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A B S T R A C T

Social skills rely on a specific set of cognitive processes, raising the possibility that individual differences in
social networks are related to differences in specific brain structural and functional networks. Here, we tested
this hypothesis with multimodality neuroimaging. With diffusion MRI (DMRI), we showed that differences in
structural integrity of particular white matter (WM) tracts, including cingulum bundle, extreme capsule and
arcuate fasciculus were associated with an individual’s social network size (SNS). A voxel-based morphology
analysis demonstrated correlations between gray matter (GM) volume and SNS in limbic and temporal lobe
regions. These structural changes co-occured with functional network differences. As a function of SNS, dor-
somedial and dorsolateral prefrontal cortex showed altered resting-state functional connectivity with the default
mode network (DMN). Finally, we integrated these three complementary methods, interrogating the relationship
between social GM clusters and specific WM and resting-state networks (RSNs). Probabilistic tractography
seeded in these GM nodes utilized the SNS-related WM pathways. Further, the spatial and functional overlap
between the social GM clusters and the DMN was significantly closer than other control RSNs. These integrative
analyses provide convergent evidence of the role of specific circuits in SNS, likely supporting the adaptive
behavior necessary for success in extensive social environments.

1. Introduction

Humans are inherently social creatures. We have the ability not only
to tolerate conspecifics, but also to closely cooperate with them,
through behaviours thought to be distinctively human, including our
extended use of culture and language [1]. The advanced social abilities
of humans, and to a lesser extent of other primates, have been related to
the large increase in brain size in these species. The ratio of brain size to
body size between species correlates with the number of individuals in
social groups, a variable that indexes the social complexity of a species’
life [2,3]. Better social abilities may have helped primates deal with

predators and, when group sizes became larger, cooperate with con-
specifics.

Early lesion work in humans and monkeys emphasised the con-
tribution of the prefrontal cortex [4,5] and the anterior cingulate cortex
in particular [6,7] to social behaviour. Yet socio-cognitive capacities
can also be notably impaired when brain damage is diffuse or multi-
focal [8,9], or when multiple systems are affected, as happens in certain
psychiatric conditions [10,11] and neurodegenerative diseases [12].
This argues that more extensive brain networks are engaged in sup-
porting various aspects of social behaviour, a claim also supported by
converging network-level neuroimaging evidence [13,14] and human
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fMRI studies [15–18].
Taking advantages of advances in MRI analytics, which now provide

tools to study brain-behaviour relationships at the level of circuits and
networks, a series of macaque imaging studies investigated network-
level causal changes associated with increased socio-cognitive pressures
[19]. With the individual’s social network size (SNS; a summary in-
dicator of social abilities) under experimenter control, changes were
observed in gray matter (GM) and inter-regional functional coupling:
more GM volume in medial prefrontal cortex and connected regions
such as the amygdala and middle part of the superior temporal sulcus
(mSTS, [19]) was reported in animals living in larger social groups.
Further, functional coupling between the mSTS and the ACC [19], as
well as between the ACC and the Default Mode Network (DMN) [20]
varied as a function of SNS.

The present study set out to test predictions derived from the
findings in macaque monkeys [19,20] and identify networks with
comparative functional or structural homology in a healthy human
sample. Unlike previous work on the brain basis of social networks in
humans [21–27], here we sought converging evidence across multiple
imaging modalities, diffusion MRI (DMRI), structural, and resting-state
functional MRI (rsfMRI). The dependent and independent measures,
and analytical techniques we used were equivalent to those used in the
macaque work. We predicted that fronto-temporal WM, GM and func-
tional network differences would each relate to SNS in humans. We
then integrated across these methodologies, to find the consistent
structural and functional links that underlie brain network organisation
[e.g. 28]. We reasoned that effects that replicated across imaging
modalities would be the most compelling, and would be a useful step
towards a mechanistic understanding of the neural substrates of the
human social behaviour.

Specifically, the first analysis investigated structural WM differences
associated with SNS using DMRI. Next, we used voxel-based mor-
phology to define brain regions where GM volume correlated with SNS.
Given those results, and the key role of ACC in the macaque work on
SNS, dual regression analysis was then used to examine the functional
interactions between the ACC and the default mode network (DMN).
Lastly, we performed cross-modal validations by integrating these three
complementary imaging methods, to test whether these individual ob-
servations could be related in network terms, interrogating the re-
lationship between SNS-associated GM clusters and specific WM tracts,
and RSNs.

2. Materials and methods

2.1. Subjects

18 right-handed people (11 women) recruited from the Montreal
community participated in the present imaging experiment.
Participants had a mean age (and standard deviation) of 51.9 yr (15.3).
All had normal or corrected-to-normal vision and indicated no history
of psychiatric or neurological disease. All subjects scored within the
normal range on screening tests of cognitive ability (> 26 in the
Montreal Cognitive Assessment, a screening tool for mild cognitive
impairment in older people [29]) and depression (< 16 in the Beck
Depression Inventory (II)). All subjects gave informed consent to par-
ticipate in the investigation, which had been approved by the Research
Ethics Board of the Montreal Neurological Institute.

2.2. Social questionnaires

Information about social network size was obtained using a written
questionnaire. Following prior reports [21,30], participants were asked
to list the initials of every individual with whom they had personal
contact or communication over the previous 7 and 30 days. The in-
structions were: ‘In the spaces below, please list the INITIALS of ev-
eryone with whom you had some kind of social contact (a) during the

last 7 days and (b) during the rest of the last month (i.e. approx. 30
days). Contact means some form of interaction, including face-to-face,
phone call, email or text-messaging, or a letter. Please DO NOT IN-
CLUDE people whom you contacted for professional reasons (e.g. your
doctor, lawyer, hairdresser, priest, employer or supervisor, plumber or
DIY consultant etc.) UNLESS you considered that interaction to have
been of a mainly SOCIAL nature at the time. You can look at a list of
names in your phone/address book if this helps.’ These metrics have
been shown to scale up, serving as reliable indicators of the whole so-
cial network, conventionally defined as social contacts in the past year
[31].

2.3. Image acquisition

Participants lay supine in the scanner and cushions were used to
reduce head motion. All images were acquired on a 1.5T Siemens MR
scanner at the McConnell Brain Imaging Centre at the Montreal
Neurological Institute, McGill University. BOLD fMRI data were ac-
quired by using echo planar imaging (EPI) (36× 4mm thick axial slices
with a base resolution of 64mm, field of view 256× 256×144mm3,
giving a voxel size of 4× 4×4mm, repetition time=2.8s, 153 vo-
lumes, echo time=50ms, and flip angle= 90°). The EPI scanning se-
quence lasted 7min 20 s and subjects were instructed to keep their eyes
closed, think of nothing and not fall asleep. A T1-weighted anatomical
image was acquired for each subject (repetition time=2800ms, echo
time=4.12ms, and flip angle= 15°, giving a voxel size of
1×1×1mm). Diffusion MRI (DMRI) data were also acquired from 17
of the same subjects described above, with the same scanner. A tech-
nical issue meant it was not possible to collect the DMRI in the 18th
subject. DMRI data were acquired using echo planar imaging (75 slices,
2 mm thick axial slices; field of view, 256×256×150mm; giving a
voxel size of 2×2×2mm). Diffusion weighting was isotropically
distributed along 99 directions using a B value of 1000mm2. 10 vo-
lumes with no diffusion weighting were acquired throughout the ac-
quisition. The total scan time for the DMRI protocol was 20.21min.

2.4. Data analysis

Fig. 1 outlines the analyses, which aimed to build a convergent case
for the brain networks related to SNS. Separately, we first identified [1]
WM, [2] GM and [3] RSNs that differ as a function of SNS. Importantly,
we used the same design matrix to analyse the data from the three
imaging techniques, allowing the findings to be directly integrated in
the next step of the analysis where we investigated whether the results
obtained in the single modalities were indicative of changes within the
same neural networks. To this end, we took the GM clusters associated
with SNS as the starting point, and interrogated their relationships with
specific WM and RSNs. We seeded probabilistic tractography analyses
in these GM clusters and constrained the tracts to the WM tracts se-
parately associated with SNS. We also examined the spatial and func-
tional overlap between GM clusters and RSNs.

2.4.1. Preprocessing
Data were analyzed using tools from the FMRIB Software Library
(www.fmrib.ox.ac.uk/fsl). All structural and EPI images were con-

verted to NIFTI and skull stripped with BET; where appropriate this
stage was corrected by hand. All brain images are shown in the radi-
ological convention throughout the paper.

2.4.2. White matter correlates of SNS
DMRI data were preprocessed using tools from FDT (for FMRIB’s

Diffusion Toolbox; part of FSL 4.1). Eddy-current distortions were
corrected using affine registration of all volumes to a target volume
with no diffusion weighting.

For all subsequent analyses, tracts were identified on the basis of
their location, routes, and cortical projections areas as discussed in the
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human brain connectivity atlas of Catani and De Schotten [32], Nat-
BrainLab online catalogue (http://www.natbrainlab.co.uk/atlas-maps),
JHU White-Matter Tractography Atlas [33] and the atlases of white
matter tracing studies in the macaque of Schmahmann and Pandya
[34].

2.4.2.1. Tract based spatial statistics. As depicted in Fig. 1 (upper left
panel) we assessed correlations between WM integrity and SNS with the
FSL Tract-Based Spatial Statistics (TBSS) processing pipeline [35 http://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS]. Specifically, the preprocessed data
were subjected to DTIFIT, an analysis step which fits a diffusion tensor
model at each voxel in order to generate a 3D fractional anisotropy
image for each subject. This image was registered to the FMRIB58FA
standard brain before a study specific skeletonised FA template was
generated and thresholded at 0.2. All subjects’ skeletonized FA images
were concatenated and the resulting 4D image was subjected to voxel-
wise cross-subject statistics using non-parametric permutation testing
[36] with Randomise [37]. The GLM included factors of the demeaned
size of the social network as well as the confound regressors of age, sex
and number of years in education. These confound regressors account
for potential age-related atrophy, structural and functional differences
related to gender, and general intellectual abilities that may affect SNS.
All reported statistics were found to survive cluster correction for
multiple comparisons (p < 0.05) with threshold free cluster
enhancement methods [38].

While we acknowledge no formal interpretation of intra-cluster
features can be made from a cluster-level inference, we illustrate the
relationships between SNS and the mean FA value extracted from six
ROI sections taken from within the large significant cluster. The Matlab

Regstats function was used to calculate the residual mean FA effect size
from 20 contiguous voxels in each ROI section and SNS after controlling
for confounding effects of age, gender and number of years in educa-
tion. With reference to white matter atlases, six ROIs were chosen from
sections of tracts that were visually identified as right and left cingulum
bundle (CB, MNI: 10, 7, 33 and −7, 15, 28) and extreme capsule (EmC,
MNI: 33, 5, 5 and −34, −15, −3), right arcuate fasciculus (AF, MNI:
43, −38, 32) and corpus callosum (CC, MNI: 0, −2, 25).

To ensure results could not be explained by head motion or total
intracranial volume, the residual effect size, after these additional
confound regressors were accounted for, was correlated with SNS. To
examine reliability and determine if a single outlier was driving effects,
we performed a leave-one-out analysis using a jack-knife procedure. For
the size of the sample, we computed Pearson’s correlation coefficients
of the mean FA of the whole WM cluster while each subject was, in turn,
left out of the analysis.

2.4.2.2. White matter seeded tractography. The six sections illustrating
the FA SNS correlations were relatively unambiguously associated with
a particular WM tract. However, according to reference atlases, other
sections of FA effects could have been contiguous with the CB, EmC or
AF or could have reflected a number of alternative tracts including
middle or lateral longitudinal fasciculus (MLF, ILF). Therefore, to
confirm our visual identification of WM tracts we performed two
complimentary probabilistic tractography analyses seeded from the
TBSS effects.

First, in a targeted hypothesis driven analysis, the right hemisphere
ROI sections for the CB, AF and EmC described above were dilated
using fslmaths, registered to individual subject space and used as seed

Fig. 1. Schematic depicts the overall methodological
approach of the study. In the top panel, illustrated for
3 subjects, from left to right we analyzed DMRI,
structural and rsfMRI data. We related differences in
WM (purple-turquoise), GM (yellow) and functional
coupling within RSNs (blue), to individual measures
of SNS (mid panel). These techniques were integrated
as illustrated by the converging arrows on the lower
panel. We used WM tracts, where fractional aniso-
tropy covaried with SNS (dark blue) to constrain
probabilistic tractography analyses (turquoise)
seeded from social GM clusters (red, bottom left). We
also compared the spatial topography of RNSs (green)
with social GM clusters (red, bottom right). (For in-
terpretation of the references to colour in this figure
legend, the reader is referred to the web version of
this article).

M.P. Noonan et al. Behavioural Brain Research 355 (2018) 12–23

14

http://www.natbrainlab.co.uk/atlas-maps
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS


masks for probabilistic tractography. Voxel-wise estimates of the fiber
orientation distribution were calculated using Bedpostx, limited to es-
timating two fiber orientations at each voxel, because of the b value and
number of gradient orientations in the diffusion data [39 http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FDT]. Probabilistic tractography was run for
each subject, using a model accounting for multiple fiber orientations in
each voxel. Five thousand sample streamlines were seeded from each
voxel within each individual’s seed mask. The tractography algorithm
parameters used were a maximum of 2000 steps; step size of 0.5 mm
and a curvature threshold of 0.2. Each streamline followed local or-
ientations sampled from the posterior distribution given by BedpostX,
as described previously. In the first analysis a visitation map or trac-
togram was constructed for each individual while the second analysis
resulted in a subject-specific seed x mask tract matrix, but both re-
presented connectivity distribution from the seed mask. These con-
nectivity distribution values were log transformed, normalized by di-
viding by the maximum tracts identified for each subject, and
thresholded at 0.8 and binarised [40]. In doing so we sought only the
top 20% of tracts emanating from the seed mask. Finally, for visuali-
zation the tracts were summed across subjects, registered to MNI space
and are illustrated thresholded at more then 50% of subjects.

The second analysis used a novel data driven approach in which we
combined tractography with principle component analysis in order to
identify the dominant WM tracts that overlap with the whole FA WM
effects. Probabilistic tractography was seeded from all significant TBSS
voxels within MNI space (downsampled to 2mm). Voxels in the corpus
callosum, identified from the JHU White-Matter Tractography Atlas,
were excluded from the seed mask as tractography seeded from corpus
callosum regions dominate the subsequent principle component ana-
lysis. BedpostX, probabilistic tractography and thresholding parameters
were identical to those described for the first analysis. Connectivity was
quantified between each seed voxel and a whole brain target mask. The
resulting connectivity matrices (a 2D seed x target mask tractogram)
were concatenated across subjects and subjected to singular value de-
composition (SVD, Matlab). SVD identifies large-scale patterns of var-
iance in the population of subjects and seed masks. The positive and
negative contrasts from the top 20 components were then compared to
seven pre-defined WM tracts from the NatBrainLab catalogue. The WM
tracts selected were the Arcuate Fasciculus (AF), Cingulum Bundle (CB),
Fornix (Fx), Inferior Longitudinal Fasciculus (ILF), Inferior Fronto-oc-
cipital Fasciculus (IFOF), Optic Radiations (OR) and Uncinate
Fasciculus (UF). The distinction between the IFOF and EmC has been
questioned, so we refer to this tract in these analyses as EmC/IFOF. The
final step quantified the percentage of spatial overlap for each com-
ponent and each tract, comparing component coverage across all pre-
defined WM tracts in an across-component one-way ANOVA.

2.4.3. Gray matter correlates of SNS
We used Voxel-Based morphometry [41 http://fsl.fmrib.ox.ac.uk/

fsl/fslviki/FSLVBM] to identify areas of GM where volume correlated
with SNS (upper centre panel of Fig. 1). The skull stripped T1-weighted
structural images were individually segmented into gray matter (GM),
WM and cerebral spinal fluid (CSF) before being affine-registered to the
GM ICBM-152 template using FLIRT [42] followed by nonlinear regis-
tration using FMRIB’s Nonlinear Image Registration Tool (FNIRT) [43].
The resulting images were averaged to create a study specific template
to which the native GM images were then non-linearly re-registered and
concatenated into a 4D image. The registered partial volume images
were then modulated (to correct for local expansion or contraction) by
dividing by the Jacobian of the warp field. The modulated segmented
images were then smoothed with an isotropic Gaussian kernel with a
sigma of 4mm.

The resulting Jacobian 4D image was then used within a GLM
analysis which included factors of the size of the social network, sex,
age and number of years in education, which was implemented using
permutation-based non-parametric testing with Randomise (n=5000).

First, we report only regions that bilaterally survive. This approach was
proposed by the originators of MRI voxel-based GM analyses [44], as
cluster corrected measures can be more prone to Type II errors (false
negatives) [45]. The approach of finding similar effects in bilaterally
symmetrical structures was used in some of the earliest human GM
analyses by some of these investigators [46], as well as in recent work
[47,48]. The bilaterality premise rests on the assumption that if a given
statistical effect had a chance of occurrence of p≤ 0.01 in one brain
area under the null hypothesis, then it has the chance of occurring in
the same area in both hemispheres with the square of this probability
(i.e., p≤ 0.0001) [49]. This method was implemented by thresholding
and binarising the uncorrected p-map image at p≤ 0.01, flipping the p-
map image along the x dimension and multiplying the two images. We
applied a spatial extent threshold of> 40 voxels (each voxel being
2mm3, therefore spatial extent exceeded 320mm3). Second, in addition
to the whole brain approach, we also adopted a hypothesis-driven ROI
approach. We examine effects in predefined ROIs using a threshold of
p < 0.05 and correction for multiple comparisons across all voxels in
the ROI. As noted above, there are a priori reasons for thinking that SNS
may be associated with the ACC. The clusters reported by Sallet, Mars
[19] and Mars, Neubert [20] as structurally and functionally varying
with macaque SNS fall within monkey areas 24ab and area 32. We
therefore used the human structural homologues of these regions, de-
fined by Neubert et al [50] as our ROI (See Neubert’s Cingulate Orbito-
frontal Parcellation http://www.rbmars.dds.nl/CBPatlases.htm). First,
we calculated the centre of gravity from a combined mask of bilateral
areas 24ab and 32. We then placed a mask with a radius of 7.5 voxels at
these coordinates. Non-GM and non-cingulate voxels were removed.
Finally, as the resulting ROI sphere crossed the hemisphere, it was di-
vided along the mid-sagittal section into two lateralized hemisphere
ROIs (each ∼8960mm3).

For illustrative purposes, we show the relationships between SNS
and the mean GM effect size extracted from a 64mm3 ROI placed at the
centres of gravity of the regions identified as having a significant re-
lationship with SNS. The Matlab Regstats function was used to calculate
the residual deformation based morphology effect size and SNS after
controlling for confounding effects of age, gender and number of years
in education. In a separate analysis, head motion and total intracranial
volume were also include as confound regressors. Again these effects
were validated using a leave-one-out analysis jack-knife procedure.

2.4.4. Resting state functional connectivity correlates of SNS
Each subject’s individual functional EPI data were first preprocessed

using Multivariate Exploratory Linear Optimized Decomposition into
Independent Components (MELODIC). Components that were clearly
caused by head motion or spikes were removed.

Resting state functional connectivity was assessed using the Dual
Regression technique [51 http://fsl.fmrib.ox.ac.uk/fsl/fslwki/
DualRegression]. This three-step method allows for voxel-wise com-
parisons of resting functional connectivity. First, all subjects’ denoised
rsfMRI data is collectively motion corrected, spatially smoothed (using
a Gaussian kernel of full-width at halfmaximum (FWHM) of 6mm) and
high-pass temporally filtered to 150 s (0.007 Hz). Individual fMRI vo-
lumes were registered to the individual’s structural scan and standard
space images using FNIRT. Preprocessed functional data containing 154
time points for each subject were temporally concatenated across sub-
jects to create a single group 4D FMRI data set. This concatenated group
data set is then decomposed using independent component analysis
(ICA). ICA is used to identify large-scale patterns of functional con-
nectivity in the population of subjects. In this analysis, the data set was
decomposed into 25 components, in which the model order was esti-
mated using the Laplace approximation to the Bayesian evidence for a
probabilistic principal component model. We can select specific RSNs,
defined by ICA, by spatial correlation against a set of previously defined
networks. Based on previous work [20] we focused on the Default Mode
Network (DMN) which here decomposed into an anterior (aDMN) and
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posterior (pDMN) component. We also used three other RSNs as control
networks: sensory-motor and left, and right, dorsal attention stream.
For these control RSNs, we predicted no changes in intra-network
coupling as a function of SNS.

The second step uses the dual-regression approach to identify,
within each subject’s fMRI data set, subject-specific temporal dynamics
and associated DMN spatial maps. This involves (i) using the full set of
group-ICA spatial maps in a linear model fit (spatial regression) against
the separate fMRI data sets, resulting in matrices describing temporal
dynamics for each component and subject, and (ii) using these time-
course matrices in a linear model fit (temporal regression) against the
associated fMRI data set to estimate subject-specific spatial maps. The
third and final step concatenates the DMN component map across
subjects into single 4D files (1 per original ICA map, with the fourth
dimension being subject identification) and uses non-parametric per-
mutation testing (Randomise n= 5000, with cluster-based thresholding
c=3.1, significance p < 0.05) to examine voxel-wise statistically
significant between-subject differences [36] and results in spatial maps
characterizing the between-subject differences. The GLM included fac-
tors of the size of the social network as well as the confound regressors
of age, sex and number of years in education. While no cluster survives
correction for multiple comparisons at the whole brain level, based on
our a priori hypotheses concerning the contribution of the prefrontal
cortex to the DMN we corrected for multiple comparisons within two
small volumes of interest. These ROIs were [1] anatomical masks based
on the centre of gravity of areas 24ab and area 32 (same as VBM
analysis) and [2] the thresholded (p < 0.05, clusters greater than 100
voxels) group-ICA DMN component (aDMN 203,328 mm3 and pDMN
123,712mm3). For the control RSNs, we performed the equivalent
small volume correction over the thresholded group-ICA network
(sensory-motor ROI=142,016mm3, left dorsal attention stream
ROI=205,312mm3, right dorsal attention stream
ROI=246,272mm3). In a control analysis, we confirmed GM partial
volume effects did not drive the Dual Regression results by including
the 4D jacobian image file as a voxel-dependent EV in the FSL GLM
design matrix, akin to biological parametric mapping [52,53].

For illustrative purposes in scatter plots, we show the relationships
between SNS and the mean z-value of the individual’s dual regression
component maps extracted from 64mm3 ROIs encapsulating the sig-
nificant clusters (p < 0.05). The Matlab Regstats function was used to
calculate the residual resting state effect size and SNS after controlling
for confounding effects of age, gender and number of years in educa-
tion. In a separate analysis, head motion and total intracranial volume
were also include as confound regressors. Further, we performed a
leave-one-out analysis with a jack-knife procedure.

2.4.5. Network connections
In two final analyses, we integrated across the imaging methodol-

ogies to relate the individual findings to each other, within an overall
network framework. We tested whether GM regions identified by the
VBM analysis as larger in more social individuals are associated with
the structural and functional networks identified by TBSS and Dual
Regression, themselves also different in subjects with larger social
groups.

2.4.5.1. Gray matter seeded tractography. To assess connectivity
between the gray and white matter structures identified in the single
modality analyses, we seeded five tractography analyses in each of the
clusters where GM volume correlated with SNS was identified in the
VBM analysis. Using the same tractography protocol described above, a
single waypoint image was made by dilating the significant TBSS
clusters (any voxel surviving p < 0.05, corrected for multiple
comparisons; Fig. 2). Analogous to the analyses described above, each
individual’s tractogram was log transformed, normalized, thresholded
at 0.8, binarised and registered to MNI space. Again, to identify the
resulting tracts we calculated the percentage of spatial overlap for each

subject’s seed-specific tractogram and 7 NatBrainLab WM tracts. We
compared coverage in a 5 (GM cluster; lATC, rATC, PCC/PreC, ACC,
vmPFC)× 7 (Tracts; AF, CB, Fx, ILF, IFOF, OR and UF) repeated
measures ANOVA. To perform follow-up comparisons for each tract we
averaged the percentage overlap across GM clusters and compared
across tracts with paired-samples t-tests.

We also quantified the structural connectivity between each VBM
cluster (Fig. 1, lower left panel). The same protocol was used as de-
scribed directly above but now in each analysis the four non-seed re-
gions acted as classification targets and again pathways were con-
strained to the TBSS cluster effects. Probtrackx quantifies the
connectivity values between the GM seed mask and the GM target
mask, with the tracts only counted if they pass through the WM way-
points. The value of each voxel within the seed mask is the number of
samples seeded from that voxel reaching the relevant target mask. We
calculated the median connectivity values across voxels for each subject
and normalised by the product of the size of the seed and target mask.
For each GM cluster seed we then averaged each of the five seed-target
analyses (eg seed [ACC]-to-targets [(rATC+ lATC+PCC+vmPFC)/
4]). A one-way repeated measures ANOVA across seed regions and post
hoc t-tests isolated regions with greater connectivity within the net-
work.

2.4.5.2. Gray matter relationship with resting state networks. We
examined the structural and functional relationship between GM
differences and RSNs. First, we calculated the percentage of voxel-
wise spatial overlap between the five group-level social GM clusters and
each individual subject’s DMN components, normalized by the total size
of the component. We also calculated this measure for control RSNs that
we hypothesized would be less involved in social cognition (sensory-
motor and the right and left dorsal attention streams). We compared the
results in a one-way repeated measures ANOVA with 5 levels of RSNs
and follow-up post-hoc t-tests.

Second, we examined the degree of functional correlation between
the VBM clusters and ICA components. For each subject, we extracted
the raw resting-state time courses from five ROIs based on the co-
ordinates of the centre of gravity of the GM clusters (spherical masks
radius= 3). For each subject, we regressed the timecourses of each
RSN, as well as the whole brain time series, against each mask. The
RSNs compete to explain the variance in the GM cluster ROI time
course. Beta values are compared in a 5 (GM cluster; lATC, rATC, PCC/
PreC, lACC, vmPFC)×5 (RNS; SM, rDAS, aDMN, lDAS, pDMN) re-
peated measures ANOVA. Post-hoc follow up one-sample and paired t
tests were run on the averaged beta values across all GM clusters i.e. the
variance explained by each RNS time series, averaged across all GM
clusters.

3. Results

3.1. Social network size correlates with FA in specific fronto-temporal white
matter tracts

We first investigated whether there is a relationship between SNS
and the structural WM connections between cortical areas. Medial
frontal and temporal cortex are associated with SNS [19,20]. We
therefore hypothesized that the integrity of fronto-temporal white
matter tracts connecting these regions would be greater in individuals’
with larger SNS. Using tract-based spatial statistics, we tested whether
functional anisotropy (FA) of WM voxels was predicted by SNS across
subjects. SNS was calculated as the number of individuals with whom
the subject had some form of social contact in the last 30 days [cf. 54],
an established index known to correlate with total SNS [31]. We also
performed probabilistic tractography from these voxels to identify the
larger tracts to which they belong.

A large cluster-corrected swath of white matter, encompassing
several WM tracts known to connect temporal and frontal cortical areas,
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showed a positive correlation between FA and SNS. Within this con-
tiguous cluster, four anatomically specific WM pathways were clearly
identifiable. Fig. 2A(1–6) illustrates the relationship between individual
SNS and FA in different probe sections taken from the larger cluster.
Tractography seeded from the probe section allows visualization of the
full tract to support identification (Fig. 2B). Seeding tractography from
the right hemisphere of the two CB sections (Fig. 2A(1,2)) confirms this
tract running medially anterior-posterior through the brain. The CB
connects, among others, the ACC and posterior cingulate cortex
[55,56]. The posterior portion of the WM cluster (Fig. 2A(5)) is likely to
belong to a curving tract connecting parts of the posterior cortex with
frontal cortical areas. Based on the morphometry and projection areas
of this tract, we attribute this part of the WM to the AF (Fig. 2B).
Tractography seeded from the right hemisphere section of WM along
the temporal extent of the cluster, continuing into the medial part of the
frontal cortex (Fig. 2A (3,4)), demonstrates a tract identified by different
authors using different nomenclatures (Fig. 2B). The NatBrainLab and
De Schotten and colleagues [32] refer to it as the inferior fronto-occi-
pital fascicle (IFOF), but Pandya and colleagues [34,57] have argued
that this tract should be referred to as the extreme capsule (EmC).

Apart from the connections between temporal and frontal cortex,
correlation with SNS was also observed throughout the corpus callosum
(Fig. 2(6)). These effects appear not to be specific to anatomically de-
fined DTI tract-based parcellations [58]. We direct readers to http://
datasharedrive.blogspot.co.uk/2015/05/brain-networks-for-social-

networks.html to view the complete statistical image from this analysis.
Importantly, the TBSS effects were not driven by a single outlier sub-
ject. A leave-one-out analysis of the mean FA across the whole WM
cluster showed the results were robust, with all correlations remaining
significant after the removal of any single subject (0.86 < r < 0.93).
Further, the effects cannot be explained by head movement or total
intracranial volume, with the cluster remaining significantly correlated
with SNS after the variance explained by these confound regressors was
removed (FD r=0.94, p < 0.0001, 0.89, TIV p < 0.0001).

We confirmed our interpretation of the WM effects with a data-
driven analysis that combined probabilistic tractography and principal
component analysis. This analysis aims to identify the dominant WM
tracts that overlap with the whole FA WM effects. For each subject,
probablistic tractography was seeded from each voxel where FA was
positively correlated with SNS and estimated connectivity values to any
other brain voxel. The resulting connectivity matrixes were con-
catenated across subjects and single vector decomposition analysis used
principles of dimensionality reduction to identify the tracts that explain
most variance in the connectivity matrixes. We isolated the top 20 of
these components (each with a positive and negative contrast) and
show the percentage of spatial overlap between these components and
seven independently pre-defined WM tracts from the NatBrainLab
(Fig. 2C). Complementing our visual inspection of the TBSS effects, the
components overlap most with AF, CB and EmC/IFOF. This analysis
also identified the ILF. While the EmC/IFOF and the ILF tracts defined

Fig. 2. [A] TBSS results showing fiber pathways (purple-turquoise colors tfce corrected p < 0.05) in which FA correlates with SNS. For illustrative purposes we show the relationships
between residual SNS and the mean FA value extracted from ROIs masks positioned in identifiable white matter tracts. [B] Tractography results from 3 probablistic tractography
investigations seeded in the subsections of white matter identified in A; [1] right cingulum bundle, [3] right extreme capsule and [5] right arcute fasciculus. Visual thresholds set ≥9–17
subjects. Intensity from turquoise to purple represents number of subject’s with overlapping tracts. Images are in radiological convention. [C] Percentage overlap between components
from the tractography decomposition analysis and published WM tracts from the NatBrainLab. Bar plot shows mean percentage overlap and between component standard error.
Abbreviations: CB cingulum bundle, EmC/lFOF extreme capsule / inferior fronto-occipital fasciculus, AF arcute fasciculus, CC corpus callosum, Fx fornix, ILF inferior longitudinal
fasciculus, OR optic radiations, UF uncinate fasciculus. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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by NatBrainLab share common space, it is clear that the components
overlap with independent WM in both tracts.

Differences in percentage overlap between components and pre-
defined WM tracts were analysed in a one way ANOVA of the mean
percentage overlap across all components, revealing a main effect of
Tract (F6,234= 27.10, p < 0.001). Follow-up paired comparisons sug-
gest that the tracts dominating the PCA analysis, AF, CB, EmC/IFOF and
ILF, fail to do so differentially (AF vs CB: t39= 1.02, p= 0.316, AF vs
ILF: t39=−0.194, p= 0.848, AF vs EmC/IFOF: t39= 1.58, p= 0.122,
CB vs ILF: t39=−0.72, p= 0.478, CB vs EmC/IFOF: t39 = 0.31,
p=0.757). All other comparisons are significant (t > 4.36).

3.2. Human social network size correlates positively with regions implicated
in social behaviour

The previous analysis suggested that a specific network of WM
known to connect frontal and temporal cortex has higher integrity in
subjects with larger social networks. Explicitly motivated by prior work
in the macaque [19], we next performed a voxel based morphology
(VBM) analysis to identify this GM network in this sample and in-
vestigate whether differences in local GM volume are similarly asso-
ciated with SNS. Seeking areas that were present in both hemispheres,
across the bilateral and ROI approach, we identified four regions that
showed a positive correlation with the size of an individual’s social
network (Fig. 3). Subcallosal parts of the ventromedial prefrontal cortex
(vmPFC) including cingulate gyrus and extending to the septum,
anterior temporal cortex (ATC, composing the amygdaloid complex/

temporal pole), and the border of posterior cingulate cortex and pre-
cuneus (PCC/PreC) were evident in both hemispheres (p≤ 0.0001,
bilateral uncorrected, cluster extent> 500mm3).

An ROI-based analysis grounded in a priori predictions of the in-
volvement of the ACC in sociocognitive behaviour [19] revealed a lo-
calised cluster in the left ACC that survived small volume correction
(SVC) for multiple comparisons (p < 0.05). A right hemisphere ACC
cluster was also identifiable, offset posteriorly by 14mm, but did not
survive cluster correction (p=0.15, cluster extent= 128mm3, MNI 8
28 22). See Table 1 details full MNI coordinates and cluster extents and
http://datasharedrive.blogspot.co.uk/2015/05/brain-networks-for-
social-networks.html to view the complete uncorrected statistical image
from this analysis.

Again, a leave-one-out analysis on the GM effect for the six clusters
showed that these effects were not driven by a single outlier subject

Fig. 3. Linear positive correlations between gray
matter volume and social network size. Prominent
effects are evident in regions involved in social cog-
nition, mentalising and face processing. These include
vmPFC, anterior temporal cortex and PCC/precuneus
(red p < 0.0001, bilateral uncorrected, cluster ex-
tent> 500 mm3) and the ACC (SVC, p < 0.05).
Images in radiological convention. Mean gray matter
from an ROI (64mm3) placed at the centre of gravity
of clusters is extracted for each subject. This approach
is used even when the gray matter cluster crosses the
hemispheric boundary. For illustration, dark red p-
map illustrates non-lateralised effects p < 0.01 un-
corrected, cluster extent> 800mm3). Scatter plots
illustrate the residual gray matter effects against the
residual of SNS, accounting for age, gender and years
of education. Abbreviations: ATC anterior temporal
cortex, PPC/PreC posterior parietal cortex / pre-
cuneus, ACC, anterior cingulate cortex, vmPFC ven-
tromedial prefrontal cortex. (For interpretation of the
references to colour in this figure legend, the reader is
referred to the web version of this article).

Table 1
MNI centre of gravity coordinates and cluster extent of gray matter volume significantly
correlated with SNS in humans.

Number of significant
voxels (2 mm3)

X Y Z Region

49 0 −58 22 Bilateral Posterior Cingulate/
PreCuneus

47 0 10 −8 Bilateral ventromedial PFC
82 26 2 −26 Right Anterior temporal cortex
82 −26 2 −26 Left Anterior temporal cortex
42 −10 42 22 Left Anterior cingulate cortex
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(0.5 < r < 0.76). Further, the results were robust to head movement
or total intracranial volume, with the effects remaining significant after
removal of the variance explained by these confound regressors (all FD
0.59 < r< 0.69, 0.002 < p < 0.0094, TIV 0.5678 < r < 0.6682,
0.002n< p < 0.014).

3.3. Social network size modulates the functional coupling of dorsolateral
and dorsomedial frontal cortex with the frontal component of the default
mode network

The previous results suggest that SNS is related to variation in
specific GM and WM structures, within an interconnected fronto-tem-
poral and subcortical network in humans. However these methods
cannot tell us whether these structural changes co-occur with functional
differences within the network. We therefore complement these results
by using rsfMRI to test whether the functional interactions between brain
areas are also related to SNS. Using dual regression, we tested the
functional contribution of brain regions to large distributed cortical
networks [20,51].

Again motivated by previous work in the macaque [20], we focused
on default mode network, a prominent resting state network, argued to
reflect the default mode of social animals’ brain function, i.e. that of
coordinating behaviour within a social context, a function more in
demand in larger social networks [59]. Notably, there is substantial
overlap between the DMN and the pattern of brain activity observed
during tasks that tap into aspects of social cognition [20]. In macaques,
the ACC is more functionally coupled with the (DMN) in animals living
in larger social groups. We therefore tested whether the ACC was also
coupled with the DMN in humans as a function of SNS.

As in other work [60,61], here, ICA isolated the DMN as two in-
dependent components. We focused on the anterior component of the
DMN (aDMN) which consisted of ventromedial prefrontal, cingulate
cortex (mid and posterior), temporal pole, dorsolateral prefrontal
cortex (dlPFC), striatum, thalamus, and hippocampus. Constraining the
analysis to the aDMN component, an exploratory analysis identified the
rostral dlPFC (Fig. 4; MNI coordinates of centre of gravity 26, 58, 34),
bordering area 46 and 9 [62], as having significantly greater aDMN
coupling as a function of SNS (small volume cluster-based thresholding
corrected for multiple comparisons across the DMN component, with
cluster-based thresholding c=3.1, p < 0.05). By contrast, the
equivalent analysis performed in control RSNs, or the pDMN failed to
reach corrected significance (p > 0.05). Neither the sensory-motor,
nor left or right dorsal attention stream contained regions for which
coupling with the RSN varied as a function of SNS.

Given the importance of the anterior dorsomedial frontal cortex as a
node of the DMN [63] and as an area involved in social cognition [64],
further supported by the present VBM analyses, we investigated whe-
ther functional coupling between ACC and the DMN varied with SNS.
This was borne out with a small volume correction, using an anato-
mically derived ROI of areas 24a+ b and 32, which revealed a small
left lateralised ACC cluster (SVC, with cluster-based thresholding
c=3.1, p < 0.05, MNI 10 40 18 Fig. 4). The equivalent ROI in the
right hemisphere revealed a complimentary ACC cluster which failed to
cluster correct over spatial extent (peak p= 0.318, MNI −2 26 24).
Collectively, this analysis dovetails with previous work in monkeys
showing that the ACC is increasingly recruited into the DMN when
animals live in larger groups [20].

Dual regression effects were not driven by the observed differences
in GM volume; they remained robustly equivalent after each subject’s
GM jacobian value, at each voxel, was included in the permutation
analysis as an additional voxel-dependent confound regressor. The ef-
fects were also not driven by outliers. A leave-one-out analysis on the
two clusters validated our effects with all correlations remaining sig-
nificant (0.6 < r < 0.83). Finally, variance in total intracranial vo-
lume could not explain the effects as relationships remained significant
when individuals’ intracranial volume was accounted for (rACC

r=0.76, p = 0.0002, ldlPFC r=0.640, p=0.004). Note that head
movements were removed during fMRI pre-processing.

3.4. Integrating gray matter differences correlating with SNS with structural
and functional networks

The analyses so far provide evidence for GM, WM and RSNs dif-
ferences related to SNS. We next asked whether these findings were
related. We tested whether the observed WM subregions, varying with
SNS, form part of the pathways between the observed GM structures
also varying with SNS. Each GM cluster identified by the VBM analysis
(Fig. 3) was used as a seed in separate probabilistic tractography ana-
lyses. We constrained the tractography analysis to include only tracts
that coursed through the TBSS effects Fig. 2A and calculated the per-
centage of spatial overlap between these GM cluster seeded tractograms
and the predefined WM tracts from the NatBrainLab. Consistent with
the tractography seeded directly from the WM sections (Fig. 2B), trac-
tography seeded from the GM clusters in lACC, PCC/PreC and vmPFC
all had pathways that heavily utilized the CB (Fig. 5A ). Tractography
seeded in the lATC and rATC coursed through the ILF and EmC/IFOF.
The UF and ORs were also utilised by samples emanating from the ATC.
A 7 (Tract) x 5 (GM cluster) repeated measures ANOVA confirms the
degree of overlap varies across the predefined WM tracts (Tract:
F6,96= 181.93, p < 0.001), with some GM clusters, more than others,
utilizing a distributed set of tracts (GM cluster: F4,64= 12.13,
p < 0.001). The significant interaction in the analysis (F24,384= 50.01,
p < 0.001) can be interpreted with post hoc comparisons showing the
mean percentage overlap across all GM clusters (black line) differs
significantly between all tracts (17.34 > t16 > 2.49, p < 0.024 with
the exception between the UF and OR), suggesting that all GM clusters
utilise the CB more than any other tract.

We then assessed the prominence of each GM node within the
network. As a follow-up to the above probabilistic tractography ana-
lysis, the four non-seed regions now also acted as targets. The median
number of samples connecting the seed and target was estimated for
each subject. For each seeded tractography, this connectivity score was
then averaged across all targets. Fig. 5B represents this global con-
nectivity score from each seed to every target (e.g. ACC to
(rATC+ lATC+PCC+vmPFC)/4), averaged across subjects. A one-
way repeated measures ANOVA showed a significant difference among
the sample hit rates issued from the different seeds (F4,64= 4.96,
p=0.031). Post hoc tests confirmed that the number of samples that
successfully connected with one or other of the targets issued from ACC
was significantly greater than from the ATC (ACC vs lATC: t16= 2.45,
p=0.026, ACC vs rATC: t16= 2.44, p=0.027). To note, one subject’s
samples emanating from ACC was greater than 3 standard deviations
from the mean. When this subject is removed from the analyses, all
between-seed post hoc comparisons are significant (ACC vs PCC:
t15= 2.24, p=0.041, ACC vs vmPFC: t15= 2.34, p= 0.034). This
analysis contributes evidence that the ACC acts as a hub within the
social brain.

Finally, we examined the structural and functional overlap of the
VBM SNS effects and the DMN (Fig. 4 green cluster). First, we calcu-
lated percentage spatial overlap between the five social GM clusters and
each individual’s aDMN, pDMN and three control RSNs (SM, rDAS and
lDAS), normalised by component size (Fig. 5C). There were significant
differences between overlap extent across the five RSNs (F4,68= 15.7,
p < 0.001). Crucially, the GM overlap is significantly greater with the
aDMN than any other control network (all t17 > 4.94, p < 0.001).

Second, for each subject we independently regressed the raw
resting-state timecourses from the five social GM clusters against the
timecourses of our RSN (aDMN, pDMN, SM, rDAS, lDAS). As the RSNs
compete to explain the variance in the VBM ROI timecourse we can
directly compare the beta in a 5 (GM cluster) x 5 (RNS) repeated
measures ANOVA (Fig. 5D). The variance explained by each RSN differs
across and between GM clusters (GM cluster: F4,68= 18.74, p < 0.001,
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RSN: F4,68= 21.53 p < 0.001, Interaction: F16,272= 14.34,
p < 0.001). Post-hoc follow up statistics on the GM cluster average
beta values suggest that only SM (t17= 2.39, p=0.047), aDMN
(t17= 11.26, p < 0.001) and pDMN (t17= 5.32, p < 0.001) explain
significant variance in the GM clusters’ timeseries. Further we show

that the functional connectivity between social GM areas and the aDMN
is significantly greater than the other RSNs with the aDMN time series
explaining significantly more variance than all other RSN (all
t17 > 4.28, p≤ 0.001).

Fig. 4. Dual regression results showing regions (blue, SVC p < 0.05)
that are increasingly recruited into the aDMN (green) when subjects
report larger social networks. VBM results are shown on slices for re-
ference (red). Scatter plots illustrate the residual effect sizes against the
residual of SNS taken from ROIs (64mm3) placed at the centre of
gravity of significant clusters, after accounting for age, gender and
years of education. Images are in radiological convention.
Abbreviations: dlPFC dorsolateral prefrontal cortex, ACC anterior cin-
gulate cortex, ATC anterior temporal cortex. (For interpretation of the
references to colour in this figure legend, the reader is referred to the
web version of this article).

Fig. 5. Network integration analyses. [A] Mean per-
centage overlap for each GM cluster seeded tracto-
grams (grey-purple) and published WM tracts from
the NatBrainLab. Black line plot shows mean per-
centage overlap over all three GM cluster seeded
tractograms and between tractogram standard error.
[B] Probabilistic tractography seeded in GM nodes
with TBSS effects acting as waypoints and each non-
seed defined as classification targets. Bar plot shows
number of samples seeded from the GM cluster seeds
reaching any target mask in the network. Subject’s
median samples scores are normalised by the product
of the size of the Seed and Target masks, then for each
seed, averaged over targets and subjects [C] Mean
percentage overlap between all GM clusters and each
RSN. [D] Mean beta values expressing variance in the
rsfMRI timeseries extracted from each GM cluster
explained by each RSN timeseries. Black bars re-
presents mean beta across the five GM clusters, and
standard error averaged across GM clusters, for each
RNS. Abbreviations: AF arcute fasciculus, CB cin-
gulum bundle, Fx fornix, ILF inferior longitudinal
fasciculus, EmC/lFOF extreme capsule / inferior
fronto-occipital fasciculus, OR optic radiations, UF
uncinate fasciculus, ATC anterior temporal cortex,
PPC/PreC posterior parietal cortex / precuneus, ACC,
anterior cingulate cortex, vmPFC ventromedial pre-
frontal cortex, SM sensory motor, dAS dorsal atten-
tion network, DMN default mode network. (For in-
terpretation of the references to colour in this figure
legend, the reader is referred to the web version of
this article).
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4. Discussion

The goal of this study was to investigate the relationship between
brain organization and SNS. We first used DMRI to identify WM where
fractional anisotropy correlated with SNS. Neuronal pathways con-
necting the frontal and temporal cortex, including the extreme capsule,
inferior longitudinal fasciculus, cingulum bundle and arcuate fasci-
culus, show increased structural integrity in relation to larger SNS, as
does the corpus callosum. In the same subjects, we then undertook a
series of analyses to corroborate these findings and investigate the
network interactions related to SNS. Using structural MRI, we identified
GM nodes where volume was positively correlated with SNS. Macaque
tracing and imaging studies have suggested that these GM regions are
connected by fronto-temporal WM pathways including EmC, ILF, CB
and AF [34,40]. We used probabilistic tractography in our human
sample to confirm that the WM sections identified with TBSS were
routes for the fibres emanating from these GM nodes and ultimately
connected the network. Finally, using rsfMRI, we show that relative
coupling of ACC and dlPFC (prominent targets of these WM tracts) with
the anterior part of the default mode network (spatially contiguous with
our social GM clusters) increases as a function of SNS. Fig. 6 sum-
marises the results and demonstrates how the effects are related to each
other.

In examining the relationship between social behaviour and brain
organisation from a network perspective, our study had two key
strengths. First, we were able to validate our findings with converging
evidence from three complementary imaging techniques. The relative
strengths and weaknesses of imaging methodologies are well docu-
mented, with each tuned to interrogate particular aspects of brain or-
ganisation. Across the imaging analyses, a distinct frontotemporal
network was consistently evident. When applied together, these tech-
niques build a case for the structural and functional brain basis of SNS
and create a multi-modal map of a coherent network involved in the
socio-cognitive behaviours tapped by living in social networks.

Second, our hypotheses were driven primarily by previous findings
in macaque monkeys living in social groups of different sizes. Using
very similar methods and analyses, we replicate in humans many of the

core macaque effects that showed GM changes in the mPFC (including
ACC) and amygdala, and increased functional coupling of the ACC with
the DMN dependent on SNS [19,20]. While the human results do not
speak to the direction of the relationship, SNS was under experimenter
control in the macaque study, establishing that changes in SNS led to
structural and functional brain changes. While we cannot exclude a
contribution of pre-existing brain differences to SNS in humans, the
macaque work suggests that the patterns we observed reflect the effects
of social experience on the brain [50,62].

We used SNS indices as independent variables, as SNS constitutes a
well-validated and characterised measure of social behavior [21,31]. It
is notable that we find a relatively small number of brain regions
connected by specific WM pathways related to this rather broad mea-
sure of social experience. Previous studies using this or related mea-
sures of SNS (online, 7 or 30 days social network index, or Norbeck
Social Support Network) support key elements of the present work.
Correlations with GM volume are described in sub-regions of temporal
cortex, including entorhinal cortex and amygdala [22–24]. Further-
more, BOLD activity in these regions, measured while subjects made
social closeness judgements, also correlates with individuals’ SNS [24].
While there appears to be slight variation in regional GM correlates of
SNS, there is a core set of brain regions linked to SNS that seems robust
to the choice of measure [24].

The socio-cognitive network described here can be speculatively
related to three broad component processes: [1] valuation of the out-
come of self and others’ choices, [2] mentalizing, and [3] social and
emotion stimulus recognition. For example, the ACC and amygdala
encode the value of social outcomes and affective stimuli respectively
[65–67], and differences in the CB and EmC may reflect increased inter-
regional neural transmission [34]. Alternatively, but not exclusively,
our effects could reflect increased mentalizing abilities. Mentalizing
skills correlates with SNS [21] and in line with previous literature, we
observed GM differences in three prominent nodes of the DMN (ACC,
PCC/PreC and temporal pole (within ATC cluster) [63]). Indeed, dif-
ferences in functional couplings with the DMN and FA in the three long-
range fronto-temporal WM pathways may be similarly attributable to
mentalising [34]. For example, CB connects prominent nodes of the

Fig. 6. Schematic summary of the brain differences related to SNS. Key
white matter (WM) tracts where fractional anisotropy varies as a
function of SNS are illustrated in purple. Gray matter (GM) regions
correlating with SNS are shown in red. Regions showing increased
rsfMRI functional coupling with the anterior component of the default
mode network (green) as a function of SNS. Abbreviations: AF arcute
fasciculus, CB cingulum bundle, EmC/lFOF extreme capsule / inferior
fronto-occipital fasciculus, dlPFC dorsolateral prefrontal cortex, ACC
anterior cingulate cortex, ATC anterior temporal cortex, vmPFC ven-
tromedial prefrontal cortex, PPC/PreC posterior parietal cortex / pre-
cuneus. (For interpretation of the references to colour in this figure
legend and text, the reader is referred to the web version of this ar-
ticle).
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DMN [68], while anatomically the EmC in humans might reach all the
way to the posterior part of the TPJ [57]. Relatedly, GM in these regions
also correlates with empathy, a multi-faceted ability that allows us to
share emotions with others [69–73]. Finally, individuals in larger social
networks may also engage more frequently in higher-level facial and
emotional processing and thus up-regulate another specialised network
in the temporal cortex [74–77] and medial prefrontal cortex
[72,78,79]. Anterior temporal GM volume, and EmC and ILF FA dif-
ferences may reflect this pressure [34].

Bridging the hemispheres, CC structural integrity also correlates
with SNS. This prominent relationship is worthy of further study as
disparate conclusions have been drawn on the role of this structure in
social behavior [80–82]. A recent paper supports the present FA effects
in a different and larger sample (n= 155, age 30–50) [25]. The authors
emphasise the relationship between social diversity and WM integrity
in the CC, but the large WM cluster they report also overlaps with CB
and hypothalamic pathways. No other results were apparent, except at
very lenient thresholds, perhaps because the analysis did not include a
skeletonization step that corrects for misalignment of tracts between
individuals, and thus affecting regional statistical power [35]. In con-
trast, we report significant whole-brain corrected results along specific
sets of interconnected areas in temporal and frontal cortex.

Understanding normal social cognition from a network perspective
could provide insight into the multifaceted symptoms presented by
patients with social behavioral impairments. While some regions may
play more critical roles in coordinating social behavior [7], multifocal
or diffuse injury to this putative network may be particularly disabling
[83,84]. Some psychiatric disorders also feature prominent social dif-
ficulties and such conditions may also be related to dysfunction at the
network level [85,86]. Indeed, many psychiatric illnesses are associated
with atypical connectivity of the DMN and nodes of the social brain
[87–89]. As we have attempted here, understanding the contribution of
the frontotemporal white matter tracts in social cognition will be es-
sential to understanding the brain mechanisms underlying patients’
social impairments.

Reliability is an important consideration, as in any study. Sample
sizes in the range of the current study have a reasonable track record in
this regard [90], even for parametric designs [e.g. 48] and planned
follow-up behavioural correlations [e.g. 65]. Despite the relatively
small sample, the multi-modal approach allowed us to show between-
methods consistency of network effects, while within-analysis tests of
reliability confirmed that individual outliers did not drive the effects.
Further, our results are particularly compelling when viewed together
with the causal SNS effects on the brain detected with similar analyses
in monkeys [19,20].

While our sample is relatively small it has a diverse make-up. Prior
human studies have largely examined young adults (see Molesworth
et al. [25], for an exception), while our sample included individuals
ranging in age from 27 to 79 years. Older adults, with decades of social
experience, form more stable social networks of better quality [91].
Thus, we believe this sample is a strength of the study, with the likely
more stable social networks perhaps reducing the intra-subject signal-
to-noise ratio in the imaging data.

In the current experimental design, we utilised a multimodal net-
work analysis to focus on ‘depth’ over ‘breadth’, investigating the social
brain network via three complementary imaging techniques and using
this power to demonstrate the cross-modal reliability of the findings.
The cingulate effects illustrate this point. We show [1] the structural
integrity of the CB, [2] the GM volume of ACC and PCC, and [3] the
functional coupling between the ACC and the aDMN, all correlate with
SNS. Further, probabilistic tractography also suggested that the ACC is
a prominent hub within the social brain.

In summary, we report a relationship between SNS and whole-brain
anatomical networks. The findings emphasise the role of WM tracts in
underpinning complex behaviors and highlight the advantages of using
the multimodal approach to investigate brain organisation at a network

level. Future studies should seek to develop our understanding of the
fiber pathways identified here, as well as their relationship to the DMN.
Finally, our results underline the neural complexities supporting social-
group living and provide a principled starting point for investigating
clinical social impairments from a network perspective.
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