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ABSTRACT
Purpose: Conventional techniques (3D-CRT) for craniospinal irradiation (CSI) are still widely used.
Modern techniques (IMRT, VMAT, TomoTherapyVR , proton pencil beam scanning [PBS]) are applied in a
limited number of centers. For a 14-year-old patient, we aimed to compare dose distributions of five
CSI techniques applied across Europe and generated according to the participating institute protocols,
therefore representing daily practice.
Material and methods: A multicenter (n¼ 15) dosimetric analysis of five different techniques for CSI
(3D-CRT, IMRT, VMAT, TomoTherapyVR , PBS; 3 centers per technique) was performed using the same
patient data, set of delineations and dose prescription (36.0/1.8Gy). Different treatment plans were
optimized based on the same planning target volume margin. All participating institutes returned their
best treatment plan applicable in clinic.
Results: The modern radiotherapy techniques investigated resulted in superior conformity/homogen-
eity-indices (CI/HI), particularly in the spinal part of the target (CI: 3D-CRT:0.3 vs. modern:0.6; HI:
3D-CRT:0.2 vs. modern:0.1), and demonstrated a decreased dose to the thyroid, heart, esophagus and
pancreas. Dose reductions of >10.0Gy were observed with PBS compared to modern photon techni-
ques for parotid glands, thyroid and pancreas. Following this technique, a wide range in dosimetry
among centers using the same technique was observed (e.g., thyroid mean dose: VMAT: 5.6–24.6Gy;
PBS: 0.3–10.1Gy).
Conclusions: The investigated modern radiotherapy techniques demonstrate superior dosimetric
results compared to 3D-CRT. The lowest mean dose for organs at risk is obtained with proton therapy.
However, for a large number of organs ranges in mean doses were wide and overlapping between
techniques making it difficult to recommend one radiotherapy technique over another.
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Introduction

Craniospinal irradiation (CSI) is indicated for medulloblastoma
and some rarer tumors with signs of leptomeningeal spread,
particularly germ-cell tumors, atypical teratoid rhabdoid
tumors and ependymomas [1–8].

The technique most commonly used for treating the cra-
niospinal axis is a combination of two lateral opposed pho-
ton beams for the brain, matched to one or more posterior
photon fields to treat the spine [9,10]. This approach results
in dose inhomogeneity, especially at the beam junction(s),
and a significant dose anterior to the spinal target volume.
Over the last decade, other techniques for CSI have been
investigated in order to decrease the dose to the organs out-
side the target volume, in particular the thyroid, heart and
intestines [11–15]. Intensity-Modulated Radiation Therapy
(IMRT), Volumetric Modulated Arc Therapy (VMAT) and
TomoTherapyVR are highly conformal techniques, which can
reduce the dose to the structures anterior to the vertebrae at
the expense of a larger volume of low-dose irradiation to the
entire body. Due to the steep dose gradient, both electron
and proton beam radiation provide substantial sparing of
non-target tissues anterior to the spinal target volume com-
pared to photons [16,17].

In clinical practice, the reason for using more conformal
techniques is better sparing of healthy tissue. However, the
vast majority of late effects reported after CSI in childhood
arise from irradiation of the target volume [18–21]. Dose and
age influence toxicity outcome and are the justification for
dose reduction, altered fractionation regimens, a combination
with systemic agents or target volume adaptations [22–26].
Further decrease of late toxicity, e.g., second malignancies
outside the target volume, primary hypothyroidism, cardio-
vascular events, restrictive lung disease and metabolic syn-
drome might be obtained with modern radiotherapy
techniques that lower the dose to the structures anterior to
the vertebrae without compromising the target cover-
age [21,27–32].

The lack of exit dose and high conformity observed with
protons are potential reasons for referring patients with a CSI
indication to proton therapy centers. However, when refer-
ring for proton therapy it is important to balance other fac-
tors, such as treatment delay, accessibility, associated
financial issues, social disruption of the family and secondary
malignancy estimation.

The question we tried to answer in this work was how
radiation type and technique influences target dose coverage
and OAR dose burden, and how these variables vary when
such techniques are executed by different institutions.

In this study, we compare dose distributions of five CSI
techniques currently applied across Europe, generated for a
single patient and according to the participating institute
protocols; therefore, representing daily practice.

To the authors’ knowledge, this is the first time a CSI dose
distribution comparison has been performed using the same
patient data and with three different institutes plan each of
the considered delivery techniques.

Material and methods

A CT scan from a 14-year-old boy, previously irradiated for
high-risk medulloblastoma, was selected. Approval for the
study was obtained from the University Medical Center
Utrecht, Research Ethics Committee.

An individual head-neck support with five-point fixation
mask (Civco Medical Solutions, Kalona, IA, USA), vacuum mat-
tress (BlueBagTM Vacuum Cushion, Elekta, Stockholm,
Sweden) and a customized knee-feet fixation (MacroMedics
BV, Waddinxveen, The Netherlands) were used to scan (slice
thickness 3mm) the patient in a supine position for
radiotherapy.

Contouring of the clinical target volume (CTV) and organs
at risk (OAR) was performed at one center (Utrecht, The
Netherlands). The cranial part of the CTV comprised the
entire brain, cranial nerves and meninges. The spinal part of
the CTV contained the spinal canal as observed on CT scan
including the cerebrospinal fluid extension to the spinal
ganglia. The inferior limit of the spinal CTV was defined by a
co-registered MRI at the caudal extent of the thecal sac.

The planning target volume (PTV) consisted of an uniform
expansion around the CTV of 5mm for the brain (PTVbrain)
and the spinal levels C1-L2 (PTVspine), and of 8mm for the
levels L3-S3 (PTVspine). PTVtotal is defined as the combination
of PTVbrain and PTVspine. Outlined OARs included: scalp, left/
right lenses, left/right parotid and submandibular glands, thy-
roid, larynx and proximal esophagus, esophagus, heart, left/
right lungs, intestines and stomach, pancreas and left/right
kidneys. The total normal tissue volume (TNTV) corresponds
to the external contour of the body, imaged on the CT scan,
minus PTVtotal.

Treatment planning

The radiotherapy department of the University Medical
Center Utrecht, The Netherlands, sent the CT-scan with con-
tours to 14 additional SIOP-E-linked institutes participating in
this study. Each center used either 3D-CRT, IMRT, VMAT,
TomoTherapyVR (in the following Tomotherapy), or PBS for
CSI, and three centers per technique were included. Selection
of participating centers was based on participation in the
radiotherapy working group meeting of the SIOP-E-Brain
Tumor Group and the availability to generate a respective
treatment plan for CSI. Three institutes per technique were
randomly identified.

All participating institutes were asked to return the best
treatment plan, applicable in daily practice, for a dose pre-
scription of 36.0 Gy in 20 fractions of 1.8 Gy, and meeting the
following criteria: (1) high weighing for PTVtotal coverage (at
least 95% of PTVtotal should receive 95% of the prescribed
dose), and (2) maximal sparing of the OARs.

An overview of the major characteristics per technique
and per center is listed in Table 1. An overview of the con-
straints used by the centers is given in Table S1.

In order to quantify inter-patient dosimetric differences on
organs at risk, five patients with indication for CSI, previously
irradiated at the radiotherapy department of the University
Medical Center Utrecht, were re-planned using VMAT by the
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same planner for a dose-prescription of 36.0 Gy in 20 frac-
tions of 1.8 Gy.

Plan evaluation

Radiotherapy treatment plans were compared per technique
and each specific technique also between centers. Dose-vol-
ume histograms were evaluated for the PTVs (PTVtotal,
PTVbrain and PTVspine) and the OARs. Conformity index (CI)
and homogeneity index (HI) were calculated by using the
van‘t Riet formula [33] (CI: range 0–1, with 1 being highly-
conformal) and Kataria formula [34] (HI: range 0–1, with 1
being highly heterogeneous):

CI ¼ VPTV95%

� �2

VPTV � V95%

HI ¼ DPTV
2% � DPTV

98%

DPTV
mean

In the formula: V95% represents the volume receiving at least
95% of the prescribed dose; Dx% the dose received by x% of
the volume of the PTV.

For the TNTV, the percentage of volume receiving at least
1.0, 2.0, 5.0, 34.2 and 36.0 Gy was calculated. The median and
range (minimum/maximum) of each of the dosimetric param-
eters were computed for each technique.

Superiority of the different techniques was assessed based
on the highest conformity (highest CI) and homogeneity
(lowest HI) for the PTV, in combination with the lowest mean
dose to the OARs.

For the purpose of this study, a difference between tech-
niques is considered of ‘potential clinical significance’ if a
mean dose difference �5.0 Gy is observed for the OARs. This

threshold is chosen based on a consensus between the par-
ticipating institutes.

Results

Figure 1 represents the dose distribution in a sagittal plane
for a 14-year-old boy, receiving 36.0 Gy by the five different
radiotherapy techniques considered in this work.

Conformity and homogeneity

The median CI for the PTVtotal of all modern radiotherapy
techniques was superior compared to 3D-CRT, and this was
attributable to the spinal part of the target volume (Table 2).
The median HI for PTVtotal was similar for all techniques
when considering the range of data per technique; however,
better median HI values for PTVspine were observed with
modern radiotherapy techniques (Table 2).

In particular, for the 3D-CRT technique, hot spots within
the PTVspine (V107%: 10.6–27.1%) and absolute doses above
40.0 Gy (111%) were observed (Table 2).

The largest variation between centers using the same
technique for the CI of the PTVbrain was found for IMRT
(0.8–1.0) and PBS (0.7–0.9). For the CI of the PTVspine, largest
variation was observed for VMAT (0.6–0.8), Tomotherapy
(0.5–0.7) and PBS (0.5–0.7). PBS dose distributions showed
the widest range in D2% (PTVbrain: 36.4–40.0 Gy; PTVspine:
36.4–39.6) while VMAT dose distributions in D98% (PTVbrain:
33.7–35.5 Gy; PTVspine: 33.7–35.2 Gy) (Figure 2 and Table 2).

Normal tissue sparing

Compared with 3D-CRT, a decrease in the mean dose to
the thyroid by more than 10.0 Gy (28.5 Gy vs. 15.1� Gy)

Figure 1. Craniospinal axis dose distribution with photons (3D-CRT, IMRT, VMAT, Tomotherapy) and protons. Only one out of three generated plans per technique
is depicted.
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(� represents average of the Dmean median value of the
three modern photon techniques). was observed for all mod-
ern photon radiotherapy techniques, while a decrease
between 5.0 and 10.0 Gy for the mean dose of both parotid
glands (20.5 Gy vs. 14.9� Gy), heart (13.4 Gy vs. 8.1� Gy),
esophagus (29.9 Gy vs. 20.7� Gy) and pancreas (17.1 Gy vs.
11.5� Gy) was seen (Figure 3, Table 3).

With respect to modern photon techniques, PBS further
reduced the mean dose to the OARs by more than 10.0 Gy
for the average of both parotid glands (14.9� Gy vs. 4.0 Gy),
thyroid (15.1� Gy vs. 0.8 Gy), esophagus (20.7� Gy vs. 2.3 Gy)
and pancreas (11.5� Gy vs. 0.0 Gy) while mean dose benefits
between 5.0 to 10.0 Gy were observed for the lenses (9.2� Gy
vs. 1.8 Gy), submandibular glands (7.9� Gy vs. 1.4 Gy), larynx
and proximal esophagus (11.1� Gy vs. 2.3 Gy), heart (8.1� Gy
vs. 0.0 Gy), lungs (8.3� Gy vs. 2.2 Gy) and intestines (9.6� Gy
vs. 0.4 Gy) (Figure 3, Table 3).

When comparing one specific radiotherapy technique
among the three participating centers, a wide range in mean
doses delivered to the OARs was found (Table 3). Ranges of
>10.0 Gy were observed for the lenses (Tomotherapy), thy-
roid (VMAT, Tomotherapy), larynxþproximal esophagus (3D-
CRT, VMAT, Tomotherapy, PBS) and esophagus (VMAT,
Tomotherapy). Differences larger than 10Gy for D1cc
between centers applying the same technique were even
more frequent (Table 4). Dmean ranges between 5.0 and
10.0 Gy were seen for the lenses (3D-CRT, VMAT, PBS), parotid
and submandibular glands (3D-CRT, VMAT, PBS), thyroid

(IMRT, PBS), heart (VMAT), intestines-stomach, pancreas and
esophagus (VMAT, Tomotherapy), and kidneys (PBS). The
range in mean doses for OARs of the spine was the narrow-
est for 3D-CRT.

For all photon techniques, 3D-CRT provided the smallest
V1Gy, V2Gy and V5Gy of the TNTV but the highest V34.2Gy
and V36Gy. Overlap in TNTV dose was observed for the three
modern photon techniques. The lowest TNTV dose was
observed with PBS (Table 2).

The largest inter-patient difference (maximum minus min-
imum value) found in Dmean for all OARs, considered in the
manuscript, is 3 Gy (data not shown).

Discussion

This multicenter dosimetric comparison of five different
radiotherapy techniques (3D-CRT, IMRT, VMAT, Tomotherapy
and PBS) currently applied for CSI demonstrates improved
dose conformity and homogeneity of the target volume with
all modern radiotherapy techniques compared with 3D-CRT,
as well as a reduction in mean dose of >5.0 Gy to organs
such as the thyroid, heart, esophagus and pancreas.
Compared to IMRT, VMAT and Tomotherapy, an additional
decrease in mean dose (>5.0 Gy) is found with PBS for lenses,
parotid- and submandibular glands, larynx, thyroid, lungs,
heart, intestines, stomach and pancreas. However, caution is
needed in the interpretation of these results since ranges in
mean dose for a number of OARs are wide per technique

Table 2. Dosimetric parameters for PTVs and total normal tissue volume per technique.

3D-CRT IMRT VMAT Tomo PBS
Median [Range] Median [Range] Median [Range] Median [Range] Median [Range]

PTV total dosimetry
V95% (%) 97.8 [97.7–99.7] 98.3 [97.0–99.7] 98.8 [96.2–100.0] 98.2 [96.8–99.7] 99.8 [98.4–99.9]
V107% (%) 5.5 [2.8–7.1] 0.0 [0.0–1.5] 0.0 [0.0–0.2] 0.0 [0.0–0.0] 0.1 [0.0–6.4]
Dmean (Gy) 36.4 [36.1–37.2] 36.7 [36.0–36.8] 35.9 [35.7–36.1] 35.9 [35.8–36.0] 36.0 [36.0–36.1]
D2% (Gy) 39.4 [38.8–40.5] 37.8 [37.1–38.4] 37.3 [37.1–37.6] 36.6 [36.5–36.8] 37.7 [36.4–39.8]
D98% (Gy) 34.1 [34.1–34.9] 34.3 [33.8–34.8] 34.4 [33.8–35.4] 34.3 [33.7–35.0] 35.2 [34.3–35.3]
CI 0.6 [0.5–0.6] 0.7 [0.6 –0.7] 0.9 [0.8–0.9] 0.8 [0.7–0.9] 0.8 [0.7–0.8]
HI 0.1 [0.1–0.2] 0.1 [0.08–0.1] 0.1 [0.0–0.1] 0.1 [0.04–0.1] 0.1 [0.03–0.2]

PTV brain dosimetry
V95% (%) 99.1 [97.1–99.9] 98.3 [98.2–99.9] 99.2 [95.1–99.9] 98.1 [96.4–99.5] 99.7 [98.8–99.8]
V107% (%) 0.0 [0.0–0.0] 0.0 [0.0–1.7] 0.0 [0.0–0.0] 0.0 [0.0–0.0] 0.0 [0.0–7.4]
Dmean (Gy) 36.3 [35.6–37.2] 36.9 [36.0–37.0] 35.9 [35.6–36.1] 35.9 [35.8–36.0] 36.1 [36.0–36.1]
D2% (Gy) 37.2 [36.8–38.1] 37.8 [37.1–38.5] 37.4 [37.1–37.6] 36.6 [36.5–36.8] 37.2 [36.4–40.0]
D98% (Gy) 34.9 [34.0–35.4] 34.4 [34.2–35.3] 34.5 [33.7–35.5] 34.3 [33.5–35.0] 35.2 [34.4–35.2]
CI 0.8 [0.7–0.8] 0.8 [0.8–1.0] 0.9 [0.8–0.9] 0.9 [0.8–0.9] 0.9 [0.7–0.9]
HI 0.1 [0.06–0.1] 0.1 [0.07–0.1] 0.1 [0.0–0.1] 0.1 [0.0–0.1] 0.1 [0.0–0.2]

PTV spine dosimetry
V95% (%) 99.3 [94.0–99.3] 98.2 [94.2–99.1] 99.7 [97.9–99.9] 99.5 [98.8–99.6] 99.8 [98.2–99.9]
V107% (%) 20.7 [10.6–27.1] 0.2 [0.0–0.4] 0.0 [0.0–0.3] 0.0 [0.0–0.0] 0.2 [0.0–3.7]
Dmean (Gy) 37.2 [36.5–37.5] 36.0 [35.9–36.2] 35.8 [35.8–36.2] 35.9 [35.8–35.9] 36.0 [35.9–36.3]
D2% (Gy) 40.3 [39.7–42.4] 37.8 [37.0–38.5] 37.3 [37.3–37.6] 36.6 [36.5–36.6] 38.2 [36.4–39.6]
D98% (Gy) 34.6 [33.2–34.6] 34.4 [34.3–34.5] 34.2 [33.7–35.2] 34.9 [34.7–34.9] 35.2 [34.2–35.7]
CI 0.3 [0.3–0.4] 0.6 [0.5–0.6] 0.8 [0.6–0.8] 0.5 [0.5–0.7] 0.6 [0.5–0.7]
HI 0.2 [0.1–0.2] 0.1 [0.08–0.1] 0.1 [0.06–0.1] 0.0 [0.0–0.1] 0.1 [0.0–0.2]

TNTV
V1Gy (%) 52.6 [46.1–56.1] 66.1 [64.9–79.6] 70.2 [63.7–75.5] 69.5 [62.5–71.7] 15.4 [11.3–20.1]
V2Gy (%) 35.9 [33.–38.3] 57.2 [52.9–62.4] 62.2 [54.8–71.5] 60.1 [52.7–64.2] 14.1 [10.5–18.5]
V5Gy (%) 22.9 [22.2–23.4] 41.7 [38.9–48.0] 43.3 [38.6–48.7] 45.9 [37.4–49.7] 12.2 [9.1–16.1]
V34.2Gy (%) 5.1 [5.0–5.3] 3.4 [1.9–3.5] 0.7 [0.7–1.7] 1.7 [0.5–2.1] 1.3 [1.0–2.9]
V36Gy (%) 3.7 [3.2–3.7] 0.9 [0.8–1.6] 0.1 [0.1–0.5] 0.3 [0.01–0.3] 0.4 [0.2–0.8]

Vx% is the volume receiving at least x% of the prescribed dose.
Dx% is the dose received by x% of the volume.
VxGy is the volume receiving at least xGy of the prescribed dose.
CI is the conformity index.
HI is the homogeneity index.
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and also overlapping between different techniques. For
example, the mean thyroid dose can range between 5.6 and
24.6 Gy with VMAT and between 0.3 and 10.1 Gy with PBS,
depending on the treatment center.

In the literature, several reports demonstrate improved CI
and HI for the PTV and field-junctions by the use of modern
radiotherapy techniques compared with 3D-CRT
[11,13,17,35,36]. However, it should be mentioned that know-
ledge on the uncertainties related to possible motion of the
target and correct target volume delineation are pre-requi-
sites for highly-conformal techniques. The latter becomes

relevant at the meningeal surfaces and cerebrospinal fluid in
the dural reflections of the cranial nerves [37,38].

In clinical practice, the reason for using more conformal
techniques is better sparing of healthy tissue outside the
planning target volume. However, nearly all published data
on late toxicity after CSI concern neuro-cognitive decline,
endocrinopathies or growth retardation, in fact problems
inherent to the treatment of the target volume [18–21]. In
contrast, fewer results have been published on late toxicity
outside the craniospinal target volume despite the use of the
conventional 3D-CRT for decades [27–32]. As the introduction

Figure 2. CI, HI, D2% and D98% of the PTVbrain and PTVspine per center and per technique. [Tomo: Tomotherapy; PBS: proton pencil beam scanning].
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of modern radiotherapy techniques is of more recent date, it
is still too early to be able to demonstrate a clinical benefit
due to better sparing of the OARs surrounding the craniospi-
nal PTV. Nevertheless, for the thyroid, heart, lung and pan-
creas, it may be relevant to improve organ sparing even at
relatively low dose levels [21,29–32].

Techniques like IMRT, VMAT and Tomotherapy have the
potential to decrease the dose to the thyroid, heart, esopha-
gus and pancreas compared with 3D-CRT at the cost of a
higher integral dose and therefore a higher potential risk of
second malignancies induction. For this reason, a higher
TNTV dose with modern photon techniques is often used as

the argument for 3D-CRT continuation. Proton beam therapy
is therefore very attractive, as it offers both high conformity
and reduction of integral dose. In the literature, several
papers report on the estimated risk for secondary malignan-
cies based on empirical models [e.g., 39]. However, the
authors believe that this risk estimation should be based on
clinical data. Unfortunately, very little clinical information on
dose dependency for second malignancy induction is avail-
able. With a median follow-up of 10 years, two reports on
second malignancies after 3D-CRT have suggested tumor
induction mainly within or adjacent to the PTV [27,28].
Therefore, it is uncertain whether a significant increase in

Figure 3. Median Dmean (Gy) for the organs at risk surrounding the brain (A) and the spine (B). Error bars show the range (min, max) per technique.
[Tomo: Tomotherapy; PBS: proton pencil beam scanning].
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second malignancies will be observed due to low dose irradi-
ation to structures anterior to the vertebrae with modern
photon techniques. However, although studies did not show
that the unintended dose outside the target volume causes
clinically significant side effects including secondary cancer,
attempts should be made to keep dose to the OARs as low
as possible. The same is true when administering protons by
maximally limiting the scattered contribution from secondary
neutrons, i.e., by preferably using PBS technology rather than
passive scattered beams [40]. Additional reasons to refer
patients for proton therapy are further dosimetric reductions
in mean dose to the organs at risk compared to modern
photon techniques. However, it might be questioned
whether any clinical benefit will be observed if the doses
received by the organs at risk remain far below the expected
normal tissue tolerances [21,31,41,42]. Although the dosimet-
ric outcome of this work is in favor of proton therapy and to
a lesser extent of modern photon techniques, significant
range in mean doses (up to 20Gy) to the OARs are found
between centers using a similar technique. This inter-center
variation in mean doses to the OARs is larger than the differ-
ences in OARs doses reported by other published studies

comparing irradiation techniques [12,14,35,36]. On the one
hand, the large dose range points towards an effect of mas-
tering a technique to a different extent, as already observed
for VMAT dose distributions by Fogliata et al. [43]. On the
other hand, these differences can be attributed to the
choice of the optimization criteria made by the centers,
prioritizing one objective over another (Table S1). For this
planning study, no fixed list of constraints for the OARs
was provided to the participants in order to reflect daily
practice in different centers using similar techniques. This
means that in absence of an international guideline on
dose-constraints for OARs related to CSI, a significant dose-
range will persist between centers using similar techniques.
However, this observation also impacts the potential bene-
fit of one technique compared to another. Knowledge-
based planning systems could help reducing the differen-
ces in OAR sparing between institutions and techniques
[44,45].

As no consensus on dose constraints to vertebral bodies
does exist at present time, an adolescent patient was chosen
for this study to avoid discussions related to growth prob-
lems between centers. Including the vertebrae in the target

Table 3. Dmean (Gy) for organs at risk with individual techniques.�
3D-CRT IMRT VMAT Tomo PBS

Dmean OARs Median [Range] Median [Range] Median [Range] Median [Range] Median [Range]

Scalp (Gy) 31.2 [29.8–31.3] 32.3 [28.0–32.9] 28.1 [28.0–29.0] 30.9 [27.9–32.9] 27.8 [26.3–34.0]
Lens L (Gy) 5.9 [4.5–13.8] 8.3 [6.1–9.0] 9.3 [4.6–13.3] 10.1 [3.8–14.5] 2.0 [0.5–8.2]
Lens R (Gy) 5.8 [3.9–9.9] 8.0 [4.3–8.2] 8.6 [4.8–12.7] 11.1 [3.8–15.0] 1.7 [0.4–7.7]
Parotid gland L (Gy) 23.5 [19.0–28.4] 20.8 [19.4–22.2] 10.4 [9.7–15.1] 13.1 [12.2–15.0] 4.0 [1.3–10.5]
Parotid gland R (Gy) 17.4 [16.3–28.2] 20.6 [19.7–22.7] 11.3 [10.1–15.4] 12.9 [12.0–14.4] 4.0 [0.8–9.7]
Submandibular gland L (Gy) 4.6 [3.2–10.1] 3.6 [3.3–3.6] 9.8 [7.6–14.2] 9.9 [8.1–11.1] 1.5 [0.2–4.6]
Submandibular gland R (Gy) 5.0 [3.1–12.6] 3.4 [3.4–3.5] 10.8 [7.8–13.6] 10.3 [8.4–11.2] 1.3 [0.6–6.3]
Thyroid (Gy) 28.5 [25.7–29.3] 17.0 [13.6–19.4] 13.0 [5.6–24.6] 15.3 [7.0–19.7] 0.8 [0.3–10.1]
Larynxþ prox esophagus (Gy) 9.8 [9.0–24.9] 10.7 [9.7–11.6] 13.3 [5.5–26.0] 9.3 [7.8–19.5] 2.3 [1.9–17.9]
Heart (Gy) 13.4 [13.1–14.0] 8.1 [8.0–8.3] 6.9 [5.7–10.9] 9.4 [7.7–11.9] 0.01 [0.01–0.2]
Lung L (Gy) 4.1 [3.6–4.2] 7.0 [6.5–8.2] 7.9 [7.8–9.7] 6.9 [6.5–7.1] 2.0 [1.3–4.9]
Lung R (Gy) 8.6 [7.9–8.8] 8.6 [8.5–9.5] 10.2 [8.3–10.3] 9.4 [7.9–10.7] 2.3 [2.0–5.8]
Esophagus (Gy) 29.9 [29.7–31.3] 19.4 [18.8–20.5] 16.3 [12.2–23.6] 26.5 [21.6–31.9] 2.3 [0.7–6.8]
Intestines (Gy) 10.1 [9.9–10.2] 8.7 [8.3–8.7] 8.4 [6.6–12.0] 11.7 [7.7–12.0] 0.4 [0.1–0.5]
Pancreas (Gy) 17.1 [16.4–17.6] 12.1 [10.2–13.3] 8.7 [8.5–15.4] 13.7 [8.2–14.7] 0.0 [0.0–0.0]
Kidney L (Gy) 4.5 [4.2–4.8] 6.2 [5.2–9.8] 7.5 [5.8–9.0] 6.3 [5.7–6.8] 2.5 [0.9–7.7]
Kidney R (Gy) 3.3 [3.0–3.9] 5.3 [5.0–8.9] 5.6 [5.6–8.4] 6.1 [4.9–6.5] 2.3 [2.0–5.8]
�Differences per technique >10.0 Gy or between 5.0 and 10.0 Gy are indicated in bold or italic, respectively.

Table 4. D1cc (Gy) for organs at risk with individual techniques.�
3D-CRT IMRT VMAT Tomo PBS

D1cc OARs Median [Range] Median [Range] Median [Range] Median [Range] Median [Range]

Scalp (Gy) 37.1 [36.2–38.0] 37.1 [36.8–37.8] 36.0 [35.3–37.5] 36.0 [35.3–36.3] 36.9 [35.8–37.7]
Lens L (Gy) 9.4 [6.2–21.8] 13.7 [13.0–13.8] 10.8 [5.3–17.0] 11.7 [4.6–16.9] 3.7 [1.6–10.8]
Lens R (Gy) 13.7 [5.2–20.8] 15.8 [15.2–16.0] 10.3 [5.6–17.2] 12.9 [4.5–17.1] 3.6 [1.2–10.9]
Parotid gland L (Gy) 36.5 [35.9–37.5] 36.5 [35.8–36.7] 19.2 [18.9–23.6] 23.6 [23.2–25.1] 16.1 [14.4–31.1]
Parotid gland R (Gy) 36.2 [36.0–37.4] 36.4 [36.0–37.7] 20.8 [19.8–24.6] 22.7 [22.0–24.9] 13.3 [9.9–28.6]
Submandibular gland L (Gy) 9.1 [5.1–19.0] 4.7 [3.6–8.4] 17.0 [12.7–19.6] 13.7 [10.9–15.0] 10.9 [1.6–15.1]
Submandibular gland R (Gy) 17.6 [4.2–19.4] 6.8 [6.4–10.5] 14.9 [14.5–19.7] 14.2 [12.1–15.6] 9.5 [4.2–23.0]
Thyroid (Gy) 30.7 [29.4–30.8] 26.1 [20.7–27.7] 17.9 [14.5–30.1] 24.2 [13.6–28.6] 7.4 [5.6–25.8]
Larynxþ prox esophagus (Gy) 31.7 [30.2–31.8] 30.1 [24.3–32.1] 20.2 [14.8–33.5] 24.7 [12.5–30.4] 17.5 [11.2–33.5]
Heart (Gy) 29.1 [28.5–29.9] 15.1 [14.9–18.6] 11.7 [10.9–16.9] 17.4 [14.0–24.4] 0.3 [0.2–3.5]
Lung L (Gy) 33.0 [31.3–33.8] 27.8 [25.8–30.4] 27.2 [25.3–27.6] 29.9 [25.1–31.1] 28.5 [26.4–33.7]
Lung R (Gy) 33.1 [32.4–35.7] 28.3 [26.1–30.6] 28.4 [25.4–28.8] 29.3 [27.6–33.0] 28.1 [27.8–33.6]
Esophagus (Gy) 32.4 [31.2–37.1] 32.1 [26.3–38.9] 22.6 [18.9–32.3] 28.5 [26.5–31.1] 13.6 [6.5–26.8]
Intestines (Gy) 31.0 [28.8–32.3] 23.9 [23.1–24.7] 17.7 [17.3–26.3] 27.4 [22.1–29.9] 11.4 [1.0–16.2]
Pancreas (Gy) 28.6 [27.5–39.4] 19.8 [15.5–23.9] 13.2 [11.0–21.9] 21.4 [10.3–24.7] 0.1 [0.1–0.3]
Kidney L (Gy) 33.3 [32.7–33.3] 24.2 ]19.2–28.8] 23.3 [14.9–25.9] 21.8 [21.0–26.6] 23.7 [20.3–34.3]
Kidney R (Gy) 31.8 [29.4–32.3] 21.7 [21.0–27.7] 21.8 [19.7–23.0] 22.5 [21.8–27.9] 23.2 [14.5–33.8]
�Differences per technique >10.0 Gy or between 5.0 and 10.0 Gy are indicated in bold or italic, respectively.
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volume will increase the dose to the structures antero-lateral
of the vertebral bodies to some extent. However, it is not
expected that the observations/conclusions from this study
will alter by additional dose steering on the vertebrae.
In addition, selecting an adolescent patient with a larger spi-
nal target volume is technically more challenging.

Although we are aware of the fact that this work is based
on the analysis of one patient only, we do not expect that
expanding the number of patients will change our findings
given the fact that the CSA target volume is quite consistent
in between patients, and in relation to the surrounding struc-
tures [46]. The widest range of OARs mean doses for five dif-
ferent patients planned by VMAT at our department was 3Gy.
The latter value is smaller than the variation observed for
some OARs in between centers using the same technique or
in between techniques. This observation supports the meth-
odology of the study to focus on one patient for assessing
inter-center variation as it reflects the daily reality for
one patient.

The variation in dosimetry could be reduced if the treat-
ment planning exercise would have been repeated using the
same constraints for all centers, as already demonstrated by
Verbakel et al. [47], However, this re-optimization of the
treatment planning technique does not reflect current situa-
tions across different centers and techniques.

For comparison purposes the same PTV margin was used
for all techniques. We acknowledge that this uncertainty mar-
gin is inherent to a technique, equipment and institutional
protocols (e.g., patient immobilization methods, patient setup
error correction protocols) [48]. Locally adopted PTV margins
will have a potential impact on OARs dose in proximity of
the target volume. However, it is expected that the found
dosimetric range per institution and per technique will per-
sist. Furthermore, the effect of patient (re)positioning uncer-
tainties on the dose distribution has not been taken into
account in this analysis. In fact, one technique might be
more robust than another resulting in smaller detrimental
effects on the ideal static dose distribution calculated by the
treatment planning system [49–51]. Comparing the robust-
ness of the different techniques is part of a future work.
Finally, this is an in-silico treatment planning study and it has
been demonstrated that a robust in-silico planning study
may overestimate the potential dosimetric benefits of one
technique over another [52,53].

Conclusion

Compared with 3D-CRT, modern radiotherapy techniques
demonstrate a superior dose distribution often at the cost of a
higher integral dose. With protons, a further dosimetric reduc-
tion is observed for the OARs and integral body dose.
Nevertheless, a wide range of doses to the OARs is found
even between centers using similar techniques. In addition, an
international guideline with dose constraints for CSI is essen-
tial to ensure comparable outcome between different centers.
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