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Gravitational-wave (GW) memory effects are constant changes in the GW strain and its time integrals,
which are closely connected to changes in the charges that characterize asymptotically flat spacetimes. The
firstGWmemory effect discoveredwas a lasting change in theGWstrain. It can occurwhenGWs ormassless
fields carry away 4-momentum from an isolated source. Subsequently, it was shown that fluxes of intrinsic
angular momentum can generate a new type of memory effect called the spin memory, which is an enduring
change in a portion of the time integral of theGWstrain. In this paper, we note that there is another new type of
memory effect. We call it the “center-of-mass (CM) memory effect,” because it is related to changes in the
CM part of the angular momentum of a spacetime. We first examine a few properties of the CM angular
momentum. Specifically, we describe how it transforms under the supertranslation symmetry trans-
formations of the Bondi-Metzner-Sachs group, and we compute a new expression for the flux of CM
angular momentum carried by GWs in terms of a set of radiative multipole moments of the GW strain. We
then turn to the CM memory effect. The CM memory effect appears in a quantity which has the units of the
time integral of the GW strain. We define the effect in asymptotically flat spacetimes that start in a stationary
state, radiate, and settle to a different stationary state. We show that it is invariant under infinitesimal
supertranslation symmetries in this context. To determine the magnitude of the flux of CM angular
momentum and the CMmemory effect, we compute these quantities for nonspinning, quasicircular compact
binaries in the post-Newtonian approximation. The CMmemory effect arises from terms in the gravitational
waveform for such binaries beginning at third and fourth post-Newtonian order for unequal- and equal-mass
binaries, respectively. Finally, we estimate the amplitude of the CM memory effect for these binaries. We
anticipate that it will be unlikely for current or upcoming GW detectors to measure the effect.

DOI: 10.1103/PhysRevD.98.064032

I. INTRODUCTION

Far from an isolated gravitating source, spacetime can be
described as asymptotically flat if it satisfies the conditions
set forth byBondi et al. [1] and Sachs [2,3] (see also, e.g., the
review [4]). These spacetimes encompass the asymptotic
region of a wide range of interesting astrophysical systems.
The gravitational waveforms used for detecting the five
binary-black-holemergers by theLIGO-VirgoCollaboration
[5–9] and the one binary-neutron-star merger [10], for
example, are determined from numerical simulations with
asymptotically flat boundary conditions. The symmetry
group of asymptotically flat spacetimes is the Bondi-
Metzner-Sachs (BMS) group, which consists of the
Lorentz transformations and an infinite-dimensional,
Abelian group called the supertranslations. The supertrans-
lations include the four spacetime translations, but they

predate and are not related to supersymmetry. Related to
all the infinitesimal BMS symmetries are corresponding
charges (see, e.g., [11]). For the Lorentz symmetries, the
conjugate charges are the angular momenta [which can be
split into the spin and center-of-mass (CM) parts]; for the
supertranslations, the charges are called “supermomenta”
(by analogy with how the charges related to the four
spacetime translations are called 4-momenta).
More recently, the symmetries of asymptotically flat

spacetimes have been reexamined, and larger symmetry
algebras than the BMS algebra have been proposed (see,
e.g., [12–15]). The extensions of the BMS algebra involve
enlargements of the Lorentz part of the algebra, and the
conjugate charges can be thought of as generalizations of
relativistic angular momentum. These charges were called
superspin and super CM in [16], by analogy with nomen-
clatures used to describe the Lorentz charges and the
supermomentum charges. Collectively, we will call these
charges “super angular momentum” (though they have also*d.a.nichols@uva.nl
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been called super-rotation charges [17] after the name given
to the extended symmetry vector fields). Thus, there may be
an infinite number of additional charges that characterize an
asymptotically flat spacetime. These charges have garnered
much attention recently, because they, and related quan-
tities on black-hole horizons, were proposed as a type of
“soft hair” on black holes that could be a part of the
resolution to the black-hole-information paradox [18].
The super angularmomentumand the supermomentumare

also of interest because of their relation to gravitational-wave
(GW) memory effects. The first GW memory effect discov-
ered—which in this paper we will simply refer to as the GW
memory effect1—is characterized by a nonzero change in the
GW strain between early and late times. In an idealized
detector composed of freely falling test masses, the GW
memory causes the proper distance of the masses before and
after the GWs have passed through the detector to differ. The
GW memory was initially computed within the context of
linearized gravity byZel’dovich andPolnarev [20], and it was
subsequently computed in full (nonlinear) general relativity
by Christodoulou [21]. Note, however, that the idea of a
nonlinear GW memory effect dates back (at least) to Payne
[22] (including the notion that the memory is related to
supertranslation symmetries and to Weinberg’s soft theorem
[23]) as well as to an unpublished habilitation thesis, of which
certain results were later published in [24] (see [25] for more
detail).2 The sources of the GW memory are changes in the
supermomentum charges and in the quadrupole and higher-
multipole moments of the flux of 4-momentum radiated in
massless fields and GWs (see, e.g., [16,27,28]).
Pasterski et al. [29] also realized that there can be a new

kind of GW memory effect, which they called the “spin
memory effect.” The spin memory is characterized by a
change in the time integral of the magnetic-parity part of
the GW strain.3 It can be measured by a Sagnac detector

following a particular accelerating trajectory [29] or by a
family of freely falling observers surrounding a source of
GWs [31]. The sources of the spin memory are changes in
the superspin charges or in the quadrupole and higher-
multipole moments of the flux of the intrinsic part of the
angular momentum carried by massless fields and GWs
[16]. The spin memory also has a signature in the gravi-
tational waveform from compact binaries that could be
detected by third-generation GWobservatories [19], such as
the Einstein Telescope [32] and Cosmic Explorer [33].
There has not yet been any discussion of a memory effect

related to changes in the quadrupole and higher multipole
moments of the flux of the CM portion of the angular
momentum or in the super-CM charges. We find that there
can be such an effect, which we call the “center-of-mass
memory effect”.4 Defining this effect; understanding its
properties; and computing the effect from nonspinning,
quasicircular compact binaries are all goals of this paper. To
help reach these goals, we will also need to discuss the
properties of the flux of CM angular momentum and the
context in which the CM memory effect is defined. We
organize the discussion of these topics as follows.
In Sec. II, we review some properties of the flux of

(super) angular momentum in asymptotically flat space-
times. We first provide some background on the Bondi-
Sachs framework, the space of stationary and nonradiative
solutions of Einstein’s equations in asymptotically flat
spacetimes, and BMS symmetries and their corresponding
charges and fluxes. We then discuss how changes in the
(super) angular momentum transform under supertransla-
tions and how they can be interpreted physically. Even for
spacetimes that start in a stationary state, radiate, and then
settle to a different stationary state (a stationary-to-stationary
transition), the changes in the charges can transform non-
trivially. We also give an expression for the flux of CM
angular momentum carried by GWs, when the GW strain is
expanded in a set of radiative multipole moments.
In Sec. III, we introduce the CM memory effect, we

discuss the context in which it is defined, and we show that
it is invariant under infinitesimal BMS supertranslation
symmetry transformations. We also give an expression for
the CM memory effect in terms of multipole moments of
the GW strain in this part.
The results of Secs. II and III are then used in Sec. IV to

compute the leading-order expressions for the CM memory
effect and flux of CM angular momentum for nonspinning,
quasicircular compact binaries in the post-Newtonian
(PN) approximation. We find that both equal- and

1There seem to be two competing naming systems for GW
memory effects: one is based on the type of physical effect that
could be measured as a consequence of the GWmemory; the other
employs the name of the flux of the “conserved” quantity which
can act as a source of the corresponding memory effect. Thus, the
two nomenclatures would suggest calling it the displacement
memory (as in [19]) or the 4-momentum (or supermomentum)
memory (a name that, as far as we can tell, has never been used).
However, because this is the first memory effect discovered, we
will opt against adding cumbersome modifiers and simply refer to
it as the GW memory effect (and we will typically drop the
emphasis on the word “the” hereafter).

2It seems plausible to argue that the GW memory in full
general relativity was previously realized as a possibility by
Newman and Penrose (see the discussion in [26]); however, we
will not attempt to settle the question of the first reference to the
GW memory effect here.

3By “magnetic-parity part,” we mean the part that can be
decomposed into magnetic-parity tensor spherical harmonics (see,
e.g., [30] for a review of these harmonics). This turns out to be
equivalent to the part parametrized by the scalar function Ψ in
Eq. (3.9). It is also sometimes called just the “magnetic part,” for
short.

4Note that we follow the convention of naming the memory
effect after the type of charge that can generate the effect when it
varies in time. The primary reason for this is to maintain a parallel
with the naming of the spin memory effect. A secondary reason is
that the measurable effect related to the CMmemory is somewhat
involved (as we discuss later), and it does not lend itself to a
simple name.
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unequal-mass binaries have a CM memory effect, but the
leading-PN-order sources of these memory effects come
from the ordinary and null parts of the memory, respectively
(using the terminology of Bieri and Garfinkle [27]). When
we estimate the amplitude of the part of the gravitational
waveform responsible for the CMmemory, we find that both
the null and the ordinary parts will be unlikely to be observed
(though for different reasons), even for the next generation of
ground-based GW detectors, such as the Einstein Telescope
or Cosmic Explorer. We conclude in Sec. V.
Throughout this paper we use units in which G ¼ c ¼ 1,

and we use the conventions for spacetime indices and
metric and curvature tensors given in [34].

II. PROPERTIES OF THE FLUX
OF (SUPER) ANGULAR MOMENTUM

Before discussing the properties of the flux of (super)
angular momentum and the interpretation of the CM part of
the flux, we briefly review a few features of the Bondi-
Sachs framework that will be needed throughout this paper.

A. Aspects of the Bondi-Sachs framework

The metric of asymptotically flat spacetimes can be
expressed in Bondi coordinates, ðu; r; θAÞ (where A ¼ 1,
2). These coordinates are a retarded time (u), an affine
parameter along outgoing null rays (as well as an areal
radius r), and coordinates on a 2-sphere (θA). The general
form of the metric and the corresponding Einstein equa-
tions were derived assuming axisymmetry in [1].
Subsequently, in Ref. [2], Einstein’s equations without
imposing axisymmetry were given in part; the full expres-
sions for the hypersurface and evolution equations in
vacuum (and with respect to a particular parametrization
of Bondi-Sachs coordinates) were given in [35]. The
hypersurface and evolution equations with matter sources
(and in a covariant notation with respect to the 2-sphere
cross sections) were written later in [36]. We will not give
these (somewhat lengthy) expressions here; however, we
will briefly discuss the structure of Einstein’s equations as
elaborated in these references.
Of the ten components of Einstein’s equations, four

take the form of “hypersurface” equations, which do not
involve u derivatives, and which constrain different metric
functions on hypersurfaces of constant u. Two other
components are evolution-type equations for the trans-
verse-traceless parts of the metric. The final four compo-
nents are sometimes called the “conservation” equations,
though one component is trivially satisfied. The remaining
three components have the property that if they are satisfied
at a fixed value of r on an outgoing null cone in a Bondi
coordinate chart, then they are satisfied for all such values
of r. This follows from the contracted Bianchi identities
(which are equivalent to local stress-energy conservation
for spacetimes with matter sources).

We next briefly review the procedure involved in the
derivation of the components of Einstein’s equations that
we will need in the discussion below. We start from the
Bondi-Sachs metric, which we write as

ds2 ¼ −Ue2βdu2 − 2e2βdudr

þ r2γABðdθA −UAduÞðdθB − UBduÞ: ð2:1Þ

We then assume that the functions U, β, UA and γAB can be
expanded in a series in 1=r with the asymptotic fall-off
conditions given in [1]. When the spacetime contains
matter sources, it is also necessary to assume fall-off
conditions on the stress-energy tensor Tab. We use those
discussed in [16], which are based on the stress-energy
tensor of a radiating scalar field in flat spacetime:

Tuu ¼ r−2T̂uuðu; θAÞ þOðr−3Þ; ð2:2aÞ

TuA ¼ r−2T̂uAðu; θBÞ þOðr−3Þ; ð2:2bÞ

TrA ¼ r−3T̂rAðu; θBÞ þOðr−4Þ; ð2:2cÞ

Trr ¼ r−4T̂rrðu; θAÞ þOðr−5Þ; ð2:2dÞ

ðTABÞTF ¼ r−2T̂ABðu; θCÞ þOðr−3Þ: ð2:2eÞ

The superscript TF means to take the trace-free part of the
expression on the left-hand side of the equation with
respect to the metric on the 2-sphere, hAB. Note that local
stress-energy conservation requires that the functions T̂rr

and T̂rA be related by

T̂rAðu; θBÞ ¼ ŤrAðθBÞ −
1

2
DATrrðu; θBÞ ð2:3Þ

(see, e.g., [16]). The derivative operator DA is the
Levi-Civita connection compatible with the metric hAB.
The hypersurface-type components of Einstein’s equa-

tions can then be applied to determine the precise form of
the expansion of the functions U, β, UA and γAB in a series
in 1=r. At the accuracy in 1=r needed for the discussion of
Einstein’s equations below, these functions are given by

γAB ¼ hAB

�
1þ 1

4r2
CCDCCD þ 1

2r3
DCDCCD

�

þ 1

r
CAB þ 1

r2
DAB þ 1

r3
EAB þOðr−4Þ; ð2:4aÞ

UA ¼ −
1

2r2
DBCAB þ 1

r3

�
−
2

3
NA þ 1

16
DAðCBCCBCÞ

þ 1

2
CABDCCBC

�
þOðr−4Þ; ð2:4bÞ
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U ¼ 1 −
2m
r

þOðr−2Þ; ð2:4cÞ

β ¼ −
1

r2

�
πT̂rr þ

1

32
CABCAB

�
þOðr−3Þ: ð2:4dÞ

In the expressions above, all the scalars and tensors on the
right-hand side are functions of the coordinates ðu; θAÞ,
which have been omitted to make the notation more
compact; also all capital latin indices are raised and lowered
with the metric hAB and its inverse. The tensors CAB, DAB,
and EAB in the expansion of γAB are symmetric and trace
free. This, as well as the form of the term proportional to
hAB, is required to satisfy the determinant condition of
Bondi gauge: ∂r detðγABÞ ¼ 0. Two of the hypersurface-
type components of Einstein’s equations also require that
DBDBA ¼ −8πŤrA. The two additional functions mðu; θAÞ
and NAðu; θBÞ are often called the Bondi mass and angular
momentum aspects, respectively. We use a convention for
the angular momentum aspect like that used by Sachs [2],
in which it is proportional to the 1=r4 parts of certain
components of the Riemann tensor.
The three nontrivial conservation components of

Einstein’s equations require that the Bondi mass and
angular momentum aspects satisfy the following equations:

_m ¼ −4πT̂uu −
1

8
NABNAB þ 1

4
DADBNAB; ð2:5aÞ

_NA ¼ −8πT̂uA þ πDA∂uT̂rr þDAm

þ 1

4
DBDADCCBC −

1

4
DBDBDCCCA

þ 1

4
DBðNBCCCAÞ þ

1

2
DBNBCCCA: ð2:5bÞ

The dot over the variables on the left-hand side is a short-
hand notation for ∂u. We define the news tensor as NAB ¼
∂uCAB (twice that defined in [1]). The news tensor is a
quantity that arises from solving the evolution equations for
the traverse-traceless components of Einstein’s equations at
leading order in 1=r. The news tensor is unconstrained, but
it can be shown that it vanishes when the spacetime is not
radiating GWs [37].
Expanding the evolution-type components of Einstein’s

equations at higher order in 1=r leads first to the equation
_DAB ¼ 0, which is consistent with the hypersurface-type
equations DBDBA ¼ −8πŤrA. When the spacetime is vac-
uum, it follows that DAB ¼ 0. The tensor EAB satisfies a
nontrivial evolution equation:

_EAB ¼ −4πT̂AB − 2πð∂uT̂rrÞCAB −
1

2
DAB þ 1

2
mCAB

þ π

�
DADB −

1

2
hABD2

�
T̂rr þ

1

3
DðANBÞ

−
1

6
hABðDCNCÞ þ 1

4
CABðNCDCCDÞ

−
1

8
ϵA

CCCBðϵDEDEDCCCDÞ: ð2:6Þ

A closely related equation in axisymmetry and in vacuum
appears in the paper [1]. Restricting Eq. (2.6) to vacuum, it
is equivalent to an equation derived by van der Burg [35]
after taking into account differences in notation and
convention used (Sachs [2] also derives a related equation,
but does not present all the nonlinear terms). The linearized
limit of Eq. (2.6) also agrees with the nonvacuum expres-
sion given in, e.g., [38]. Because the tensor EAB is closely
related to the Newman-Penrose scalar ψ0 [39] (discussed in
[2]), it is also closely related to evolution equations for this
scalar (see, e.g., the review [40]).

B. Stationary and nonradiative regions
and transitions between these regions

For computing memory effects, we specialize to asymp-
totically flat spacetimes that begin in a stationary or a
nonradiative (NAB ¼ 0) state, radiate GWs and massless
fields, and then settle into a different nonradiative or
stationary state. Wewill often make the further assumptions
that the initial stationary or nonradiative region is in
vacuum (Tab ¼ 0), the radiative region of the spacetime
is not in vacuum [and the stress-energy tensor satisfies the
conditions in Eq. (2.2)], and the final stationary or non-
radiative region also is in vacuum. Einstein’s equations in
(2.5) and (2.6) constrain the form of the Bondi-metric
functions m, NA, and EAB in stationary or nonradiative
regions, which restricts the space of solutions to Einstein’s
equations therein. However, it does not imply that a given
set of astrophysical sources will necessarily realize the full
space of solutions consistent with the vacuum and sta-
tionary or nonradiative conditions.
This type of issue (as it relates to the GWmemory effect)

was discussed by Frauendiener [41]. From the perspective of
Einstein’s equations, the news tensor can be an arbitrary
function NABðu; θCÞ, and in a nonradiative-to-nonradiative
transition, the memory can have any amplitude and angular
dependence (this should hold for the changes in m, NA, and
EAB, too).However, from the perspective of solving a specific
initial-value problem for a certain astrophysical source, the
news tensor cannot be specified freely; rather, it follows from
the dynamics of the source. The Bondi news tensor can be
determined through some sort of matching procedure ana-
lytically (e.g., through post-Newtonian-expanded, multipo-
lar-post-Minkowski calculations [42]) or numerically (e.g.,
through Cauchy-characteristic extraction [43]). For the
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specific systems treated in this paper (inspiraling compact
binaries, and particularly binary-black-hole mergers), the
allowed values of thememory, and the changes inm,NA, and
EAB are more restricted than those allowed by the general
solutions of Einstein’s equations in a stationary or non-
radiative region.5 In this paper, we will focus on this latter
perspective, because we are ultimately interested in GW
memory effects arising from the inspiral and merger of
nonspinning compact binaries. Nevertheless, we will first
describe the general solutions of Einstein’s equations in
nonradiative and stationary regions, to make clear the types
of restrictions we are making in specializing to particular
sources.
In a nonradiative and vacuum region, the first line of

Eq. (2.5) requires that the Bondi mass aspect be indepen-
dent of u, so that it is just a function of angular coordinates,
mðθAÞ. From the other lines of Eq. (2.5), it then follows that
NA can have a piece that depends linearly on u. The
electric-parity part of NA depends on DAm, while the
magnetic-parity part depends on the magnetic-parity part of
CAB. Although the magnetic-parity part vanishes in sta-
tionary regions (see [35,45]), it need not vanish in non-
radiative regions. NA can also have a part that is
independent of u (with both electric and magnetic parities).
Finally, from Eq. (2.6), it then implies that EAB can have
terms proportional to u2, u, and independent of u with both
electric and magnetic parities, in a nonradiative, vacuum
region. Summarizing these results by explicitly solving
Eqs. (2.5) and (2.6) in such a region, we find that

m ¼ mðθAÞ; ð2:7aÞ

NA ¼ uDAmþ u
4
ðDBDADCCBC −D2DBCABÞ

þ Nð0Þ
A ðθBÞ; ð2:7bÞ

EAB ¼ u2

24
½4DADBm − 2D2mhAB þDBDADCCBC

−D2DBCAB� þ
u
2
mCAB þ u

6
ð2DðAN

ð0Þ
BÞ

−DCNð0Þ
C hABÞ −

u
8
ϵA

CCCBðϵDEDEDCCCDÞ

þ Eð0Þ
ABðθCÞ: ð2:7cÞ

Recall that while Eq. (2.7) is the most general solution for
m, NA, and EAB consistent with a nonradiative and vacuum
region of future null infinity, it is not clear if the
nonradiative regions of a specific astrophysical system,
such as a merging compact binary, will realize this level of
generality.
Stationary vacuum regions, for example, have frames in

which the Bondi metric functions are independent of u
[35,45]. Applying this condition to Eq. (2.7), we find thatm
is a constant, the magnetic-parity part of CAB is zero, and

Nð0Þ
A is composed of both l ¼ 1 vector spherical harmonics

and l > 1 harmonics that satisfy 2DðAN
ð0Þ
BÞ −ðDCNð0Þ

C ÞhAB¼
−3mCAB. These frames can then be transformed to the
“canonical” frame described in [16], in whichm is constant,

CAB ¼ 0, and Nð0Þ
A is composed of l ¼ 1 magnetic-parity

vector harmonics.
Because our primary focus in this paper is on merging

compact binaries composed of black holes, we will need to
know the properties of the nonradiative regions for these
binaries at early and late times in their evolution. At early
times, the binaries can be approximated well by PN theory.
One assumption in this approximation is that there is a
(finite) time before which the system was stationary in the
past (see, e.g., [42]). This could correspond to a time early
in the evolution of the binary, when the binary’s compo-
nents are sufficiently widely separated and slowly moving
that the system can be treated as stationary. The outcome of
a binary-black-hole merger is a stationary black hole. For
studying binary-black-hole mergers, therefore, it should be
sufficient to consider stationary-to-stationary transitions. It
is also important to briefly describe the types of restrictions
assuming a stationary-to-stationary transition will cause, so
as to better understand the generality of our results.
For simplicity, in most of the subsequent calculations

and discussion, we will assume that the initial stationary
frame is the canonical frame of the system. At late times,
the stationary frame will generally not be the canonical
frame, but one that differs from the canonical frame by a
BMS transformation (which can be decomposed into a
rotation, followed by a boost, and then a supertranslation).
From these properties of the initial and final frames, we
anticipate that there will be two different types of restric-
tions from assuming a stationary-to-stationary transition.
The first is that the magnetic-parity part of the shear will

vanish in both stationary regions (although, in general m
will not be constant and NA will not consist of just l ¼ 1

5This issue can be recast in terms of how the conservation-type
components of Einstein’s equations are treated. These equations
are automatically satisfied for all r on an outgoing null cone in a
Bondi coordinate patch, so long as they are satisfied on some 2-
sphere of fixed r. One choice for this 2-sphere is at infinite radius
(i.e., at future null infinity). At this boundary of an asymptotically
flat spacetime, it is possible to allow for any value of the news
tensor NAB, because quantities at null infinity can be defined
without reference to the interior of the spacetime. From this
perspective, however, it is not clear if these values of the Bondi
news tensor correspond to any astrophysical solution of Ein-
stein’s equations in the interior of the spacetime. The other
viewpoint, which fits more with the aims of this paper, is to allow
the Bondi functions to satisfy the conservation-type components
of Einstein’s equations at finite r and to determine their evolution
by matching to a specific initial-value (Cauchy) solution for a
given system (as described, e.g., in [44]).
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magnetic-parity vector harmonics in the final stationary
region). This does not seem to be a very strong restriction,
because Mädler and Winicour [38] have shown that there is
no magnetic-parity memory effect in the absence of
incoming radiation or time-dependent, anisotropic, mag-
netic-parity material stresses near null infinity (which
compact binaries, for example, are generally not expected
to have). Several common classes of stress-energy tensors
also do not give rise to magnetic-parity memory [38]. The
second type of restriction relates to the ordinary part of the
GW memory (using the terminology of [27]). Assuming a
stationary-to-stationary transition makes the ordinary part
of the GW memory a function of just the change in the
4-momentum radiated by the spacetime. It, therefore,
would exclude certain physically relevant systems, like
the gravitational scattering of astrophysical objects con-
sidered in [20]. Note, however, that the assumption of a
stationary-to-stationary transition does not have a signifi-
cant effect on the null part of the GW memory (neither the
linear nor the nonlinear parts).
Finally, because the set of stationary-to-stationary tran-

sitions is contained within the larger set of nonradiative-to-
nonradiative transitions, imposing the former assumption
will generally restrict the types of possible memory effects.
Because stationary-to-stationary transitions contain an
interesting set of physical systems (compact-binary merg-
ers), it has sufficient generality to allow for some nontrivial
memory effects (even if they are not the most general
effects possible). Having elaborated our assumptions and
their consequences, we next discuss BMS symmetries and
their conjugate charges and fluxes.

C. Symmetries, charges, and fluxes

The vector fields at future null infinity that define the
(extended) BMS algebra, ζ⃗, are parametrized by a scalar
function αðθAÞ and a vector on the 2-sphere YAðθBÞ as
follows:

ζ⃗ ¼ ½αðθAÞ þ uDAYAðθBÞ=2�∂⃗u þ YAðθBÞ∂⃗A: ð2:8Þ

The quantity αðθAÞ is a smooth function that corresponds to
a supertranslation, and YAðθBÞ are l ¼ 1 vector spherical
harmonics, for the standard BMS group. For the extended
BMS algebra [17], YA are elements of a Virasoro algebra,
or for the generalized BMS group [14], they are smooth
vector fields on the 2-sphere. The standard and extended
BMS symmetries at null infinity can be defined at finite r in
Bondi coordinates by requiring that the spacetime metric
continue to satisfy the Bondi gauge conditions and the
same scaling with r under pullback along the symmetry
vector fields. The vector fields in (2.8) have a series
expansion in 1=r in the interior of the spacetime, and
the Bondi metric functions (CAB, m, and NA) transform
nontrivially under these (extended) BMS symmetries.

The formulas for the BMS vector fields and the trans-
formations of the Bondi functions are given, e.g., in [46].
For most of the computations in this paper, we are

interested in how the Bondi functions transform under
supertranslations in vacuum and in stationary or non-
radiative regions of the types described in the previous
subsection. Specializing the results in [16], for example, we
find that m is invariant under supertranslations and

δCAB ¼ ð−2DADB þ hABD2Þα≡ −2CðαÞ
AB ð2:9aÞ

δNA ¼ αDAmþ 3mDAαþ 1

4
CABDBD2α

−
3

4
DBαðDBDCCCA −DADCCBCÞ

þ 3

8
DAðCBCCðαÞ

BCÞ þ
1

2
CðαÞ
ABDCCBC ð2:9bÞ

(the first line can be found from the results in [2] or [26]).

In the equation above, we have introduced the notation CðαÞ
AB

to denote the electric-parity part of the shear generated by a
scalar “potential” αðθAÞ.
The (super) angular momentum in a vacuum, nonradia-

tive region of null infinity, on a cut C of constant u ¼ u0, is
given by

Q½ζ⃗Y ; C� ¼
1

128π

Z
d2ΩYA½16ðNA − u0DAmÞ

−DAðCBCCBCÞ − 4CABDCCBC�; ð2:10Þ

where by ζ⃗Y, we mean a BMS vector field with α ¼ 0, and
which is thus parametrized by the vector on a 2-sphere, YA.
The prescription to compute this charge corresponding to a
vector field YAðθBÞ is outlined in [16], which is based on
the procedure in [11] (and which gives equivalent results to
those defined via a different procedure in [17], in the
nonradiative and vacuum regions treated here).
The integral of the flux of (super) angular momentum

between two cuts C1 and C2 in vacuum, nonradiative
regions given by u ¼ u1 and u ¼ u2, respectively, is

ΔQ̃½ζ⃗Y ; C2; C1� ¼ −
1

64π

Z
u2

u1

du
Z

d2Ω½uDAð2DBDCNBC

− NBCNBC − 32πT̂uuÞ þDAðCBCNBCÞ
þ 2NBCDACBC − 4DBðNBCCACÞ
þ 64πT̂uA�YA: ð2:11Þ

It was shown in [16] that the changes in the charges
between the two cuts C1 and C2 do not equal the integral of
the flux in Eq. (2.11) for the meromorphic super-rotation
vector fields YA (i.e., when YA is not one of the six
generators of the Lorentz group). To restore equality for
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these extended BMS symmetries, an additional term of the
form

ΔF ½ζ⃗Y ; C2; C1�≡ 1

32π

Z
u2

u1

du
Z

d2ΩYAϵABϵ
CD

×DBDDDECCE ð2:12Þ

must be added. The change in the charges is then given by

Q½ζ⃗Y ; C2� −Q½ζ⃗Y ; C1� ¼ ΔQ̃½ζ⃗Y ; C2; C1� − ΔF ½ζ⃗Y ; C2; C1�:
ð2:13Þ

We reiterate that the term ΔF ½ζ⃗Y ; C2; C1� vanishes for
the standard BMS group; it is only needed for the addi-
tional elements of the extended BMS algebra. The term
ΔF ½ζ⃗Y ; C2; C1� is also closely related to the spin memory
effect of [29], as discussed in [16].
It will be convenient to define a quantity that is equal to

the change in the charges:

ΔQ½ζ⃗Y ; C2; C1�≡Q½ζ⃗Y ; C2� −Q½ζ⃗Y ; C1�: ð2:14Þ

After some algebra (described in [16]), it was shown that
the change in the charges can be written as

ΔQ½ζ⃗Y ; C2; C1� ¼ −
1

64π

Z
u2

u1

du
Z

d2Ω½uDAð2DBDCNBC

− NBCNBC − 32πT̂uuÞ þ CBCDBNAC

− NBCDBCAC þ 3ðNABDCCBC

− CABDCCBCÞ þ 64πT̂uA þ 16π∂uT̂rA

þ 2ϵABϵ
CDDBDDDECCE�YA: ð2:15Þ

D. Transformation properties of (super) angular
momentum under supertranslations

We now point out a few features of the (super) angular
momentum charges and fluxes that we have not seen
discussed explicitly elsewhere, but which may be related
to two other aspects of the charges and fluxes that have been
previously noted. The first is that nonlinear terms involving
the shear in the super angularmomentum canmake it behave
nontrivially: for example, it can be nonvanishing in space-
times that are flat aside from a defect at the origin [47]. The
second is the observation that the flux of angular momentum
will depend upon nonradiative (or “Coulombic”) parts of the
Bondi metric functions and stress-energy tensor [48].
To illustrate the transformation properties of the (super)

angular momentum, we will examine the same stationary-
to-stationary transition from the perspective of two differ-
ent Bondi frames. For the first frame, we use the canonical
frame associated with the initial stationary region.

Constructing this frame fixes all the degrees of freedom
in the BMS group except for a global SO(3) rotation and a

time translation (a BMS transformation with ζ⃗ ¼ u0∂⃗u, for
a constant, u0). We denote by C1 a cut corresponding to a
retarded time u ¼ u1 in the initial stationary region and by
C2 a cut of constant u ¼ u2 in the latter stationary region.
For the second Bondi frame, we will consider one that is
supertranslated from the canonical Bondi frame of the
initial stationary region by an amount α. Because
u0 ¼ uþ α, we will denote the cuts by C10 and C20, which
correspond to 2-sphere cross sections of constant u0 ¼ u01
and u0 ¼ u02, respectively. Finally, we also assume that the
spacetime has GW memory, which is determined by a
potential ΔΦðθAÞ and which is given by

ΔCAB ¼ CABðu2Þ − CABðu1Þ

¼ 1

2
ð2DADB − hABD2ÞΔΦ: ð2:16Þ

The memory is invariant under supertranslations (i.e., is
equivalent to the related quantity measured at the times u02
and u01). We will treat the supertranslation, α, as small, and
we will compute the transformation of the charges to linear
order in α. We will not linearize with respect to the potential
ΔΦ that determines the GW memory.
We are particularly interested in comparing the changes

in the charges between the cuts C1 and C2 with those
between the cuts C10 and C20. Performing such a comparison
is somewhat subtle, because the (extended) BMS vector
fields corresponding to (super) Lorentz transformations on
cuts of constant u and u0 are different. Namely, the quantity

ζ⃗Y ¼ 1

2
uDAYA∂⃗u þ YA∂⃗A ð2:17Þ

and the equivalent vector fields adapted to the cuts of
constant u0 differ by a supertranslation (e.g., [3] and [17]).
The charges associated with these two vector fields will
therefore include different amounts of supermomentum.
While this is to be expected, the difference in the charges
arising from the dependence of the charges on the cut will
mix with the difference that comes from the dependence of
the charges on the generators adapted to those cuts. Instead,
we will compute the change in the charges between the cuts
of constant u0 with the generators adapted to cuts of
constant u. The vector field ζ⃗Y expressed in terms of the
primed coordinates is given by

ζ⃗Y ¼
�
1

2
ðu0 − αÞðDAYAÞ þ YADAα

�
∂⃗u0 þ YA∂⃗A ð2:18Þ

(see, e.g., [49]).
We will now show that in stationary vacuum regions, the

(super) angular momentum transforms nontrivially under
supertranslations (unlike the supermomentum, which is
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supertranslation invariant in this context). The reason for
this is as follows. Although we use the same BMS vector
field, ζ⃗Y , to compute the charges in the cuts defined by u
and u0, because the cuts of constant u0 are supertranslated
from the cuts of constant u, the values of the Bondi metric
functions CAB and NA differ between the two sets of cuts
(even in the vacuum and stationary regions). In addition,
the split of the vector field ζ⃗Y into parts tangent and
orthogonal to cuts of u and u0 will differ, which will also
influence the value of the charges. Finally, because the
(super) angular momentum charge depends on CAB and its
derivatives quadratically, it follows from Eqs. (2.9) and
(2.10) that the (super) angular momentum charges that are
supertranslated from a stationary region in which CAB ¼ 0
differ from the charges that are supertranslated from a
frame with a nonzero CAB. While the physical reason for
this is not immediately obvious, we speculate that these
nonlinear terms capture a difference in the “origin” about
which the (super) angular momentum is computed in these
two cases.
Let us explicitly compute how this change in the charges

produced by a supertranslation (which we will denote by
δQ½ζ⃗Y ; C0; C�) will affect the change in the (super) angular
momentum between the two stationary regions (i.e.,
ΔQ½ζ⃗Y ; C2; C1� versus ΔQ½ζ⃗Y ; C20; C10�). In the stationary
region including u1 and u01, because we are working to
linear order in the supertranslation α from the canonical
frame, then the change is similar to a result for the (super)
angular momentum charges in [16]. To linear order in α, we
find that

δQ½ζ⃗Y ; C01; C1� ¼
1

8π

Z
d2Ωð5YADAα − αDAYAÞm1;

ð2:19Þ
where we have used the notation m1 ¼ mðu1Þ ¼ mðu01Þ.
Next, let us compute δQ½ζ⃗Y ; C02; C2�. The expression for

this quantity is somewhat lengthier, because we are
allowing CAB to be nonzero at late times (and equal to
the GW memory, ΔCAB, in the cut u ¼ u2). Using
Eqs. (2.9) and (2.10), we find that to linear order in α

δQ½ζ⃗Y ; C02; C2� ¼
1

8π

Z
d2Ωð5YADAα − αDAYAÞm2

þ 1

64π

Z
d2ΩYA½2ΔCABDBD2α

− 6DBαðDBDCΔCCA −DADCΔCBCÞ
þ 5DAðΔCBCCðαÞ

BCÞ þ 8CðαÞ
ABDCΔCBC

þ 4ΔCABDCCBC
ðαÞ: ð2:20Þ

Given the relationship in Eq. (2.14), then by construction,
the changes in the charges between the cuts C1 and C2 and
the cuts C10 and C20 are related by

ΔQ½ζ⃗Y ; C02; C01� ¼ ΔQ½ζ⃗Y ; C2; C1� þ δQ½ζ⃗Y ; C20; C2�
− δQ½ζ⃗Y ; C10; C1�: ð2:21Þ

Using Eqs. (2.19) and (2.20), we can compute a diffe-
rence in the changes of the charges, ΔQ½ζ⃗Y ; C02; C01�−
ΔQ½ζ⃗Y ; C2; C1�, which we find is

ΔQ½ζ⃗Y ;C02;C01�−ΔQ½ζ⃗Y ;C2;C1�

¼ 1

8π

Z
d2Ωð5YADAα−αDAYAÞΔmþ 1

64π

Z
d2ΩYA

× ½2ΔCABDBD2α−6DBαðDBDCΔCCA−DADCΔCBCÞ
þ5DAðΔCBCCðαÞ

BCÞþ8CðαÞ
ABDCΔCBC

þ4ΔCABDCCBC
ðαÞ�: ð2:22Þ

We defined Δm ¼ m2 −m1 in the expression above. This
result is interesting, because the change in the charges is
related to the integral of the flux (plus the additional term
ΔF ½ζ⃗Y ; C02; C01�). Thus, while it was not very surprising that
the (super) angular momentum charges transform under
supertranslations, it is more surprising that this change
arising from a BMS transformation does not cancel
between early and late times in a stationary-to-stationary
transition (i.e., the flux transforms nontrivially under
supertranslations).
From Eq. (2.22), it is clear that this lack of cancellation

occurs when the system radiates supermomentum or when
there is GW memory. Thus, the result in Eq. (2.22) is a
combined effect of the GW memory, changes in the
supermomentum, and the transformation properties of
the (super) angular momentum under supertranslations.
This is an interesting feature of the change in the (super)
angular momentum that will be relevant when we discuss
the flux of the CM angular momentum in the next
subsections. We do not anticipate that it will play an
important role for the CM memory effect: in Sec. III, we
show that the CM memory is invariant under infinitesimal
supertranslations α. It may also be possible to modify this
transformation property of the change in the charges by an
appropriate redefinition of the charges. Investigating this
issue, however, goes beyond the scope of this work.

E. Center-of-mass part of (super)
angular momentum and its flux

In this part, we focus on a few issues that
apply specifically to the (super) CM part of the angular
momentum. CM angular momentum is the conserved
quantity conjugate to Lorentz boost symmetries. In special
relativity, it is usually denoted by Ki, and it is closely
related to the mass-weighted CM position, Gi. When there
are no external forces, these two quantities satisfy the
relationships
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Ki ¼ Gi − tPi;
dGi

dt
¼ Pi;

dKi

dt
¼ 0 ð2:23Þ

(see, e.g., [50]). Thus, we see that Ki is the conserved
quantity in this context, and that it represents the mass
times the CM position in the center-of-momentum frame. It
is also a trivial quantity in this context, because by
translating the origin of coordinates around which the
CM is computed, the CM part of the angular momentum
can be set to zero.
In stationary regions of asymptotically flat spacetimes,

the (super) CM angular momentum [defined by the integral
of the electric-parity part of the integrand in Eq. (2.10)
against a vector field YA] is again trivial; by performing the
BMS transformations needed to reach the canonical frame,
we can make the (super) CM angular momentum vanish
(see [16]). We argue below that the change in the (super)
CM angular momentum can be nontrivial in a stationary-to-
stationary transition from the canonical frame of the first
stationary region (in the sense that the CM angular
momentum contains additional information not contained
in the changes of other BMS charges or in the GWmemory
or spin memory effects, in this context). We provide further
evidence for this by computing the flux of CM angular
momentum in the PN approximation in Sec. IV. It could be
of interest to compare this result to a related calculation of
the flux of CM angular momentum in numerical relativity
simulations in [51], though we will not attempt to do this in
this paper. Instead, we will first point out a few more
general features about the CM angular momentum and its
flux, before we investigate these quantities for compact-
binary sources in Sec. IV.
Because the CM angular momentum, Ki, is the mass

times the CM position in the rest frame of the system (in the
context of special relativity, with no external forces), it is
worth briefly discussing the physical interpretation of this
quantity when the CM of the system is changing because of
radiated linear momentum. To do so, let us recast Eq. (2.15)
for the change in the charges in terms of the instantaneous
flux on a cut of constant u:

_Kζ⃗Y
¼ −

1

64π

Z
d2ΩYA½uDAð2DBDCNBC − NBCNBC

− 32πT̂uuÞ þ CBCDBNAC − NBCDBCAC

þ 3ðNABDCCBC − CABDCCBCÞ
þ 64πT̂uA þ 16π∂uT̂rA�: ð2:24Þ

Note that we have denoted this flux by _Kζ⃗Y
to parallel the

notation commonly used for the CM angular momentum in
special relativity. Integrating the first three terms in
Eq. (2.24) by parts, we find that these terms have exactly
the same form as the flux of supermomentum; however,
instead of a scalar αðθAÞ appearing in the charge integral, it

is uDAYAðθBÞ=2. This is to be expected given that the BMS
vector field (2.8) contains a sum of both α and uDAYA=2 in

the ∂⃗u direction. The remaining terms in the integrand

[which are related to the part Y⃗ ¼ YA∂⃗A of the vector field
ζ⃗Y in Eq. (2.17)] have a similar form to the flux of the
(super) spin; however, they are now the electric-parity part
of the integrand, rather than the magnetic-parity part.
Because it is the electric-parity part, the term related to
the spin memory in Eq. (2.12) does not contribute. To
emphasize the contributions from the two types of terms,
we will write the instantaneous flux as the sum of two terms
as follows:

_Kζ⃗Y
¼ _kY⃗ þ u

2
_PðDAYAÞ: ð2:25Þ

The second term involving _PðDAYAÞ has the same form as the
supermomentum flux (for a scalar function DAYA rather
than α), and the quantity _kY⃗ contains the remaining terms,

which are related to the part of ζ⃗Y not proportional to ∂⃗u.
Consider now the change in the (super) CM angular

momentum in a stationary-to-stationary transition. Given
the splitting in Eq. (2.25), this change can be written as

ΔKζ⃗Y
ðu2; u1Þ ¼ ΔkY⃗ þ

Z
u2

u1

du
u
2
_PðDAYAÞ: ð2:26Þ

Note that this is a specialization of and rewriting of
Eq. (2.15); we have used the notation ΔKζ⃗Y

ðu2; u1Þ rather
than ΔQ½ζ⃗Y ; C2; C1� to emphasize that it applies specifically
to the change of the CM angular momentum. We also write
the vector field as a subscript and use u2 and u1 rather
than C2 and C1 to make the notation more compact (which
will be particularly helpful for when we derive the
multipolar expansion of the change in the CM angular
momentum, which we do in the next subsection).
Integrating the second term in Eq. (2.26) by parts, the
change has the form

ΔKζ⃗Y
ðu2; u1Þ ¼ ΔkY⃗ þ 1

2
½uPðDAYAÞ�ju2u1

−
1

2

Z
u2

u1

duPðDAYAÞ: ð2:27Þ

Thus, we can now better understand the physical inter-
pretation of the change in the (super) CM part of the
angular momentum in a stationary-to-stationary transition.
The first term ΔkY⃗ represents a change in the (super) CM
angular momentum, which is similar to the integral of the
flux of the intrinsic angular momentum (but involves the
electric-parity part of the integrand, rather than the mag-
netic-parity part). The last term in Eq. (2.27) represents the
change in the (super) CM part of the angular momentum
that arises from integrating the time dependence of a term
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like the supermomentum associated with the quantity
DAYA. This term would typically grow linearly with u
when there is a net change in the supermomentum;
however, the middle term in Eq. (2.27) also grows linearly
with u, and will cancel this growth from the last term. The
quantity ΔKζ⃗Y

ðu1; u2Þ, therefore, is finite for spacetimes
that radiate supermomentum over finite retarded-time
intervals u ∈ ½u1; u2�, and it contains information about
the time dependence of the supermomentum beyond what
is given by the net change in the supermomentum.6 Thus,
although the (super) CM part of the angular momentum can
be made to vanish in a stationary region, its change in
a stationary-to-stationary transition does not necessarily
vanish. In addition, it contains additional information that is
not captured in the net changes in the supermomenta or in
the other BMS charges.
There is a interesting feature specific to the flux of

(super) CM angular momentum that we now point out.
Suppose we specialize Eq. (2.22) to the case in which
α ¼ u0 is a constant shift in retarded time. All terms except
the first vanish, and we find that

ΔKζ⃗Y
ðu02; u01Þ − ΔKζ⃗Y

ðu2; u1Þ ¼ −
u0
2
ΔPðDAYAÞ: ð2:28Þ

Thus, when there is a net change in the linear momentum or
the supermomentum, the change in the (super) CM angular
momentum is not invariant under shifts in the cuts by
constant values of u0. This transformation property of the
CM angular momentum could be useful for defining a
specific BMS frame in an asymptotically flat spacetime.
As we noted in the previous subsection, the canonical frame
associated with the initial stationary region fixes all the

BMS transformations except for a time translation ζ⃗ ¼
u0∂⃗u and a global SO(3) rotation. In these stationary
regions, the charges are invariant under time translations;
thus, they cannot be used to determine a “preferred”
retarded time in a stationary region. When there is a flux
of 4-momentum [i.e., whenΔPðDAYAÞ ≠ 0], its time depend-
ence allows for a preferred reference time (i.e., an “origin”
of the time coordinate) to be picked out. One natural choice
comes from requiring that the magnitude of the change in
the CM angular momentum be minimized. This is satisfied
by a value of u0 given by

u0 ¼
2ΔKζ⃗Y

ΔPðDAYAÞ
ΔP2

ðDAYAÞ
: ð2:29Þ

This value of u0 can be computed from changes in the BMS
charges at infinity, and it is a geometrically motivated
method of determining a reference time for spacetimes that
radiate 4-momentum. A possible application of this prop-
erty of the CM angular momentum is defining a reference
time for comparing gravitational waveforms from numeri-
cal relativity simulations of compact binaries that radiate
linear momentum. While we will not investigate this point
in greater detail in this paper, we will make use of this
reference time for computing the change in the CM angular
momentum in Sec. IV.

F. Multipole expansion of the flux of CM angular
momentum carried by GWs

To compute an expression for the flux of the CM angular
momentum carried by GWs in terms of a set of multipole
moments of the GW strain, we will closely follow the
methods used to calculate the GW memory and spin
memory effects given in [19]. We will expand CAB in
terms of electric- and magnetic-parity tensor spherical
harmonics as

CAB ¼
X
l;m

ðUlmT
ðeÞ;lm
AB þ VlmT

ðbÞ;lm
AB Þ; ð2:30Þ

where the conventions we use for the second-rank tensor
spherical harmonics are given in an Appendix of [19].
Because the tensor CAB is real, and because the tensor
spherical harmonics satisfy the relationships

TðeÞ;l−m
AB ¼ ð−1ÞmT̄ðeÞ;lm

AB ; TðbÞ;l−m
AB ¼ ð−1ÞmT̄ðbÞ;lm

AB

ð2:31Þ

(where the overline denotes complex conjugation), the
coefficients of this expansion in spherical harmonics obey
the related properties

Ul−m ¼ ð−1ÞmŪlm; Vl−m ¼ ð−1ÞmV̄lm: ð2:32Þ

These tensor spherical harmonics are also related to spin-
weighted spherical harmonics, a complex vector

m⃗ ¼ 1ffiffiffi
2

p ð∂⃗θ þ i csc θ∂⃗ϕÞ; ð2:33Þ

and its complex conjugate. The GW flux in Eq. (2.24)
(which is a product of the shear, the news tensor, and the
derivatives of both quantities) can be expressed as a product
of vector and second- and third-rank tensor spherical
harmonics (see [19] for more detail). For simplicity, we
will assume that the stress-energy tensor of the matter fields

6If we take the limits u1 → −∞ and u2 → þ∞, then we must
make additional assumptions about the rate at which the super-
momentum approaches a constant in the limits u → �∞ to
ensure that the change in CM angular momentum is finite. For
example, if we assume the leading-order time dependence goes as
PðDAYAÞ ∼ P0ð1þ ju=u0j−nÞ as u → �∞ (u0 is a reference time),
then it is clear that we would need to require n > 1. A detailed
study of these types of asymptotics is beyond the scope of this
work, and it will not be necessary for spacetimes that radiate for a
finite interval of retarded time, u ∈ ½u1; u2�.
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vanishes, although this could be included trivially, because
the flux is linear in the material stress-energy tensor.
To compute the l ¼ 1 moments of the flux, we will

integrate minus7 the flux in Eq. (2.24) against vector fields
of the form YA ¼ DAȲ1;m, where Yl;mðθ;ϕÞ are scalar
spherical harmonics with the Condon-Shortley phase con-
vention. It is then possible to express the multipole
moments of the flux in terms of integrals of products of
three spin-weighted spherical harmonics (with the con-
ventions for the harmonics given in [19]). Before evaluating
these integrals, it will again be useful to perform integration
by parts on the set of terms in Eq. (2.24) that are the
divergence of a scalar quantity. Once this is done, the flux
splits naturally into two types of terms,

dKðGWÞ
1;m

du
¼ dkðGWÞ

1;m

du
− u

dPðGWÞ
1;m

du
; ð2:34Þ

as in Eq. (2.25). Note that the apparent factor of −2
difference between the second terms on the right-hand sides
of Eqs. (2.25) and (2.34) comes from a difference in
convention for the supermomentum associated with a scalar
function DAYA and the convention commonly used for the
l ¼ 1 moments of the flux of linear momentum. The
multipolar expansion of the first term on the right-hand
side of Eq. (2.34) has not been computed before (as far as
we are aware). The second term is the same as the flux of
linear momentum multiplied by minus the retarded time u.
The multipolar expansion of the linear-momentum flux has
been computed before (e.g., in [30]).
The integrals of products of three spin-weighted spheri-

cal harmonics that arise in the flux of the CM angular
momentum are relatively simple functions of l and m. It
will be helpful to define a few coefficients, so as to express
the multipolar expansion for the CM angular momentum
flux produced by GWs more concisely. These coefficients
are

al ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þðlþ 3Þ

ð2lþ 1Þð2lþ 3Þ

s
; ð2:35aÞ

bð�Þ
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�mþ 1Þðl�mþ 2Þ

p
; ð2:35bÞ

clm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl −mþ 1Þðlþmþ 1Þ

p
; ð2:35cÞ

dð�Þ
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�mþ 1Þðl ∓ mÞ

p
: ð2:35dÞ

After a lengthy calculation, it is possible to write the first
term on the right-hand side of Eq. (2.34) as

dkðGWÞ
1;0

du
¼ −

1

64π

ffiffiffi
3

π

r X
l;m

alclm½Ūlm
_Uðlþ1Þm

− Ūðlþ1Þm _Ulm þ V̄lm
_Vðlþ1Þm

− V̄ðlþ1Þm _Vlm�; ð2:36aÞ

dkðGWÞ
1;�1

du
¼ −

1

64π

ffiffiffiffiffiffi
3

2π

r X
l;m

al½bð�Þ
lm ðŪlm

_Uðlþ1Þm�1

þ V̄lm
_Vðlþ1Þm�1Þ − bð∓Þ

lm ðŪðlþ1Þm∓1
_Ulm

þ V̄ðlþ1Þm∓1
_VlmÞ�; ð2:36bÞ

and the second term as

dPðGWÞ
1;0

du
¼ 1

32π

ffiffiffi
3

π

r X
l;m

1

lþ 1

�
alclmð _̄Ulm

_Uðlþ1Þm

þ _̄Vlm
_Vðlþ1ÞmÞ −

2im
l

_̄Ulm
_Vlm

�
; ð2:37aÞ

dPðGWÞ
1;�1

du
¼ 1

32π

ffiffiffiffiffiffi
3

2π

r X
l;m

1

lþ1

�
alb

ð�Þ
lm ð _̄Ulm

_Uðlþ1Þm�1

þ _̄Vlm
_Vðlþ1Þm�1Þ�

2i
l
dð�Þ
lm

_̄Ulm
_Vlðm�1Þ

�
: ð2:37bÞ

All the sums in Eqs. (2.36) and (2.37) run over l ≥ 2,
and −l ≤ m ≤ l.
The translation subgroup of the BMS group is four-

dimensional, and it can be treated as a manifold with a flat
Minkowski metric (see, e.g., [37]). We can then express the
l ¼ 1 moments of the flux of CM angular momentum in
terms of vectors on this flat Minkowski manifold. Here, we
will give the components in a set of Cartesian-type
coordinates, ðx; y; zÞ, which we define from the spheri-
cal-polar coordinates ðθ;ϕÞ commonly used with the
spherical harmonics employed in this paper. A method
to transform from the l ¼ 1 moments to the Cartesian
components is described in [16], which we now
summarize.
First, define the unit vector ni and its gradient with

respect to the derivative operator DA via

ni ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ; eiA ¼ DAni:

ð2:38Þ

The 1-form DAȲ1;m can then be expressed in terms of a
linear combination of the Cartesian components of eiA as

7Because GWs carry away energy from an isolated system
with no incoming radiation, the flux is always negative. Thus, it
has become a common convention (e.g., [30]) to define the
energy carried away by GWs as a positive number, with it being
implicit that this positive change in the energy causes the Bondi
mass of the system to decrease. Similar sign conventions are used
for the linear momentum and intrinsic part of the angular
momentum. We also follow this convention with the flux of
CM angular momentum, but we add the superscript “(GW)” to
this flux to make this convention explicit.
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DAȲ1;m ¼ ω1;m
0i eiA; ð2:39Þ

where the coefficients ω1;m
0i are given by

ω1;0
0x ¼ 0 ¼ ω1;0

0y ; ω1;0
0z ¼ 1

2

ffiffiffi
3

π

r
ð2:40aÞ

ω1;�1
0x ¼∓ 1

2

ffiffiffiffiffiffi
3

2π

r
; ω1;�1

0y ¼ i
2

ffiffiffiffiffiffi
3

2π

r
; ω1;�1

0z ¼ 0:

ð2:40bÞ

Then, from the fact that the flux of CM angular momentum
satisfies

dKðGWÞ
1;m

du
¼ ω0i

dKi
ðGWÞ
du

; ð2:41Þ

we find that the Cartesian components are

dKx
ðGWÞ
du

¼ −
ffiffiffiffiffiffi
2π

3

r ��
dkðGWÞ

1;1

du
−
dkðGWÞ

1;−1

du

�

− u

�
dPðGWÞ

1;1

du
−
dPðGWÞ

1;−1

du

��
; ð2:42aÞ

dKy
ðGWÞ
du

¼ −i
ffiffiffiffiffiffi
2π

3

r ��
dkðGWÞ

1;1

du
þ dkðGWÞ

1;−1

du

�

− u

�
dPðGWÞ

1;1

du
þ dPðGWÞ

1;−1

du

��
; ð2:42bÞ

dKz
ðGWÞ
du

¼ 2

ffiffiffi
π

3

r �
dkðGWÞ

1;0

du
− u

dPðGWÞ
1;0

du

�
: ð2:42cÞ

As was explained in more detail in the previous subsection,
the flux in Eq. (2.42) represents the change in the CM part
of the angular momentum, for which the origin of the
retarded time coordinate is chosen to be u ¼ 0. It contains
nontrivial information about the flux of CM angular
momentum from the system that is not contained in the
fluxes of the other BMS charges.

III. CENTER-OF-MASS GRAVITATIONAL-WAVE
MEMORY EFFECT

In this section, after giving an argument for why the CM
memory effect should exist, we define the effect, describe
some of its basic properties, and derive an expansion for the
CM memory effect in terms of multipole moments of the
GW strain.

A. Rationale for the existence of the CM memory effect

Consider, for simplicity, an asymptotically flat spacetime
undergoing a stationary-to-stationary transition as it

radiates GWs for a finite time. In each stationary region,
there is a canonical reference frame in which the Bondi
mass aspect is constant, the shear vanishes, and the Bondi
angular-momentum aspect is a linear combination of l ¼ 1
magnetic-parity vector spherical harmonics (though the
values of the mass and angular-momentum aspects will
generally be different in the canonical frames of the two
stationary regions). The two canonical frames typically will
not be the same, but there will be a BMS transformation
(a Lorentz transformation and supertranslation) that relates
the two. The supertranslation between the two canonical
frames is equivalent to the GWmemory (e.g., [16]), and the
Lorentz transformation is related to the change in the
4-momentum between and the relative rotation of a set of
fiducial observers in each of the two stationary regions.
Next, we integrate Eq. (2.24) with respect to u to relate

the change in the charges to the net flux between the cuts:

ΔKζ⃗Y
¼ −

1

64π

Z
u2

u1

du
Z

d2ΩYA½uDAð2DBDCNBC

− NBCNBC − 32πT̂uuÞ þ CBCDBNAC

− NBCDBCAC þ 3NABDCCBC

− 3CABDCCBC þ 64πT̂uA þ 16π∂uT̂rA�: ð3:1Þ

The left-hand side of Eq. (3.1), the change in the charges,
depends on just the values of the 4-momentum and angular
momentum in the canonical frames in the stationary regions
and the BMS transformation that contains information
about the net rotation, boost, and supertranslation between
the two canonical frames. We argued in Sec. II, however,
that the net change in the (super) CM angular momentum,
as computed using the right-hand side of Eq. (3.1), contains
additional information besides the change in the super-
momentum, angular momentum, and GW memory. Thus,
there appears to be an inconsistency. It could be resolved, if
there is a cancellation between certain terms in the flux, for
example.
Such a cancellation occurs with the GW memory, which

we will now review. First, recall that the potential ΔΦ that
determines the memory [see Eq. (2.16)] can be found by
integrating the conservation-type equation for the Bondi
mass aspect (2.5):

DΔΦ ¼ P
�
8Δmþ

Z
u2

u1

duð32πT̂uu þ NABNABÞ
�

ð3:2Þ

(see, e.g., [16]). We have defined a differential operator

D≡D2ðD2 þ 2Þ ð3:3Þ

and a projector P, which removes the l ¼ 0 and l ¼ 1
spherical harmonics from the right-hand side of Eq. (3.2).
The projector is needed to invert the operator D and solve
for ΔΦ, because the l ¼ 0 and l ¼ 1 harmonics are in its
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kernel of the operatorD. In the terminology of [27], the first
term on the right-hand side in Eq. (3.2) is the ordinary part
of the GW memory, and the remaining terms in the integral
are collectively the null part of the memory. We will,
therefore, express ΔΦ as a sum of two parts

ΔΦ ¼ ΔΦðoÞ þ ΔΦðnÞ; ð3:4Þ

which correspond to the parts of the solution to Eq. (3.2) for
the ordinary and null parts, respectively (and which is
possible because the equation is linear in ΔΦ).
Now, let us return to the cancellation that occurs for the

GW memory effect. The ordinary part of the memory (the
change in the supermomentum charges, up to a normali-
zation factor) depends on just the net change in the rest
mass of the system and the relative boost of the observers
that determine the canonical frames. The null memory,
however, can be arbitrary. Thus, the integral of DADBNAB

with respect to u must be nonzero, so that Einstein’s
equations (and, equivalently, charge conservation) are
satisfied. For the spin memory, the values of the change
in the superspin charges are also restricted in a stationary-
to-stationary transition, but the null part of the spin memory
is not limited in this way. The additional term in the flux,
Eq. (2.12), therefore, is necessary to ensure that charge
conservation holds.
Finally, let us revisit the “inconsistency” discussed below

Eq. (3.1) about the change in the charges in light of the
discussion above. The related inconsistencies for super-
momentum and superspin charge conservation were
resolved by the GW memory and spin memory effects,
respectively. Thus, it seems natural to suggest a similar
resolution for super-CM charge conservation: namely, that
there must be a CM memory effect. Because the GW
memory and spin memory effects come about from terms in
the fluxes that are linear in the Bondi news and shear
tensors, respectively, we expect that the CM memory will
arise from a similar type of term in the flux of CM angular
momentum. The term linear in the Bondi news tensor in
Eq. (3.1) (proportional to uDADBDCNBC), therefore, is the
most obvious term that could give rise to the CM memory.
As we discuss in the next subsection, it turns out to be the u
integral of a quantity related to this term that will be the CM
memory effect.

B. Definition and properties of the CM memory effect

Let us then define a quantity

ΔCðDAYAÞ ≡ −
Z

u2

u1

du
Z

d2Ωu
�
DBDCNBC −

1

2
D _ΦðnÞ

�
× ðDAYAÞ; ð3:5Þ

which should be interpreted as a part of u times the u
integral of a quantity proportional to a portion of the Bondi

news tensor, with the part of the news tensor responsible for
the null GW memory removed [this latter part of the news
tensor is denoted by the potential _ΦðnÞ].

8 This quantity has
the units of the time integral of the GW strain (like the spin
memory effect), and it will be our definition of the CM
memory effect. We now investigate some of its properties.
Integrating Eq. (3.5) by parts with respect to u, we find

that

ΔCðDAYAÞ ¼
Z

u2

u1

du
Z

d2Ω
�
DBDCCBC −

1

2
DΦðnÞ

�

× ðDAYAÞ − u
Z

d2ΩðDAYAÞ

×

�
DBDCCBC −

1

2
DΦðnÞ

�����u2
u1

: ð3:6Þ

Thus, we see that ΔCðDAYAÞ contains information about the
time integral of CAB, but it removes the part that grows
linearly with u, which arises when there is ordinary GW
memory.9 It is, therefore, the part of the time integral of the
electric-parity part of CAB that becomes constant in a
stationary-to-stationary transition.
Next, we will consider how the CM memory effect

behaves in a set of cuts that are supertranslated from the
cuts u used to compute the effect above. Under a super-
translation, α, the news tensor transforms as

δNAB ¼ α _NAB; ð3:7Þ

to linear order in α. Using this relationship, integration by
parts, and the facts that u0 ¼ uþ α and the news tensor and
T̂uu vanish in a nonradiative region, it is then straightfor-
ward to show from Eq. (3.5) that

ΔC0ðDAYAÞ ¼ −
Z

u0
2

u0
1

du0
Z

d2Ωu0
�
DBDCN0

BC

−
1

2
D _Φ0

ðnÞ

�
ðDAYAÞ ¼ ΔCðDAYAÞ: ð3:8Þ

In the equation above, we computed ΔC0ðDAYAÞ with res-

pect to the generators adapted to cuts of constant u0.

8Using Einstein’s equations (2.5), we could have written this as
a term proportional to u times the u derivative of the Bondi mass
aspect. We deliberately avoided writing it in this form, so as to
reinforce the notion that this is an observable with the units of the
time integral of the GW strain, rather than a quantity with the
units of the time integral of the supermomentum.

9A similar caveat to that elaborated in footnote 6 holds:
namely, for finite values of u1 and u2, we do not need to suppose
that the ordinary GW memory approaches a constant at a given
rate; however, in the limit that u1 → −∞ and u2 → þ∞, we
would need to assume similar fall-off rates to those given for the
supermomentum in footnote 6.
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Thus, ΔCðDAYAÞ is invariant under infinitesimal supertrans-
lations, for stationary-to-stationary transitions.
When computing memory effects within the Bondi

framework, it can be useful to define a scalar potential
as the memory observable (see, e.g., [16]). We now define
this quantity. The shear tensor, CAB, can be expressed in
terms of two potentials that encompass its two degrees of
freedom as follows:

CAB ¼ 1

2
ð2DADB − hABD2ÞΦþ ϵCðADBÞDCΨ: ð3:9Þ

Using this decomposition and integrating by parts with
respect to u, we find that Eq. (3.5) can be written as

ΔCðDAYAÞ ¼
1

2

Z
d2ΩðDAYAÞD

�Z
u2

u1

duðΦ −ΦðnÞÞ

− uðΦ −ΦðnÞÞju2u1
�
: ð3:10Þ

The CM memory observable that we define is

ΔK≡
Z

u2

u1

duðΦ −ΦðnÞÞ − uðΦ −ΦðnÞÞju2u1 ; ð3:11Þ

which is a potential for the time integral of the electric-
parity part of the shear with the part that grows linearly with
u from the ordinary part of the GW memory removed.10

The quantity ΔCðDAYAÞ can be expressed in terms of ΔK by

ΔCðDAYAÞ ¼
1

2

Z
d2ΩðDAYAÞDΔK: ð3:12Þ

Using Eq. (3.1), we can also solve for ΔCðDAYAÞ from the
change in the super-CM angular momentum and the
quadrupole and higher multipole moments of the flux of
CM angular momentum carried by GWs and matter fields:

ΔCðDAYAÞ ¼ −32πPΔKζ⃗Y
−
1

2
P
Z

u2

u1

du
Z

d2ΩYA

× ðCBCDBNAC − NBCDBCAC

þ 3NABDCCBC − 3CABDCCBC

þ 64πT̂uA þ 16π∂uT̂rAÞ: ð3:13Þ

As with the GW memory and spin memory, the CM
memory has two parts: the first given by ΔKζ⃗Y

is the
ordinary part, whereas the portion involving the retarded-
time integral is the null part. Because the CM memory is
invariant under infinitesimal supertranslations, but the
changes in the CM part of the super angular momentum
transform in the way given in Eq. (2.22), then the ordinary
and null parts of the CM memory must transform in
opposite ways.
To more easily compute the amplitude of the CM

memory effect produced by astrophysical sources, we
expand Eq. (3.13) in a set of multipole moments of the
GW strain in the next subsection.

C. Multipolar expansion of the CM memory effect

We find it simplest to compute the multipole moments
of the CM memory effect by integrating the right-hand
side of Eq. (3.13) with respect to the smooth vector fields.
Specifically, we use the electric-parity vector spherical
harmonics, DAȲlm=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp

(analogously to what was
done in the calculation of the spin memory in [19]). These
functions are a useful basis for smooth vector fields, like
those used by Campiglia and Laddha [14,15]. Because the
integral of a meromorphic super-rotation vector field [12]
with a smooth vector field is finite (see, e.g., [16]), then
it could also represent the part of the super-rotation
symmetry that has overlap with these vector spherical
harmonics (although this decomposition may not be
unique [47]).
The method for calculating the multipole moments of

the CM memory observable, which we will denote by
ΔKlm, is very similar to the procedure to compute similar
moments of the spin memory described in [19] (as well as
that described in Sec. II for computing the multipole
moments of the CM angular momentum flux). The basic
strategy of the calculation is to change the tensorial
expression for the multipole moments of the shear and
its derivatives into a sum of products of three spin-
weighted spherical harmonics. The conventions for the
vector, tensor, and spin-weighted harmonics are given in
detail in [19]. Using these conventions, we define a set of
coefficients

Blðs0; l0; m0; s00; l00; m00Þ

≡
Z

d2Ωðs0Yl0m0 Þðs00Yl00m00 Þðs0þs00 Ȳlðm0þm00ÞÞ; ð3:14Þ

10Given the somewhat complicated nature of the CM memory
observable, the reader might be concerned about whether this
quantity is measurable by freely falling observers, in principle.
Because the GW strain, the GW memory, and their time integrals
can be measured by freely falling observers, the basic ingredients
needed to construct the CM memory observable are measurable.
The CM memory effect corresponds to the electric-parity part of
the time-integrated GW strain, and this part could be separated
from the magnetic-parity part by having many observers sur-
rounding an isolated source measuring the GW strain. Thus, the
one remaining potential subtlety relates to extracting just the
null part of the memory. This could be performed by directly
measuring the flux of GWs and massless fields with appropriate
detectors or by determining the time dependence of the ordinary
part of the memory (i.e., the flux of the supermomentum charges)
by measuring components of the asymptotic Riemann tensor
with a generalization of the procedure described in [52,53],
for example. Thus, we see no obstacle for observing the CM
memory, in principle, but a more detailed analysis of its
measurability would be beneficial.
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as in [19].11 We have restricted to integrals in which the
complex-conjugated spin-weighted spherical harmonic has
spin weight s ¼ s0 þ s00 and has azimuthal number m ¼
m0 þm00, because the integrals are zero for all other values
of s and m. Furthermore, the only values of l for which the
integral is nonvanishing are those with l ∈ fmaxðjl0 − l00j;
jm0 þm00j; js0 þ s00jÞ;…; l0 þ l00 − 1; l0 þ l00g. The reason
for these “selection rules” comes from the fact that the
coefficients Blðs0; l0; m0; s00; l00; m00Þ can be expressed in
terms of products of Clebsch-Gordan coefficients
hl0; m0; l00; m00jl; m0 þm00i via the relationship

Blðs0; l0; m0; s00; l00; m00Þ

¼ ð−1Þlþl0þl00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l0 þ 1Þð2l00 þ 1Þ

4πð2lþ 1Þ

s

× hl0; s0; l00; s00jl; s0 þ s00ihl0; m0; l00; m00jl; m0 þm00i:
ð3:15Þ

These coefficients, therefore, satisfy similar identities to
those of the Clebsch-Gordan coefficients when the signs
of the spin weight or the azimuthal numbers are changed
(see, e.g., [19]).
Next, we specialize to vacuum spacetimes, and we

compute the multipole moments ΔKlm of the CM memory
produced by GWs. Nonvacuum cases can be treated by
simply adding the appropriate multipole moments of the
relevant components of the stress-energy tensor given in
Eq. (3.13). To make the expression more compact, we write
the result as

ΔKlm ¼ ðl − 2Þ!
ðlþ 2Þ!

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þp P

�Z
u2

u1

du
dkðCMÞ

lm

du

þ 64πΔKlm

�
: ð3:16Þ

The first term in the integral dkðCMÞ
lm =du comes from the

higher multipole moments of the quantity that gives rise to

the term dkðGWÞ
1m =du in the flux of CM angular momentum

(though with a different overall normalization). The second
term, ΔKlm, is a spherical harmonic moment of the change
in the super-CM charges ΔKζ⃗Y

. Before giving the explicit

form of the term dkðCMÞ
lm =du, we make a few additional

definitions of coefficients so as to write the result more
compactly:

sl;ð�Þ
l0;l00 ¼ 1� ð−1Þlþl0þl00 ; ð3:17aÞ

cll0;m0;l00;m00 ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl0 − 1Þðl0 þ 2Þ

p
Blð−1; l0; m0; 2; l00; m00Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl00 − 2Þðl00 þ 3Þ

p
Blð−2; l0; m0; 3; l00; m00Þ:

ð3:17bÞ

After a lengthy calculation, it is possible to show that

dkðCMÞ
lm

du
¼ 1

4

X
l0;l00;m0;m00

cll0;m0;l00;m00 ½sl;ðþÞ
l0;l00 ðUl0m0 _Ul00m00

− _Ul0m0Ul00m00 þ Vl0m0 _Vl00m00 − _Vl0m0Vl00m00 Þ
þ isl;ð−Þl0;l00 ðUl0m0 _Vl00m00 þ _Vl0m0Ul00m00

− _Ul0m0Vl00m00 − Vl0m0 _Ul00m00 Þ�: ð3:18Þ

The sum runs over l0, l00 ≥ 2, and for −l0 ≤ m0 ≤ l0 and
−l00 ≤ m00 ≤ l00. For an arbitrary source, an infinite number
of products of multipoles will be needed to compute the
CM memory effect. For compact binaries in the PN
approximation, the number of multipole moments that
contribute at leading order is a small number, as we
discuss next.

IV. FLUX OF CM ANGULAR MOMENTUM AND
CM MEMORY IN THE PN APPROXIMATION

In this part, we introduce a few essential elements of
the PN formalism for compact binaries that we need for the
calculations in this section. Our summary is based on the
much more comprehensive review [42]. We then present
the main results of this section: expressions for the leading-
PN-order flux of CM angular momentum and CM memory
effect for nonspinning, quasicircular compact binaries. We
also comment on the terms in the gravitational waveform
responsible for producing the CM memory effect and on
the prospects for detecting these features in the waveform
with future GW detectors.

A. Summary of selected results from PN theory

In PN theory, the gravitational waveform is typically
described by a transverse-traceless tensor hTTij . It can be
expanded in second-rank electric- and magnetic-parity
tensor spherical harmonics as

hTTij ¼ 1

r

X
l;m

ðUlmT
ðeÞ;lm
ij þ VlmT

ðbÞ;lm
ij Þ; ð4:1Þ

where the sum runs over l ≥ 2 and −l ≤ m ≤ l. It was
argued in [19] that the coefficients Ulm and Vlm that appear
in both Eqs. (2.30) and (4.1) are the same in linearized
theory (though care would need to be taken to properly
include any nondynamical terms in hTTij , as noted by [48]).
It is often convenient to work with the complex GW strain
h ¼ hþ − ih×, which is related to the tensorial strains by

11The coefficients Blðs0; l0; m0; s00; l00; m00Þ are identical to the
coefficients denoted Clðs0; l0; m0; s00; l00; m00Þ in [19]; however, we
have renamed them here, so as to avoid confusion with the
quantity ΔCðDAYAÞ that is related to the CM memory effect.
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h ¼ r−1CABm̄Am̄B ¼ hTTij e
i
Ae

j
Bm̄

Am̄B; ð4:2Þ

where mA is defined in Eq. (2.33) and eiA is given in
Eq. (2.38). When h is expanded in spin-weighted spherical
harmonics, a short calculation shows that

h ¼
X
l;m

hlmð−2YlmÞ; hlm ¼ 1

r
ffiffiffi
2

p ðUlm − iVlmÞ: ð4:3Þ

The convention used here for h differs from that in [42] by
an overall minus sign, but the multipole moments Ulm and
Vlm as well as the tensorial GW strain agree (as they must).
Through a matching procedure, summarized in the

review [42], it is possible to relate the radiative moments
Ulm and Vlm to source multipole moments Ilm and Jlm that,
as their name suggests, describe the multipole moments of
the source in the near zone. To simplify the matching, we
will choose our coordinates such that the orbital angular
momentum of our nonspinning, compact-binary source
points in the z coordinate direction. The matching pro-
cedure takes place through a third set of intermediate
“canonical”multipole moments,12Mlm and Slm, as well as a
set of multipole moments that parametrize a coordinate
transformation between two solutions of the linearized
Einstein’s equations. For multipoles with m ≠ 0, the
relationship between the radiative and canonical moments
is given by

Ulm ¼ MðlÞ
lm þOðc−3Þ; Vlm ¼ SðlÞlm þOðc−3Þ; ð4:4Þ

where here—and everywhere else hereafter—the remainder
means there are relative PN corrections (where PN cor-
rections conventionally scale as the power of c to the minus
one-half), and where the superscript (l) means to take l
derivatives with respect to u. These corrections consist of
terms that get called “tails” (including higher PN-order
generalizations, such as “tails of tails”), “instantaneous”
nonlinear terms, and “hereditary” (or “memory”) terms. For
understanding the terms in the GWs that give rise to the CM
memory effect, the instantaneous, nonlinear terms will play
the most important role. The canonical moments are related
to the source moments by

Mlm ¼ Ilm þOðc−5Þ; Slm ¼ Jlm þOðc−5Þ: ð4:5Þ

The 2.5PN remainder here means that there are additional
nonlinear terms entering at this order in the PN expansion
that are not captured by the PN expansion of the source
multipoles Ilm and Jlm to that PN order.

For computing the leading-order flux of CM angular
momentum and the CM memory effect, it turns out that we
will be able to use the leading Newtonian expressions for
the radiative multipole moments in terms of the source
moments (for m ≠ 0),

Ulm ¼ IðlÞlm þOðc−3Þ; Vlm ¼ JðlÞlm þOðc−3Þ: ð4:6Þ

The U2;0 mode below comes from the GW memory, which
does not satisfy Eq. (4.6), even though it is a leading,
Newtonian-order effect in the waveform. We will also need
to use one higher-PN-order calculation for the flux of linear
momentum carried by GWs. For comparing the parts of the
GWs responsible for the CM memory with the expressions
for the multipole moments of the waveform in PN theory,
however, we will need to be aware of the higher-order PN
corrections to the radiative multipole moments. Given that
the corrections have distinct mathematical forms (tail,
instantaneous, and hereditary terms), we will be able to
identify the relevant nonlinear terms to make this com-
parison analytically. Identifying these terms observatio-
nally in the GWs from compact-binary mergers will be
much more challenging.
For nonspinning compact binary sources in quasicircular

orbits, the radiative multipole moments can be expressed
conveniently in terms of just a few parameters, most of
which involve the masses of the two bodies,mðAÞ andmðBÞ:
the total massM ¼ mðAÞ þmðBÞ, the mass difference δm ¼
mðAÞ −mðBÞ, the symmetric mass ratio η ¼ mðAÞmðBÞ=M2,
the orbital frequency ω, the PN parameter x ¼ ðMωÞ2=3,
and the orbital phase φ (see, e.g., [42]). In terms of these
quantities, the radiative moments that we will need for our
calculations are

U2;2 ¼ −8
ffiffiffiffiffiffi
2π

5

r
Mηxe−i2φ þOðc−2Þ; ð4:7aÞ

U2;0 ¼
4

7

ffiffiffiffiffiffi
5π

3

r
MηxþOðc−2Þ; ð4:7bÞ

U3;1 ¼ −
2i
3

ffiffiffiffiffi
π

35

r
δmηx3=2e−iφ þOðc−2Þ; ð4:7cÞ

U3;3 ¼ 6i

ffiffiffiffiffiffi
3π

7

r
δmηx3=2e−i3φ þOðc−2Þ; ð4:7dÞ

V2;1 ¼
8

3

ffiffiffiffiffiffi
2π

5

r
δmηx3=2e−iφ þOðc−2Þ; ð4:7eÞ

where the orbital phase is given by

φ ¼ −
x−5=2

32η
þOðc−2Þ: ð4:8Þ

12While the term “canonical” is used to describe both these
moments and a specific Bondi frame associated with a stationary
region in asymptotically flat spacetimes, this repeated usage is
just an unfortunate repetition of the term “canonical”; there is no
obvious connection between the two concepts.
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The modes with negative azimuthal number can be
obtained by using the relationships given in Eq. (2.32).
The u derivatives of these multipole moments can be
expressed in terms of x by using the chain rule and the
fact that

_x ¼ 64η

5M
x5 þOðc−2Þ: ð4:9Þ

The results are as follows:

_U2;2 ¼ 16i

ffiffiffiffiffiffi
2π

5

r
ηx5=2e−i2φ þOðc−2Þ; ð4:10aÞ

_U2;0 ¼
256

7

ffiffiffiffiffi
π

15

r
η2x5 þOðc−2Þ; ð4:10bÞ

_U3;1 ¼ −
2

3

ffiffiffiffiffi
π

35

r
δm
M

ηx3e−iφ þOðc−2Þ; ð4:10cÞ

_U3;3 ¼ 18

ffiffiffiffiffiffi
3π

7

r
δm
M

ηx3e−i3φ þOðc−2Þ; ð4:10dÞ

_V2;1 ¼ −
8i
3

ffiffiffiffiffiffi
2π

5

r
δm
M

ηx3e−iφ þOðc−2Þ: ð4:10eÞ

Because the quantity _U2;0 is several PN orders higher than
the other derivatives, it will not appear in most of the
calculations below.

B. Flux of CM angular momentum

In this part, we give the leading-PN order expression for
the flux of the CM part of the angular momentum. We

begin by computing the term dkðGWÞ
1;1 =du in Eq. (2.34). It is

given by

dkðGWÞ
1;1

du
¼ −

1

64π

ffiffiffiffiffiffi
3

7π

r
½

ffiffiffiffiffi
15

p
ðU2;−2 _U3;3 þU3;3

_U2;−2Þ

þ ðU2;2
_U3;−1 þ U3;−1 _U2;2Þ þ

ffiffiffi
6

p
U2;0

_U3;1�
þOðc−2Þ: ð4:11Þ

Substituting the relevant components in Eqs. (4.7) and
(4.10) into Eq. (4.11), we find that it can be written as a
function of x as follows:

dkðGWÞ
1;1

du
¼ 627

980

ffiffiffiffiffiffi
3

2π

r
δmη2x4e−iφ þOðc−2Þ: ð4:12Þ

The l ¼ 1, m ¼ 0 term vanishes for nonspinning, quasi-
circular compact binaries. This can be shown using argu-
ments based on parity, like those given in [54].
The second term on the right-hand side of Eq. (2.34)

requires computing the flux of linear momentum. This has

been computed before (it can be inferred from [55], for
example) and is given by

dPðGWÞ
1;1

du
¼ 1

96π

ffiffiffiffiffiffi
3

7π

r
ð

ffiffiffiffiffi
15

p
_U2;−2 _U3;3 þ _U2;2

_U3;−1

þ i
ffiffiffiffiffi
14

p
_U2;2

_V2;−1Þ þOðc−2Þ; ð4:13Þ

at leading PN order. Inserting the appropriate values of the
radiative moments given in Eq. (4.10) into Eq. (4.13), we
find

dPðGWÞ
1;1

du
¼ −i

232

105

ffiffiffiffiffiffi
3

2π

r
δm
M

η2x11=2e−iφ þOðc−2Þ; ð4:14Þ

a result that traces back to [56]. The l ¼ 1, m ¼ 0 mode of
the flux of linear momentum also vanishes, which follows
from the arguments based on parity in [54].
To compute the net change in the CM angular momen-

tum, we must evaluate

ΔKðGWÞ
1;1 ¼

Z
du

�
dkðGWÞ

1;1

du
− u

dPðGWÞ
1;1

du

�
: ð4:15Þ

Because at leading order, the retarded time u goes as

ðuc − uÞ ¼ 5M
256η

x−4 þOðc−2Þ ð4:16Þ

(where uc is the retarded time of coalescence of the binary
in PN theory), then by comparing powers of x, we see that
the first term on the right-hand side of Eq. (4.15) is 2.5 PN
orders higher than the second term is. While this might
make the reader wonder why we do not neglect this term
and focus just on the second term, we now revisit some of
the discussion around Eqs. (2.28) and (2.29) in the context
of nonspinning PN compact binaries.
In PN theory, the BMS supertranslations are fixed by the

fiducial Minkowski spacetime that is the background about
which the PN expansion is computed. This leaves the
Poincaré group as the remaining symmetries. There is a
relatively natural way to fix the boost transformations (by
moving to the rest frame of the source in the initial
stationary region, for example). The rotations in the
Lorentz group can be specified by aligning the orbital
angular momentum to fall along the z axis and the
separation to be along the x axis (at some fiducial time)
in the initial stationary region. Finally, one way to constrain
the spatial translations is to require that the CM of the
system coincide with the origin of the coordinates initially.
This will make the CM part of the angular momentum
equal to zero in this region. A translation in time will not
affect the values of the 4-momentum, supermomentum, and
(super) angular momentum in the initial stationary region in
this frame. Thus, there is no obvious prescription for using
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the (extended) BMS charges in a stationary region to
constrain this remaining degree of freedom in the BMS
group. However, the flux of (super) CM angular momen-
tum is not invariant under such transformations in a
stationary-to-stationary transition, as was highlighted in
Eq. (2.28). To compute this flux, therefore, it is necessary to
specify a reference time u0 about which it is computed. We
will use the prescription defined in Eq. (2.29) that mini-
mizes the flux of the CM angular momentum in our
computation below. This then fixes the previously uncon-
strained time-translation freedom in the BMS group.
As was shown in [57], through 2PN order, the flux of

linear momentum is parallel to the orbital velocity of the
reduced mass of the system (and thus the change in the
linear momentum is directed radially outward). In terms of

the multipole moment dPðGWÞ
1;1 =du, this is related to the fact

that the coefficient multiplying e−iφ is a strictly imaginary
quantity (i.e., has vanishing real part) through 2PN order.
With the one real degree of freedom in u0, we can choose
this reference time to make the flux of the CM part of the
angular momentum arising from the second term in
Eq. (4.15) vanish through 2PN order.
The first term on the right-hand side of Eq. (4.15),

however, leads to a change in the CM angular momentum
that isπ=2out of phasewith that from the second termat 2PN

order [i.e., the coefficient multiplying e−iφ for dkðGWÞ
1;1 =du is

real]. In addition, the 2.5PN corrections to dPðGWÞ
1;1 =du have

terms that are in phase with dkðGWÞ
1;1 =du. It is possible to

continue canceling the imaginary part of the coefficient of
e−iφ of the second term in Eq. (4.15) through 2.5PNorder by
appropriately choosing the reference time u0; however, it is
not possible also to cancel the real part of this coefficient in
this manner. This implies that to compute the leading-PN-
order expression for the flux of the CM angular momentum,

we need the leading-order expression for dkðGWÞ
1;1 =du in

Eq. (4.12), the leading-order expression for the time to
coalescence in Eq. (4.16), and a 2.5PN order correction to

the leading expression for dPðGWÞ
1;1 =du in Eq. (4.14) [spe-

cifically, the part that is in phase with dkðGWÞ
1;1 =du]. Thus,

with this choice of reference time, the two terms on the right-
hand side of Eq. (4.15) contribute at the same PN order.
The relevant 2.5PN corrections to the linear momentum

flux have been computed in [58] for nonspinning, quasi-
circular compact binaries.We express their result in terms of
the l ¼ 1, m ¼ 1 moment of the flux by using the fact that

dP1;1

du
¼ −

1

2

ffiffiffiffiffiffi
3

2π

r �
dPx

du
− i

dPy

du

�
; ð4:17Þ

which can be obtained by inverting a relation like the one
given in Eq. (2.42). It then follows from the results of [58]
that

dPð2.5PNÞ
1;1

du
¼ ix5=2

�
dPðGWÞ

1;1

du

�
ðpð0Þ þ pð1ÞηÞ; ð4:18Þ

where we have defined the coefficients

pð0Þ ¼ −
106187

50460
þ 32835

841
log 2 −

77625

3364
log 3; ð4:19aÞ

pð1Þ ¼
10126

4205
−
109740

841
log 2þ 66645

841
log 3: ð4:19bÞ

We can then integrate the flux with respect to u. To evaluate
the integral, we change variables to write it as an integral
with respect to x by using Eq. (4.9). We find that the result
can be expressed in terms of the fluxes in Eqs. (4.12) and
(4.18) as

ΔKðGWÞ
1;1 ¼ iMx−3=2

�
dkðGWÞ

1;1

du
þ 5M
256η

x−4
dPð2.5PNÞ

1;1

du

�
þOðc−2Þ: ð4:20Þ

The quantity ΔKðGWÞ
1;1 scales with the PN parameter x as

x5=2e−iφ. We have not seen an expression for the change in
the CM part of the angular momentum before, although it is
may be related to a part of the time-dependent mass-dipole
moment computed in [59], for example.
It is relatively straightforward to understand the physics

underlying Eq. (4.20). For nonspinning compact binaries in
quasicircular orbits, the orbital velocity is tangent to the
circular orbit up to 2PN order. At 2.5PN order, however,
radiation reaction causes the system to inspiral, thereby
producing a small radial velocity. It is not possible to
remove the effects of this radial velocity on the CM angular
momentum while preserving the properties of the canonical
frame associated with the initial stationary region. This
implies that there is a change in the CM part of the angular
momentum, given by Eq. (4.20).
To conclude this subsection, we briefly discuss radiation

reaction and balance equations in PN theory (in the sense of
[60]). The fluxes of energy and intrinsic angular momen-
tum cause the corresponding conserved Poincaré charges in
the near zone to change at 2.5PN order, and the flux of
linear momentum also causes such a change in the
corresponding charge, though at higher (3.5PN) order. In
general, the flux of CM angular momentum also produces a
change in the near-zone CM angular momentum that
begins at 3.5PN order. For nonspinning, quasicircular
compact binary sources, however, we showed that through
an appropriate choice of reference time, the flux of CM
angular momentum begins at 2.5PN orders higher than the
leading effect (which, therefore, corresponds to a 6PN-
order effect in the near zone). Because the conserved
quantities for nonspinning compact binaries in PN theory
are currently computed to 4PN order [61], this flux leads to
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a change in the CM angular momentum that is two PN
orders higher than the accuracy of the CM angular
momentum computed in [61]. Thus, we do not anticipate
that the flux of CM angular momentum will have a
significant impact on computations of the dynamics of
nonspinning, quasicircular compact binaries in the PN
approximation.

C. Center-of-mass GW memory effect

In the two parts of this section, we compute first the null
and then the ordinary parts of the CM memory effect for
nonspinning, quasicircular compact binaries in the PN
approximation.

1. Nonlinear and null part of the CM memory

We compute the nonlinear part of the null CM memory
from the multipolar expressions given in Eqs. (3.16) and
(3.18) and the relevant definitions of the coefficients that
appear in the latter equation. There are five (independent)
nonzero spherical-harmonic modes of this null nonlinear
CM memory at leading PN order, which are given by

ΔK3;1 ¼
1

2880
ffiffiffi
π

p
Z

u2

u1

du½
ffiffiffiffiffi
10

p
ðU3;3

_U2;−2 − _U3;3U2;−2Þ

þ 2
ffiffiffi
6

p
ðU3;−1 _U2;2 − _U3;−1U2;2Þ þ 3U2;0

_U3;1�
þOðc−2Þ; ð4:21aÞ

ΔK3;3 ¼
1

2880
ffiffiffi
π

p
Z

u2

u1

du½
ffiffiffiffiffi
10

p
ðU3;1

_U2;2 − _U3;1U2;2Þ

− 5U2;0
_U3;3� þOðc−2Þ; ð4:21bÞ

for the l ¼ 3 modes and

ΔK5;1 ¼
1

50400
ffiffiffiffiffiffiffiffi
77π

p
Z

u2

u1

du½ðU3;3
_U2;−2 − _U3;3U2;−2Þ

þ
ffiffiffiffiffi
15

p
ðU3;−1 _U2;2 − _U3;−1U2;2Þ − 3

ffiffiffiffiffi
10

p
U2;0

_U3;1�
þOðc−2Þ; ð4:21cÞ

ΔK5;3 ¼
1

50400
ffiffiffiffiffiffiffiffi
11π

p
Z

u2

u1

du½
ffiffiffiffiffi
10

p
ðU3;1

_U2;2 − _U3;1U2;2Þ

− 2U2;0
_U3;3� þOðc−2Þ; ð4:21dÞ

ΔK5;5 ¼
1

1680
ffiffiffiffiffiffiffiffiffiffi
330π

p
Z

u2

u1

duðU3;3
_U2;2 − _U3;3U2;2Þ

þOðc−2Þ; ð4:21eÞ

for the l ¼ 5modes. We can then substitute the expressions
for the multipole moments in Eqs. (4.7) and (4.10) to find
that

ΔK3;1 ¼ i
6463

12600

ffiffiffiffiffi
π

21

r
Mδmη2x5=2e−iφjx2x1 þOðc−2Þ;

ð4:22aÞ

ΔK3;3 ¼ −i
647

22680

ffiffiffiffiffi
π

35

r
Mδmη2x5=2e−3iφjx2x1 þOðc−2Þ;

ð4:22bÞ

for the l ¼ 3 modes and

ΔK5;1 ¼ i
677

154350

ffiffiffiffiffiffiffiffi
π

330

r
Mδmη2x5=2e−iφjx2x1 þOðc−2Þ;

ð4:22cÞ

ΔK5;3 ¼ −i
11

198450

ffiffiffiffiffiffiffiffi
11π

35

r
Mδmη2x5=2e−3iφjx2x1 þOðc−2Þ;

ð4:22dÞ

ΔK5;5 ¼ i
1

875

ffiffiffiffiffi
π

77

r
Mδmη2x5=2e−5iφjx2x1 þOðc−2Þ;

ð4:22eÞ

for the l ¼ 5modes. We have used the notation x2 and x1 to
denote the values of the PN parameter at retarded times u2
and u1, respectively.

13 Note that unlike the leading-PN part
of the GW memory or the spin memory effects, the leading
nonlinear, null part of the CM memory effect appears in the
m ≠ 0 modes of the multipolar expansion of the effect
(specifically modes with odd m and l). While there are
higher-order PN corrections to the GW and the spin
memory effects that appear in the modes with nonzero
m, it is a distinctive feature of the CM memory that the
leading-order nonlinear, null CM memory effect appears in
modes with nonzero m. However, it is also not too
surprising, because the flux of CM angular momentum
for nonspinning, quasicircular compact binaries has no
m ¼ 0 mode (only m ¼ �1 modes).

2. Ordinary part of the CM memory

A second interesting difference between the GW
memory and spin memory effects and the CM memory

13Because x1 and x2 are related to the orbital frequency of the
binary at times u1 and u2, respectively, it is clear that the
spacetime is not stationary at either time (which breaks one of
the assumptions we made in deriving the CM memory effect).
Thus, the results presented in Eq. (4.22) should be taken as
suggestive of how the CM memory effect would grow with x, in
the PN context (namely, that it grows in amplitude like x5=2, like
the change in the CM angular momentum does). The full effect
will depend on the details of the merger of the compact binary
and would need to be computed by numerical relativity simu-
lations of merging compact objects.
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effect is the role of the ordinary part of the memory. In the
PN approximation for nonspinning, quasicircular compact
binaries, the nonlinear null GW memory appears at leading
Newtonian order in the waveform, whereas the ordinary
part of the memory is typically ignored, because it will
appear at a PN order that is much higher than that at which
the PN-expanded gravitational waveform has been com-
puted. For the spin memory, the ordinary part of the
memory is again of a very high PN order.
Let us now consider the ordinary part of the CMmemory

effect. It was shown in [16] that the change in the super-CM
charges is nonzero when there is GW memory. To linear
order in the GW memory, this change is given by

ΔKlm ¼ −
3M
16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

p
ΔΦlm; ð4:23Þ

where ΔΦlm are the moments of the scalar function ΔΦ in
Eq. (2.16) with respect to scalar spherical harmonics (recall
that ΔKlm was computed with respect to electric-parity
vector spherical harmonics). The leading GW memory
appears in the m ¼ 0 modes with l ¼ 2 and l ¼ 4, and the
values of the potential ΔΦlm are given, e.g., in [19].
Combining the results of [19] with the expressions in
Eqs. (3.16) and (4.23), we can then compute the leading-
PN-order prediction for the ordinary part of the CM
memory. The result is

ΔK2;0 ¼ −
M
168

ffiffiffi
5

π

r Z
u2

u1

duj _U2;2j2 þOðc−2Þ; ð4:24aÞ

ΔK4;0 ¼ −
M

453600
ffiffiffi
π

p
Z

u2

u1

duj _U2;2j2 þOðc−2Þ: ð4:24bÞ

We can then use Eqs. (4.9) and (4.10) to show that in terms
of the PN parameter x, Eq. (4.24) can be expressed as

ΔK2;0 ¼ −
ffiffiffiffiffiffi
5π

p

21
M2ηðx2 − x1Þ þOðc−2Þ; ð4:25aÞ

ΔK4;0 ¼ −
ffiffiffi
π

p
56700

M2ηðx2 − x1Þ þOðc−2Þ: ð4:25bÞ

Thus, the nonlinear null part of the CMmemory enters at
1.5 PN orders higher than the ordinary part of the CM
memory. Moreover, the ordinary part of the CM memory is
nonoscillatory (m ¼ 0) at leading order, whereas the null
part is oscillatory (m ≠ 0).
The reader might then wonder why we compute the

nonlinear null part of the CM memory, when it is weaker
than the ordinary part, for quasicircular, nonspinning
compact binaries. We do so because, for the CM memory,
it will be useful to understand which terms in the gravi-
tational waveform are responsible for generating the effect.
For the spin memory, there is an easily identifiable term in

the GW strain that produces the effect, when it is integrated
in time. It is also possible, in principle, to measure the terms
in the GWs that produce the spin memory effect with the
next generation of ground-based interferometers [19] (and
likely space-based interferometers, too). To see if the terms
in the GWs responsible for the CM memory effect might
also be measured, we must first identify the pertinent terms.
The nonlinear, null part of the CM memory turns out to be
the leading PN-order effect in the GW strain, as we discuss
in more detail in the next subsection.

D. GW modes that produce the CM memory effect

Because the CM memory observable ΔK is a potential
for a portion of the time integral of the electric-parity part of
the GW strain (with the terms that grow linearly with u in
nonradiative regions removed), then there must be terms in
the GWs that, when integrated in time, give rise to the CM
memory effect. Because the moments ΔKlm are the
spherical harmonic modes of the potential ΔK expanded
in scalar harmonics, whereas the radiative multipoles Ulm
correspond to an expansion of the GW strain in second-
rank, symmetric-trace-free tensor harmonics, there is the
following relationship between these quantities:

UðCMÞ
lm ¼ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s
_Klm: ð4:26Þ

We used the notation UðCMÞ
lm to denote just the part of Ulm

that is related to the CM memory (Ulm will generally have
other contributions) and _Klm to denote the quantity that
when integrated in time gives rise to ΔKlm.

1. Nonlinear and null part of the CM memory

We find that the nonlinear, null part of the CMmemory is
a consequence of terms in the gravitational waveform of the
form

UðCMÞ
3;1 ¼ 1

96
ffiffiffiffiffiffiffiffi
30π

p ½2
ffiffiffi
5

p
ðU3;3

_U2;−2 − _U3;3U2;−2Þ

þ 4
ffiffiffi
3

p
ðU3;−1 _U2;2 − _U3;−1U2;2Þ þ 3

ffiffiffi
2

p
U2;0

_U3;1�
þOðc−2Þ; ð4:27aÞ

UðCMÞ
3;3 ¼ 1

96
ffiffiffiffiffiffiffiffi
30π

p ½2
ffiffiffi
5

p
ðU3;1

_U2;2 − _U3;1U2;2Þ

− 5
ffiffiffi
2

p
U2;0

_U3;3� þOðc−2Þ; ð4:27bÞ

for the l ¼ 3 modes and
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UðCMÞ
5;1 ¼ 1
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ffiffiffiffiffiffiffiffiffiffi
165π

p ½ðU3;3
_U2;−2 − _U3;3U2;−2Þ

þ
ffiffiffiffiffi
15

p
ðU3;−1 _U2;2 − _U3;−1U2;2Þ − 3

ffiffiffiffiffi
10

p
U2;0

_U3;1�
þOðc−2Þ; ð4:27cÞ

UðCMÞ
5;3 ¼ 1

240
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1155π

p ½
ffiffiffiffiffi
10

p
ðU3;1

_U2;2 − _U3;1U2;2Þ

− 2U2;0
_U3;3� þOðc−2Þ; ð4:27dÞ

UðCMÞ
5;5 ¼ 1

120
ffiffiffiffiffiffiffiffiffiffi
154π

p ðU3;3
_U2;2 − _U3;3U2;2Þ þOðc−2Þ;

ð4:27eÞ

for the l ¼ 5 modes.
Instead of directly substituting the expressions for the

multipole moments given in Eqs. (4.7) and (4.10) into
Eq. IV D 1 to compute the analog of Eq. (4.27) for the

quantitiesUðCMÞ
lm , we note that for them ≠ 0modes, there is

the simple relationship

_Klm ¼ −i
m
M

x3=2ΔKlm ð4:28Þ

at the PN order at which we are calculating. By combining
Eqs. (4.22), (4.26), and (4.28), we can easily determine the

results for UðCMÞ
lm in terms of x. It follows that all the

moments scale as x4e−imφ, which means that they are 3PN
contributions to the gravitational waveform (for the l ¼ 3
modes they are relative 2.5PN-order corrections, and for the
l ¼ 5 modes, they are relative 1.5PN-order corrections).
Because the 3PN waveform from compact binaries has
been computed to this order [62], it is possible to compare

the expressions for UðCMÞ
lm with the equivalent modes in the

PN waveform. There are a few subtleties about making this
comparison that we will discuss further after computing the
terms in the GWs that produce the ordinary part of the CM
memory effect.

2. Ordinary part of the CM memory

Using Eq. (4.26) to convert the expressions for ΔKl;0 in

Eq. (2.24) into expressions for UðCMÞ
l;0 , we find that

UðCMÞ
2;0 ¼ −

M
84

ffiffiffiffiffi
15

π

r
j _U2;2j2 þOðc−2Þ; ð4:29aÞ

UðCMÞ
4;0 ¼ −

M
75600

ffiffiffi
5

π

r
j _U2;2j2 þOðc−2Þ: ð4:29bÞ

For these m ¼ 0 modes, they can be expressed in terms
of x as

UðCMÞ
2;0 ¼ −

128

7

ffiffiffiffiffi
π

15

r
Mη2x5 þOðc−2Þ; ð4:30aÞ

UðCMÞ
4;0 ¼ −

32

4725

ffiffiffi
π

5

r
Mη2x5 þOðc−2Þ: ð4:30bÞ

Because the UðCMÞ
l;0 modes scale as x5, then they are a 4PN

effect in the gravitational waveform. The gravitational
waveform at 4PN order has not yet been computed, which
prohibits us from making a comparison with existing PN
results. However, we anticipate that future PN calculations
will find evidence for such terms.

E. Comparison with existing PN results

Because the null part of the CM memory arises from a
3PN effect in the gravitational waveform, and because the
PN waveform has been computed to this accuracy, it would
be a useful consistency check of the CM memory effect to
identify certain terms in the PN expansion of the gravita-
tional waveform that are responsible for the CM memory
effect. We find that we can make such an identification
in a certain approximation, which we will describe in more
detail.
Before we do so, however, we must clarify a few

notational differences between the PN results given in,
e.g., [42] and those in this paper. The expressions for the PN
radiative (as well as canonical and source) multipole
moments in [42] are expressed in terms of symmetric-
trace-free, spatial, rank-l tensors UL and VL rather than the
multipole momentsUlm andVlm (which are scalar functions
of u). There are well-known prescriptions for converting
between the two types of moments, which are described in
[30] (or more recently in [63], for example). The relation-
ships for the radiative mass moments are given by

Ulm ¼ 16π

ð2lþ 1Þ!!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þðlþ 2Þ

2lðl − 1Þ

s
ULȲL

lm; ð4:31aÞ

UL ¼ l!
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðl − 1Þ

ðlþ 1Þðlþ 2Þ

s X
m

UlmYlm
L ; ð4:31bÞ

where Ylm
L are a set of basis functions for the rank-l,

symmetric-trace-free tensors [30], and the double factorial
means a product of all odd integers less than or equal to
(2lþ 1). Similar relationships exist for the current multi-
pole moments VL and Vlm, though we will not need them in
the subsequent discussion.
Having addressed the differences in notation, we must

identify the relevant terms in the PN waveform. Because
the CM memory effect comes from the integral of the
product of radiative moments, then the corresponding terms
in the PN waveform must be able to be expressed as an
instantaneous product of radiative moments (at the relevant
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PN order). Thus, the other effects at 3PN order in the
waveform (contributions from time derivatives of 3PN
accurate near-zone multipole moments, from components
of a gauge transformation needed to relate the near-zone
moments to the intermediate canonical moments, and from
tail and hereditary terms) will not be needed here. The
instantaneous and nonlinear terms in the 3PN-accurate
radiative moments, however, are expressed in terms of the
canonical moments. We now reproduce the expressions for
these parts of the l ¼ 3 and l ¼ 5 radiative moments, which
can be found, e.g., in Eqs. (95a) and (95e) of [42]:

UðINÞ
ijk ¼ −

4

3
Mð3Þ

ahiM
ð3Þ
jkia −

9

4
Mð4Þ

ahiM
ð2Þ
jkia þ

1

4
Mð2Þ

ahiM
ð4Þ
jkia

−
3

4
Mð5Þ

ahiM
ð1Þ
jkia þ

1

4
Mð1Þ

ahiM
ð5Þ
jkia þ

1

12
Mð6Þ

ahiMjkia

þ 1

4
MahiM

ð6Þ
jkia; ð4:32aÞ

UðINÞ
ijkpq ¼ −

710

21
Mð3Þ

hijM
ð3Þ
kpqi −

265

7
Mð4Þ

hijM
ð2Þ
kpqi

−
120

7
Mð2Þ

hijM
ð4Þ
kpqi −

155

7
Mð5Þ

hijM
ð1Þ
kpqi

−
41

7
Mð1Þ

hijM
ð5Þ
kpqi −

34

7
Mð6Þ

hijMkpqi −
14

7
MhijM

ð6Þ
kpqi:

ð4:32bÞ

The superscript “(IN)” is short for “instantaneous and
nonlinear,” the repeated index a is being summed over
in the first three lines, and the angled brackets mean to take
the symmetric trace-free part of the tensor.
It is not immediately obvious how to relate the products

of canonical moments that appear in Eq. (4.32) to the
products of radiative moments that appear in the GW
modes that produce the CM memory effect. The reason is
that the canonical moments that appear in Eq. (4.32) have
fewer than l derivatives with respect to time (where l is the
multipole order of the different canonical moments that
appear in the products of the moments). Thus, we cannot
directly use the analog of the relationships in Eq. (4.4) for
the rank-l symmetric-trace-free tensors to express the
radiative moments in terms of the canonical moments.
Instead, we would have to express these derivatives of the
canonical moments in terms of integrals of the radiative
moments by integrating an expression like Eq. (4.4).
In performing this procedure, we would need to introduce
new constants of integration, but we do not have a
prescription for determining the values of these constants.
Because the CM memory effect involves a time integral

of the GW strain, however, it is equally relevant to know
whether the time integral of the PN expressions
in Eq. (4.32) agree with the time integral of the modes
in Eqs. (4.27) [after using the relationships in Eq. (4.31)]. In
making this comparison, we can integrate by parts to obtain

an equivalent expression that involves a different linear
combination of derivatives of the canonical moments (and
boundary terms from integrating by parts). If the boundary
terms vanish, then the integrand is a new expression for the
relevant parts of the radiative moments that give rise to the
same CM memory effect.14

We will use this procedure of integrating in time,
integrating by parts, and differentiating the expression to
get a new PN expression for the instantaneous, nonlinear
terms. In this procedure, we will integrate by parts so that
we can write the result in terms of products of the radiative
moments and their derivatives (but not their integrals). This
will avoid issues with unknown constants of integration,
which were mentioned above. The result of this process is
that Eq. (4.32) can be written as

U 0ðINÞ
ijk ¼ 1

12
ðUahi _Ujkia − _UahiUjkiaÞ; ð4:33aÞ

U 0ðINÞ
ijkpq ¼

2

21
ðUhij _Ukpqi − _UhijUkpqiÞ: ð4:33bÞ

We have added an apostrophe to the modes U 0ðINÞ
L to

indicate that they were obtained from the expressions for

UðINÞ
L in Eq. (4.32) by integrating by parts and differ-

entiating the resulting expression [as well as using the
analog of Eq. (4.4) for the symmetric-trace-free tensors].
With the relationships in Eq. (4.31), we can then recover the
l ¼ 3 and l ¼ 5 modes given in Eq. (4.27), namely,

U0ðINÞ
3m ¼ UðCMÞ

3m ; U0ðINÞ
5m ¼ UðCMÞ

5m ; ð4:34Þ

for odd integersm. Therefore, there are terms in the already
computed 3PN waveform that give rise to the same CM
memory effect, under the prescription described above for
rewriting the instantaneous and nonlinear terms in the 3PN
waveform.

F. Discussion of PN results

Because the CM memory effect arises from 3PN and
4PN terms in the GWs from a compact binary, it is
of interest to determine whether these terms in the

14A subtle issue will be whether the boundary terms vanish.
This clearly will not be true if we consider the binary as it evolves
between two nonzero frequencies x1 and x2, but this will also
break the assumption of a stationary-to-stationary transition (as
was further discussed in footnote 13). Thus, we will consider the
full evolution of the binary as it makes a stationary-to-stationary
transition; this will eliminate the majority of the boundary terms.
However, there are some additional boundary terms that will not
vanish in stationary regions, which occur because of the GW
memory effect. These terms are of a sufficiently high PN order
that we will not need to treat them at the PN accuracy at which we
perform the calculation. As a result, we are able to ignore
boundary terms when integrating by parts when we make this
comparison.
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gravitational waveform could be detected by any current or
upcoming GW observatories. The GW memory could be
detected within the next decade after LIGO (as well as
Virgo and KAGRA) detects hundreds of binary-black-hole
mergers [64]. This is possible because the effect enters at
leading (Newtonian) order in the waveform, and it has a
distinctive dependence on time and on angular coordinates
(it is nonoscillatory, and enters into the m ¼ 0 and l ¼ 2, 4
modes of the gravitational waveform for nonspinning,
quasicircular compact binaries at leading order). The spin
memory effect also has distinctive time and angular
dependencies (it enters into the l ¼ 3, m ¼ 0 mode of
the time-integrated gravitational waveform for nonspin-
ning, quasicircular compact binaries at leading order);
however, the related terms in the GWs are of 2.5PN order
in the waveform. This means that it will likely be too weak
to be detected by the current generation of ground-based
detectors, but it could conceivably be observed by the next
generation of ground-based GW detectors, like the Einstein
Telescope [19].
The GW modes related to the CM memory effect seem

much more difficult to detect. For the nonlinear part, the
modes appear as a 3PN order term in the waveform.
Specifically, for the l ¼ 3 modes of nonspinning, quasi-
circular compact binaries, they are a 2.5PN-order correc-
tion to GW modes that vanish when the components of the
binary have the same mass (and thus are themselves a
correction to the leading quadrupole waveform). While the
small amplitude of the effect will make detecting it
challenging, there are two other properties of the PN
waveform that seem to prohibit being able to identify
the terms in the GWs that produce the nonlinear null part of
the CM memory effect. First, although we showed that

UðINÞ
lm can be reexpressed as U0ðINÞ

lm [or equivalently UðCMÞ
lm ]

for harmonics with l ¼ 3, 5 and m odd in a stationary-to-

stationary transition, outside of this context, UðINÞ
lm and

UðCMÞ
lm can be different. Second, at 3PN order, there are

additional terms that arise from nonlinear interactions in the
near zone of the compact binary that produce effects in the
gravitational waveform that have (at least at this PN order)
the same time dependence as those responsible for the CM
memory (but they would have a different dependence on
angular coordinates). The full gravitational waveform is a
sum of these different contributions, and it is not clear how
observationally to separate out the part related to the
nonlinear null CM memory effect from these other similar
effects from a given compact-binary source.
Next, we consider the ordinary part of the CM memory

effect. For nonspinning, quasicircular compact binaries, it
is a 4PN correction to the same GW multipole moments in
which the GW memory appears. While it is of a high PN
order, it has a different angular dependence (the ratio of
the l ¼ 2 and l ¼ 4 modes differs from that of the GW
memory). Perhaps more importantly, it also has a different

time dependence than the GW memory does. It grows with
time like the instantaneous flux of energy does, unlike the
GW memory, which grows with time as the total radiated
energy does.
We can roughly estimate whether these modes are

detectable by computing the signal-to-noise ratio of the
part of the GWs that produce the ordinary CM memory
effect. For our source, we choose a binary, like the first
GW150914 detection by LIGO [5], and for our detector, we
use the Einstein Telescope (specifically the analytical fit for
the ET-B noise curve given in [65]). An event like
GW150914 will likely be one of the loudest events to
be observed by the Einstein Telescope, because its signal-
to-noise ratio could be in the thousands [19]. Following a
procedure similar to that described in [19] to compute the
signal-to-noise ratio, we find that the GW modes that
produce the ordinary part of the CM memory effect have a
signal-to-noise ratio that is several orders of magnitude less
than unity. Thus, it is difficult to imagine that it will be
detected by ground-based GW detectors from individual
events. Attempting to stack multiple events to build
evidence for the CM memory also seems difficult, because
the amplitude of the effect in the GWs is significantly
smaller than the background noise in the detector. The
prospects for other detectors like the space-based LISA
mission [66] or pulsar timing arrays (e.g., [67]) we expect
will be similar.

V. CONCLUSIONS

In this paper, we investigated the flux of (super) angular
momentum in asymptotically flat spacetimes. We showed
that within the context of stationary-to-stationary transi-
tions the change in the (super) angular momentum between
two cuts is not invariant under supertranslations. The
difference produced by a supertranslation is related to
the change in supermomentum, the GW memory, and
the supertranslation itself. Next, we focused on the flux
of the center-of-mass part of the angular momentum.
We argued that the change in the (super) CM angular
momentum (although not invariant under supertranslations)
contains additional information about an isolated system
that is not contained in the change in the 4-momentum,
intrinsic (super) angular momentum, supermomentum, GW
memory, or spin memory. We then derived a new multi-
polar expression for the flux of CM angular momentum
in terms of a set of radiative multipole moments of the
GW strain.
The next part of the paper was devoted to defining the

CMmemory effect. The effect is related to the time integral
of the electric-parity part of the GW strain, with the part that
grows linearly with retarded time (from the ordinary GW
memory) removed. The quantity we defined is invariant
under infinitesimal supertranslations. We then derived an
expression for the multipole moments of this CM memory
effect in terms of the radiative multipoles of the GW strain
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and the multipole moments of the change in the super-CM
angular momentum.
The final part of the paper was devoted to analyzing

nonspinning, quasicircular compact binaries, which we
treated in the post-Newtonian approximation. We showed
that binaries with components with unequal masses will
typically have a nonzero flux of CM angular momentum.
The effect was quite weak (of a high PN order), because
with the freedom to shift the reference time about which the
flux is computed, it was possible to set the change in the
CM angular momentum to be zero through 2.5PN order
(which corresponds to a 6PN-order effect in the near-zone
equations of motion).
Lastly, we computed the CM memory effect for these

binaries, and we found that the ordinary part of the CM
memory was a larger (lower PN-order) effect than the
nonlinear null part of the memory. The opposite is true for
the GW memory and the spin memory effects. The non-
linear, null part of the CM memory arises from a 3PN term
in the GWs, which we could identify with a certain part of
the 3PN gravitational waveform from nonspinning, quasi-
circular compact binaries. The ordinary part of the CM
memory comes from a 4PN term in the GWs, which has not
yet been computed in PN theory. The null part of the CM
memory effect turned out to be degenerate with other
nonlinear terms in the PN waveform, which made it seem
difficult to identify and measure the effect with current or

future GW detectors. The ordinary part of the CM memory
is measurable in principle, but it was sufficiently weak that
it seemed unlikely that any upcoming GW interferometers
or a pulsar timing array would be able to observe the effect.
Thus, we suspect that the results in this paper will be more
pertinent for helping to understand the theoretical proper-
ties of the extended BMS charges than for highlighting
observable GW effects related to the changes in these
charges from compact binaries.
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