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Background: Dietary non-digestible galacto-oligosaccharides (GOS) suppress allergic

responses in mice sensitized and challenged with house dust mite (HDM). Budesonide is

the standard therapy for allergic asthma in humans but is not always completely effective.

Aim: To compare the efficacy of budesonide or different doses of GOS alone or with a

combination therapy of budesonide and GOS on HDM-allergic responses in mice.

Methods: BALB/c mice were sensitized and challenged with HDM, while fed a control

diet or a diet supplemented with 1 or 2.5 w/w% GOS, and either or not oropharyngeally

instilled with budesonide. Systemic and local inflammatory markers, such as mucosal

mast cell protease-1 (mMCP-1) in serum, pulmonary CCL17, CCL22, and IL-33

concentrations and inflammatory cell influx in the bronchoalveolar lavage fluid (BALF)

were determined.

Results: Budesonide or GOS alone suppressed the number of eosinophils in the BALF

of HDM allergic mice whereas budesonide either or not combined with GOS lowered both

eosinophil and lymphocyte numbers in the BALF of HDM-allergic mice. Both 1 w/w%

and 2.5 w/w% GOS and/or budesonide suppressed serum mMCP-1 concentrations.

However, budesonide nor GOS alone was capable of reducing Th2 driving chemokines

CCL17, CCL22 and IL-33 protein levels in supernatants of lung homogenates of HDM

allergic mice, whereas the combination therapy did. Moreover, IL-13 concentrations were

only significantly suppressed in mice treated with budesonide while fed GOS. A similar
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tendency was observed for the frequency of GATA3+CD4+ Th2 and CD4+RORγt+ Th17

cells in the lungs of the allergic mice.

Conclusion: Dietary intervention using GOS may be a novel way to further improve

the efficacy of anti-inflammatory drug therapy in allergic asthma by lowering Th2 driving

mediators and mast cell degranulation.

Keywords: allergy, asthma, house dust mite, galacto-oligosaccharides, budesonide

INTRODUCTION

Asthma is a chronic disease affecting 235 million people
worldwide. The disease is characterized by airway
hyperresponsiveness, airway narrowing and airway inflammation
containing high numbers of eosinophils (1, 2). House dust mite
(HDM) is a common allergen that can induce allergic diseases
like asthma and allergic rhinitis (3). Different cytokines (e.g.,
IL-33 and GM-CSF) and chemokines (e.g., CCL20) can be
released by airway epithelial cells after stimulation with HDM
contributing to allergic sensitization (4). IL-33 and GM-CSF
are capable of activating dendritic cells (DC) and group 2
innate lymphoid cells (ILC2), which produce IL-5 and IL-13
(2, 5). Furthermore, immature DC are attracted to the lung
by CCL20, and in turn are activated by Th2 driving mediators
(6). After activation, DC release chemokines such as CCL17
and CCL22 known to drive the development of Th2 effector
responses from naïve T cells in the mediastinal lymph nodes.
These Th2 cells will migrate to the pulmonary mucosa and
like ILC2 produce IL-13 and drive allergic sensitization and
symptoms of allergic airway inflammation (4, 6, 7). Long-acting
beta agonists with or without glucocorticosteroids are the most
commonly used drugs for asthma. Glucocorticosteroids, such
as budesonide, are known to bind and activate the intracellular
glucocorticoid receptor, which translocates into the nucleus and
suppresses the transcription of pro-inflammatory genes, while
enhancing transcription of certain regulatory genes of activated
immune cells and structural cells (8). The glucocorticosteroids
are added to suppress the ongoing allergic airway inflammation.
Nevertheless, when the drug is discontinued the effects of
inhaled corticosteroids rapidly disappear. However, long-term
treatment with glucocorticosteroids, even in low concentrations,
can have considerable side effects, such as weight gain, reduced
growth in children, and muscle weakness (9–11). Current
treatment is therefore still not sufficient and novel preventive
and/or therapeutic approaches are needed for asthmatic
disorders. The gut microbiota has a substantial influence on
the systemic immune function. Different animal and human
studies indicated changes in the intestinal microbiota may
contribute to development of asthma (12–15). Specific non-
digestible oligosaccharides such as galacto-oligosaccharides
(GOS) are selectively fermented in the intestine resulting
in support of growth and/or activity of bifidobacteria and

Abbreviations: BALF, bronchoalveolar lavage fluid; DC, dendritic cell; FOS,

fructo-oligosaccharide; GOS, galacto-oligosaccharide; HDM, house dust mite;

ILC2, group 2 innate lymphoid cell; OVA, ovalbumin.

lactobacilli (12, 16, 17). Non-digestible oligosaccharides can
have a preventive effect on allergic diseases. In different murine
ovalbumin (OVA) asthma models a combination of GOS/long-
chain (lc) fructo-oligosaccharides (FOS)/pectin-derived acidic
oligosaccharides (AOS) suppressed airway inflammation and
hyperreactivity (18, 19). Furthermore, GOS suppressed allergic
airway eosinophilia in ovalbumin-sensitized rats (20). Clinical
studies indicated that a mixture of 9:1 GOS/lcFOS provided in
the first year of life still has a protective effect against allergic
manifestations at 5 years of age for allergic rhinoconjunctivits and
atopic dermatitis (21). In addition, GOS/lcFOS in combination
with Bifidobacterium breve reduced atopic dermatitis scores in
young infants when given for a period of 12 weeks, Interestingly.
later in life these children experienced less wheezing and
coughing apart from cold and had reduced requirements for
asthma medication compared to the control group (22). In adult
patients suffering from asthma, this dietary intervention reduced
Th2 cytokine production and increased peak expiratory flow
(23). In the present study, the effectiveness of combined dietary
intervention with GOS and with budesonide, a gold standard
reference treatment, on pulmonary inflammation and mast
cell degranulation was investigated in a murine HDM-induced
allergic asthma model.

METHODS

Mice
Male BALB/c mice (Charles River, Maastricht, The Netherlands),
6 to 8-week old were housed under bio-contained sterile
conditions using HEPA R© filtered isocages R© (Tecniplast,
Buguggiate, Italy). Food and water were provided ad libitum.
All animal experiments were conducted in compliance with the
Guidelines of the Ethical Committee on the Use of Laboratory
Animals of the Utrecht University (DEC 2013.II.08.090).

HDM Murine Asthma Model
While under isoflurane anesthesia, BALB/c mice were
intranasally (i.n.) sensitized with PBS in presence or absence of
1 µg HDM (Greer Laboratories, Lenoir, USA) and challenged
i.n. with PBS or 10 µg HDM on days 7 to 11 while being fed
a diet (AIN-93G, control diet) containing 0, 1 or 2.5 w/w%
GOS (Vivinal R© GOS syrup with approximately 59% galacto-
oligosaccharides, 21% lactose, 19% glucose, and 1% galactose
on dry matter (dry matter of 75%); FrieslandCampina Domo,
Zwolle, The Netherlands). Carbohydrates in Vivinal R© GOS
were compensated isocalorically in the control diet by means of
exchange against cellulose (for GOS), lactose (for lactose), and
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dextrose (for glucose), from day−14 to day 14 (24). On day 7, 9
and 11 budesonide (500 µg/kg, Sigma-Aldrich, Zwijndrecht, The
Netherlands) was either or not instilled oropharyngeally, after
induction of a light isoflurane anesthesia, 6 h prior to the daily
challenge and day 13, 24 h prior to sacrifice on day 14 (25, 26)
(Figure 1).

Airway Responsiveness Measurement
The EMKA invasive measurement of dynamic resistance (EMKA
Technologies, Paris, France) in response to increasing doses of
methacholine (acetyl-β-methyl-choline chloride, Sigma-Aldrich)
(0–25 mg/ mL, 10% puff for 10 s) was used to measure lung
function in anesthetized mice. Data are presented as average lung
resistance (RL) in cm H2O/mL∗sec-1 (26).

Serum Preparation
After sacrifice, blood samples were collected by cardiac puncture.
The blood was coagulated 30min at room temperature and
centrifuged at 14,000 rpm for 10min. Serum samples were stored
at−20◦C until further use.

ELISA HDM-Specific IgE
Elisa plates (Corning 9018) were coated overnight with HDM
(50µg/mL in PBS), washed, blocked for 1 h with a 0.1% w/v BSA
in PBS, washed and incubated with 5x diluted serum samples.
Plates were washed and incubated for 1.5 h with 1µg/mL biotin
anti-mouse IgE (553419, BD Biosciences), washed and incubated
for 1 h with streptavidin-HRP (Sanquin, Amsterdam) containing
ELISA buffer, washed and incubated with TMB (ready to use,
eBioscience) and 2M H2SO4 was used to stop the reaction.
The absorbance was measured with the iMark microplate reader
(Bio-Rad) at 450 nm (27).

Bronchoalveolar Lavage
Lungs were lavaged with 1mL of pyrogen-free saline (0.9%
NaCl, 37◦C) supplemented with protease inhibitor cocktail tablet
(Complete Mini, Roche Diagnostics, Mannheim, Germany). This
was followed by 3 lavages with 1mL saline solution (0.9% NaCl,
37◦C). The BALF cells were centrifuged (400 g, 5min) and
pellets of the lavages were pooled and total numbers of BALF
cells were counted using a Bürker-Türk chamber (magnification

100x). For differential BAL cell counts, cytospin preparations
were made and stained with Diff-Quick (Merz and Dade A.G.,
Düdingen, Switzerland). Numbers of lymphocytes, eosinophils,
macrophages and neutrophils were scored with light microscopy
(28). Afterwards the lavage the right lung was used to prepare
lung homogenates, while half of the left lung was used for
flowcytometry and the other half of the left lung for in vitro
re-stimulation.

Preparation of Lung Homogenates
Lung samples were homogenized in 1% Triton X100 (Sigma-
Aldrich)/PBS containing protease inhibitor (Complete Mini,
Roche Diagnostics) using a Precellys 24 tissue homogenizer
(Bertin Technologies, Toulouse, France). Homogenates were
centrifuged at 14,000 rpm for 10min, supernatants were
collected and stored at −20◦C until further use. The protein
concentration was measured using the Pierce BCA protein
assay kit standardized to BSA according to the manufacturer’s
protocol (Thermo Fisher Scientific, Rockford, USA). The
homogenates were diluted to a final concentration of 1mg
protein/mL prior to cytokine or chemokine measurements
(29, 30).

Lung Restimulation With House Dust Mite
ex vivo
Lung cell suspensions were prepared after enzymatic digestion
of the lungs using digestion buffer, containing DNase I and
Collagenase A (Roche Diagnostics), for 30min. The digestion
was stopped by adding fetal calf serum (FCS, Hyclone
Laboratories, Logan, USA). The lung pieces were passed through
a 70µm filter and rinsed with 10mL RPMI. Cells were
washed and resuspended in RPMI 1640 culture medium (Lonza,
Allendale, USA) supplemented with 10% heat-inactivated FCS
and 0.1% penicillin-streptomycin solution (Sigma-Aldrich).
Lung cells (4× 105 cells/well) were cultured in medium with or
without 50µg/mL HDM (Greer Laboratories). The supernatant
was harvested after 4 days of culture at 37◦C in 5 % CO2 and
stored at−20◦C until further analysis (31).

FIGURE 1 | Induction of house dust mite allergy in mice. BALB/c mice were intranasally (i.n.) sensitized with PBS or house dust mite (HDM) on day 0 and challenged

on days 7 to 11 intranasally with PBS or HDM. Mice were fed control diet (AIN93G, contr) or 1 w/w% or 2.5 w/w% GOS from day −14 to 14 and either or not

oropharyngeally instilled with budesonide on days 7, 9, 11, and 13. All mice were sacrificed on day 14.
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FIGURE 2 | Combination of dietary GOS and budesonide effectively reduces eosinophilic inflammation in the lungs of HDM-allergic mice. Inflammatory cell influx in

the BALF of house dust mite allergic mice. Total BAL cells (A), absolute number of lymphocytes (B), eosinophils (C). Results are shown as mean ± SEM. Statistical

significance of differences was tested using post hoc Bonferroni’s multiple comparisons test after One-Way ANOVA. *P < 0.05, **P < 0.01, ***P < 0.001, ****P <

0.0001 compared to the HDM-contr group, + P < 0.05 n = 8–9 mice/group. Representative photomicrographs of the lungs stained with H&E. PBS- control diet

(D), HDM-control diet (E), HDM- control diet and budesonide treatment (F), HDM-1 w/w% GOS diet (G), HDM-1 w/w% GOS diet and budesonide treatment

(H), inflammation score of histological photomicrographs; the percentage of tissue surface area that was infiltrated with inflammatory cells was scored blinded as

follows: score 0 no inflammation (0%), score 1 mild inflammation (>0–<30%), score 2 moderate inflammation (>30–<60%), score 3 severe inflammation (>60–100%)

(I). Results are shown as mean ± SEM. Statistical significance of differences was tested using Kruskall Wallis test. Magnification 200x, BALF n = 8–9 mice per group,

histology n = 5 mice/group. PBS, PBS- sensitized and PBS- challenged mice (white bars); HDM, HDM -sensitized and challenged mice (gray bars); Contr, control

diet; GOS, 1 w/w% GOS or 2.5 w/w% GOS diet; Bud, budesonide.

Lung T Cell Subsets Assessed by Flow
Cytometry
Aspecific background was blocked using PBS blocking buffer
containing 1% BSA and 5% FCS for 30min. 5 × 105 cells were
plated per well and incubated at 4◦C for 30min with different
antibodies against CD4-PerCP Cy5 (cat no. 45-0042, clone
RM4-5), CD69-FITC (cat no. 11-0691, clone H1.2F3), GATA3-
PE (cat no. 12-9966, clone TWAJ), Tbet-eFLUOR660 (cat no. 50-
5825, clone eBio4D10), RORγt-PE (cat no. 12-6988, clone AFKJs-
9), Foxp3-APC cat no: 17-5773, clone FJK-16s (eBioscience, San
Diego, USA), CD8a-APC Cy7 (cat no. 557654, clone 53-6.7)
and CD25-FITC (cat no. 553071, clone 7D4CD25 FITC) (BD,
Breda, The Netherlands) and matching isotype controls were
used. Cells were permeabilized for intracellular staining using
fixation/ permeabilization buffer set, according to manufacturer’s
protocol (eBioscience). Flow cytometry was conducted using
FACS Canto II (BD) and analyzed using Flowlogic Software
(Inivai Technologies, Victoria, Australia) (32).

Measurement of Cytokines and
Chemokines
IL-33, GM-CSF, CCL17, CCL20, and CCL22 were measured with
a DuoSet ELISA (R&D Systems, Abingdon, United Kingdom),
IL-13, IL-5 and mMCP-1 with a Ready-SET-Go! R© ELISA
(eBioscience) all according to manufacturer’s protocol. Cytokine
concentrations in supernatants of lung cell restimulation were
determined by a standard IL-13 flex set (BD Biosciences). The
concentrations of these mediators were expressed as pg/mg
protein in supernatants of lung homogenates and pg/mL in
restimulation supernatants and serum.

Histology
Lungs were fixed with 10% formalin via a cannula inserted in
the trachea at a constant pressure of 25 cm H2O. After 24 h
of fixation the lungs were embedded in paraffin and 5µm
sections were cut. Sections were stained with hematoxylin and
eosin, according to standard methods. Photomicrographs were
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taken with an Olympus BX50 microscope equipped with a
Leica DFC 320 digital camera, using 200X magnification. Three
slides per animal were reviewed in blinded fashion by two
independent observers and the percentage of surface area that
was infiltrated with inflammatory cells was scored as follow: score
0 no inflammation (0%), score 1 mild inflammation (>0–<30%),
score 2 moderate inflammation (>30–<60%), score 3 severe
inflammation (>60–100%) (33).

Statistical Analysis
Data are presented as mean ± standard error of mean (SEM).
Data were statistically analyzed using a one-way ANOVA
followed by a Bonferroni’s multiple comparisons test. P < 0.05
were considered significant. Statistical analyses were conducted
using GraphPad Prism software (version 6.04).

RESULTS

Dietary Intervention With GOS in
Combination With Budesonide Is Most
Effective in Reducing Eosinophil Numbers
in BAL-Fluid
To study the extent of airway inflammation in HDM-allergic
mice upon dietary intervention with 1 w/w% or 2.5 w/w% GOS
or intra-airway treatment with budesonide or a combination,
the bronchoalveolar lavage was examined. The total number
of inflammatory cells was significantly increased in the HDM
mice compared to the PBS group both fed the control diet

(Figure 2A) This was due to a significant increase in the
number of lymphocytes and eosinophils (Figures 2B,C). Dietary
intervention with 1 w/w% or 2.5 w/w% GOS significantly
reduced the number of total BAL cells and eosinophils, whereas
treatment with budesonide reduced total BAL cells, eosinophils,
and lymphocyte numbers. When GOS and budesonide were
combined the amount of eosinophils almost returned to baseline
levels (Figure 2C). An increase of inflammatory cells was also
observed in lung histology sections of the HDM mice compared
to the PBS mice fed the control diet (Figures 2D–I). Dietary
intervention with 1 w/w% or 2.5 w/w% GOS, treatment with
budesonide or the combination of both showed a similar
decreasing pattern in inflammation score (Figures 2D–I). In
addition to pulmonary inflammation, the airway resistance was
measured to investigate the lung function in HDM asthmatic
mice. There were no differences between the experimental groups
on basal level. Methacholine dose-dependently increased airway
resistance and a significant increase in lung resistance (6.25–
12.5 mg/mL of methacholine) was observed in HDM mice fed
the control diet compared to the PBS control group. The GOS
diet did not affect this, whereas budesonide alone showed a
strong tendency to prevent the increase in airway resistance
compared to HDM allergic mice fed the control diet which
became significant when budesonide treated HDM allergic mice
were also fed the 1 or 2.5%GOS diet in the groups exposed to 6.25
or 12.50 mg/mL methacholine (Supplementary Figure 1). The
number of macrophages or neutrophils was not affected upon
HDM challenge or not significantly affected by the treatments
(Supplementary Figures 2A,B).

FIGURE 3 | Combination of dietary GOS and budesonide suppresses mMCP-1 serum concentration and Th2 driving mediators in lung homogenates of HDM allergic

mice. mMCP-1 (A) (pg/mL in serum) and IL-33 (B), CCL17 (C), CCL22 (D) (pg/mg protein in supernatant of lung homogenates) concentrations were measured.

Statistical significance of differences was tested using post hoc Bonferroni’s multiple comparisons test after One-Way ANOVA. *P < 0.05, **P < 0.01, ***P < 0.001,

****P < 0.0001 compared to the HDM-contr group, + P < 0.05, ++P < 0.01, ++++P < 0.0001, and ##P < 0.01, ###P < 0.001 compared to the PBS-contr

group, n = 6 mice/group. Results are shown as mean ± SEM. PBS: PBS–sensitized and–challenged mice (white bars), HDM, HDM-sensitized and–challenged mice

(gray bars). Contr, control diet; GOS, 1 w/w% GOS or 2.5 w/w% GOS diet; Bud, budesonide. Results are shown as mean ± SEM.
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Dietary Intervention With GOS in
Combination With Budesonide Decreases
Serum mMCP-1 and Chemokine and
Cytokine Concentrations in Lung
Homogenates
To examine the effect on mast cell degranulation, mMCP-
1 concentrations were measured in serum. The expression
of mMCP-1 in the HDM control group tended to increase
compared to the PBS control group. Dietary intervention with
1 w/w% GOS or 2.5 w/w% GOS, as well as budesonide
treatment or the combination of both, significantly decreased
the levels of mMCP-1 (Figure 3A). In HDM-allergic mice
HDM-IgE levels were increased compared to control mice,
however these were not significantly affected by the treatments
(Supplementary Figure 3A). IL-33 was significantly increased
in supernatants of lung homogenates of HDM allergic mice.
Dietary GOS or budesonide treatment did not affect this, while
the combination significantly decreased IL-33 concentrations
in HDM allergic mice (Figure 3B). The combination therapy
decreased basal CCL17 and CCL22 concentrations already
in control animals (Figures 3C,D). In HDM-allergic mice,
CCL17 and CCL22 were significantly enhanced and again
only the combination therapy significantly decreased these
concentrations (Figures 3C,D). GM-CSF and CCL20 did not
significantly increase in HDM allergic mice compared control
mice these (data not shown).

Dietary Intervention With GOS in
Combination With Budesonide Decreases
Pulmonary Il-13 Concentrations
Th2 type inflammation marker IL-13 was measured in
lung homogenate supernatants. IL-13 concentrations were
significantly increased in the HDM group fed the control diet
(Figure 4A). This was confirmed after ex vivo re-stimulation
of lung cell suspensions with HDM (Figure 4B). Only in
budesonide treated mice fed the GOS diet, IL-13 concentrations
were significantly reduced and the same tendency was shown
upon HDM re-stimulation of lung cells (Figures 4A,B). IL-13
concentrations in lung homogenates of HDM mice correlated
positively with the number of lymphocytes measured in the
BALF (Figure 4C). IL-5 concentrations did not significantly
increase in HDM allergic mice compared control mice these
(data not shown).

Decreased Frequency of Activated
T-Helper Cells, Th2 and Th17 Cells After
Dietary Intervention With GOS Combined
With Budesonide
The expression of the early activation marker CD69 was
increased in CD4+ T-helper (Th) cells in lungs of HDMmice and
not affected by the GOS diet. After treatment with budesonide
with or without GOS, a decreased frequency of activated Th cells
was observed (Figure 5A). The frequency of GATA3+CD4+ Th2
cells was significantly increased in HDM allergic mice fed the
control diet compared to the PBS control group (Figures 5B,C).

FIGURE 4 | Combination of dietary GOS and budesonide reduces IL-13

concentrations in the lungs of HDM-allergic mice. IL-13 concentrations were

measured in supernatants of lung homogenates (pg/mg protein) (A) and in

supernatants of lung cell suspensions upon ex vivo HDM restimulation (pg/mL)

(B). Correlation of IL-13 concentration in lung homogenates and the number

of lymphocytes between the HDM-groups (C). Results are shown as mean ±

SEM. Statistical significance of differences was tested using post hoc

Bonferroni’s multiple comparisons test after One-Way ANOVA. *P < 0.05, ***P

< 0.001, ****P < 0.0001 compared to the HDM-contr group n = 6

mice/group. Correlation was assessed using the Spearman correlation test.

PBS, PBS–sensitized and–challenged mice (white bars); HDM,

HDM-sensitized and–challenged mice (gray bars). Contr, control diet; GOS, 1

w/w% GOS or 2.5 w/w% GOS diet; Bud, budesonide.

The combination of GOS with budesonide tended to decrease
GATA3+CD4+ Th2 cells (p = 0.06) (Figure 5B). Although the
frequency of CD4+RORγt+ Th17 cells or CD4+Tbet+ Th1
cells was not significantly increased in HDM allergic mice
compared to PBS control mice, a tendency toward a decrease in
Th17 cell frequency was observed only when mice were treated
with 2.5 w/w% GOS combined with budesonide (p = 0.07)
(Figures 5C–E). The frequency of FoxP3+CD25+ of CD4+ Treg
cells was not affected by the GOS diet in control and HDM
allergic mice, but tended to be lower in the HDM allergic mice
treated with budesonide compared to HDM allergic mice, in
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FIGURE 5 | The frequency of activated Th cells and Th2 and Th17 cells decreases after dietary intervention with 2.5 w/w% GOS combined with budesonide.

Representative dot plots and histograms of gating strategy of lung T helper cell subsets (E). Lymphocytes were gated based on FSC-SSC pattern, and T helper cells

were gated based on expression of CD4. Within the CD4+ population the frequency of GATA3 (Th2 cells), RORγt (Th17 cells) and Tbet (Th1 cells) was analyzed. In the

histogram the blue line represents FMO control, red line isotype control and green line MFI of the specific antibody. Percentage of activated CD4+ cells (A), GATA3+

of CD4+ cells (B), RORγt+ of CD4+ cells (C), and Tbet+ of CD4+ cells (D) was calculated. Results are shown as mean ± SEM. Statistical significance of differences

was tested using post hoc Bonferroni’s multiple comparisons test after One-Way ANOVA. *P < 0.05, ****P < 0.0001 compared to the HDM-contr group, +P < 0.05,

++P < 0.01, n = 6 mice/group.
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presence or absence of the GOS diet. This reached significance
in the budesonide treated HDM allergic mice fed the 2.5% GOS
diet (p< 0.05) compared to HDM allergic mice fed the 2.5%GOS
diet (Supplementary Figure 3B).

DISCUSSION

This study was performed to examine whether a combination
therapy consisting of dietary GOS with budesonide was more

effective than either of the treatments alone. Dietary intervention
with GOS improved the effectiveness of budesonide therapy
in most features of the HDM asthma model. Murine HDM
allergic asthma models are commonly used to mimic some of
the human features of asthma as they show airway inflammation
and pulmonary cytokine release similar to humans (34, 35).
Previously we showed that GOS had similar preventive effects as
budesonide in suppressing allergic features in a murine model
for HDM-induced allergic asthma (26). In the current study
the combination of GOS and budesonide almost completely

FIGURE 6 | Overview of the effects of the dietary intervention with GOS combined with glucocorticosteroid budesonide treatment. After the initial exposure to HDM

mMCP-1 is released by mast cells, and IL-33 is known to be secreted by the airway epithelium, which can also activate mast cells as well as DC and ILC2.

Combination of the GOS diet with budesonide treatment reduced mMCP-1 and IL-33 concentrations. CCL17 and CCL22 are secreted by activated DC, which can

differentiate naïve T cells into Th2 cells and are chemo-attractants for Th2 cells. The combination therapy significant suppressed the production of both chemokines.

Th2 cells as well as ILC2 and mast cells are able to produce IL-13. Concentrations of IL-13 were reduced after the treatment of both GOS and budesonide. The

number of lymphocytes and eosinophils was decreased by treatment with budesonide, whereas GOS alone suppressed the number of eosinophils. The combination

of dietary GOS with budesonide treatment effectively suppressed both leukocyte subtypes. Only dietary intervention with GOS in combination with budesonide tended

to suppress the Th2 and Th17 frequency in lung cell suspensions. Small arrows, tendency to reduce; big arrows, significant reduced.
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abolished eosinophil and lymphocyte numbers, which was
associated with improved airway resistance, lower inflammatory
mediator release and reduced mast cell degranulation (serum
mMCP-1). mMCP-1 is released by mast cells in the tissue
upon allergen challenge, becomes available locally and as
a reflection can be measured back in the serum (36–38)
(Figure 6).

In the airways of asthmatic patients the level of IL-33,
mainly expressed by bronchial epithelial cells, is increased (39,
40). After allergen stimulation, IL-33 can activate mast cells,
ILC2, and dendritic cells which are driven to produce Th2
polarizing chemokines CCL17 and CCL22. Moreover, IL-33
acts as a chemo-attractant for Th2 cells (41–45). In airway
tissue of asthmatics, mast cell numbers and levels of mast cell
proteases are increased and also an increase in activation and
recruitment of Th2 lymphocytes is observed (46). Interestingly,
the IL-33 and mucosal mast cell derived mMCP-1 concentrations
were significantly suppressed by the combination therapy of
GOS with budesonide in HDM-HDM mice (Figure 6). The
latter is of particular importance, since in asthmatic patients,
budesonide had no effect on IL-33 levels (47). As IL-33 is
also important for activation of Th2 driving DC and ILC2,
effective reduction may result in decreased allergic inflammation
and symptoms. Increased levels of CCL17 were found in
BALF, plasma/serum and sputum of patients with asthma
(48–50). DC, that drive allergic sensitization, produce CCL17
as well as CCL22, which are both CCR4 ligands (51) and
involved in Th2 polarization, allergic sensitization and allergic
effector responses as CCR4 is expressed by allergen induced
Th2 lymphocytes which are attracted than to the airways in
humans (52–55). Furthermore, in a murine asthma model,
CCL22 or CCL17 neutralization decreased eosinophilic airway
inflammation and ameliorated allergic symptoms (56). Dietary
intervention with 1 w/w% GOS tended to reduce both CCL17
and CCL22, while budesonide reduced CCL22. By contrast,
the combination of the GOS diet and budesonide significantly
reduced the concentrations of both chemokines (Figure 6). This
indicates that dietary GOS facilitates budesonide treatment in
its capacity to further decrease allergy driving mediators IL-
33, CCL17 and CCL22, derived from both airway epithelial
cells and DC. As far as we know, such a mechanism has
not been described before and may be part of the mechanism
by which dietary GOS enforces the actions of budesonide
treatment.

To our knowledge this study is the first to demonstrate that
dietary adjunct therapy may support the anti-inflammatory
properties of glucocorticosteroid treatment. Anti-inflammatory
therapies still have considerable side-effects (9–11) and
decreasing the dose of glucocorticosteroid may have beneficial
effects for asthmatic patients. It would be interesting to
know whether GOS can affect these side effects and
whether lower doses of glucocorticosteroids can be used
in combination with GOS in BALB/c mice as well as
other mice strains like C57/BL6. In addition, the effects
of the dietary intervention and/or budesonide treatment
on intestinal and pulmonary microbiome composition and
bacterial fermentation products should be studied, since

the microbiome composition and activity has been shown
affect the susceptibility to develop airway inflammation and
microbial dysbiosis is observed in people affected with asthma
(57–59).

T lymphocytes are important in the development of asthma.
Activated T helper cells are increased in asthmatic mice
(60). In the current study, budesonide treatment alone or in
combination with a GOS diet showed a decrease in activated
T-cell frequency (Figure 6). The reduction in Th2 driving
mediators by budesonide treatment in GOS fed HDM mice
may have resulted in a reduced Th2 polarization and Th2 cell
influx. Indeed Th2 type cytokine concentrations of IL-13 were
significantly lower in HDM allergic mice with the combination
therapy (Figure 6). Antigen-specific Th2 cells, ILC2s and mast
cells secrete IL-13 (41, 61, 62). In the HDM allergic mice IL-
13 was not only increased in lung tissue, but also in lung cell
suspensions exposed to HDM. Similar, in mild asthmatics, an
increase in IL-13 mRNA levels was found in the BALF upon
allergen challenge (63). GATA3 is necessary for differentiation
of naive T cells into Th2 cells but also for the development and
function of ILC2 (61, 64). In asthmatic patients, the GATA3
expression in T cells was five times higher compared to healthy
controls whereas also bronchial epithelial cells express high levels
of GATA3 (65). Here we shows that the combination therapy
resulted in a tendency toward a decrease in the frequency of
GATA3+CD4+ Th2 cells in the lung. As GATA3 is known to
play a crucial role in the production of IL-13 by Th2 cells
(61), the reduced lL-13 may be explained, at least in part, by
this effect on Th2 cells (Figure 6). Beyond this effect on Th2
cell frequency, the combination therapy also tended to decrease
the percentage of RORγt+ CD4+ Th17 cells (66), known to
be increased in asthmatic patients (67). HDM sensitization and
challenge did not affect the frequency of Treg and budesonide
treatment tended to lower the %Treg which could not be rescued
by the dietary intervention with GOS. However, in a previous
study GOS was shown to improve the regulatory function of the
CD25+ cells, which include Treg and via this way GOS may
have supported the anti-inflammatory capacities of budesonide
treatment (68).

In conclusion, a combination therapy of budesonide
together with a dietary intervention with GOS, most
effectively suppressed the allergic inflammatory response
when compared to either of the treatments alone. Hence,
dietary adjunct therapy using GOS may be a novel way to
further improve the effectiveness of glucocorticosteroids in
asthma.
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Supplementary Figure 1 | Pulmonary resistance upon methacholine exposure.

Methacholine induced lung resistance was measured by means of EMKA and

significantly increased in the HDM allergic mice at 6.25–12.5 mg/mL. This was not

affected by the GOS, whereas budesonide alone tended to prevent the increase

in airway resistance. Budesonide treatment of HDM allergic mice fed the

1% or 2.5% GOS significantly reduced lung resistance. Results are shown as

mean ± SEM. Statistical significance of differences was tested using a

One-Way ANOVA with post hoc Bonferroni’s multiple comparisons test.0.05

∗P < (compared to HDM-control), ++P < 0.01 n = 8–9 mice/group.

Supplementary Figure 2 | Effect of dietary GOS and/or budesonide on the

number of macrophages and neutrophils in the BALF. The absolute number of

macrophages (A) and neutrophils (B) in the BALF. Results are shown as mean ±

SEM. Statistical significance of differences was tested using a One-Way ANOVA

with post hoc Bonferroni’s multiple comparisons test. ∗P < 0.05, ++P < 0.01

n = 8–9 mice/group.

Supplementary Figure 3 | HDM specific IgE in serum and the frequency of

regulatory T-cells in lung tissue. HDM-IgE was measured in serum by means of

ELISA and increased in HDM-allergic mice compared to PBS controls (A).

Budesonide treatment and/or the GOS diet did not significantly affect HDM-IgE

levels. Within the CD4+ population the frequency (%) of Foxp3+CD25+ Treg cells

was analyzed in lung tissue (B). Budesonide tended to lower %Treg, which was

not affected by the GOS diets. Results are shown as mean ± SEM. Statistical

significance of differences was tested using a One-Way ANOVA with post hoc

Bonferroni’s multiple comparisons test. ∗ or + P < 0.05, n = 7–13 for HDM-IgE

and n = 8–9 for Treg mice/group.
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