parametrically robust (Section S4.3 of the Sup-
porting Information).[34]

Next, we re-estimated the set of reaction rates using data
from the previous experiments to improve our computational

model. The control parameters (parameters that can be
experimentally controlled, that is, kflow, [Tr], [Cg]0, and [Z-
Phe-Arg-AMC]0) were evolved for a series of optimally
sensitive and relaxed responses (using an evolutionary
algorithm, Section S4.2 of the Supporting Information),
taking into account experimental feasibility (e.g. solubility
of Z-Phe-Arg-AMC, timescale of the reaction). The result of
this optimization is a two-dimensional Pareto front (Fig-
ure 4a), in which each point represents a set of conditions for
which the relaxation cannot be improved without negatively
impacting the sensitivity and vice versa. Upon closer inspec-
tion, we found that the kflow and [Z-Phe-Arg-AMC]0 were
evolved towards their lower and upper boundaries, respec-
tively. Therefore, within these experimental constraints,
sensitivity and relaxation are tuned by the ratio between
[Tr] and [Cg]0 (Figure 4b). Finally, we tested several points
along this Pareto front experimentally (Figure 4c), demon-
strating that we can optimize the response of the network
precisely and tune it to suit the needs that future applications
might require.

In summary, we constructed a well-characterized adaptive
enzymatic reaction network based on the I1-FFL network
motif. Combining kinetic studies of all individual reactions
within the network with a computational approach proved
successful for obtaining the desired pulse-like network
response experimentally. We demonstrated that the sensitiv-
ity and relaxation of this response, which can be found within
a broad parameter space, can be modified by varying different
control parameters. We believe that the functionality of this
network can be extended by creating molecular logic gates
through changing the enzymatic recognition sites of the
substrate, by replacing AMC with a functional moiety that is
released in a pulse-like manner and influences the behavior of
other reaction networks, or by embedding it in materials for
applications such as edge-detection.[35]
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