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ABSTRACT

Microorganisms are the drivers of biogeochemical methane and nitrogen cycles. Essential roles of chemolithoautotrophic
microorganisms in these cycles were predicted long before their identification. Dedicated enrichment procedures,
metagenomics surveys and single-cell technologies have enabled the identification of several new groups of most-wanted
spookmicrobes, including novel methoxydotrophic methanogens that produce methane from methylated coal compounds
and acetoclastic ‘Candidatus Methanothrix paradoxum’, which is active in oxic soils. The resultant energy-rich methane can
be oxidized via a suite of electron acceptors. Recently, ‘Candidatus Methanoperedens nitroreducens’ ANME-2d archaea and
‘Candidatus Methylomirabilis oxyfera’ bacteria were enriched on nitrate and nitrite under anoxic conditions with methane
as an electron donor. Although ‘Candidatus Methanoperedens nitroreducens’ and other ANME archaea can use iron citrate
as an electron acceptor in batch experiments, the quest for anaerobic methane oxidizers that grow via iron reduction
continues. In recent years, the nitrogen cycle has been expanded by the discovery of various ammonium-oxidizing
prokaryotes, including ammonium-oxidizing archaea, versatile anaerobic ammonium-oxidizing (anammox) bacteria and
complete ammonium-oxidizing (comammox) Nitrospira bacteria. Several biogeochemical studies have indicated that
ammonium conversion occurs under iron-reducing conditions, but thus far no microorganism has been identified.
Ultimately, iron-reducing and sulfate-dependent ammonium-oxidizing microorganisms await discovery.
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GENERAL INTRODUCTION

During Earth’s history, a set of metabolic processes that evolved
exclusively in anaerobic microorganisms changed the chemical
speciation of all major elements (Falkowski, Fenchel and Delong
2008; Stolz 2017). Our present-day environment is thus the inte-
grated result of microbial experimentation that has allowed life
to develop and persist, despite major environmental changes
documented in the geological record. The recent expansion
of microbial genome sequence data combined with increas-
ingly detailed geochemical analyses has yielded insights on how
microorganisms became the biogeochemical engineers of life on
Earth. Among the most urgent scientific questions are which key
groups of microorganisms drive the relevant reactions, how do
these microorganisms interact with each other and their geo-
chemical environment, and how do they impact the Earth sys-
tem (Anantharaman et al. 2016; Thompson et al. 2017).

In this context, it is important to understand the micro-
bial and geochemical pathways for the conversion of methane
(CH4), hydrogen sulfide (H2S) and ammonium (NH4

+), products
of the anaerobic degradation of organic matter by a complex
web of microorganisms (Fig. 1). Methanogens are responsible
for the terminal step in this anaerobic food web and produce
an estimated 583 Tg (range: 458–748) of methane per year from
natural and agricultural sources (Saunois et al. 2016). Methane
is a notorious greenhouse gas, and its atmospheric concen-
tration has more than doubled since the start of the Indus-
trial Revolution (Allen 2016). Concentrations of ammonium, a
key player in the deterioration of water quality, have increased
dramatically worldwide over the past century, and globally the
nitrogen cycle in general has long exceeded safe operational
boundaries (Rockström et al. 2009). H2S is extremely toxic to all
higher life forms, and its release can greatly alter biogeochemi-
cal cycling in aquatic environments (Diaz and Rosenberg 2008).
Microorganisms, particularly chemolithoautotrophs, play a crit-
ical role in modulating the release of methane, hydrogen sul-
fide and ammonium by driving a range of redox reactions that
ultimately transform these detrimental reductants to compar-
atively less harmful compounds, such as carbon dioxide (CO2),
sulfate (SO4

2−) and dinitrogen gas (N2) (Fig. 1).
For more than a century, methane and ammonium were

thought to be oxidized by microorganisms only in the pres-
ence of oxygen. Unequivocal proof of the anaerobic oxidation
of these compounds in the presence of sulfate, nitrite (NO2

−)
and nitrate (NO3

−) was obtained only in recent decades (Boetius
et al. 2000; Raghoebarsing et al. 2006; Ettwig et al. 2010; Haroon
et al. 2013). Attempts to enrich these so-called (impossible)
anaerobic microorganisms growing on methane or ammonium
were initially not successful, mainly due to their slow growth
and highly specific substrate requirements (Table 1). Select-
ing samples from ecosystems with counter-gradients of ammo-
nium/nitrate or methane/nitrate (Zhu et al. 2012; Vaksmaa et al.
2017a) and increasing the number of target cells can reduce
enrichment times. Bioreactors with effective biomass reten-
tion systems (sequencing batch reactor (SBR) or membrane sys-
tems) and optimized growth media (e.g. appropriate trace ele-
ments like lanthanides, low substrate availability or low nitrite
concentrations) can also contribute to successful enrichment
(Strous et al. 1997; van Kessel et al. 2015). Once sufficient cells
are available, metagenomics can be combined with single-cell
approaches to quickly reveal the genetic blueprint. Together

with stable isotope experiments, this blueprint can be used to
design crucial experiments to verify the metabolic potential of
these ‘impossible’ microorganisms.

Emerging evidence suggests that there are several important
but previously unknown microbial pathways for the oxidation
of methane and ammonium involving oxides of iron and man-
ganese (Beal, House and Orphan 2009; Ettwig et al. 2016). Despite
rapid and continuing technological improvements, a large part
of microbial diversity has yet to be discovered. Many, particularly
chemolithoautotrophic processes, have been hypothesized or
observed based on nutrient profiles and metagenomic invento-
ries. Species-level detail is often lacking, leaving open the ques-
tion of whether specific microorganisms are responsible for the
biochemical conversions observed in the field. The discovery of
multiple ‘impossible’ anaerobic microorganisms has reinforced
the idea that a microorganism or combination of microorgan-
isms should exist for each thermodynamically feasible process
(Table 1). In this review, we provide an overview of the discov-
eries of several most-wanted chemolithoautotrophic spookmi-
crobes that may play significant roles in global methane, sulfur
and nitrogen cycles and highlight a few processes that still await
detection.

Methane cycle

Methane is a potent greenhouse gas with a warming potential
34 times stronger than that of carbon dioxide over a time period
of 100 years (Henry et al. 1970; Lacis et al. 1981; Myhre et al. 2013).
Methane is the most reduced one-carbon compound and plays a
key role in the global carbon cycle and the greenhouse effect as
was stressed by the first IPCC report in 1990 (Watson et al. 1990).
Many processes in a wide variety of ecosystems control the
global methane budget (Heilig 1994; Kirschke et al. 2013; Dean
et al. 2018). The majority of methane released into the atmo-
sphere (70%–80%) is of biogenic origin (Conrad 1996, 2009), and
most if not all biogenic methane is produced by methanogenic
archaea within the phylum Euryarchaeota. Proposed alterna-
tive pathways include methane production by iron-only nitro-
genases (Zheng et al. 2018), methane release from methylphos-
phonates in marine ecosystems (Daughton, Cook and Alexander
1979), and in situ formation of methane in terrestrial plants (Kep-
pler et al. 2006). Methanogenic archaea are obligate anaerobes
found in anoxic soils, sediments and water bodies. A fraction of
the methane produced directly escapes into the atmosphere via
ebullition (Schütz, Seiler and Conrad 1989; Aben et al. 2017).

Before dissolved and trapped methane reaches the atmo-
sphere, it can be oxidized by a range of anaerobic and aero-
bic methanotrophs using a suite of electron acceptors. These
methanotrophs include anaerobic methanotrophic (ANME)
archaea, and anaerobic and aerobic methanotrophic bacteria.
For an extensive overview of methanogenesis and methanotro-
phy, see Kallistova et al. (2017).

Methanogens

Microbial methanogenesis was first described by Omelian-
ski in 1890 and later experimentally confirmed by Söhngen
(1906), who was the first to describe the ‘fat rod’ Methanoth-
rix soehngenii, which produces methane from acetate (Huser,
Wuhrmann and Zehnder 1982). Methanogens are depen-
dent on fermentative and syntrophic processes that convert
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Table 1. Overview of chemolitho(auto)trophic reactions in the conversion of methane, ammonium and nitrite by the microorganisms high-
lighted in this review.

Electron

acceptor �E0
′ �G0

′ Reaction equation Micro-organism(s) Origin

Growth

rate

Per cell

rate Ks [S] Ks [EA] Reference

Methane production from various substrates

CH3OH +360 –103 4 CH3OH → CO2+

3 CH4 + 2 H2O

Methanosarcina semesiae Brackish sediment <0.2 – <5 – Lyimo, Pol and Op

den Camp (2000);

Thauer,

Jungermann and

Decker (1977) and

Welte (2018)

CH3-R +193 –56 (CH3)2SH + H2O →
0.5 CO2+

1.5 CH4 + H2S

Methanomethylovorans

hollandica

Freshwater

sediment

<1 – <30 – Lomans et al. (1999)

CH3COOH +46 –36 CH3COOH →
CO2 + CH4

Methanothrix soehngenii WWTP 7–14 – 500 – Huser et al. (1982)

’Candidatus

Methanothrix

paradoxum’

Wetland soil – – – – Angle et al. (2017)

CH3O-R +366 –106 4 CH3O-R + 2 H2O →
4 R-OH + CO2 + 3 CH4

Methermicoccus

shengliensis

Oilfield water <5 20 – – Cheng et al. (2007)

CH3OH +172 –113 CH3OH + H2 →
CH4 + H2O

Methanomassiliicoccus

luminyiensis

Human feces 2 – – – Dridi et al. (2012)

‘Candidatus

Methanonatronarchaeia’

Hypersaline lake – – – – Sorokin et al. (2017)

‘Candidatus

Methanofastidiosa’

WWTP – – – – Nobu et al. (2016)

Methane (CO2/CH4 at �E0
′ = −240 mV) as electron donor

O2/H2O +810 –801 CH4 + 2 O2 → CO2 +

2 H2O

Methane-oxidizing

bacteria (MOB)

0.5–2 158–240 0.06–

12.6

6–37 Ren, Amaral and

Knowles (1997);

Dunfield and

Conrad (2000) and

Steenbergh et al.

(2010)

Alphaproteobacteria

Methylocella palustris Peat Dedysh et al. (2000)

Methylocella tundra Peat Dedysh et al. (2004)

Upland soil cluster alpha Soil Pratscher et al.

(2018)

Gammaproteobacteria

Upland soil cluster

gamma

Soil Knief et al. (2003)

Verrucomicrobia

Methylacidiphilum Geothermal area Op den Camp et al.

(2009)

NO3
−/NO2

− +430 –503 CH4 + 4 NO3
− →

CO2 + 4 NO2
−+ 2 H2O

‘Candidatus

Methanoperedens

nitroreducens’

Freshwater

sediment, WWTP

>14 0.57 >1000 <50 Haroon et al. (2013)

and Vaksmaa et al.

(2017a)

NO2
−/N2 +320 –928 3 CH4 + 8 NO2

−+

8 H+ → 3 CO2+ 4 N2 +

10 H2O

‘Candidatus

Methylomirabilis

oxyfera’

Freshwater

sediment

>14 0.4–0.2 <50 <10 Raghoebarsing et al.

(2006)

Fe3+/Fe2+ +360 –454 CH4 + 8 Fe3++ 2 H2O

→ CO2+ 8 Fe2+ + 8 H+
‘Candidatus

Methanoperedens

nitroreducens’

Freshwater

sediment, WWTP

– – – – Ettwig et al. (2009);

Ettwig et al. (2016)

and Cai et al. (2018)

ANME-2C Marine sediment – – – – Boetius et al. (2000)

SO4
2−/H2S –210 –21 CH4 + SO4

2− →
HCO3

− + H2S + H2O

Anaerobic

methanotrophic archaea

(ANME)

Marine sediment >50 0.7 >1000 – Nauhaus et al.

(2005); Knittel et al.

(2005)

Ammonium (NO2
−/NH4

+ at �E0
′ = 340 mV) as electron donor

O2/H2O +810 –275 NH4
+ + 1.5 O2 →

NO2
− + H2O + 2 H+

Ammonium-oxidizing

bacteria (AOB)

<1 264–552 0.8–112 1–15 Belser and Schmidt

(1980) and

Laanbroek and

Gerads (1993)

Ammonium-oxidizing

archaea (AOA)

Seawater aquarium <5 0.5–32.2 5–44 – Kits et al. (2017)

‘Candidatus

Nitrosopumilus

maritimus’

Hot spring Könneke et al.

(2005)

‘Candidatus

Nitrosocaldus

yellowstonii’

Hot spring de la Torre et al.

(2008)

‘Candidatus

Nitrososphaera

gargensis’

Garden soil Hatzenpichler et al.

(2008)

‘Candidatus

Nitrososphaera

viennensis’

Agricultural soil Tourna et al. (2011)
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Table 1. Continued

Electron

acceptor

�E0
′ �G0

′ Reaction equation Micro-organism(s) Origin Growth

rate

Per cell

rate

Ks [S] Ks [EA] Reference

‘Candidatus Nitrosotalea

devanaterra’

Hot spring Lehtovirta-Morley,

Stoecker and

Vilcinskas (2011)

‘Candidatus

Nitrosocaldus

islandicus’

Daebeler et al.

(2018)

Nitrite (NO3
−/NO2

− at �E0
′ = 420 mV) as electron donor

O2/H2O +810 –74 NO2
− + 0.5 O2 → NO3

− Nitrite-oxidizing

bacteria (NOB)

<1 0.6–13.1 9–544 22–166 Féray and

Montuelle (2002)

and Nowka, Daims

and Spieck (2015)

Alphaproteobacteria

Nitrobacter winogradskyi Soil Winslow et al.

(1917)

Betaproteobacteria

‘Candidatus Nitroga

arctica’

Permafrost Alawi et al. (2007)

Gammaproteobacteria

Nitrococcus mobilis Ocean water Watson and

Waterbury (1971)

Nitrospirae

Nitrospira moscoviensis Heating system Ehrich et al. (1995)

‘Candidatus Nitrospira

defluvii’

WWTP Lücker et al. (2010)

Nitrospinae

Nitrospina gracilis Ocean water Watson and

Waterbury (1971)

Chloroflexi

Nitrolancetus hollandicus Nitrifying reactor Sorokin et al. (2012)

Ammonium (NO3
−/NH4

+ at �E0
′ = 360 mV) as electron donor

O2/H2O +810 –349 NH4
+ + 2 O2 →

NO3
− + H2O + 2 H+

Comammox Nitrospira <1 – 0.6 – van Kessel et al.

(2015) and Kits et al.

(2017)

Nitrospira inopinata Hot water pipe Daims et al. (2015)

Ammonium (N2/NH4
+ at �E0

′ = -280 mV) as electron donor

NO2
−/N2 +320 –358 NH4

+ + NO2
− → N2 +

2 H2O

Anammox bacteria 4–14 2–20 <5 <5 Lotti et al. (2015)

and Zhang et al.

(2017)

Brocadiales Jetten et al. (2010)

’Candidatus Kuenenia

stuttgartiensis’

WWTP Schmid et al. (2000)

‘Candidatus Brocadia

fulgida’

WWTP Kartal et al. (2008)

‘Candidatus

Anammoxoglobus

propionicus’

WWTP Kartal et al.(2007)

‘Candidatus Scalindua

profunda’

Marine sediment van de Vossenberg

et al. (2013)

‘Candidatus Jettenia

caeni’

WWTP Ali et al. (2015)

Fe3+/Fe2+ +360 –303 NH4
++ 3Fe(OH)3 +

5 H+ → 3 Fe2++

9 H2O + 0.5 N2

? – – – – Kuypers et al. (2018)

and Huang and

Jaffé (2018)

SO4
2−/H2S –210 –22 8 NH4

+ + 3 SO4
2− →

4 N2 + 1.5 H2S

+ 12 H2O + 2 H+

? – – – – Zhang et al. (2009)

Redox potentials of the half-reactions are given at 25◦C and pH 7. �E0
′ is displayed in mV, �G0’ is displayed in kJ/mol substrate. Growth rates are displayed in days,

per cell rates are given in fmol substrate per cell per day and Ks is given in μM substrate [S] and electron acceptor [EA], ‘–’ indicates values have not been determined

yet. For MOB, AOB, NOB, and anammox bacteria the range of the ecophysiological parameters is given. WWTP = wastewater treatment plant.

organic compounds to methanogenic substrates (Kotsyurbenko,
Nozhevnikova and Zavarzin 1993; Schink 1997). Methanogens
that use H2/CO2 and methylated compounds as substrates
were subsequently isolated and characterized (for an overview,
see Plugge and Stams 2010). Acetate usage appears to be
limited to the genera Methanosarcina and Methanothrix (Jet-
ten, Stams and Zehnder 1992). There are seven methanogenic

orders: Methanosarcinales, Methanomicrobiales, Methanobac-
teriales, Methanococcales, Methanopyrales, Methanocellales,
and the recently discovered Methanomassiliicoccales (Garrity,
Bell and Lilburn 2004; Thauer et al. 2008; Dridi et al. 2012;
Iino et al. 2013; Lyu and Lu 2015). Methanomassiliicoccales
species (Methanomassiliicoccus luminyiensis) were first discovered
in human feces and use hydrogen as an electron donor to
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Figure 1. Overview of microbial diversity and possible reactions in the global methane and nitrogen cycles. AOP: ammonium-oxidizing prokaryotes including Thaumar-
chaeota and AOB, CMX: comammox bacteria, NOB: nitrite-oxidizing bacteria, MOB: methane-oxidizing bacteria, ANME: anaerobic methane-oxidizing archaea. OMD:
organic matter degradation. The ‘?’ indicates as-yet undiscovered processes of iron- and manganese-dependent ammonium and methane oxidation (see Table 1).

reduce methanol to methane (Dridi et al. 2012). In anoxic sed-
iments, the concerted action of acetogens and methanogens
can result in the breakdown of methoxylated aromatic com-
pounds like trimethoxybenzoate (Finster, King and Bak 1990).
The acetogens cleave off the methoxy-groups and produce
dimethylsulfide and methanethiol, which can subsequently be
used by methylotrophic methanogens (Methanosarcina seme-
siae, Methanomethylovorans hollandica) employing several unique
methyltransferases (Finster, Tanimoto and Bak 1992; Lomans
et al. 1999; Lyimo et al. 2000). The list of methanogenic substrates
was recently expanded to include the direct use of methoxy-
lated aromatic compounds by methoxydotrophic Methermicoccus
shengliensis (Methanosarcinales) found in coal beds (Cheng et al.
2007; Mayumi et al. 2016). Two novel candidate classes, ‘Candi-
datus Methanonatronarchaeia’ and ‘Candidatus Methanofastid-
iosa’, were also recently discovered (Nobu et al. 2016; Sorokin
et al. 2017). ‘Candidatus Methanonatronarchaeia’, which are most
closely related to Halobacterium, were detected in a metage-
nomic dataset of hypersaline lakes (Sorokin et al. 2017). ‘Candi-
datus Methanofastidiosum methylthiophilus’ has the metabolic
potential for methanogenesis through methylated thiol reduc-
tion using a methylated-thiol:coenzyme M methyltransferase
(Nobu et al. 2016). These findings indicate that methanogenic
archaea might include more extremophilic and metabolically
versatile members than those currently known.

The recent observation of the aceticlastic ‘Candidatus
Methanothrix paradoxum’ in oxygenated soils (Angle et al. 2017)
and indications of methanogenesis under oxic conditions (Wag-
ner 2017) are striking since methanogens are considered obligate

anaerobes. The occurrence of methane production in oxic envi-
ronments might dramatically alter our view of methanogenic
ecosystems.

Whether methanogenesis occurs outside Euryarchaeota
remains a matter of debate. The discovery of Bathyarchaeota
and Verstraetearchaeota genome bins including methyl-
coenzyme M reductase (MCR) genes indicates that methano-
genesis might be more widespread in the archaeal domain
than previously thought (Evans et al. 2015; Vanwonterghem
et al. 2016). Other studies consider Bathyarchaeota anaerobic
heterotrophs that assimilate sedimentary organic carbon com-
pounds (Lazar et al. 2016; Xiang et al. 2017). Verstraetearchaeota
also appear to utilize sugars as carbon compounds (Vanwon-
terghem et al. 2016). For an overview and discussion of potential
methanogens outside the Euryarchaeota phylum see Welte
(2018).

Methane oxidation

Before methane produced by methanogens reaches the atmo-
sphere, first anaerobic methanotrophs oxidize methane using a
suite of electron acceptors, and the methane that passes this
anoxic filter can ultimately be converted by aerobic methane-
oxidizing bacteria.

Sulfate-dependent anaerobic methane oxidation

The anaerobic oxidation of methane (AOM) was long consid-
ered impossible due to the high activation energy needed to
break the C-H bonds (439 kJ mol−1) (reviewed in Thauer and
Shima 2008). The discovery of counter-gradients of sulfate and
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methane changed this view and indicated habitats with active
AOM (Reeburgh and Heggie 1977). The coupling of AOM to sul-
fate reduction in marine sediments appeared to be mediated by
a microbial consortium (Boetius et al. 2000). Sulfate-dependent
anaerobic oxidation of methane (S-AOM) is particularly intrigu-
ing since the reaction has a relatively low Gibbs free energy
change of approximately -20 kJ mol−1 (Table 1) in most habitats
(for a discussion of kinetics and thermodynamics, see Thauer
(2011)). In marine ecosystems, S-AOM is carried out by a con-
sortium of ANME archaea in cooperation with sulfate-reducing
bacteria or possibly by ANME alone (Knittel and Boetius 2009;
Milucka et al. 2012; Scheller et al. 2016). An inverted and modi-
fied methanogenesis pathway has been proposed for the catal-
ysis of AOM by ANME (McGlynn et al. 2015; Timmers et al.
2017). ANMEs are divided into three distinct groups: ANME-
1 (Methanosarcinales-related and Methanomicrobiales), ANME-
2 (Methanosarcinales) and ANME-3 (Methanococcoides-related)
(Knittel et al. 2005; Nauhaus et al. 2005; Stadnitskaia et al. 2005).
The 16S rRNA gene phylogeny indicates that ANME groups are
not monophyletic with each other, and the phylogenetic dis-
tance between subgroups is large, with nucleotide sequence
similarities of 75%–92% (Knittel and Boetius 2009).

Nitrite- & nitrate-dependent methane oxidation

After the discovery of S-AOM in marine sediments, the hunt
for nitrate- and nitrite-dependent methane oxidation (N-AOM)
intensified. Based on redox calculations, both nitrate and nitrite
are suitable electron acceptors for methane oxidation and, com-
pared to sulfate, have much higher energy yields per mole of
methane (Table 1). In 2006, Raghoebarsing et al. (2006) reported
the first enrichment culture coupling AOM to denitrification.
The enrichment culture contained archaea (10%–20% of the
community) distantly related to ANME-2, and an NC10 phylum
bacterium named ‘Candidatus Methylomirabilis oxyfera’ (70%–
80% of the community). The proposed intra-aerobic pathway
for coupling of AOM to nitrite reduction by ‘Candidatus Methy-
lomirabilis oxyfera’ produces oxygen and dinitrogen gas from
two molecules of nitric oxide (NO) (Ettwig et al. 2010, 2012). A
major implication of this proposed pathway is that aerobic path-
ways might have been present before oxygenic photosynthe-
sis arose. Despite this proposed intra-aerobic pathway of ‘Can-
didatus Methylomirabilis oxyfera’, oxygen exposure as low as 2%
has inhibitory effects on methane and nitrite conversion rates
(Luesken et al. 2012). A recent survey based on primer-based
detection of NO dismutase showed that these genes do occur in
many anoxic aquifers (Bhattacharjee et al. 2016; Zhu et al. 2017).
Surveys of both 16S rRNA and pmoA genes (which encode the
beta subunit of particulate methane monooxygenase) revealed
a wide environmental distribution of N-AOM from wetlands to
marine sediments and mud volcanos (Welte et al. 2016).

The role of the ANME-2 archaea in the first enrichment
culture was resolved much later. In a bioreactor fed with
nitrate, methane and ammonium, a stable co-culture of anaero-
bic ammonium-oxidizing (anammox) bacteria (’Candidatus Kue-
nenia stuttgartiensis’) and ANME-2d archaea was established
(Haroon et al. 2013). These archaea were identified as ‘Candidatus
Methanoperedens nitroreducens’ (70%–80% of the community),
which are capable of coupling nitrate reduction to methane
oxidation (Haroon et al. 2013). ANME-2d archaea have subse-
quently been co-enriched a number of times with NC10 phy-
lum and anammox bacteria, which probably scavenge the nitrite
and convert it to dinitrogen gas. Analyses of several genomes
of ‘Candidatus Methanoperedens nitroreducens’ have revealed

that all genes of the (reverse) methanogenic pathway are present
(Haroon et al. 2013; Arshad et al. 2015; Berger et al. 2017; Narrowe
et al. 2017; Vaksmaa et al. 2017a). The best-characterized gene for
methanogenesis and AOM is mcrA, which encodes for the alpha
subunit of Methyl-coenzyme M reductase. An environmental
primer-based study based on 16S rRNA and mcrA genes showed
that ‘Candidatus Methanoperedens nitroreducens’ is abundantly
present in paddy fields (9% relative abundance of the archaeal
community), river sediments and even marine sediments (Vaks-
maa et al. 2016, 2017b).

Terrestrial agriculture-affected ecosystems that receive high
concentrations of nitrogen compounds are also facilitating envi-
ronments for nitrite- and nitrate-dependent methanotrophy.
However, little is known about the relevance of N-AOM in terres-
trial ecosystems, particularly those with prolonged anoxic con-
ditions, such as natural or restored peatlands. For an extensive
overview of N-AOM, see Welte et al. (2016).

Iron- and manganese-dependent methane oxidation

In addition to nitrate and nitrite, oxidized iron (Fe3+) and oxi-
dized manganese (Mn4+) should be suitable electron acceptors
for AOM based on Gibbs free energy (Table 1). Iron is the most
abundant metal in the Earth’s crust and can serve as both
an electron donor and acceptor in microbial metabolism. Iron
forms stable minerals in both the divalent and trivalent states
depending on geochemical conditions. Fe3+ is most stable under
oxic conditions (Raiswell and Canfield 2012). The reduction-
oxidation cycle is coupled to other elements, including car-
bon, nitrogen, oxygen and sulfur. Conversion in the iron cycle
can be abiotic or mediated by microorganisms (Weber et al.
2006; Melton et al. 2014). Iron bioavailability is generally low
due to the poor solubility of iron minerals at neutral pH, but
microorganisms have developed strategies to mediate electron
exchange with insoluble iron forms (Weber, Achenbach and
Coates 2006). Although a wide variety of organisms are known to
reduce iron, the microorganisms responsible for the reduction of
metal-oxides coupled to AOM (here abbreviated as Fe-AOM) have
remained elusive.

Geochemical profiling and stable isotope tracer studies have
demonstrated the occurrence of Fe-AOM in lake sediments
(Sivan et al. 2011; Norði, Thamdrup and Schubert 2013; Torres
et al. 2014), marine sediments (Beal, House and Orphan 2009;
Wankel et al. 2012; Riedinger et al. 2014; Egger et al. 2015), paddy
field sediments (Miura et al. 1992; Murase and Kimura 1994),
lake water (Crowe et al. 2011), a terrestrial mud volcano (Chang
et al. 2012), and in a contaminated aquifer (Amos et al. 2012).
However, the responsible microorganisms were not identified
in these studies. ANME archaea have been implicated in Fe-
AOM in marine and volcanic systems (Beal, House and Orphan
2009; Chang et al. 2012). A recent study demonstrated that ‘Can-
didatus Methanoperedens nitroreducens’ can use various elec-
tron acceptors, including iron citrate, and thus may be capable
of Fe-AOM (Ettwig et al. 2016). Fe-AOM by ANME-2C with iron
citrate has been shown in mesocosm experiments using deep-
sea methane seep sediment (Scheller et al. 2016). Wegener et al.
(2015) observed that ANME archaea, under thermophilic AOM
conditions, overexpress genes for extracellular cytochrome pro-
duction and form nanowire-like cell-to-cell connections, sug-
gesting an important role of direct interspecies electron transfer.
However, microbial growth on Fe-AOM has yet not been demon-
strated. Identifying the responsible microorganism(s) therefore
remains a primary interest.
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Aerobic methane oxidation

Methane that is not oxidized by anaerobic methanotrophs can
reach the oxic layer of sediment or soil and undergo con-
version by aerobic methanotrophs. Aerobic microbial oxida-
tion of methane was first described in 1906 (Söhngen 1906).
Based on the isolation and description of numerous aerobic
methane-oxidizing bacteria (MOB), it was long assumed that
microbial methane oxidation was only possible under oxic con-
ditions (Whittenbury, Phillips and Wilkinson 1970). MOB belong
to Alphaproteobacteria (type II), Gammaproteobacteria (type I)
and the phylum Verrucomicrobia (Trotsenko and Murrell 2008;
Op den Camp et al. 2009; Semrau, DiSpirito and Yoon 2010).
Aerobic methanotrophs are found in virtually all ecosystems,
from acidic permafrost-affected peatlands (Methylocella palustris
(Dedysh et al. 2000); Methylocella tundrae (Dedysh et al. 2004)) to
volcanic mud pots with temperatures up to 70◦C and pH val-
ues as low as 1 (Dunfield et al. 2007; Pol et al. 2007). These vol-
canic aerobic Methylacidiphilum methanotrophs belong to the
phylum Verrucomicrobia (Op den Camp et al. 2009; van Teesel-
ing et al. 2014). The verrucomicrobial methanotrophs use the
Calvin cycle for CO2 fixation (Khadem et al. 2012) and are
able to grow as Knallgas bacteria on hydrogen and oxygen
(Carere et al. 2017; Mohammadi et al. 2017a). These methan-
otrophs express hydroxylamine oxidoreductase, nitrite reduc-
tase and nitric oxide reductase to counteract the nitrosative
stress induced by high ammonium concentrations in mud vol-
canoes (Mohammadi et al. 2017b). The growth of verrucomicro-
bial methanotrophs is dependent on rare earth elements (lan-
thanides), which are incorporated into the active center of an
XoxF-type methanol dehydrogenase (Pol et al. 2014). The unique
properties of verrucomicrobial MOB are a striking example of the
breadth of microbial diversity and physiology that remains to be
explored and discovered.

Atmospheric methane levels were long considered too low
to sustain microbial methanotrophy, but methane oxidation at
atmospheric levels has been described in upland soils (Dunfield
et al. 1999). Culture-independent studies of these soils, which
have high-affinity methane oxidation capacity, detected novel
methanotrophic bacteria within Alpha- and Gammaproteobac-
teria named upland soil cluster (USC) α and γ (Knief, Lipski
and Dunfield 2003; Kolb et al. 2005; Ricke et al. 2005). Recently,
Pratscher et al. (2018) obtained a 85% complete draft genome of
the USCα genus within Beijerinckiaceae using combined metage-
nomics and targeted cell enrichments with fluorescence in situ
hybridization-fluorescence activated cell sorting. In addition,
recent studies have indicated that classic MOB can thrive under
extremely low oxygen conditions by apparently coupling fer-
mentative metabolism to nitrate reduction (Kits et al. 2015; Kits,
Klotz and Stein 2015; Oswald et al. 2016; Gilman et al. 2017).
Together with the observations of methanogenesis under oxic
conditions, these findings may alter our understanding of con-
trols on methane fluxes.

Nitrogen cycle

Historically, the nitrogen cycle was thought to include only a
few processes: (i) the fixation of dinitrogen gas into ammonium
by free-living or symbiotic microorganisms (Beijerinck 1888);
(ii) nitrification, in which ammonium is oxidized via nitrite to
nitrate (Winogradsky 1890); (iii) denitrification, in which oxi-
dized nitrogen species are reduced to dinitrogen gas by het-
erotrophic and/or autotrophic bacteria (Gayon and Dupetit 1886)
and (iv) nitrate/nitrite dissimilation and assimilation, which

provides many microorganisms with ammonium (Berks et al.
1995). In 1977, Broda calculated that several nitrogen processes
could sustain as-yet undiscovered microorganisms (Broda 1977).
However, it was not until 1995 that one of these processes,
anammox (Table 1), was observed, and in 1999, the responsi-
ble anammox bacteria were identified as novel Planctomycetes
(Mulder et al. 1995; Strous et al. 1999). In 2005, marine Thaumar-
chaeota (previously named Crenarchaeota) capable of oxidizing
ammonium at oceanic concentrations (1 nM to 10 μM) were iso-
lated and characterized (Könneke et al. 2005; Lam and Kuypers
2011). The complete ammonium-oxidizing (comammox) bacte-
ria predicted by Costa et al. in 2006 were later identified as Nitro-
spira bacteria (Daims et al. 2015; van Kessel et al. 2015).

Aerobic ammonium oxidation

Ammonium oxidation to nitrate via nitrite

Since the description and isolation of Nitrosomonas-like aerobic
ammonium oxidizers by Winogradsky at the end of the 19th
century, this process was attributed to chemolithoautotrophic
bacteria (ammonium-oxidizing bacteria, AOB). In marine envi-
ronments, ammonium oxidation was thought to be limited to
the deeper water layers due to light inhibition and ammonium
concentrations below the threshold level for AOB activity (Yool
et al. 2007). This view was challenged by two metagenomics-
based studies surveying the microbial diversity of seawater
(Venter et al. 2004) and soil (Treusch et al. 2005), which iden-
tified archaeal ammonia monooxygenase (amoA) genes phylo-
genetically affiliated with the phylum Thaumarchaeota. The
link between archaea and ammonium oxidation was estab-
lished by Könneke et al. (2005) with the isolation of ‘Candi-
datus Nitrosopumilus maritimus’, a marine group I.1a repre-
sentative, from a saltwater aquarium in Seattle, Washington.
In recent years, many more ammonium-oxidizing Thaumar-
chaeota (AOA) representatives have been isolated or enriched,
including ‘Candidatus Nitrososphaera viennensis’ soil group I.1b
from soil, ‘Candidatus Nitrososphaera gargensis’ soil group I.1b
from the Garga hot spring, ‘Candidatus Nitrosocaldus islandicus’
from an Icelandic hot spring, and ‘Candidatus Nitrosocaldus yel-
lowstonii’ and ‘Candidatus Nitrosotalea devanaterra’ soil group
I.1a-associated enrichments from soil (de la Torre et al. 2008;
Hatzenpichler et al. 2008; Lehtovirta-Morley et al. 2011, 2014;
Stieglmeier et al. 2014; Daebeler et al. 2018). Recently, ‘Candidatus
Nitrosotalea’ species were also enriched from acidic soils with
pH values as low as 3.2 (Herbold et al. 2017).

15N stable isotope experiments have confirmed that nitrifica-
tion, most likely by Thaumarchaeota, occurs in the photic zone
of marine ecosystems (Clark, Rees and Joint 2008). In terrestrial
ecosystems, acidiphilic ‘Candidatus Nitrosotalea devanaterra’
grows optimally between pH 4 and 5 (Zhang et al. 2010;
Lehtovirta-Morley et al. 2011). However, determining the rela-
tive contributions of either AOB or AOA in ecosystems is quite
challenging due to the large differences in growth rates, Ks

for ammonia and oxygen, and sensitivity to inhibitors such as
2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide (PTIO)
and allylthiourea (ATU) (Geets, Boon and Verstraete 2006; Yan
et al. 2012; Martens-Habbena et al. 2015; Beeckman, Motte and
Beeckman 2018). For a critical view on the importance of bac-
terial versus archaeal ammonium oxidation, see reviews by
Prosser and Nicol (2008), Pester, Schleper and Wagner (2011),
Hatzenpichler (2012) and Stahl and de la Torre (2012).

In many ecosystems, the nitrite produced by ammonium-
oxidizing prokaryotes (AOP = AOB and AOA) is subsequently
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oxidized by nitrite-oxidizing bacteria (NOB). Nitrite oxidation
is a widespread trait that is found in six phyla: Alpha-, Beta-
and Gammaproteobacteria, Nitrospirae, Nitrospinae and Chlo-
roflexi (Nowka, Daims and Spieck 2015). Nitrobacter winogradskyi
(Winslow et al. 1917) was the first nitrite oxidizer to be studied in
extensive detail. Nitrobacter species tend to dominate nutrient-
rich and oxygen-saturated environments. Nitrospina was discov-
ered together with Nitrococcus in 1971 in marine ecosystems
(Watson and Waterbury 1971). Nitrospina gracilis appears to be
a major marine nitrite-oxidizing species. In general, Nitrospina
species are quite well-adapted to low environmental nitrite con-
centrations (Maixner et al. 2006). Nitrococcus mobilis has a much
more versatile metabolism, including nitrate reduction and sul-
fide oxidation (Füssel et al. 2017). Nitrospira species (i.e. Nitrospira
moscoviensis and ‘Candidatus Nitrospira defluvii’) generally dom-
inate environments with low substrate availability and hypoxic
conditions (Ehrich et al. 1995; Schramm et al. 2000; Lücker et al.
2010). They are more versatile than initially assumed and can
use hydrogen and urea as substrates (Koch et al. 2014, 2015).
Among betaproteobacterial nitrite oxidizers, the novel Nitrotoga
species ‘Candidatus Nitrotoga arctica’ was highly enriched from
permafrost soils (Alawi et al. 2007). NOB can also use cyanate
for energy and as a nitrogen source. Cyanate-encoding genes
clustered with NOB have also been found in Nitrososphaera gar-
gensis and Scalindua anammox bacteria (Palatinszky et al. 2015).
Sorokin et al. (2012) isolated a nitrite oxidizer that belongs to the
widespread phylum Chloroflexi, Nitrolancetus hollandicus, from a
nitrifying reactor. Nitrolancetus hollandicus has a broad tempera-
ture range (25◦C–63◦C) but a low affinity for nitrite (Ks = 1 mM)
and can use formate as a source of energy and fix CO2 via the
Calvin cycle. Thiocapsa species can couple the anaerobic oxida-
tion of nitrite directly to phototrophy (Griffin, Schott and Schink
2007). Intriguingly, although the disproportionation of nitrite
(into nitrate and nitrous oxide (N2O)) would yield sufficient Gibbs
free energy to sustain growth, no organisms capable of carrying
out this reaction have been identified (Kuypers, Marchant and
Kartal 2018).

Comammox: complete ammonium oxidation to nitrate

Ammonium oxidation to nitrate was once assumed to be a two-
step reaction carried out by the subsequent action of ammo-
nium and nitrite oxidizers. Despite a lack of biological proof for
complete nitrification by a single organism, its existence and
potential competitive advantage in biofilms with low substrate
concentrations were proposed in 2006, based on modeling of the
trade-off between growth rate (short pathways are faster) and
growth yield (more complete pathways result in a higher energy
yield) (Costa, Pérez and Kreft 2006). In 2015, the first comam-
mox Nitrospira species were discovered in two different ecosys-
tems (Daims et al. 2015; van Kessel et al. 2015). These observa-
tions expanded the metabolic potential of the Nitrospira clade,
which was thought to contain only strict canonical aerobic NOB
(Watson et al. 1986; Ehrich et al. 1995; Lebedeva et al. 2011). Since
its discovery, comammox Nitrospira have been detected in sev-
eral wastewater treatment reactors using metagenomics and
primer-based approaches (Chao et al. 2016; Gonzalez-Martinez
et al. 2016), drinking water systems (Pinto et al. 2016; Bartelme,
McLellan and Newton 2017) and a variety of natural systems
using a pmoA primer-targeted approach (Pjevac et al. 2017). Very
recently, Kits et al. (2017) experimentally determined that the
half saturation constant (Ks) for ammonium (0.65–1.1 μM) of
Nitrospira inopinata was two orders of magnitude lower than that
of any other cultured ammonium oxidizer, suggesting that N.

inopinata is very competitive in environments with low ammo-
nium concentrations.

Anaerobic ammonium oxidation by anammox bacteria

Hamm and Thompson (1941) reported that much less ammo-
nium accumulated in anoxic water than expected based on sto-
ichiometric calculations, providing the first indications of anam-
mox. Chemical observations by Richards (1965) indicated the
presence of alternative nitrogen loss pathways. In 1977, Broda
famously proposed two types of lithotrophs based on Gibbs free
energy calculations of the reactions. The predicted phototrophic
anaerobic ammonium oxidizers have yet to be identified. The
other hypothesized ‘missing’ process was anaerobic oxidation
of ammonium with nitrite/nitrate as the oxidant. Subsequent
field observations also indicated higher ammonium losses than
expected (Smith, Howes and Duff 1991). In the early 1990s, Mul-
der et al. (1995) reported on the biological N-loss in an anoxic
wastewater treatment plant at the Gist-Brocades yeast factory
in Delft, The Netherlands. To prevent hydrogen sulfide produc-
tion from the high-sulfate wastewaters, copious amounts of cal-
cium nitrate were added to suppress sulfate reduction. Inadver-
tently, the presence of sufficient ammonium, nitrite and nitrate
under anoxic conditions created a suitable niche for anammox
bacteria. Recordings of the ammonium concentrations in the
influent and effluent revealed that after 8 months, ammonium
disappeared under anoxic conditions (Mulder et al. 1995). After
the manuscript on the study was rejected by numerous jour-
nals for not being relevant with respect to applied or environ-
mental aspects of microbiology, the editor of FEMS Microbiology
Ecology was brave enough to accept and publish the story (Mul-
der et al. 1995). The microbial nature and initial characteriza-
tion of the biomass of the process were investigated by Gijs Kue-
nen and co-workers at TU Delft (Kuenen 2008). A few years after
its discovery, a highly enriched anammox culture was obtained
by continuous cultivation in an SBR system with substrate lim-
itation and effective biomass retention (Strous et al. 1997). The
anammox cells were further purified by density gradient cen-
trifugation. These purified cells produced dinitrogen gas from
ammonium and nitrite while incorporating 14CO2 into biomass
(Strous et al. 1999). 16S rRNA analysis showed that the anam-
mox bacteria belonged to the order Brocadiales within the phy-
lum Planctomycetes (Jetten et al. 2010). For reviews on anammox
biochemistry, physiology, application and ecosystem relevance,
see Kartal, Kuenen and van Loosdrecht (2010), van Niftrik and
Jetten (2012), and Kuypers, Marchant and Kartal (2018).

In 2006, the first genetic blueprint of anammox bacteria
was elucidated, which, together with sophisticated 15N-nitrogen
experiments, revealed that the anammox reaction includes the
reactive intermediates nitric oxide (NO) and the powerful reduc-
tant and ‘rocket fuel’ hydrazine (N2H4) (van de Graaf et al.
1997; Schalk et al. 1998). The mechanism, structure and bio-
physical properties of the key metabolic hydrazine synthase
enzyme were recently elucidated (Kartal et al. 2011; Dietl et al.
2015). Anammox bacteria appear to fix carbon through the
Wood-Ljungdahl (reductive acetyl-CoA) pathway with electrons
derived from the oxidation of nitrite to nitrate (Schouten et al.
2004; de Almeida et al. 2011).

Five genera (Kuenenia, Brocadia, Anammoxoglobus, Scalindua
and Jettenia) of anammox bacteria are known, and 10 species
have been described. For an extensive overview, see van Niftrik
and Jetten (2012). None of these are available as pure culture, and
current enrichments using bioreactors with planktonic cells or
aggregates/granules reach up to 95% (Kartal et al. 2011). Electron
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microscopic analyses have indicated a unique intracytoplasmic
compartment named the ‘anammoxosome’ with a membrane
composed of a single layer of ladderane lipids (van Niftrik et al.
2004; Neumann et al. 2014). Genomic analysis (Strous et al. 2006)
and subsequent experimental confirmation (van Teeseling et al.
2015) revealed that anammox bacteria do possess a peptido-
glycan cell wall and thus should be considered Gram-negative
bacteria. Nearly 28 thousand anammox-related 16S rRNA gene
sequences have been identified thus far (NCBI, NLM, Bethesda,
MA, USA, Feburary 2018), indicating that likely only a fraction
of anammox diversity is known. Anammox bacteria have been
detected in freshwater environments, including anoxic wastew-
ater, sediments and agricultural soils and in marine systems,
including coastal and estuarine sediments, anoxic basins, man-
grove sediments and oxygen minimum zones (OMZs) (Isobe and
Ohte 2014).

From an ecosystem perspective, anammox bacteria con-
tribute significantly to the oceanic nitrogen cycle (Dalsgaard
et al. 2003; Kuypers et al. 2005; Lam et al. 2009; Pitcher et al.
2011; Bale et al. 2014; Lüke et al. 2016). Lüke et al. (2016) reported
the co-occurrence of Scalindua, Nitrospina and novel microorgan-
isms with dissimilatory nitrate reduction to ammonium (DNRA)
potential (novel nrfA gene) in the Arabian Sea. The role of anam-
mox bacteria in nitrogen loss has been investigated in global
major OMZs, including the Black Sea, the Chilean and Peruvian
OMZ, the Namibian OMZ and the Arabian Sea, where they are
estimated to contribute to 50% of N loss (Kuypers et al. 2003, 2005;
Lam et al. 2009; Jensen et al. 2011; Kuypers, Marchant and Kar-
tal 2018). In continental shelf sediments, their estimated contri-
bution reaches 79% (Thamdrup and Dalsgaard 2002; Engström
et al. 2005). Quantifying the contribution of anammox bacteria
and denitrifiers to total oceanic nitrogen loss is an ongoing chal-
lenge (Babbin et al. 2008). Anammox bacteria have been shown
to perform DNRA with formate as an electron donor (Kartal
et al. 2007). Furthermore, the use of volatile fatty acids in anam-
mox has been shown for ‘Candidatus Anammoxoglobus propi-
onicus’, which co-oxidizes propionate, acetate and formate with
ammonium and ‘Candidatus Brocadia fulgida’, ‘Candidatus Jette-
nia caeni’ and ‘Candidatus Scalindua profunda’, which co-oxidize
acetate and formate with ammonium (Kartal et al. 2007; Kartal,
Kuenen and van Loosdrecht 2010; van de Vossenberg et al. 2013;
Ali et al. 2015). Caution is needed since experimental data on
environmental factors and in situ species activity and regulation
of metabolism are scarce. For a relevant perspective, see Voss
and Montoya (2009).

Iron- and manganese-dependent ammonium oxidation

Several anammox species can reduce Fe3+ at the expense of for-
mate or acetate (Strous et al. 2006; van de Vossenberg et al. 2013;
Zhao et al. 2014; Ali et al. 2015). Fe2+ can be used as an electron
donor for nitrate reduction by anammox and several denitrifiers
(Strous et al. 2006; Oshiki et al. 2013). Contradictory reports on
nitrification coupled to metal-oxide reduction appeared in the
1990s (Luther et al. 1997; Hulth, Aller and Gilbert 1999; Thamdrup
and Dalsgaard 2000). The coupling of iron and/or manganese
reduction to anaerobic ammonium oxidation should be feasi-
ble at physiologically relevant concentrations based on thermo-
dynamic calculations (Table 1). Similar to Fe-AOM, the so-called
Feammox process could be important in sediments with rela-
tively low sulfate concentrations (Rooze and Meile 2016; Rooze
et al. 2016). A number of field observations suggest that oxida-
tion of ammonium can be coupled to the reduction of Fe3+, with

dinitrogen gas, nitrite, or nitrate as the end product. Acidimicro-
biaceae may oxidize ammonium under iron-reducing conditions
(Gilson, Huang and Jaffé 2015; Huang and Jaffé 2015). The Feam-
mox process has been observed in riparian wetlands (Clément
et al. 2005; Shrestha et al. 2009; Ding, Li and Qin 2017), forested
wetlands (Huang and Jaffé 2015), tropical forest soils (Yang et al.
2012), paddy field soils (Ding et al. 2014; Zhou et al. 2016), inter-
tidal wetlands (Li et al. 2015) and anammox sludge (Li et al. 2018a,
b). During the Feammox process, the generation of dinitrogen
gas is more favorable (−245 kJ/mol) than the generation of nitrite
(−164 kJ/mol) or nitrate (−207 kJ/mol) (Luther et al. 1997; Clément
et al. 2005; Shrestha et al. 2009; Kuypers, Marchant and Kar-
tal 2018). Thermodynamic calculations of the Feammox process
under natural conditions in Congo lobe sediments (1 μM Fe2+,
1 μM NO2

– and NO3
–, 100 μM NH4

+, pN2 0.718 atm, pN2O 1E-9
atm) revealed a Gibbs free energy change of −206.9 kJ/mol (Kiri-
azis 2015). However, significant accumulation of nitrate up to 113
μM was observed in the incubations, indicating possible nitrify-
ing activity. Isotope tracing studies of Yangtze Estuary sediment
slurry incubations showed a potential of 0.24–0.36 mg N kg−1

d−1 (Li et al. 2015). Li et al. (2015) suggested that the effects of
tidal fluctuations on ferric iron reduction could mediate Feam-
mox activity and nitrogen loss in intertidal wetland ecosystems.

These findings imply alternative pathways of N loss from
soils and sediments. Potential Feammox rates (i.e. 30N2 produc-
tion rates) in paddy field soils range from 0.17 to 0.59 mg N kg−1

d−1 (Ding et al. 2014), comparable to the Feammox rates found for
intertidal wetlands (0.24–0.36 mg N kg−1 d−1) (Li et al. 2015) and
tropical forest soils (approximately 0.32 mg N kg−1 d−1) (Yang,
Weber and Silver 2012). The Feammox reaction depends on the
availability of ammonium and Fe3+. The oxidized form of iron is
affected by pH, which regulates the reactivity of iron oxide min-
erals and iron redox reactions. However, iron-reducing bacteria
can affect the Feammox process by controlling Fe3+ reduction in
anoxic environments. The iron-reducing bacteria Geobacteraceae
spp. and Shewanella spp. may be directly or indirectly involved in
ammonium oxidation (Clément et al. 2005; Shrestha et al. 2009;
Li et al. 2015). Although these studies support the occurrence
of Feammox in various environments, the key microbial organ-
isms responsible for this process must be convincingly identi-
fied. Anoxic microbial fuel cells fed solely with ammonium could
be a good model system to investigate the occurrence of Feam-
mox in sediments but have received limited attention (Qu et al.
2014; Zhan et al. 2014; Jadhav and Ghangrekar 2015; Li et al. 2015;
Reyes et al. 2016).

Sulfate-dependent ammonium oxidation

Sulfate-dependent ammonium oxidation is thermodynamically
very challenging under biologically relevant conditions (Table 1)
and would barely yield sufficient Gibbs free energy even at
molar concentrations of ammonium. Very few field observa-
tions are available (Schrum et al. 2009), and there is no genomic
evidence that anammox bacteria can use sulfate instead of
nitrite as an electron acceptor. In 2008, the anammox bacterium
‘Candidatus Anammoxoglobus sulfate’ was presumably enriched
from an anammox reactor biomass fed with ammonium sul-
fate under anoxic conditions (Liu et al. 2008). Fdz-Polanco et al.
(2001) proposed a two-stage sulfate-reducing ammonium oxi-
dation (SRAO) in which sulfate is reduced to elemental sulfur.
Zhang et al. subsequently proposed an alternative route in which
sulfate is reduced to sulfide (Zhang et al. 2009). Furthermore,
sulfur-driven iron reduction coupled to anaerobic ammonium
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oxidation was recently described by Bao and Li (2017). The inter-
faces of anoxic deep-sea brine pools may represent a possible
ecosystem where very high ammonium and sulfate concentra-
tions can be found (Daffonchio et al. 2006; Borin et al. 2013).
Metagenomic surveys indicated a high diversity of microorgan-
isms, including anammox bacteria, at these interfaces (Daffon-
chio et al. 2006; Speth et al. 2017). Dedicated high-pressure salt-
resistant reactor equipment would be needed to successfully
establish enrichment cultures on ammonium and sulfate from
these ecosystems.

Microbial interactions in the methane, sulfur and
nitrogen cycles

While the enrichment and characterization of individual
‘impossible’ anaerobic chemolithoautotrophic microorganisms
is of great interest to microbiologists, these organisms do not
live in isolation. In ecosystems, these microorganisms must col-
laborate to remove toxic intermediates or compete for limiting
resources. Recently, the fate of ammonium, sulfide and methane
under nitrate-reducing conditions similar to those in estuar-
ine ecosystems was elegantly investigated in a bioreactor sys-
tem (Russ et al. 2014; Arshad et al. 2017). Over time, an enrich-
ment culture developed in which ‘Candidatus Methanopere-
dens nitroreducens’, ‘Candidatus Methylomirabilis oxyfera’ and
anammox bacteria coexisted with sulfide oxidizers. ‘Candida-
tus Methanoperedens nitroreducens’ converted 53% of the sup-
plied methane while reducing 69% of the nitrate to nitrite. Sul-
fide oxidizers contributed 31% to nitrite production. The nitrite
was converted to dinitrogen gas by anammox bacteria (53%)
at the expense of ammonium, by ‘Candidatus Methylomirabilis
oxyfera’ (37%) at the expense of methane, and by sulfide oxidiz-
ers (10%). Surprisingly, the metagenome of this anaerobic com-
munity was dominated by a new Nitrospirae species, ‘Candidatus
Nitrobium versatile’. Based on the retrieved genome, ‘Candidatus
Nitrobium versatile’ might produce ammonium from nitrite by
sulfur disproportionation or utilize other one-carbon excretion
products. Relatives of these Nitrospirae with similarly versatile
potential have since been detected in gypsum-fertilized paddy
fields (Zecchin et al. 2017).

CONCLUSIONS

Taken together, these studies and examples emphasize the fas-
cinating diversity of the most-wanted spookmicrobes. Future
detailed field studies using state-of-the-art biogeochemical and
microbiology methods in selected environments with counter
gradients of iron oxides and ammonium and/or methane are
needed to identify suitable niches and samples for the discovery
of new methane- or ammonium-dependent iron reducers. We
expect that such samples will yield many more exciting discov-
eries of chemolithoautotrophic spookmicrobes when the micro-
bial ecology and interactions are investigated under controlled
substrate-limited conditions in bioreactor systems. During the
page proof stage two studies (Table 1) appeared online. Huang
and Jaffé reported the isolation of an Acidimicrobiaceae strain that
can convert ammonium to nitrite at pH 4 with ferrihydrite as
electron acceptor (Huang and Jaffé 2018). Cai et al. described a
1100 day enrichment of ’Candidatus Methanoperedens ferrire-
ducens’ that use methane to reduce Fe3+ possibly using several
highly expressed multiheme cytochrome c proteins (Cai et al.
2018).
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Lücker S, Wagner M, Maixner F et al. A Nitrospira metagenome
illuminates the physiology and evolution of globally

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sec/article-abstract/94/6/fiy064/4966976 by R
adboud U

niversity user on 17 Septem
ber 2018



14 FEMS Microbiology Ecology, 2018, Vol. 94, No.6

important nitrite-oxidizing bacteria. Proc Natl Acad Sci
2010;107:13479–84.
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Schütz H, Seiler W, Conrad R. Processes involved in formation
and emission of methane in rice paddies. Biogeochemistry
1989;7:33–53.

Semrau JD, DiSpirito AA, Yoon S. Methanotrophs and copper.
FEMS Microbiol Rev 2010;34:496–531.

Shrestha J, Rich JJ, Ehrenfeld JG et al. Oxidation of ammonium to
nitrite under iron-reducing conditions in wetland soils. Soil
Sci 2009;174:156–64.

Sivan O, Adler M, Pearson A et al. Geochemical evidence for iron-
mediated anaerobic oxidation of methane. Limnol Oceanogr
2011;56:1536–44.

Smith RL, Howes BL, Duff JH. Denitrification in nitrate-
contaminated groundwater: occurrence in steep vertical geo-
chemical gradients. Geochim Cosmochim Acta 1991;55:1815–25.
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