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REVIEW

Role of the alternative splice variant of NCC in blood pressure control
Hila Wardaka, Omar A.Z. Tutakhela,b, and Jenny Van Der Wijst a

aDepartment of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherland;
bDepartment of Translational Metabolic Laboratory, Radboud university medical center, Nijmegen, The Netherlands

ABSTRACT
The renal thiazide-sensitive sodium-chloride cotransporter (NCC), located in the distal convoluted
tubule (DCT) of the kidney, plays an important role in blood pressure regulation by fine-tuning
sodium excretion. The human SLC12A3 gene, encoding NCC, gives rise to three isoforms, of which
only the third isoform (NCC3) has been extensively investigated so far. However, recent studies
unraveled the importance of the isoforms 1 and 2, collectively referred to as NCC splice variant
(NCCSV), in several (patho)physiological conditions. In the human kidney, NCCSV localizes to the
apical membrane of the DCT and could constitute a functional route for renal sodium-chloride
reabsorption. Analysis of urinary extracellular vesicles (uEVs), a non-invasive method for measuring
renal responses, demonstrated that NCCSV abundance changes in response to acute water loading
and correlates with patients’ thiazide responsiveness. Furthermore, a novel phosphorylation site at
serine 811 (S811), exclusively present in NCCSV, was shown to play an instrumental role in NCCSV
as well as NCC3 function. This review aims to summarize these new insights of NCCSV function in
humans that broadens the understanding on NCC regulation in blood pressure control.
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Introduction

Hypertension (high blood pressure) is a major risk
factor for stroke, myocardial infarction, heart fail-
ure, chronic kidney disease and overall increased
risk of mortality [1–4]. It is the most critical and
expensive public health problem with a global
prevalence of 1.4 billion people, representing one
of every four adults worldwide. This is predicted to
increase to 1.6 billion people by 2025 [1,2,5–7].
About 90% of hypertensive patients have primary
or essential hypertension, which means that the
origin of their disorder is unknown and secondary
causes such as monogenic disease, renal failure,
aldosteronism and renovascular disease are not
present [8,9].

It is well known that salt intake plays a signifi-
cant role in the development of hypertension. The
body’s salt homeostasis is maintained by the kid-
neys through regulated processes of sodium (and
chloride) reabsorption [10]. Specifically, the
sodium-chloride cotransporter (NCC) is an
important player in the maintenance of salt home-
ostasis as it controls the fine-tuning (~ 7%) of
sodium excretion in the distal convoluted tubule

(DCT) [11]. NCC is an important pharmacological
target in the treatment of hypertension as thiazide-
type diuretics, which specifically block NCC, are
considered first-line therapy [12,13]. Furthermore,
over 180 loss-of-function mutations have been
identified in the SLC12A3 gene, encoding NCC,
in relation to Gitelman syndrome (OMIM
263,800) [14–16]. This is an autosomal recessive
disease that is portrayed by hypocalciuria, hypo-
magnesemia, hypokalemic metabolic alkalosis,
sodium wasting and lower blood pressure levels
in comparison to their age-matched unaffected
relatives [17,18].

The human SLC12A3 gene yields three separate
isoforms as a result of an alternative splicing. NCC
isoforms 1 and 2 (NCC1 and NCC2), collectively
termed NCCSV, are nine amino acids longer than
the third isoform (NCC3) [18–20]. In the present
review, we aim to outline the newest findings on
the molecular regulation of NCCSV and its role in
renal salt handling in various (patho)physiological
conditions. A better understanding of all three
isoforms is crucial to unravel the molecular events
underlying the pathogenesis of essential hyperten-
sion, and to develop effective therapeutic
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approaches to combat the dysregulation of blood
pressure.

Characterization of NCCSV

The molecular cloning of human NCC took place in
1996, showing that there exist three different iso-
forms of the protein as a result of alternative splicing
of the SLC12A3 gene [18,21]. Simon et al. reported
an mRNA sequence encoding a 1,030 amino acid
protein, which was NCC1 [18]. Mastroianni et al.
reported later the mRNA sequence corresponding
to the NCC3, which encoded for a protein of 1,021
amino acids [21]. The exon 20 of NCC3 is nine
amino acids shorter in comparison to NCC1. A
possible cryptic splicing at the donor site leads to
both long and short forms of exon 20 [19]. In com-
parison to NCC1, the isoform 2 (NCC2) lacks one
amino acid at glutamine residue 95 within amino
(N)-terminal domain, making these two isoforms
practically indistinguishable (Figure 1). Hence, both
isoforms are collectively referred to as NCC splice
variant (NCCSV), which is only present in humans
and higher primates.

Recently, the presence of both NCC3 and NCCSV

was shown in human urinary extracellular vesicles
(uEVs) using mass spectrometry and immunoblot
analysis [20]. This study confirmed multiple overlap-
ping peptides of NCCSV and NCC3, which revealed
that SCL12A3 leads to the expression of a mixture of
NCC3 and at least one but possibly both NCC1 and
NCC2 [20]. Total NCC mRNA in the human kidneys
consisted on average of ~ 45% ofNCCSV and ~ 50% of
NCC3 [20]. However, the ratio of NCCSV to NCC3

mRNA expression in human kidney varied between
20 and 60%, which is likely the result of a highly
regulated splicing at exon 20 [20]. It has been shown
that ~ 95% of human genes are alternatively spliced
and the production of alternative mRNA splices is
diversely regulated by a variety of external factors.
Mechanisms of alternative splicing are highly variable
and not well understood yet [22].

Generation of antibodies specific against NCCSV

led to confirmation of NCCSV abundance at the
apical membrane of the DCT in human kidney, as
well in kidney membrane fractions and uEVs [20].
This demonstrated the potential importance of the
formerly underrepresented NCCSV in renal salt
handling.

Functional role of NCCSV

Regulators of NCC

NCC is a member of the solute carrier 12 (SLC12)
family of electroneutral cation-coupled chloride
cotransporters. It is a membrane glycoprotein and
contains 12 transmembrane segments (S) with large
intracellular N- and carboxy (C)-terminal regions,
and a large hydrophilic extracellular loop between S7
and S8 [23]. This loop contains glycosylation sites
that are essential for the cell surface expression,
thiazide sensitivity and activity of NCC [24].
Functional NCC proteins represent as homodimer
at the plasma membrane [25,26]. Other posttransla-
tional modifications that play a crucial role in the
regulation of NCC activity include ubiquitylation
and phosphorylation (reviewed in [27–29].
According to recent large-scale proteomics studies,
NCC is ubiquitylated on several conserved lysine
residues [30,31]. Generally, NCC ubiquitylation is
associated with increased endocytosis from the
plasma membrane, as well as protein degradation
[32,33]. A recent study pointed out that NCC exhi-
bits site-specific ubiquitylation exerting different
roles on NCC function, via modulating NCC phos-
phorylation or its total abundance at the plasma
membrane [33]. Interestingly, several studies indi-
cate that phosphorylation of NCC can interfere with
its ubiquitylation, thereby playing a dual role in
modulating NCC function [34,35]. Generally, phos-
phorylation is considered one of the most important
posttranslational modification processes in the reg-
ulation of NCC activity. The N-terminal domain of
NCC contains several key phosphorylation sites
including threonines 48, 55 and 60 (T48, T55, T60)
and serines 73, 91 and 124 (S73, S90, S124) [36–38].
Phosphorylation at these sites is important for
plasma membrane abundance and influence NCC
activity [29,39]. Interestingly, several studies have
shown that changing T60 to a non-phosphorylated
amino acid (T60A) prevented or reduced the phos-
phorylation at other sites (T48, T55, S73 or S91),
suggesting that T60 is a key modulator in the regula-
tion of NCC activity [29,35,37]. This is highlighted
by a loss-of-function mutation at T60 in NCC that is
linked to Gitelman Syndrome [35,40].

These phosphorylation sites (apart from S124)
are targets of the serine-threonine kinases SPAK
(STE20/SPS1-related, proline alanine-rich kinase)
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and OSR1 (oxidative stress responsive protein type
1), which are activated by with no lysine (WNK)
kinases [37,41]. Mutations in the human genes
encoding WNK1 and WNK4 are causing
Gordon’s syndrome [42], which is characterized
by hypertension, hyperkalemia, metabolic acidosis,
and hypercalciuria. This phenotype is the mirror
image of Gitelman syndrome, and it was shown to
result from gain-of-function of NCC [43]. While

the exact mode of action of the different WNK
kinases is still under debate, there are three abun-
dant WNK kinases along the DCT, namely
WNK1, WNK3, and WNK4, that affect NCC func-
tion by modulating trafficking and/or transport
activity via phosphorylation [44]. Regulation of
NCC by the WNK-SPAK signaling is an area of
intense research and several studies also provided
evidence for hormone regulation of the WNK-

NCCSV
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NCCSV

NCC3
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Figure 1. Splicing of NCC gene.
Schematic representation of the SLC12A3 gene including exon 20a that encodes for the NCCSV (top). The encoded protein NCC
contains 12 transmembrane domains and intracellular amino (N)- and carboxy (C)-terminal domains (bottom). Serine (S811) is
highlighted as phosphorylation site in the nine additional amino acids in NCCSV. Left bottom panel shows a multiple protein
sequence alignment of the three NCC isoforms, demonstrating the lack of glutamine 95 in NCC2.
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SPAK-NCC pathway (Figure 2) reviewed in [45]
and [29].

Novel phosphorylation site in NCCSV

All three human NCC isoforms contain the T55
and T60 residues that are essential mediators of
NCC activity. Recently, a new phosphorylation site
uniquely located at S811 in NCCSV was identified
[46]. Tutakhel et al. further investigated the role of
NCCSV S811 phosphorylation on activity of both
NCCSV and NCC3 [47]. They showed that a non-

phospho-mimetic (S811A) mutant of NCCSV, but
not the phospho-mimetic S811D, prevents the
phosphorylation at T55 and T60. Importantly,
NCCSV S811A was able to inhibit NCC3 phosphor-
ylation at T55 and T60 upon co-expression of
NCCSV and NCC3 [47]. In both phosphorylation
sites the decrease was more than 50%. This indi-
cates that S811 not only regulates NCCSV activity,
but also affects the function of NCC3 in a domi-
nant-negative fashion (Figure 2). This effect may
be due to the heterodimerization of NCCSV with
NCC3. The translocation of NCC to the plasma

S811T60
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P
P
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T55
P

P

NCC3

SPAK/

OSR1
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WNKs
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SGK1

AT1RMR V R2

PKA/PKC
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N-terminal

C-terminal
N-terminal

Figure 2. Functional role of the novel phosphorylation site serine 811 (S811).
The amino (N)-terminal domain of NCC contains several key phosphorylation sites (T55/T66) that are essential for NCC activity and
plasma membrane abundance. S811 acts as a dominant regulatory site for phosphorylation of T60 and T55 in NCCSV and NCC3. The
various interactions of the NCC regulatory pathway are shown as green arrows (stimulatory) or red lines (inhibitory). Phosphorylation
is indicated with the symbol P. The with no lysine kinases (WNKs) are capable of activating SPAK (STE20/SPS1-related, proline
alanine-rich kinase) and OSR1 (oxidative stress responsive protein type 1). The hormone receptors are located in the basolateral
membrane with indicated signaling pathways involving either serum glucocorticoid regulated kinase 1 (SGK1)-Nedd4-2 pathway,
protein kinase A/C (PKA/PKC), or WNKs. V2R, vasopressin receptor; AT1R, angiotensin receptor 1; MR, mineralocorticoid receptor.
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membrane or stability of NCC did not seem to be
affected by S811 [47]. This is in agreement with a
study demonstrating that NCC3 surface abundance
is not affected by the phosphorylation status of
T60 [35,36,48]. Based on these insights, NCCSV

might have a crucial role in renal salt handling.
Although it is acknowledged that T60 and T55

are phosphorylated via activation of the WNK-
SPAK signaling pathway [36,49], the kinase
involved in S811 phosphorylation remains to be
clarified (Figure 2). Prediction software (pkaPS)
from the IMP-IMBA Bioinformatics group [50]
suggested that the recognition motif around S811
of NCCSV shows high similarity to a protein kinase
A (PKA) consensus site. Interestingly, several hor-
monal systems have been shown to activate the
cAMP-PKA pathway [51,52]. For example, the
sodium-potassium-chloride cotransporter
(NKCC2), a SLC family member in the thick
ascending limb of Henle’s loop (TAL), can be
phosphorylated by PKA signaling downstream of
hormones like arginine vasopressin (AVP) or
parathyroid hormone (PTH) [53,54].
Additionally, an increasing amount of evidence
suggests that the abundance and phosphorylation
of NCC is affected by AVP and angiotensin II,
which might include PKA or protein kinase C
(PKC) [55–58] (Figure 2). While there is no infor-
mation yet on direct effects on NCC, it was
recently shown that activation of PKC by angio-
tensin II prevents the binding of WNK4 by kelch-
like 3 (KLHL3). KLHL3, together with the ubiqui-
tin ligase cullin 3 (CUL3), normally targets WNK4
for ubiquitylation and degradation [59]. PKC can
phosphorylate S433 in KLHL3, a site that was
previously postulated to be targeted by PKA as
well [60]. In addition, PKC was shown to phos-
phorylate WNK4 directly, leading to an increase in
kinase activity [55]. Hence, PKA and PKC activa-
tion can stimulate WNK4 signaling, indirectly
leading to NCC activation. The NCC cell surface
abundance and phosphorylation are also increased
by the mineralocorticoid aldosterone, likely
through a mechanism involving the serum gluco-
corticoid regulated kinase 1 (SGK1)-Nedd4-2
pathway or WNK4 [45,61] (Figure 2). However,
recent evidence suggests that modulation of NCC
in response to aldosterone is mediated by second-
ary changes in plasma potassium concentration

that result from aldosterone effects on ENaC
[62,63]. Interestingly, while most of the studies
on NCC regulation have been performed in ani-
mals, this point was recently corroborated in
humans [64]. Mineralocorticoid administration in
humans resulted in increased NCC and WNK4
abundance, as well as enhanced NCC phosphory-
lation. This was negatively correlated with plasma
potassium levels, supporting the role of potassium
effects on NCC, possibly via WNKs [64].

Altogether, NCC regulation in response to the
renin-angiotensin-aldosterone (RAAS) system and
AVP has been studied extensively and is well
documented [45]. It will be interesting to study
whether these hormones also signal towards
NCCSV and identify which pathway is involved
in S811 phosphorylation.

The role of NCCSV in (patho)physiology

Urinary extracellular vesicles, a tool to study NCC

Over the past years, uEVs have been established as a
non-invasive tool to study NCC regulation in several
physiological and pathophysiological conditions.
The uEVs are composed of nucleic acids and pro-
teins that reflect the (patho)physiological state of
cells lining the nephron and the urinary tract. They
contain membrane and cytosolic proteins, DNA and
RNA that are conserved and protected from degra-
dation [65,66]. The cargo of uEVs reflects changes in
the expression of different proteins present in the
epithelial cells of the nephron, including the total
and phosphorylated forms of NCC [20,67,68].
Indeed, it has been demonstrated that patients with
Gitelman syndrome display a decreased NCC abun-
dance in uEVs [67,69]. On the other hand, patients
with Gordon syndrome show higher levels of NCC
in the kidney and this increased abundance was also
observed in the uEVs [68]. Moreover, a recent study
on kidney transplant recipients treated with calci-
neurin inhibiters (CNIs) suggested the use of NCC
abundance in uEVs as biomarker to predict hyper-
tensive patient’s response to thiazide diuretics [70].
The CNIs cyclosporine A and tacrolimus are com-
monly used to prevent rejection of transplanted
organs, and a common side effect of these drugs is
hypertension that can be accompanied by hyperka-
lemia and metabolic acidosis [71]. Recent studies
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showed increased levels of total and phosphorylated
NCC in uEVs of patients with chronic CNI treat-
ment [70], which suggests that NCC might be
involved in the pathogenesis of hypertension in kid-
ney transplant recipients. Hence, the NCC abun-
dance in uEV was analyzed in these patients
following treatment with thiazide diuretics, the
main anti-hypertensive drug. In line with several
studies in animal models [72,73], NCC abundance
was increased after thiazide treatment [70].
Furthermore, pre-treatment abundance of NCC in
uEVs correlated with blood pressure response to
thiazide diuretics, which implies that this method
could be used to predict patients’ thiazide sensitivity.
Upon dividing the group in responders (blood pres-
sure decrease ≥ 10 mmHg) and non-responders, it
became apparent that the non-responder group had
a decrease in the ratio between phosphorylated and
total NCC (pNCC/tNCC) [70]. Moreover, the serum
potassium concentration was lower in responders
compared to non-responders, which might be
explained by the fact that blood pressure response
to thiazides is accompanied by altered renal potas-
sium handling. Blocking of NCC likely results in
increased distal delivery of sodium that results in
increased potassium secretion via the renal outer
medullary potassium channel (ROMK).

NCCSV in physiology

Both NCCSV and NCC3 are present as glycosylated
oligomeric structures in uEVs [74,75]. Hence, uEVs
were used to assessed the role of NCCSV in vivo. In
response to water loading, a strong decrease in expres-
sion of NCC3 as well as NCCSV was shown [20].
Water loading results in transient extracellular
volume expansion and decrease in serum osmolality,
which is known to deactivate RAAS and reduce AVP
release [76]. AVP is mainly known for its water-
retaining action on collecting duct (CD) by increasing
the abundance of the water channel aquaporin 2
(AQP2) [77]. Two recent studies demonstrated that
water loading indeed resulted in significantly reduced
AQP2 expression in uEVs of the healthy volunteers
[20,78]. In line with this, urine osmolality was also
decreased, reflecting the diluted urine after water
loading [20,78]. Since several studies have described
the regulation of NCC by angiotensin, aldosterone,
and AVP (reviewed in [45]), the decrease in NCCSV

abundance in water-loaded subjects is likely the result
of the decline in RAAS activity and AVP release [20].
So far, it indicates that NCCSV, like NCC3, is highly
regulated under physiological conditions and suggests
a key role in renal salt handling. As abovementioned,
future studies should examine whether AVP or the
RAAS hormones are directly involved in phosphor-
ylation of NCCSV.

NCCSV in pathophysiology

To understand the role of NCCSV in pathophysio-
logical conditions, the abundance and phosphoryla-
tion of all three NCC isoforms were compared in
uEVs of essential hypertensive patients before and
after hydrochlorothiazide or valsartan treatment
[75]. The thiazide-like diuretics work as an anti-
hypertensive medication by direct blocking of
NCC [79], whereas valsartan is a well-known anti-
hypertensive drug that reduces blood pressure by
antagonizing the angiotensin II type 1 receptor [80].

While plasma sodium levels remained the same
in both treatments, plasma renin levels increased
considerably after valsartan treatment. Plasma
potassium concentrations were reduced in patients
treated with hydrochlorothiazide but not upon val-
sartan treatment [75]. Interestingly, the abundance
of NCCSV and NCC3 was increased upon chronic
thiazide treatment, but not by valsartan [75].
However, dividing the hydrochlorothiazide patient
group into responders (blood pressure decrease
≥ 5 mmHg) and non-responders revealed that the
NCCSV and NCC3 abundance was significantly
higher in responders than in patients who did not
respond to thiazide treatment. There was no sig-
nificant difference of the phosphorylated form of
NCC (T55/T60 abundance) [75]. These data high-
lighted that the blood pressure decrease upon thia-
zide treatment correlates with NCCSV abundance in
uEVs and with plasma potassium levels. Together,
these observations demonstrate the importance of
NCCSV in pathophysiological processes and its
involvement in blood pressure control.

Future perspectives

NCCSV is significantly expressed in the human
kidney and is not a redundant transcription pro-
duct, but a fully functional thiazide-sensitive
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sodium-chloride transporting protein. Besides,
the phosphorylation site S811 in NCCSV acts as
a dominant-negative regulatory site for phos-
phorylation of T55 and T60 in all isoforms.
While the WNK-SPAK kinases are a well-studied
signaling mechanism for NCC regulation, it is
yet unclear whether which molecular pathways
and kinases are involved in phosphorylation of
S811. Future experiments should focus on deli-
neating the regulation of NCCSV. These discov-
eries reveal a new regulatory mechanism of NCC
function, which might be important in renal salt
handling, consequently playing a significant role
in the pathogenesis of essential hypertension.
Future experiments developing S811 phospho-
specific antibodies and samples from different
human pathological states could provide further
understanding of the precise role of NCCSV.

Here, uEVs can serve as a non-invasive biomar-
ker source as recent data revealed its potential in
guiding anti-hypertensive therapy in patients
with essential hypertension. This could ulti-
mately lead to personalized anti-hypertensive
treatment. The development and standardization
of high-throughput assays for uEV analysis will
be necessary for future clinical applications.
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