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Networks of neurons can generate oscillatory activity as result of various types of coupling that lead to
synchronization. A prominent type of oscillatory activity is gamma (30–80 Hz) rhythms, which may play
an important role in neuronal information processing. Two mechanisms have mainly been proposed for their
generation: (1) interneuron network gamma (ING) and (2) pyramidal-interneuron network gamma (PING).
In vitro and in vivo experiments have shown that both mechanisms can exist in the same cortical circuits.
This raises the questions: How do ING and PING interact when both can in principle occur? Are the network
dynamics a superposition, or do ING and PING interact in a nonlinear way and if so, how? In this article, we
first generalize the phase representation for nonlinear one-dimensional pulse coupled oscillators as introduced by
Mirollo and Strogatz to type II oscillators whose phase response curve (PRC) has zero crossings. We then give
a full theoretical analysis for the regular gamma-like oscillations of simple networks consisting of two neural
oscillators, an “E neuron” mimicking a synchronized group of pyramidal cells, and an “I neuron” representing
such a group of interneurons. Motivated by experimental findings, we choose the E neuron to have a type I PRC
[leaky integrate-and-fire (LIF) neuron], while the I neuron has either a type I or type II PRC (LIF or “sine”
neuron). The phase representation allows us to define in a simple manner scenarios of interaction between the two
neurons, which are independent of the types and the details of the neuron models. The presence of delay in the
couplings leads to an increased number of scenarios relevant for gamma-like oscillatory patterns. We analytically
derive the set of such scenarios and describe their occurrence in terms of parameter values such as synaptic
connectivity and drive to the E and I neurons. The networks can be tuned to oscillate in an ING or PING mode.
We focus particularly on the transition region where both rhythms compete to govern the network dynamics and
compare with oscillations in reduced networks, which can only generate either ING or PING. Our analytically
derived oscillation frequency diagrams indicate that except for small coexistence regions, the networks generate
ING if the oscillation frequency of the reduced ING network exceeds that of the reduced PING network, and vice
versa. For networks with the LIF I neuron, the network oscillation frequency slightly exceeds the frequencies of
corresponding reduced networks, while it lies between them for networks with the sine I neuron. In networks
oscillating in ING (PING) mode, the oscillation frequency responds faster to changes in the drive to the I (E)
neuron than to changes in the drive to the E (I) neuron. This finding suggests a method to analyze which mechanism
governs an observed network oscillation. Notably, also when the network operates in ING mode, the E neuron
can spike before the I neuron such that relative spike times of the pyramidal cells and the interneurons alone are
not conclusive for distinguishing ING and PING.
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I. INTRODUCTION43

Many processes in biology, physics, chemistry, and en-44

gineering have an oscillatory character. Regular oscillations45

on a limit cycle can be described by a single variable, the46

phase, which characterizes the time needed to reach the current47

state due to unperturbed dynamics when starting from some48

specified “reset” point on the cycle (e.g., [1,2]). If an oscillator49

receives inputs in the form of pulses and an input-induced50

perturbation from the limit cycle relaxes back sufficiently51

quickly (i.e., before the next input arrives), the system’s52

dynamics can be characterized by the phase together with a53

function telling how the phase changes in response to an input 54

pulse: the phase response curve (PRC) or the phase transition 55

curve or transfer function [1,3,4]. This phase representation has 56

been widely used to investigate network dynamics, especially 57

synchronization and locking phenomena, in areas of science 58

as diverse as neural circuits [5–8], technical networks [9,10], 59

and insect behavior [4,11]. 60

A particularly simple type of oscillator is given by a 61

hybrid dynamical system whose state variable follows some 62

one-dimensional, possibly nonlinear continuous dynamics, 63

periodically reaches a threshold, and is then reset [12]. A rich 64

source of such oscillators is the reduction of spiking neurons 65
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to integrate-and-fire type neuron models [13–15]: Biological66

neurons possess a complicated branched structure with protru-67

sions of different function and many slow and fast degrees68

of freedom associated with the resulting compartments. In69

integrate-and-fire type neuron models, this spatial structure is70

reduced to a single compartment “point neuron” and the high-71

dimensional dynamics are reduced to one degree of freedom,72

interpreted as the membrane potential [1,16]. Integrate-and-fire73

type neurons interact with pulses, mimicking spikes or action74

potentials; these are sent when the neuron is reset and are75

received by postsynaptic neurons often after some delay. In76

this article, we consider networks of two integrate-and-fire type77

neurons in phase representation to investigate the competition78

between mechanisms that are widely assumed to underlie79

oscillations in biological neural networks. Each integrate-and-80

fire type neuron thereby represents a synchronized population81

of neurons.82

Oscillations in biological neural networks may be important83

for information processing [17,18]. One hypothesis is that they84

may coordinate precise spike sending of neurons and lead85

to synchronous spiking of neural populations [19]. Indeed,86

experiments have found examples of highly synchronous87

spiking associated with strong oscillations [20] and the timing88

of individual spikes relative to a global oscillation’s phase can89

carry important information [19,21–24]. Receiving neurons, in90

turn, can be highly sensitive to coincident input; in particular,91

types of synaptic plasticity depend on the timing of spikes [25].92

Under high-input conditions the spike-generating mechanism93

can adaptively enhance the sensitivity to synchronous input94

while simultaneously decreasing the sensitivity to tempo-95

rally uncorrelated inputs [26]. Further, oscillatory modulation96

of the membrane potential, for example, by input from a97

synchronously firing population of neurons, can provide a98

precise temporal window for the integration of synaptic inputs,99

favoring inputs arriving precisely at certain times [27,28].100

The “communication through coherence” hypothesis suggests101

that this promotes information transmission between coher-102

ently oscillating neuron populations in different brain areas103

and allows us to focus on attended stimuli [29–32]. Higher104

frequency oscillations may support propagation and selection105

of information within areas [33,34]. Oscillation coordinated106

synchronous spiking across different neuron populations may107

also allow us to bind different features of a stimulus into a108

coherent percept [35–39] and generally parse and separate109

information into chunks of different length [22,40,41].110

In the current article, we will focus on gamma (30–111

80 Hz) oscillations. These are prominent oscillations, which112

have been linked to input selectivity [30,42], spike-phase113

encoding [19,43], feature binding [35], as well as to storage114

and retrieval of information [40,41]. Mainly two mechanisms115

have been proposed to underlie gamma oscillations [44–46].116

Both involve populations of excitatory pyramidal cells (E117

cells) and inhibitory interneurons (I cells). Tonic excitation118

of the interneurons, e.g., due to averaging slow excitatory119

input, can give rise to interneuron network gamma (ING)120

[47–52]: Imagine, by chance at some point more I cells spike121

and generate increased inhibition. This hinders the other I122

cells from spiking before the ones that have just spiked have123

recovered, and recruits them into synchrony such that a rhythm124

emerges [53]. The I cells undergo a cycle of enhanced spiking125

activity, resulting in increased recurrent inhibition within 126

the population, subsequently decreased activity, followed by 127

recovery from inhibition and again enhanced spiking. The 128

resulting periodically increased inhibition generates rhythmic 129

spiking in connected E cells. Pyramidal-interneuron network 130

gamma (PING) is mediated by interacting populations of 131

E cells and I cells [51,54,55]. Imagine, by chance at some 132

point more E cells spike. The I cells respond to the increased 133

excitatory input from the E cells by increasing their spiking. 134

The resulting increased inhibitory input in turn hinders spiking 135

in the E cells, such that their activity goes down. The lack 136

of excitatory input leads to a decrease of I-cell activity, such 137

that the E cells can recover from inhibition and generate 138

increased spiking, which completes the cycle. To summarize, 139

ING relies crucially on mutual inhibition generated by the I 140

cells among each other, while PING relies crucially on the 141

E → I connections and the inhibitory feedback to the E cells. 142

In model networks, there can be a sharp boundary in parameter 143

space between the regime in which the I cells have weak enough 144

drive for PING, and the ING regime in which the drive to the I 145

cells is so large that they fire without being prompted by the E 146

cells [56]. However, recent studies have shown that this sharp 147

transition may be a simplification [57] and we highlighted in 148

Ref. [58] that there are two-neuron systems that can generate 149

ING as well as PING, depending on the initial conditions. 150

Using computer simulations of larger networks, in Ref. [58] 151

we have shown that in the range of parameter space where 152

ING and PING may in principle be expected to exist, both 153

mechanisms compete such that the mechanism generating 154

the higher oscillation frequency “wins”; i.e., the mechanism 155

with the higher frequency determines the frequency of the 156

network oscillation and suppresses the other one. In the 157

current article we provide a theoretical analysis of the finding, 158

using simplified networks of two oscillating integrate-and-fire 159

type neurons. The simplified system allows us to analytically 160

study the interactions between ING and PING and to better 161

understand their consequences for oscillations in networks of 162

interacting E cells and I cells. The analytically tractable model 163

consists of an E neuron, which belongs to the category of type 164

I neurons, and an I neuron, which can be either type I or type 165

II. For type I neurons an excitatory input always advances 166

the next spike; the PRC is entirely positive. In contrast, an 167

excitatory input arriving at a type II neuron can also delay 168

the next spike; the PRC is partially negative [1,59]. Indeed, 169

there is experimental evidence that I cells involved in gamma 170

oscillations may belong to the category of type II neurons 171

[60–62]. 172

We consider current-based integrate-and-fire neurons, 173

where the currents have infinitesimally short temporal dura- 174

tion. The latter implies that the membrane potential responds 175

in jumplike manner to the input, the former that the height of the 176

jump is independent of the membrane potential. Note that also 177

some conductance-based and more general models can be cast 178

into this form by a transformation of variables [63,64]. For type 179

I neurons, where an excitatory jump (towards the membrane 180

potential threshold) always advances the phase, a phase repre- 181

sentation has been derived in Refs. [4,65]. We adopt this phase 182

representation for our type I neurons since the linearization 183

of the free dynamics strongly simplifies the analytical study 184

of the system and since the phase representation allows for 185
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simple and fast event-based numerical simulations. To be able186

to study networks with type II interneurons in the same way, we187

derive a generalized phase representation, which is applicable188

to neurons of this type. For this, we assume that an infinitesimal189

phase response curve (iPRC) of type II is given, and we derive190

the corresponding membrane potential dynamics as well as the191

PRC.192

The article is structured as follows: Section II is dedicated to193

the standard phase representation of a one-dimensional oscil-194

lator, its derivation from the free dynamics, and its application195

to the leaky integrate-and-fire (LIF) neuron, which is the type I196

neuron model that we use throughout the article. In Sec. III, we197

derive the phase representation of one-dimensional oscillators198

of type II, where the iPRC can change sign. We apply the199

scheme to derive the “sine neuron,” the type II neuron model200

that we use throughout the article. The Appendix compares201

this neuron with the radial isochron clock, an oscillator model202

that has the same iPRC. In Sec. IV, we consider delayed pulse-203

coupled networks of two model neurons and show the ways in204

which they interact depending on their phase difference. This205

yields a representation of the dynamics in terms of iteration206

maps whose fixed points yield the regular oscillations that we207

study in Sec. V. Section VI is dedicated to the competition and208

coexistence of the ING and PING oscillation mechanisms. We209

conclude with a discussion in Sec. VII, which puts our findings210

in context to the existing literature and our previous larger211

scale simulation studies [58]. We note that in Ref. [58] we212

summarized, displayed, and discussed some of the results of213

the current article.214

II. PHASE REPRESENTATION OF TYPE I215

ONE-DIMENSIONAL OSCILLATORS216

A. General theory217

In the following, we review the standard phase representa-218

tion of one-dimensional oscillators coupled by infinitesimally219

short pulsed interactions proposed in Refs. [4,8,65], as needed220

for the purposes of the present article. For a more general221

derivation and discussion, see [65].222

A one-dimensional neural oscillator is generally charac-223

terized by a voltage-like state variable V . We assume that224

without arrival of fast inputs, V is strictly increasing up to225

a spike threshold �V > 0. When reaching the threshold at a226

time t , V (t ) = �V , V is reset to zero, i.e., V (t+) = 0, and227

starts increasing again. We denote the period of these free228

dynamics by T . We note that when V (t ) is specified by an229

autonomous differential equation (the function specifying the230

rate of change of V does not depend on time) with unique231

solutions, trajectories cannot cross or overlap and furthermore232

the oscillatory behavior forbids fixed points. This implies strict233

monotonicity of V except where V is being reset.234

We now introduce a so-called phase variable ϕ(t ), which235

increases with slope one in absence of fast input,236

dϕ(t )

dt
= 1, (1)

and has a phase threshold �. When ϕ reaches the threshold237

at a time t , ϕ(t ) = �, the phase is reset to zero, ϕ(t+) = 0.238

Note that Eq. (1) implies that the free period of the phase is239

�. Since we want to map ϕ(t ) to V (t ), we choose the free240

periods identical, � = T . The strict monotonicity of V (t ) then 241

implies that there is a strictly monotonic, bijective so-called rise 242

function U , mapping phase ϕ to voltage V , i.e., at time t 243

V (t ) = U (ϕ(t )). (2)

In particular, �V and � are related by 244

�V = U (�). (3)

For the LIF neuron, the type I neuron we focus on in our 245

study, U : ] − ∞,�] →] − ∞,�V ] (depending on the neuron 246

model domain and/or codomain are different).U can be derived 247

directly from free membrane potential dynamics: Consider 248

free membrane potential dynamics Ṽ , which start at the reset 249

potential at t = 0, i.e., Ṽ (0) = 0. Ṽ can be continued for 250

negative times towards −∞ (or a possible lower bound) and for 251

positive times to �V . The analogous dynamics of ϕ run from 252

−∞ (or a possible lower bound) to � = T with ϕ(0) = 0. We 253

have U (ϕ) = Ṽ (ϕ), since time equals phase for the considered 254

piece of dynamics. 255

When ϕ reaches the phase threshold, it is reset and a spike is 256

emitted. After a delay time τ , the spike arrives at postsynaptic 257

neurons at, say, time ta . We assume that they respond with an 258

instantaneous jump in their membrane potential. The strength 259

ε of the coupling from the pre- to the postsynaptic neuron 260

specifies the height of the jump. The corresponding phase jump 261

is computed using a transfer function H , 262

ϕ(t+a ) = H (ϕ(ta ), ε). (4)

For convenience, we will omit ta and use ϕ instead of ϕ(ta ). 263

If an input of strength ε is subthreshold, i.e., U (ϕ) + ε < �V , 264

the transfer function is given by 265

H (ϕ, ε) = U−1(U (ϕ) + ε). (5)

We may understand this formula as follows: We take ϕ and 266

change to the membrane potential domain using U given in 267

Eq. (2). We know that in the membrane potential domain an 268

input of strength ε additively changes the membrane potential 269

U (ϕ) by ε. We compute the corresponding phase, i.e., the 270

phase after the input, using U−1. The composition of the steps, 271

U−1(U (ϕ) + ε), maps the phase before the interaction to the 272

phase after the interaction. We note that H (ϕ, ε) is strictly 273

monotonically increasing, both as a function of ε and ofϕ, since 274

U and thus U−1 are strictly monotonically increasing. Since 275

suprathreshold input leads to immediate spiking and reset of 276

the neuron, we need to extend the definition of the transfer 277

function to 278

H (ϕ, ε) = U−1(U (ϕ) + ε), for U (ϕ) + ε < �V , (6)

H (ϕ, ε) = 0, for U (ϕ) + ε � �V . (7)

H (ϕ, ε) yields the new phase of a neuron when it receives an 279

input ε at phase ϕ [cf. Eq. (4)]. It is thus closely related to the 280

phase response curve (PRC) P (ϕ, ε) (e.g., [3]), which yields 281

the phase change induced by an input ε received at phase ϕ, 282

P (ϕ, ε) = H (ϕ, ε) − ϕ. (8)

The infinitesimal phase response curve (iPRC) Z(ϕ) char- 283

acterizes the phase shift of a neuron around ε = 0; i.e., an 284
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FIG. 1. Infinitesimal phase response curves (iPRC) Z, rise functions (U ), and inverse rise functions (U−1) for the type I leaky integrate-
and-fire neuron and the type II sine neuron. Upper panels show (a) the iPRC, (b) the rise function, and (c) the inverse rise function for the leaky
integrate-and-fire neuron. Corresponding data are shown in the lower panels (d), (e), and (f) for the sine neuron; its inverse rise function has
two branches (blue: k = 1, red: k = 2). Parameter setting: γ = 1, �V = 1, and � = 1.

infinitesimal input dε generates an infinitesimal phase shift285

dϕ = Z(ϕ)dε. (9)

For small ε around 0 we have P (ϕ, ε) ≈ Z(ϕ)ε;286

H (ϕ, ε) ≈ ϕ + Z(ϕ)ε. Z(ϕ) and H (ϕ, ε) are thus287

related by288

Z(ϕ) = ∂H (ϕ, ε)

∂ε

∣∣∣∣
ε=0

. (10)

As mentioned above, U−1 is strictly increasing. Equations (6)289

and (8) then imply that H and P are strictly increasing in ε for290

subthreshold input. Because P (ϕ, 0) equals 0, P (ϕ, ε) > 0 for291

ε > 0 and subthreshold input. In other words, the PRC has to292

be of type I; the formalism is thus applicable to type I neurons293

only.294

B. The LIF neuron in phase representation295

We now review the derivation of the phase representation for296

the type I LIF neuron using the methods described in Sec. II A297

(cf. also [65]). The dynamics of the membrane potential VLIF(t)298

of the LIF neuron are given by299

dVLIF(t )

dt
= −γVLIF(t ) + I, (11)

where γ represents the inverse of the membrane time con-300

stant and I captures the external driving current. When the301

membrane potential reaches its threshold �V , the neuron302

spikes and the membrane potential is reset to zero. A spike303

arriving at time t at a synaptic connection with strength ε 304

induces an instantaneous change in the membrane potential, 305

i.e., VLIF(t+) = VLIF(t ) + ε. We assume that slow external 306

inputs add up to a constant current I , which drives the 307

neuron continuously over the threshold, such that it oscillates 308

“intrinsically” in absence of fast synaptic input. This allows us 309

to define the phase −∞ < ϕ � �, which increases with slope 310

1 and is reset to zero when it reaches �, where also a spike is 311

emitted. 312

The rise function U linking the phase ϕ of the spiking cycle 313

to the membrane potential description V can be determined as 314

described in Sec. II A as 315

VLIF = ULIF(ϕ) = I

γ
(1 − e−γ ϕ ) (12)

(see [4,65]), yielding the inverse 316

U−1
LIF(VLIF ) = 1

γ
ln

(
I

I − γVLIF

)
. (13)

ULIF is a monotonically increasing function of ϕ. Figures 1(b) 317

and 1(c) show the rise function ULIF and its inverse U−1
LIF, 318

respectively. The phase threshold is explicitly given in terms 319

of the voltage threshold �V by 320

� = U−1
LIF(�V ) = 1

γ
ln

(
I

I − γ�V

)
. (14)

ULIF and U−1
LIF yield the transfer function of the LIF neuron 321

HLIF(ϕ, ε; �V ) =
{− 1

γ
ln

(
e−γ ϕ − γ ε

I

)
, for ULIF(ϕ) + ε < �V ,

0, for ULIF(ϕ) + ε � �V ;

(15)

(16)
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FIG. 2. Free dynamics (V ) and transfer functions (H ) for the type I leaky integrate-and-fire neuron and the type II sine neuron. Upper
panels show (a) the free membrane potential dynamics, (b) the transfer function as a function of the coupling strength ε for different constant
values of the phase ϕ at input arrival (blue, red, black, green, cyan: ϕ = 0, 0.25, 0.5, 0.75, and 1), and (c) the transfer function as a function of
ϕ for different constant ε (blue, red, black: ε = −0.5, 0, and 0.5) for the LIF neuron. Lower panels (d)–(f) show the corresponding plots for the
sine neuron. Parameter setting: γ = 1, �V = 1, and � = 1.

cf. Eqs. (6) and (7). It is displayed in Fig. 2, panels (b)322

and (c).323

Note that the phase ϕ can assume all values within324

] − ∞,�], where negative phases are generated by inhibitory325

inputs that cause hyperpolarization of the membrane potential.326

Since we use the convention that the phase ϕ is reset to zero327

when it reaches the threshold �, at the time of a spiking328

due to the driving current we have ϕ = � rather than ϕ = 0.329

Since γ > 0, we can set γ = 1 and �V = 1 after appropriate330

scaling of time and voltage, without loss of generality for331

a single neuron. For simplicity, we assume that in networks332

with two type I neurons the membrane time constants are the333

same, such that the scaling is possible. The driving current I334

that gives ULIF(�) = 1 follows in a straightforward way from335

Eq. (12),336

I = 1

1 − e−�
. (17)

The rise function Eq. (12) and its inverse Eq. (13) are then337

given by338

ULIF(ϕ) = 1 − e−ϕ

1 − e−�
, (18)

U−1
LIF(VLIF ) = − ln[1 − (1 − e−�)VLIF]. (19)

Equations (15) and (16) yield the transfer function339

HLIF(ϕ, ε; �) =
{− ln[e−ϕ − (1 − e−�)ε], for ULIF(ϕ) + ε < 1,

0, for ULIF(ϕ) + ε � 1,

(20)

(21)

and, according to Eq. (10), the iPRC is given by340

ZLIF(ϕ; �) = (1 − e−�)eϕ, (22)

which is shown in Fig. 1(a).341

III. PHASE REPRESENTATION OF TYPE II342

ONE-DIMENSIONAL OSCILLATORS343

A. General theory344

The phase representation Sec. II is only valid for one-345

dimensional neurons of type I, such as the LIF neuron. In346

the following we generalize it to neurons of type II, whose347

iPRC has negative and positive parts. We assume that our348

type II neuron is a current-based one-dimensional oscillator,349

which receives current inputs of infinitesimally small temporal350

extent. These generate jumplike responses in the membrane351

potential; the height of the jump is independent of the voltage.352

We further assume that the membrane dynamics are at first353

unknown, and the neuron dynamics are instead specified by an 354

infinitesimal phase response curve, which specifies the phase 355

response to input pulses of infinitesimally small strength. We 356

then derive the free membrane dynamics as well as the full 357

phase representation. They turn out to follow nearly uniquely 358

from the iPRC for the considered class of oscillator models. 359

The domain of the iPRC can be divided into several 360

intervals, in which the iPRC has the same sign (positive or 361

negative). As an example, for a type I iPRC that is everywhere 362

larger than zero, we have only one interval ] − ∞,�[; cf. 363

the LIF neuron in Sec. II B. For a sine-like type II iPRC, cf. 364

Sec. III B below, there are two subintervals ]0,�/2[, ]�/2,�[, 365

and the iPRC becomes zero at the ends of the intervals. We aim 366

to construct rise functions for each subinterval and combine 367

them to obtain the transfer function H . 368

Restricted to a single interval i, the iPRC is either com- 369

pletely positive or negative. A strictly increasing free voltage 370

implies a positive iPRC: A small upward jump in the voltage 371
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maps the current state to a state that would be reached in372

the future by free evolution; cf. Sec. II. A strictly decreasing373

free voltage implies a negative iPRC, as an upward jump in374

the voltage maps the current state to an earlier state. In turn,375

a positive (negative) iPRC implies monotonically increasing376

(decreasing) free voltage dynamics. We note that this implies377

that a differential equation specifying V must switch between378

intervals with different signs of the iPRC (cf. Sec. III B below).379

In interval i we can define a monotonically increasing or380

decreasing transfer function Ui , which maps phase to voltage,381

cf. Eq. (2), as follows: For given ϕ, there are sufficiently small382

inputs ε such that the voltage and phase stay within the interval383

even if i is the interval neighboring the threshold. Then, the384

transfer function is given by Eq. (5) and385

∂Hi (ϕ, ε)

∂ε
= 1

U
′
i

(
U−1

i (Ui (ϕ) + ε)
) . (23)

By setting ε to 0, see Eq. (10), we obtain for all ϕ in the interval386

Z(ϕ) = ∂Hi (ϕ, ε)

∂ε

∣∣∣∣
ε=0

= 1

U
′
i

(
U−1

i (Ui (ϕ))
) = 1

U
′
i (ϕ)

.

(24)

The slope of Ui (ϕ) specifies Ui (ϕ) up to a constant, so387

Ui (ϕ) is basically the antiderivative Fi (ϕ) of 1/Z(ϕ) in388

interval i,389

Fi (ϕ) =
∫

1

Z(ϕ)
dϕ. (25)

We obtain Ui (ϕ) from Fi (ϕ) by specifying the voltage at some390

phase.391

When ϕ approaches an interval boundary where the iPRC392

has a zero, Ui (ϕ) and thus the voltage will usually tend to ±∞,393

which we then take as the value assumed by the rise function394

there. We note that the voltage can tend to +∞ even if the395

phase is not in the interval neighboring the threshold. Then396

the phase does not reach the phase threshold and the neuron397

does not spike. Models with this property may be interpreted as398

having a history-dependent voltage spike threshold. We note399

that our formalism allows us to construct oscillator models400

from the iPRC for which Ui (ϕ) does not have a reasonable401

biological interpretation in terms of a voltage. As an example,402

an iPRC that is negative in the interval adjacent to the phase403

threshold can give rise to a Ui (ϕ) that reaches −∞ as the phase404

approaches the phase threshold and the neuron spikes.405

If ε does not lead the dynamics out of interval i, the transfer406

function is given by407

Hi (ϕ, ε) = U−1
i (Ui (ϕ) + ε). (26)

It is uniquely determined by the iPRC, since adding a constant408

to Ui , i.e., using Ui,ci
(ϕ) = Ui (ϕ) + ci to define Hi , does not409

change it,410

Hi (ϕ, ε) = U−1
i,ci

(Ui,ci
(ϕ) + ε) = U−1

i (Ui (ϕ) + ci + ε − ci )

= U−1
i (Ui (ϕ) + ε). (27)

We can derive the rise function also in a more intuitive411

manner as follows: An input to our neuron models should have412

the same effect whether we apply it at once or in small pieces,413

which we may imagine to be separated by small temporal414

differences. Indeed, in the membrane potential representation, 415

the input is simply additive, so this is certainly satisfied. In 416

phase representation, it should be satisfied as well. An input 417

dε̃ arriving at phase ϕ leads in linear approximation to a new 418

phase ϕ+ = ϕ + Z(ϕ)dε̃. If the change due to an input piece 419

dε̃ does not depend on the total input ε, we should get the 420

same change, if the previous phase has been reached due to 421

a previous piece ε̃ of an input. Denoting the phase before the 422

arrival of dε̃ by ϕ(ε̃), we find that the input ε̃ + dε̃ leads to 423

the phase ϕ(ε̃ + dε̃) = ϕ(ε̃) + Z(ϕ(ε̃))dε̃. Note that ϕ(ε̃) is 424

the exact nonapproximated phase after receiving ε̃, while the 425

impact of dε̃ is covered up to first order. Knowing the impact 426

of an additional input dε̃ up to first order (equivalently, the 427

impact of an infinitesimal input) allows us to write the phase 428

change in the form of a differential equation, 429

dϕ(ε̃)

dε̃
= Z(ϕ(ε̃)). (28)

Since the impact of an input piece does not explicitly depend 430

on the previously received input, the right-hand side does not 431

explicitly depend on the independent variable ε̃, but only via 432

ϕ(ε̃). In other words, the phase change ϕ(ε̃) is characterized by 433

an autonomous ordinary differential equation. In the Appendix, 434

we highlight that general phase oscillators do not have this 435

property, using the radial isochron clock. Note that Eq. (28) 436

can also be derived by discretizing the timelike variable ε into 437

many small steps of size dε̃, expanding the PRC around zero 438

coupling strength by its Taylor series, and taking the limit of 439

dε̃ → 0. 440

Solving Eq. (28) by separation of variables, we obtain 441∫ ϕ+

ϕ

1

Z(ϕ)
dϕ =

∫ ε

0
dε̃ = ε, (29)

where ϕ+ and ϕ are the phases before and after arrival of the 442

total subthreshold input ε. By the first fundamental theorem of 443

calculus, we have Fi (ϕ+) − Fi (ϕ) = ε, where again Fi (ϕ) = 444∫
1/Z(ϕ)dϕ. Since on the other hand 445

Ui (ϕ
+) − Ui (ϕ) = ε, (30)

Fi equals Ui up to an additive constant and Ui is basically the 446

antiderivative of 1/Z(ϕ) in the interval i. 447

Equation (28) and its property of being autonomous can also 448

be directly derived from the fact that dVi (the change of the 449

voltage due to dε̃) does not explicitly (not even implicitly) de- 450

pend on already applied subthreshold input: While receiving an 451

input, Vi may be seen as a function Vi (ε̃) of the already applied 452

piece of input ε̃, with initial value Vi (0) = Vi and ε̃ running 453

from 0 to ε. Vi (ε̃) then satisfies the autonomous differential 454

equation dVi (ε̃)/dε̃ = 1. This implies dUi (ϕ(ε̃))/dε̃ = 1 and, 455

after application of the chain rule, the differential equation 456

dϕ(ε̃)/dε̃ = 1/U ′
i (ϕ(ε̃)). Since for ε̃ = 0 the left-hand side 457

equals Z(ϕ) and the differential equation is autonomous, we 458

have 1/U ′
i (ϕ) = Z(ϕ) for all phases. This implies that ϕ(ε̃) 459

satisfies Eq. (28) and it implies Eq. (30). 460

Equation (28) also allows us to directly derive the transfer 461

function and thus the complete phase representation from the 462

iPRC. We note that ϕ(ε̃) = Hi (ϕ, ε̃) and rewrite Eq. (28) as 463

∂Hi (ϕ, ε̃)

∂ε̃
= Z(Hi (ϕ, ε̃)) (31)
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with initial condition Hi (ϕ, 0) = ϕ, which reduces to Eq. (10)464

for ε̃ = 0. Solving the differential equation yields the transfer465

function in interval i.466

Phases ϕ where the iPRC is zero are fixed points of the467

dynamics Eqs. (28) and (31). Thus, under weak conditions468

on Eq. (28) (the iPRC is globally Lipschitz continuous such469

that the differential equation has a unique solution existing470

for all ε), such a ϕ will not be changed by input, Hi (ϕ, ε) =471

ϕ = constant; furthermore, no finite input will lead beyond the472

borders of an interval i where the iPRC gets zero.473

B. The sine neuron in phase representation474

Typical type II neurons show a phase delay in response475

to excitatory input ε > 0 arriving at small phases (early in476

the spiking cycle, shortly after a spike) and a phase advance477

when such input arrives at larger phases [3,57]. With these478

characteristics in mind, we define our type II neurons as “sine479

neurons” by an iPRC,480

Zsine(ϕ) = − sin

(
2π

�
ϕ

)
, (32)

where ϕ ∈ [0,�] [see Fig. 1(d)] and � ≡ T is the period481

and the phase threshold of the neuron. We use the sinusoidal482

function as the iPRC of our type II neurons also because neuron483

models such as the Hodgkin-Huxley neuron can undergo Hopf484

bifurcations [66,67] and the normal form oscillator of Hopf485

bifurcating systems and thus general Hopf bifurcating systems486

with appropriate parameters have near the bifurcation for487

suitable inputs a sinusoidal iPRC Eq. (32) [68]. To facilitate488

the analytical study of two-neuron networks that include type489

II neurons, we apply the phase oscillator formalism to the sine490

neuron. Since the iPRC changes sign, we use the methodology491

derived in Sec. III A.492

We split the interval domain [0,�] of Zsine into two, i.e.,493

]0,�/2[ and ]�/2,�[, and treat Usine(ϕ) at ϕ ∈ {0,�/2,�}494

separately. Equations (25) and (32) yield the rise functions495

for the first subinterval (Usine,1(ϕ), ϕ ∈ ]0,�/2[) and for the496

second subinterval (Usine,2(ϕ), ϕ ∈ ]�/2,�[): Usine,k(ϕ) =497

−� ln[| tan(πϕ/�)|]/2π + ck , where ck ∈ R and k ∈ {1, 2}.498

From the first subinterval, we compute the values of499

the rise function at ϕ = 0 and ϕ = �/2, Usine(0) =500

limϕ→0+ Usine,1(ϕ)=∞,Usine(�/2)= limϕ→�−/2 Usine,1(ϕ) =501

−∞. Compatible with this, limϕ→�+/2 Usine,2(ϕ) = −∞.502

Finally, at ϕ = �, Usine(�) = limϕ→�− Usine,2(ϕ) = ∞. In503

summary, the rise function of the sine neuron is given by504

Usine(ϕ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∞, for ϕ ∈ {0,�},
−∞, for ϕ = �/2,

− �
2π

ln
[
tan

(
π
�

ϕ
)] + c1, for ϕ ∈ ]

0, �
2

[
,

− �
2π

ln
[
tan

(− π
�

ϕ
)] + c2, for ϕ ∈ ]

�
2 ,�

[
.

(33)

Figure 1(e) illustrates the rise function Usine(ϕ) for the sine505

neuron with c1 = c2 = 0.506

Since the membrane potential of our sine neuron satis-507

fies Vsine(t ) = Usine(ϕ(t )), it reaches +∞ in finite time [see508

Fig. 1(e)]. We can thus set the spike threshold to ∞. In509

this respect, the sine neuron resembles the theta or quadratic510

FIG. 3. Vector field of the sine neuron defined by Eqs. (34) and
(35). The solid curves represent Vsine(t ) = Usine(ϕ(t )) for c1 = c2 =
0. The vector field switches when Vsine reaches +∞ or −∞.

integrate-and-fire model (see, e.g., [1] and Sec. VII). How- 511

ever, the sine neuron is not reset to −∞. When it reaches 512

threshold, the membrane potential decreases from +∞ to −∞ 513

halfway through the cycle by its intrinsic dynamics. In this 514

regime, excitatory input yields a phase delay. Thereafter the 515

membrane potential increases gradually to +∞ in a regime 516

where excitation yields a phase advance. The dynamical 517

regime thus depends on the last “event.” If the last event was 518

sending a spike (Vsine = ∞), we are in regime k = 1, where 519

excitation delays the phase. If the last event was reaching the 520

reset potential (Vsine = −∞), we are in regime k = 2, where 521

excitation advances the phase. Note that this is an extension 522

to the dynamics of standard integrate-and-fire models, where 523

neurons are only in one dynamical regime and reset in an 524

infinitesimally short time after they reach threshold. In contrast 525

to the “spike response” extension (see [69]), the dynamical 526

regime in our extension does not only depend on the time 527

elapsed since spike sending, but also on the full dynamics of the 528

neuron. A stronger asymmetry between spiking and reset or a 529

more rapid onset of spikes can be easily achieved by modifying 530

the sinusoidal shape of the iPRC. 531

Interestingly, the membrane potential of our sine neuron 532

obeys the simple nonlinear differential equation 533

dVsine(t )

dt
= dUsine(ϕ)

dϕ

dϕ(t )

dt
= − cosh

[
2π

�
Vsine(t )

]
(34)

in the regime k = 1, i.e., if the previous event was a spike, and 534

it obeys 535

dVsine(t )

dt
= cosh

[
2π

�
Vsine(t )

]
(35)

in the regime k = 2, i.e., if the previous event was a reset; cf. 536

Fig. 3. 537

Using Eq. (33), we can define an inverse function U−1
sine with 538

two branches; see Fig. 1(f). For the branch k = 1 the inverse 539

function U−1
sine maps the state variable Vsine ∈ ] − ∞,∞[ to the 540

phase ϕ ∈ ]0,�/2[ by 541

U−1
sine(Vsine) = �

π
arctan

(
e− 2π

�
(Vsine−c1 )

)
. (36)
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For the branch k = 2, the inverse function U−1
sine maps the542

membrane potential Vsine in the range ] − ∞,∞[ to ]�/2,�[,543

U−1
sine(Vsine) = −�

π
arctan

(
e− 2π

�
(Vsine−c2 )

) + �. (37)

Using these branches, we can now construct the transfer544

function Hsine(ϕ). For this, we first consider the membrane545

potential dynamics and note that an input ε cannot bring Vsine546

above +∞ or below −∞. As a consequence, inputs do not547

alter the dynamical regime k. To compute the phase after an548

input we therefore have to use Eq. (36) if the original phase ϕ is549

within ]0,�/2[ (regime k = 1) and Eq. (37) if ϕ ∈ ]�/2,�[550

(regime k = 2). Further taking into account that the transfer551

function is the identity for any input at ϕ ∈ {0,�/2,�} (the552

zeros of the PRC; see Sec. III A), we arrive at Hsine(ϕ, ε):553

Hsine(ϕ, ε)

=

⎧⎪⎨⎪⎩
U−1

sine,1(Usine(ϕ) + ε), for ϕ ∈ ]
0, �

2

[
,

U−1
sine,2(Usine(ϕ) + ε), for ϕ ∈ ]

�
2 ,�

[
,

ϕ, for ϕ ∈ {
0, �

2 ,�
}
,

(38)

=

⎧⎪⎪⎨⎪⎪⎩
�
π

arctan
[

tan
(

π
�

ϕ
)
e− 2πε

�

]
, for ϕ ∈ ]

0, �
2

[
,

�
π

arctan
[

tan
(

π
�

ϕ
)
e− 2πε

�

] + �, for ϕ ∈ ]
�
2 ,�

[
,

ϕ, for ϕ ∈ {
0, �

2 ,�
}
.

(39)

Figures 2(e) and 2(f) show the transfer function as a function of554

synaptic increment ε and as a function of phase ϕ, respectively.555

The panels illustrate, in particular, that ϕ can assume values in556

[0,�], that the neuron cannot be excited suprathresholdly, and557

that inputs do not give rise to transitions between the regimes558

k = 1 and k = 2. We note that in phase representation, we do559

not have to keep track of the type of the last event to execute560

the dynamical evolution since this information is contained in561

the current phase.562

IV. INTERACTION SCENARIOS, ITERATION MAP,563

AND PHASE-LOCKING EQUATIONS564

A. Interaction scenarios565

In this section, we start to consider networks of two neurons,566

an excitatory (henceforth E) and an inhibitory (henceforth567

I) neuron [cf. Fig. 4(a)]. They represent two synchronized568

coupled neuron populations, an excitatory and an inhibitory569

population, by one representative neuron for each population.570

The couplings between the neuron populations are accounted571

for by couplings between the two representative neurons. We572

aim at setting up an event-based iteration map in the phase573

variables, which fully describes the network dynamics. Its fixed574

points and periodic orbits correspond to periodic oscillations575

in the phase dynamics (cf., e.g., [70]). To derive the map, we576

consider the difference of shifted phases of the two neurons577

and describe how it changes when the neurons send and receive578

spikes. We focus on regular periodic oscillations, where the E579

and I neurons spike once per cycle, argue which fixed points or580

periodic orbits in the dynamics correspond to ING and PING581

rhythms, and explore when they are generated and how they582

give way to each other.583

We incorporate couplings from E to I (strength εE→I ), from 584

I to E (εI→E), and self-inhibition from I to itself (εI→I ). For 585

simplicity, we do not consider self-excitation from E to itself, 586

as it is not critically involved in PING or ING rhythms. Five 587

events can take place in such networks: spiking of the E neuron, 588

spiking of the I neuron, arrival of a spike from the E neuron (E 589

spike) at the I neuron, arrival of a spike from the I neuron (I 590

spike) at the E neuron, and arrival of an I spike at the I neuron. 591

When an event occurs, the phase difference between the E and 592

I neurons typically changes. We choose the conduction delay 593

between spike sending and receiving to be τ for all connections 594

to reduce the number of free parameters. Further, we assume 595

that the neurons do not oscillate with too high frequencies 596

(intrinsic period is longer than 2τ ) to ensure that a spike does 597

not arrive in the next cycle. Finally, we assume that inhibition 598

always induces a phase delay in the E neuron. Due to the 599

finite delay τ , spikes of the two neurons can overlap in the 600

sense that one neuron spikes, while a spike sent by the other 601

neuron has not yet arrived. To deal with this, we construct 602

nonoverlapping interaction scenarios, each containing a series 603

of events. Each of the scenarios defines a local iteration map. 604

The local maps can be combined to a global one, G, which acts 605

on a single variable �ψ , the difference of shifted phases of the 606

two neurons taking into account the differences in intrinsic 607

period. 608

Without any restriction on firing activities of the E and 609

I neurons, the events can be combinatorially combined in 610

infinitely many ways, which results in infinitely many in- 611

teraction scenarios. However, under the assumptions made 612

in the previous paragraphs, there are five oscillation-relevant 613

interaction scenarios; cf. the five panels in Fig. 4(b). Each 614

interaction scenario gives rise to a local iteration map, which 615

maps the difference of shifted phases �ψ before the scenario 616

to the difference of shifted phases �ψ̃ after the scenario. In 617

scenario 1, the I neuron spikes and the spike is received before 618

any other event, in particular, before the E neuron spikes. 619

Similarly, in scenario 5 the E neuron spikes and the spike 620

is received before any other event, in particular, before the I 621

neuron spikes. In regular rhythms, scenario 1 must be followed 622

by scenario 5 and vice versa. However, in general periodic 623

oscillations, scenario 1 is not necessarily tied to scenario 5 624

and we therefore do not combine them into one scenario. 625

We note that if scenario 1 follows shortly after scenario 5, 626

the corresponding rhythm is PING, since the E input nearly 627

generates the spiking of the I neuron (see Sec. VII for further 628

discussion). If the time difference is larger, the character of the 629

rhythm becomes unclear. However, for the considered sets of 630

parameters around the crossing of pure ING and pure PING 631

network oscillation frequencies, we find in our simulations that 632

scenario 1 always follows shortly after scenario 5 in regular 633

oscillations (less than 0.1T , where T is the network oscillation 634

period). For simplicity, we thus denote every scenarios 5,1 in 635

alternation rhythm as PING in the following. We note that 636

scenario 1 will usually not shortly precede scenario 5, since 637

the I-spike arrival at the end of scenario 1 has a retarding effect 638

on E-spike generation, which starts scenario 5. In scenario 2 the 639

I neuron spikes, followed by the E neuron before the inhibitory 640

input from the I neuron arrives and can hinder it. Since the I 641

neuron spikes due to its own drive while the input from the 642

E neuron arrives shortly thereafter, this scenario gives rise to 643
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FIG. 4. Network of two neurons and illustrations of the five possible scenarios for interactions between them. Panel (a) displays the neurons
(E: an excitatory neuron, I: an inhibitory neuron) and the couplings between them; their responses to inputs are governed by HE (ϕ, ε) and
HI (ϕ, ε), respectively. Panels (b) show the dynamics of the shifted phases ψE (red) and ψI (blue) in scenarios 1–5. The scenarios are arranged
according to the initial value of the phase difference �ψ [Eq. (42)], starting from large magnitude negative values.

an ING rhythm. In scenario 3, the E neuron spikes, followed644

by the I neuron, which spikes before the input from the E645

neuron arrives. Although the sequence of spiking of the E and646

I neurons is reminiscent of PING, this scenario also gives rise647

to an ING rhythm, since the I neuron does not spike due to648

excitatory input from the E neuron, but again due to its own649

drive. In scenario 4, again first the E neuron spikes, followed650

by the I neuron. However, the I neuron now spikes due to the651

excitatory input from the E neuron, which lets the I neuron652

exceed the spike threshold. This scenario is thus typical for653

PING.654

B. Phase dynamics655

We will now consider the interaction scenarios and their656

impact on the phases in detail. To identify quantities related to657

the E and I neurons, we endow them with an index E and I : In658

particular, ϕE (ϕI ) and �E (�I ) are phase and phase threshold659

of the E (I) neuron. To study neurons with different intrinsic660

periods (�E �= �I ), we introduce new, shifted phase variables661

ψE and ψI , which describe the remaining phases of the E and662

I neurons to the threshold, 663

ψE = ϕE − �E, (40)

ψI = ϕI − �I . (41)

The neurons spike at ψE = 0 and ψI = 0, and the shifted 664

phases are thereafter reset to −�E and −�I . The remain- 665

ing times to the next spiking generated by purely intrinsic 666

dynamics are given by −ψE � 0 and −ψI � 0. We denote 667

the differences between the new, shifted phases, the standard 668

phases, and the phase thresholds (periods) of the neurons by 669

�ψ = ψE − ψI , (42)

�ϕ = ϕE − ϕI , (43)

�� = �E − �I , (44)

respectively. Equations (40) and (41) yield the relation 670

�ψ = �ϕ − ��. (45)

We will now derive the transition from �ψ before to �ψ̃ 671

after the sequence of interactions for scenarios 1–5 and for 672
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a scenarios 5,1 pair. Without loss of generality, we assume673

t = 0 at the start of each scenario.674

C. Scenario 1675

Scenario 1, where only the I neuron spikes, occurs for676

�ψ � −τ. (46)

The phase ψI of the I neuron (henceforth “I phase”) and the677

phase ψE of the E neuron (henceforth “E phase”) at the start678

of the interaction sequence at t = 0 are679

ψI = 0, (47)

ψE = �ψ. (48)

The interaction sequence in scenario 1 consists of sending and680

receiving an I spike. The I neuron is reset after spiking. Thus,681

it receives its own spike while having the phases [cf. Eq. (1)]682

ϕI (τ ) = τ, (49)

ψI (τ ) = ϕI (τ ) − �I = τ − �I . (50)

After input processing and thus directly at the end of the683

interaction sequence, the phases are684

ϕ̃I = HI (τ, εI→I ), (51)

ψ̃I = HI (τ, εI→I ) − �I . (52)

The E neuron receives the I spike while having a phase ϕE (0) +685

τ = �E + �ψ + τ . The phases of the E neuron directly after686

the interaction sequence are thus687

ϕ̃E = HE (�E + �ψ + τ, εI→E ), (53)

ψ̃E = ϕ̃E − �E = HE (�E + �ψ + τ, εI→E ) − �E. (54)

Equations (54) and (52) yield the phase difference after the688

interaction,689

�ψ̃ = HE (�E + �ψ + τ, εI→E ) − HI (τ, εI→I ) − ��︸ ︷︷ ︸
=:G(�ψ )

.

(55)

G maps the difference of the shifted phases before the interac-690

tion sequence to the difference of the shifted phases thereafter.691

Scenario 1 can only generate a regular oscillation (syn-692

chronization between neurons of order 1:1 [71]) together693

with scenario 5 (see the related paragraph below). However,694

scenario 1 can repeat to give rise to a regular oscillation of695

the I neuron, where the E neuron is suppressed. For such an696

oscillation, �ψ is given by the solution of697

G(�ψ ) = �ψ. (56)

This is because �ψ does not change between scenarios and698

there is only one scenario repeating, so �ψ at its beginning and699

ending must be the same. If a real-valued solution of Eq. (56)700

exists, the system can generate the oscillation. Its frequency is701

independent of �ψ and may be computed as follows: The I702

neuron spikes at the beginning of the scenario and is reset. The703

generated spike arrives at the I neuron at time τ and induces an704

instantaneous change of the phase ϕI from τ to HI (τ, εI→I ).705

To reach threshold and spike again, the I neuron needs the time 706

�I − HI (τ, εI→I ). The period of the oscillation is the sum of 707

the two times and the oscillation frequency is given by 708

f = [τ + �I − HI (τ, εI→I )]−1. (57)

In a “pure ING” rhythm, the εE→I connection is deleted. 709

While the E neuron may still spike, it does not influence the I 710

neuron, such that its dynamics are the same as if the E neuron 711

were suppressed. We can thus derive the oscillation frequency 712

of the pure ING rhythm in the same manner as above and it is 713

also given by Eq. (57). 714

D. Scenario 2 (a scenario leading to ING) 715

In scenario 2 the I neuron spikes, followed by the E neuron 716

within time interval τ ; cf. Fig. 4(b). This happens, if before the 717

interaction 718

−τ < �ψ < 0. (58)

The I and E phases at the start of the interaction sequence are 719

ψI = 0, (59)

ψE = �ψ, (60)

respectively. The interaction sequence consists of sending and 720

receiving an I and an E spike. First, at t = 0, the I neuron 721

sends a spike and resets, then the E neuron spikes and resets, 722

before the I spike arrives. The reset of the I neuron implies 723

that ϕI equals τ when it receives its own, self-inhibitory spike. 724

Since the E spike has a conduction delay τ as well, but is sent 725

−ψE = −�ψ after the I spike, the E spike arrives at the I 726

neuron at τ − �ψ , i.e., −�ψ after the self-inhibitory spike. 727

The I phase thus proceeds for −�ψ after the processing of 728

the I spike before the E spike arrives. This arrival also marks 729

the end of the interaction sequence. Taken together, the phase 730

ϕ̃I directly after the interaction sequence (i.e., directly after 731

receiving the E spike) reads with the interaction function HI 732

of the I neuron 733

ϕ̃I = HI (HI (τ, εI→I ) − �ψ, εE→I ), (61)

thus 734

ψ̃I = ϕ̃I − �I = HI (HI (τ, εI→I ) − �ψ, εE→I ) − �I .

(62)

We may assume HI (HI (τ, εI→I ) − �ψ, εE→I ) < �I ; i.e., the 735

I neuron does not spike upon arrival of the E spike, since a 736

regular oscillation where scenario 2 begins again at its very 737

end would require the E neuron to have an intrinsic period 738

smaller than or equal to 2τ , which we excluded (the duration of 739

scenario 2 is at most 2τ and the E neuron would need to reach its 740

original phase again after its reset despite the inhibitory input). 741

The E neuron is reset at the time t = −�ψ after the time of 742

the I neuron’s spike at t = 0. It therefore has the phase τ − 743

(−�ψ ) = τ + �ψ when the input from the I neuron arrives. 744

The I spike changes the phase of the E neuron to HE (τ + 745

�ψ, εI→E ), where HE is the transfer function of the E neuron. 746

Thereafter, the E neuron evolves freely (since εE→E = 0) 747

for a time −�ψ until the end of the interaction sequence at 748
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t = (τ − �ψ )+. The phases then read 749

ϕ̃E = HE (τ + �ψ, εI→E ) − �ψ, (63)

ψ̃E = ϕ̃E − �E = HE (τ + �ψ, εI→E ) − �ψ − �E. (64)

Taken together, 750

�ψ̃ = HE (τ + �ψ, εI→E ) − HI (HI (τ, εI→I ) − �ψ, εE→I ) − �ψ − ��︸ ︷︷ ︸ .

=:G(�ψ )

(65)

Our considerations result again in an iteration map G, which maps the difference of the shifted phases before the interaction 751

sequence to the difference of the shifted phases thereafter. 752

Scenario 2 can repeat to give rise to regular oscillations. The underlying phase dynamics then satisfy 753

G(�ψ ) = �ψ. (66)

Solving for �ψ allows us to determine the dynamics. If the E and I neurons are both LIF neurons, Eqs. (66) and (20) yield 754

�ψ = ln

{
e−τ − e−HLIF (τ,εI→I ;�I )−��

2e−���(�E, εI→E )

±
√

[e−HLIF (τ,εI→I ;�I )−�� − e−τ ]2 + 4e−���(�E, εI→E )�(�I , εE→I )

2e−���(�E, εI→E )

}
− ��, (67)

where �(�, ε) is defined as755

�(�, ε) := (
1 − e−�

)
ε. (68)

If the I neuron is the sine neuron, Eq. (39) has to be inserted for756

HI in Eq. (65). We note that the I spike arrives at the I neuron757

at the phase ϕI = τ , which is in the first branch of the inverse758

rise function, ϕI = τ ∈ ]0,�I /2[, because we assume that the759

intrinsic period of the neuron is longer than 2τ . The input thus760

advances the phase and the first line of Eq. (39) will be used761

to write out HI (τ, εI→I ). In contrast, the E spike can arrive at762

a phase of the I neuron in the first branch ϕI ∈ ]0,�I /2[ or763

in the second branch ϕI ∈ ]�I /2,�I [ or at ϕI = �I /2, so it764

either delays or advances the phase or leaves it unchanged and765

the first or second or third line of Eq. (39) applies to the outer766

HI in HI (HI (τ, εI→I ) − �ψ, εE→I ), depending on the value767

of HI (τ, εI→I ) − �ψ .768

If a real-valued solution �ψ of Eq. (66) exists, the network769

can generate a regular oscillation characterized by repeated770

occurrence of scenario 2. The oscillation frequency can be771

determined directly from the dynamics of the E neuron in772

terms of �ψ . We start at the time when the E neuron spikes773

and is reset. After a time τ + �ψ the inhibitory input from774

the I neuron arrives; cf. Eqs. (63) and (64) and the paragraph775

preceding them. The phase of the E neuron is changed to776

HLIF(τ + �ψ, εI→E ; �E ) and it takes the E neuron the time777

�E − HLIF(τ + �ψ, εI→E ; �E ) to spike again and complete778

the period. Summing the two times up yields the oscillation779

period and therewith the oscillation frequency of scenario780

2 ING,781

f (�ψ ) = [τ + �ψ + �E − HLIF(τ + �ψ, εI→E ; �E )]−1.

(69)

E. Scenario 3 (a scenario leading to ING)782

In scenario 3, first the E neuron spikes and then the I neuron,783

before the spike from the E neuron arrives. This scenario occurs784

for 785

0 � �ψ < τ. (70)

The E neuron is leading, so the I and E phases at the start of 786

the interaction sequence read 787

ψI = −�ψ, (71)

ψE = 0, (72)

respectively. At time t = 0, the E neuron sends its spike and is 788

reset; at time �ψ , the I neuron sends its spike and is reset. The I 789

neuron thus receives the E spike while having a phase τ − �ψ 790

at time τ . Processing of the E spike by the I neuron yields 791

HI (τ − �ψ, εE→I ) and subsequent time evolution until the 792

receiving of the I spike by both the E and I neurons adds �ψ to 793

the phase. We may assume HI (τ − �ψ, εE→I ) + �ψ < �I 794

and thus exclude direct generation of a spike of the I neuron 795

because of the arrival of the spike from the E neurons, since 796

such a spike would break a regular oscillation. Accounting for 797

the I spike that arrives at the E and I neurons at time τ + �ψ , 798

we obtain at the end of the scenario 799

ϕ̃I = HI (HI (τ − �ψ, εE→I ) + �ψ, εI→I ), (73)

ψ̃I = HI (HI (τ − �ψ, εE→I ) + �ψ, εI→I ) − �I , (74)

and 800

ϕ̃E = HE (τ + �ψ, εI→E ), (75)

ψ̃E = HE (τ + �ψ, εI→E ) − �E. (76)
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We conclude 801

�ψ̃ = HE (τ + �ψ, εI→E ) − HI (HI (τ − �ψ, εE→I ) + �ψ, εI→I ) − ��︸ ︷︷ ︸
=:G(�ψ )

. (77)

Scenario 3 can repeat to give rise to regular oscillations. As before, if a real-valued solution of 802

G(�ψ ) = �ψ (78)

exists, the network can generate the oscillations and the solution �ψ specifies the underlying phase dynamics. The oscillation 803

frequency can be determined directly from the dynamics of the E neuron in terms of �ψ . At the beginning of the 804

scenario, the E neuron spikes and at the end the E neuron’s phase is given by Eq. (75). It thus spikes again after a time 805

�E − HLIF(τ + �ψ, εI→E ; �E ) to complete the oscillation cycle. The period of the oscillation is the sum of the duration 806

τ + �ψ of the interaction sequence and the time to complete the cycle, such that the oscillation frequency is given by 807

f (�ψ ) = [τ + �ψ + �E − HLIF(τ + �ψ, εI→E ; �E )]−1. (79)

When the E and I neurons are LIF neurons, Eq. (78) yields 808

�ψ = ln

{
�(�I , εI→I ) + e−τ+�� − e−τ

2�(�E, εI→E )
±

√
[e−τ − �(�I , εI→I ) − e−τ+��]2 + 4�(�E, εI→E )�(�I , εE→I )e��

2�(�E, εI→E )

}
− ��,

(80)

where �(�, ε) is given by Eq. (68). Placing �ψ given in809

Eq. (80) into Eq. (79) yields the frequency of the oscillation.810

If the I neuron is the sine neuron, the E spike arrives at811

the I neuron at a phase that is always within the first branch812

of the inverse rise function, i.e., within ]0,�I /2[, because we813

assume that the intrinsic period of the neurons is longer than814

2τ . HI (τ − �ψ, εE→I ) in Eq. (77) is then explicitly defined815

by the first line of Eq. (39) and the excitatory input delays the816

phase of the I neuron. The I spike thus also always arrives at817

the I neuron at a phase within the first branch and advances the818

phase.819

F. Scenario 4 (a scenario leading to PING)820

In scenario 4, the E neuron spikes first, followed by the I821

neuron, which spikes due to suprathreshold excitatory input822

from the E neuron [cf. Fig. 4(b)]. We note that the scenario823

does not occur if the I neuron is a sine neuron because sine824

neurons cannot be suprathresholdly excited as the required825

input strength would be infinite [cf. derivation of Eqs. (38)826

and (39)]. In scenario 4 the E neuron spikes at t = 0, so the I827

and E phases at the start of the interaction sequence, at t = 0,828

read829

ψI = −�ψ, (81)

ψE = 0, (82)

respectively. For scenario 4, �ψ must satisfy830

τ � �ψ � �I + τ − HI (�I ,−εE→I ). (83)

The left-hand side inequality guarantees that the I neuron831

does not spike before the E spike arrives. The right-hand832

side inequality guarantees that the I neuron is at the time of833

arrival of the excitatory input from the E neuron sufficiently834

near the threshold to receive suprathreshold excitation: The E835

spike arrives at time t = τ where the I neuron has phase ψI =836

−�ψ + τ equivalent to ϕI = �I − �ψ + τ . The condition837

that the received input is suprathreshold is then838

UI (�I − �ψ + τ ) + εE→I � UI (�I ) = �V,I . (84)

We assume that UI (ϕ) is strictly monotonically increasing in 839

the relevant range near the threshold, such that U−1
I exists and 840

is strictly monotonically increasing. We can then apply it to 841

Eq. (84) maintaining the direction of the inequality: 842

�I − �ψ + τ � U−1
I (UI (�I ) − εE→I ),

= HI (�I ,−εE→I ). (85)

Isolating �ψ yields 843

�ψ � �I + τ − HI (�I ,−εE→I ), (86)

which is the right-hand side inequality of Eq. (83). 844

The scenario now unfolds as follows: The E neuron sends 845

its spike and resets and the I neuron receives the E spike 846

at t = τ . The excitatory input brings the I neuron above its 847

threshold, such that it spikes and resets subsequently. At t = 2τ 848

both neurons receive the I spike. Due to the suprathreshold 849

excitation the precise value of the I phase when the E spike 850

arrives is irrelevant for the final phase. When the I neuron 851

receives the self-inhibitory I spike at the end of the interaction 852

sequence its phase is always ϕI = τ , so 853

ϕ̃I = HI (τ, εI→I ), (87)

ψ̃I = HI (τ, εI→I ) − �I . (88)

Since the E neuron was reset at t = 0+ and evolves freely until 854

it receives the I spike at t = 2τ , 855

ϕ̃E = HE (2τ, εI→E ), (89)

ψ̃E = HE (2τ, εI→E ) − �E. (90)
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The phase difference �ψ̃ after the interaction sequence thus 856

reads 857

�ψ̃ = HE (2τ, εI→E ) − HI (τ, εI→I ) − ��︸ ︷︷ ︸
=:G(�ψ )

. (91)

Scenario 4 can also repeat to give rise to regular oscillations.858

The underlying phase dynamics then satisfy859

G(�ψ ) = �ψ. (92)

Solving for �ψ yields860

�ψ = ln

[
e−τ − �(�I , εI→I )

e−2τ − �(�E, εI→E )

]
− �� (93)

(both neurons are LIF neurons for the scenario to occur).861

If the solution is real-valued, the network can generate the862

oscillation. The oscillation period can be determined directly863

from the dynamics of the E neuron. At the beginning of the864

scenario, the E neuron sends a spike and is reset. The I spike865

arrives after a time 2τ at the E neuron. The E phase at this point866

is 2τ , which changes to HE (2τ, εI→E ). The E neuron will thus867

spike next after a time �E − HE (2τ, εI→E ). Summing the two868

times up yields the oscillation period and the frequency869

f = [2τ + �E − HE (2τ, εI→E )]−1. (94)

Inserting Eq. (20) yields870

f = {2τ + �E + ln[e−2τ − �(�E, εI→E )}, (95)

where � is defined in Eq. (68). We note that due to the871

suprathreshold excitation of the I neuron, the frequency is872

independent of �ψ in contrast to oscillations generated by873

other scenarios.874

G. Scenario 5875

Scenario 5 [cf. Fig. 4(b)] is similar to scenario 1, with only876

the E neuron spiking. It occurs for877

�I + τ − HI (�I ,−εE→I ) < �ψ ; (96)

the phases of the I and E neurons at the start of the interaction878

sequence are879

ψI = −�ψ, (97)

ψE = 0, (98)

respectively. The E neuron sends a spike at the beginning of 880

the sequence, which is received by the I neuron at t = τ . Since 881

the I neuron does not spike, this marks the end of the scenario. 882

The phase ϕI of the I neuron at receiving is 883

ϕI = �I − �ψ + τ. (99)

After the receiving, at the end of the scenario the phases read 884

ϕ̃I = HI (�I − �ψ + τ, εE→I ), (100)

ψ̃I = HI (�I − �ψ + τ, εE→I ) − �I . (101)

The condition �I + τ − HI (�I ,−εE→I ) < �ψ implies 885

HI (�I − �ψ + τ, εE→I ) < �I , such that the I neuron does 886

not spike. The E neuron evolves freely after its reset at t = 0+, 887

so 888

ϕ̃E = τ, (102)

ψ̃E = τ − �E, (103)

which yields 889

�ψ̃ = τ − HI (�I + τ − �ψ, εE→I ) − ��︸ ︷︷ ︸
=:G(�ψ )

. (104)

H. Alternation between scenarios 5 and 1 890

In scenarios 2, 3, and 4 both neurons spike such that regular 891

oscillations must be generated by repeating a single scenario. 892

In contrast, scenarios 1 and 5 have to alternate to generate a 893

regular oscillation. In this section, we derive the phase-locking 894

equation and the frequency for this type of oscillation. Without 895

loss of generality, we assume that the spiking pattern begins 896

with scenario 5 and scenario 1 follows. �ψ at t = 0 has to 897

satisfy Eq. (96) for scenario 5 to occur. �ψ̃ after scenario 5 898

given in Eq. (104) has to satisfy Eq. (46) for scenario 1 to occur. 899

Thus, alternation between scenarios 5 and 1 occurs for 900

�I + τ − HI (�I ,−εE→I ) < �ψ, (105)

2τ − �� � HI (�I + τ − �ψ, εE→I ). (106)

Composing the maps Eqs. (104) and (55), we obtain 901

�ψ̃ = HE (�I + 2τ − HI (�I + τ − �ψ, εE→I ), εI→E ) − HI (τ, εI→I ) − ��︸ ︷︷ ︸ .

=:G2(�ψ )

(107)

Note that now we have two iterations of the map G, which902

maps the difference of the shifted phases before scenario 5903

to the difference between the shifted phases after scenario 1.904

To determine the phase underlying the oscillation, we need to905

solve906

�ψ = G2(�ψ )

for �ψ . If a real-valued solution �ψ exists, the network can907

generate the oscillations. Their frequency can be derived in908

terms of �ψ : In the initial scenario 5, the E neuron spikes 909

at time t = 0. The phases ϕE and ϕI at the scenario’s end are 910

given by Eqs. (100) and (102), respectively. The duration of the 911

scenario is τ . Initializing scenario 1, the I neuron spikes after 912

a time �I − HI (�I + τ − �ψ, εE→I ). The output from the I 913

neuron arrives at the E neuron at the phase ϕE = 2τ + �I − 914

HI (�I + τ − �ψ, εE→I ) of the E neuron and causes it to jump 915

to HE (2τ + �I − HI (�I + τ − �ψ, εE→I ), εI→E ). The du- 916

ration of scenario 1 is τ as well. The E neuron needs a time 917
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�E − HE (2τ + �I − HI (�I + τ − �ψ, εE→I ), εI→E ) until918

it spikes again and completes the oscillation cycle. The period919

of the spiking pattern of alternation between scenarios 5 and920

1 thus equals 2τ + �E + �I − HI (�I + τ − �ψ, εE→I ) −921

HE (2τ + �I − HI (�I + τ − �ψ, εE→I ), εI→E ) and the os-922

cillation frequency is923

f (�ψ ) =[2τ + �E + �I − HI (�I + τ − �ψ, εE→I )

− HE (2τ + �I − HI (�I + τ

− �ψ, εE→I ), εI→E )]−1. (108)

V. REGULAR OSCILLATIONS924

In this section we consider the regular oscillations generated925

by the different scenarios. In a comparably straightforward926

ING condition, the constant drive to the I neuron largely927

exceeds the constant drive to the E neuron. This gives rise to928

a periodic spike sequence by the I neuron, which completely929

inhibits spiking of the E neuron. This type of ING rhythm930

has been described extensively in the literature (cf., e.g.,931

[53,54,56]). Alternatively, we can consider networks without932

E to I coupling; they generate the same I dynamics even if933

the E neuron continues to spike. Similarly well studied (cf.,934

e.g., [54,56,72]) is the straightforward PING condition, where935

a relatively large drive to the E neuron causes it to spike936

periodically. These E spikes generate spikes in the I neuron,937

which has small drive and would remain rather inactive without938

the input from the E neuron. In this paper we will focus on939

situations where ING and PING are in competition since both940

the E and I neurons have comparably strong drives and all941

relevant couplings are present. However, we will consider942

the above-mentioned straightforward “pure ING” and “pure943

PING” rhythms for comparison. As described in Sec. IV, there944

are 5 possible scenarios for relative spiking of the E and I945

neurons. These can—alone or in combination—give rise to946

regular oscillations, more precisely to ING and PING rhythms.947

Scenarios 2 and 3, in which the I neuron spikes due to its948

intrinsic dynamics before the E input arrives, generate an ING949

rhythm. Scenario 4, in which the spike of the I neuron is950

generated by the input from the E neuron instantaneously upon951

its arrival, generates a PING rhythm. An oscillation generated952

by scenarios 5 and 1 in alternation should be interpreted as953

PING rhythm, if the spike of the I neuron is generated shortly954

after the input of the E neuron, i.e., if the input from the E955

neuron basically generates the I spike. If the I spike occurs with956

larger distance from the E spike, the character of the oscillation957

becomes unclear. Because for the considered parameters our958

simulations show spiking of the I neuron only shortly after the959

E input (see Sec. VII for further discussion), for simplicity we960

denote all scenarios 5,1 generated oscillations as PING in the961

following.962

A. Global iteration map963

The local iteration maps derived in Sec. IV are valid for964

�ψ within a certain range, where the corresponding scenario965

occurs. To analytically identify regular oscillations we gather966

the local iteration maps into a global, piecewise defined967

iteration map G, which maps the difference of the shifted968

phases �ψ to the difference of the shifted phases after the969

next occurring interaction scenario. The global iteration map 970

consists of several sections, since the next interaction scenario 971

and thus the applicable map depend on the current difference 972

of the shifted phases [e.g., Fig. 4(b)]. Equations (46), (58), 973

(70), (83), and (96) specify the ranges, in which the different 974

scenarios occur, and thus the domains of the individual map 975

segments constituting G. Equations (55), (65), (77), (91), and 976

(104) give the corresponding maps. The regular oscillations 977

are reflected by fixed points of G (scenarios 2, 3, and 4) and 978

G2 (scenarios 5,1 in alternation). 979

B. Phased locked oscillations in networks 980

with type I E and I neurons 981

Figure 5(a) shows an example of an ING rhythm (scenario 982

2) in a network of two type I LIF neurons in standard phase 983

representation (cf. Sec. II). In this scenario, the I neuron (blue 984

trace) spikes just before spiking of the E neuron (red trace) 985

such that the inhibition from the I neuron to the E neuron 986

arrives after spiking of the E neuron. Figure 5(c) shows the 987

global iteration map G for the same network parameters. The 988

panel displays the segments of the graph of G in different 989

colors to highlight the five scenarios [see Fig. 4(b) for the color 990

labels]. The phase differences �ψ that satisfy G(�ψ ) = �ψ 991

are fixed points, which may be stable (if the absolute value of 992

the slope of the iteration map at the fixed point is less than 1) or 993

unstable (if the absolute value of the slope is larger than 1). The 994

only fixed point for G in Fig. 5(c) is at the intersection of the 995

magenta segment (scenario 2) with the diagonal (black, slope 996

1) near �ψ = −0.2. It is stable. Figure 5(e) shows the iteration 997

map after two periods, i.e., G2(�ψ ) := G(G(�ψ )). The thick 998

segment coloring of the curve indicates the scenarios occurring 999

in the first iteration [same as in panel (c)], while the thin curves 1000

highlight the scenarios in the second iteration. In both maps 1001

Figs. 5(c) and 5(e) the fixed point near �ψ = −0.2 (repeated 1002

scenario 2) is the only one. It is stable and corresponds to the 1003

ING rhythm displayed in panel (a). This fixed point is robust 1004

against variations in the drive to the E and I neurons and to 1005

changes in parameter values for synaptic connectivity. 1006

Figure 5(b) shows an example of a PING rhythm (scenario 1007

4) in a network with two type I LIF neurons in standard phase 1008

representation. The spike from the E neuron causes excitation 1009

of the I neuron above its spiking threshold, followed by a spike 1010

and reset of the I neuron. The global iteration map G is shown 1011

in Fig. 5(d). There is a fixed point near �ψ = 0.6 where the 1012

red segment (scenario 4) crosses the diagonal. The segment 1013

is horizontal (slope zero). This means that the fixed point is 1014

stable and that the entire range of initial phase differences �ψ 1015

between roughly 0.4 and 0.9 is mapped to it exactly. This can 1016

also be directly seen from Eq. (91): The right-hand side is 1017

independent of �ψ , such that the piece of the iteration map 1018

maps any initial relative phase in its domain to the same value. 1019

The second iteration map is shown in Fig. 5(f); we find only 1020

the same fixed point as in the first iteration map. 1021

C. Phased locked oscillations in networks 1022

with type I E and type II I neurons 1023

As explained in Sec. IV F, networks with the type II sine I 1024

neuron cannot generate scenario 4. We therefore illustrate the 1025
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FIG. 5. ING and PING dynamics in a network of two type I (leaky integrate-and-fire) neurons. (a) ING dynamics (scenario 2) in phase
representation. The panel shows ϕE (red) and ϕI (blue) versus time. Spikes are highlighted by upward vertical lines starting at the threshold.
(b) PING dynamics (scenario 4) with suprathreshold excitation. (c) Iteration map G with network parameters as in (a). Pieces of the map
originating from different scenarios are highlighted by different colors [scenario 1: yellow, 2: magenta, 3: cyan, 4: red, 5: green; cf. frame
colors in Fig. 4(b)]. There is a stable fixed point near �ψ = −0.2 corresponding to the ING rhythm in (a). (d) Iteration map G with network
parameters as in (b). The stable fixed point near �ψ = 0.7 corresponds to the PING rhythm in (b). Panels (e) and (f) show the second iteration
maps G2, where the thick coloring of the segments indicates the first iteration also appearing in (c) and (d) and the thin coloring indicates the
second. Parameter settings: εI→E = −0.5, εE→I = 0.1, εI→I = −1.0, and τ = 0.4; the drives to the I and E neurons are 1/�I = 0.495 and
1/�E = 0.43 for (a) and 1/�I = 0.495 and 1/�E = 0.52 for (b).

dynamics of networks with an excitatory type I LIF neuron1026

and an inhibitory type II sine neuron with different scenarios1027

than the dynamics of networks with two type I LIF neurons.1028

We choose a scenario 3 ING rhythm and a scenarios 5,1 PING1029

rhythm. We note that we observe for the considered parameters1030

fixed points of G in the domain of scenario 2; the purple curve1031

(scenario 2) crosses the diagonal near �ψ = −0.2 in Fig. 6(c)1032

and near �ψ = −0.3 in Fig. 6(d). However, the fixed points1033

are unstable, as the absolute value of the slope of the iteration1034

map G is greater than 1 there. Consequently, the fixed points1035

do not correspond to stable oscillations.1036

Figure 6(a) shows the ING dynamics generated by scenario1037

3. While the E neuron spikes just before sending of the I spike,1038

as argued above this scenario does not belong to the class of1039

PING, because spiking of the I neuron is not triggered by the1040

E spike. The global iteration map G is displayed in Fig. 6(c);1041

it has a stable fixed point near �ψ = 0.2 in the domain of1042

scenario 3 (intersection of the cyan curve with the diagonal).1043

The results for the second iteration map are shown in Fig. 6(e)1044

with the same stable fixed point near �ψ = 0.2 (repeated 1045

scenario 3). 1046

Figure 6(b) shows phase dynamics that are generated by 1047

alternation of scenarios 5 and 1. We can clearly classify this 1048

pattern as PING, since excitation from the E neuron brings the 1049

I neuron close to its threshold, which results in spiking of the I 1050

neuron shortly thereafter. Figure 6(d) depicts the first iteration 1051

map G, which does not have a stable fixed point. In contrast, 1052

the second iteration map G2 [Fig. 6(f)] has two stable fixed 1053

points, reflecting the period 2 orbit that generates the PING 1054

oscillation. They are located near �ψ = 0.6 and �ψ = −0.7 1055

and correspond to alternating scenarios 5 and 1 and the phase 1056

dynamics Fig. 6(b). 1057

VI. PING-ING INTERACTIONS IN NETWORKS 1058

OF TWO OSCILLATORS 1059

We saw in the previous section that for suitable parameter 1060

values, our networks can generate either ING or PING rhythms. 1061
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FIG. 6. ING and PING dynamics in a network of a type I (leaky integrate-and-fire) E neuron and a type II (sine) I neuron. (a) ING (scenario
3) and (b) PING (combination of scenarios 5 and 1) dynamics in phase representation. (c) and (d): Iteration maps G for the same network
parameters as used in (a) and (b), respectively. The stable fixed point near �ψ = 0.2 in (c) corresponds to the ING rhythm in (a). The other
fixed point near �ψ = −0.2 is unstable and corresponds to an unstable scenario 2 ING rhythm. (d) There is no fixed point of the first iteration
map G corresponding to the PING dynamics shown in panel (b), since they consist of a sequence of two scenarios and thus appear as a period
2 orbit in the iterations of G. The unstable fixed point near �ψ = −0.3 in (d) corresponds to an unstable scenario 2 ING rhythm. Pieces of the
map generated by different scenarios are highlighted by different colors as in Fig. 5, panels (c) and (d). (e) and (f): The second iteration maps
G2. The period 2 orbit of the PING rhythm in (b) is reflected by two fixed points in the second iteration map (f), in the domains of scenarios
1 and 5. Parameter settings: εI→E = −0.2, εE→I = 0.5, εI→I = −0.42, and τ = 0.4; the drives to the I and E neurons are 1/�I = 0.5 and
1/�E = 0.63 for (a) and 1/�I = 0.5 and 1/�E = 0.85 for (b).

In the following, we analyze how PING and ING rhythms1062

compete to generate the network oscillation and how networks1063

may switch from one rhythm to another when the values of the1064

external drives change. We use “pure ING” and “pure PING”1065

rhythms generated by reduced two-neuron networks, which do1066

not allow for the generation of the other rhythm as reference.1067

This allows us to better understand the competition of PING1068

and ING rhythms in the full network, which could in principle1069

generate both rhythms. We express the external drive given to1070

each neuron both for the LIF and sine neuron by the inverse of1071

the period, i.e., by 1/�E and 1/�I , since—in contrast to the1072

LIF neuron—the sine neuron does not have an explicit external1073

driving current variable.1074

A. Pure PING and pure ING networks1075

In “pure ING” networks the only excitatory input to the I1076

neuron is the external drive, since the synaptic strength of the1077

projection from the E to the I neuron is set to zero (cf. also1078

[58]). The frequency of the pure ING rhythm is determined1079

by the I drive and the self-inhibitory input with strength εI→I 1080

arriving a time τ after reset of the I neuron; the frequency is 1081

explicitly given by Eq. (57). 1082

In “pure PING” networks, the I drive is sufficiently small 1083

such that the I neuron has a much lower intrinsic period than the 1084

E neuron. The circuit has a sufficiently strong projection from 1085

the E to the I neuron that each E spike brings the membrane 1086

potential of the I neuron above the threshold and elicits a spike 1087

just as in scenario 4. The frequency of the pure PING rhythm 1088

is determined by the E drive and the inhibitory input εI→E that 1089

arrives after an interval 2τ after reset of the E neuron. The 1090

frequency is explicitly given by Eq. (95). 1091

B. Analysis of PING-ING interactions in networks 1092

with type I E and I neurons 1093

We first study interactions between PING and ING rhythms 1094

for networks with two type I LIF neurons. The drives to the 1095

I neuron (I drive expressed by 1/�I ) and to the E neuron (E 1096

drive expressed by 1/�E) vary; see Fig. 7. The blue surface 1097
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FIG. 7. Transitions between PING and ING in a network of two type I (leaky integrate-and-fire) neurons. The blue and red surfaces or
curves show the oscillation frequencies of pure ING and pure PING rhythms, respectively. The green surfaces or curves show the frequency
of oscillations in the full two-neuron network. Panel (a) displays the frequency of network oscillations versus the E and I drives (measured by
intrinsic period−1). Termination of a surface in (a) occurs at parameters 1/�E and 1/�I where the highlighted network type does not yield any
regular rhythm anymore. Panels (b) and (c) show cross sections of the surfaces given in (a). The drive at the I neuron (b) or at the E neuron (c)
increases from left to right while the other drive is kept fixed. Light green curves show the frequency of the full network ING rhythm while dark
green curves show the frequency of the full network PING rhythm. Parameter settings: εI→E = −0.5, εE→I = 0.1, εI→I = −1.0, and τ = 0.4;
in (b) the drive to the E neuron is 1/�E = 0.495 and in (c) the drive to the I neuron is 1/�I = 0.495.

in Fig. 7(a) shows the frequency of rhythmic spiking of the1098

I neuron in pure ING networks. The red surface in Fig. 7(a)1099

shows the frequency of rhythmic spiking of the E neuron in1100

pure PING networks as a function of the E drive only. The1101

green surface in Fig. 7(a) shows the frequency of rhythmic1102

spiking for the full network schematically drawn in Fig. 4(a).1103

The frequencies of the pure ING (blue surface) and of the full1104

network (green surface) are not shown for some combinations1105

of 1/�I and 1/�E ; these combinations do not elicit regular1106

rhythms for scenarios 2, 3, and 4 and alternation of scenarios1107

5 and 1 for the displayed network type. Regular ING rhythms1108

with suppressed E neuron (scenario 1 alone) are not generated1109

either. The intersection of the surfaces in Fig. 7(a) with a plane1110

of constant E drive (1/�E = 0.495) is shown in Fig. 7(b) and1111

with a plane of constant I drive (1/�I = 0.495) in Fig. 7(c).1112

Figure 7(b) shows that for the range of comparably small I1113

drive 1/�I the rhythm of the full network is PING [scenario1114

4; dark green line in Fig. 7(b)]. The spiking pattern of the 1115

rhythm is the same as the spiking pattern of the pure PING 1116

rhythm; cf. Fig. 5(b) for an example. The red line (pure PING) 1117

and the green line (PING for the full network) in Fig. 7(b) 1118

thus overlap. The rhythm of the full network is PING, because 1119

the E neuron recovers from the inhibition sooner than the I 1120

neuron does and the E spike elicits spiking of the I neuron 1121

at its arrival. This also implies that when the full network 1122

generates PING, its frequency is higher than the frequency of 1123

full network ING; otherwise the I neuron will spike by its own 1124

dynamics and consequently the full network generates ING. 1125

Equation (95) shows that the frequency of this PING rhythm 1126

(and the PING fixed point of the iteration map) does not depend 1127

on the I drive 1/�I . When the I drive increases, there is a 1128

bifurcation and a (stable) scenario 3 ING solution appears near 1129

1/�I = 0.52 (light green curve): This ING solution lasts till 1130

near 1/�I = 0.56, after which it switches to (stable) scenario 2 1131
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ING. The frequency of the full-network ING rhythm increases1132

with 1/�I . It stays higher than the frequency of pure ING1133

because the nonzero εE→I provides an additional excitatory1134

input to the I neuron and increases the frequency of the1135

rhythm. Interestingly, we find coexistence of PING and ING1136

and bistability; cf. the range 0.52 � 1/�I � 0.53 in Fig. 7(b).1137

As 1/�I increases further, the PING rhythm (dark green line)1138

vanishes. If the network was oscillating in PING mode before,1139

it will change to an ING rhythm and the oscillation frequency1140

will increase in a jumplike manner.1141

The reason for the vanishing of the PING mode is as1142

follows: With increasing I drive, |ψI | (the phase distance to1143

the threshold �I ) at arrival of the E spike becomes smaller1144

until the I neuron reaches �I by its intrinsic dynamics at1145

E-spike arrival. Beyond this point, there is no PING rhythm,1146

as the I neuron spikes before E-spike arrival. The bifurcation1147

point is at the crossing of the pure PING line (red) and the1148

pure ING curve (blue): Since the I neuron reaches threshold1149

from its own drive simultaneously with the E-spike arrival,1150

the value of εE→I becomes irrelevant. At this bifurcation1151

point, any input will generate suprathreshold excitation and1152

be completely canceled due to the I neuron’s reset such that1153

also the oscillation frequencies of pure PING (large εE→I ) and1154

pure ING (εE→I = 0) agree.1155

Taken together, we observe that the PING frequency is1156

insensitive to changes in 1/�I , while the ING frequency1157

increases with the drive. The PING rhythm vanishes when its1158

frequency drops below that of the pure ING rhythm and the1159

ING rhythm vanishes when its frequency drops below that of1160

the PING rhythm. Since the ING rhythm of the full network1161

has higher frequency than the pure ING rhythm, we have a1162

region of coexistence. When the full network generates ING, its1163

frequency is always higher than the frequency of full network1164

PING. This is due to the fact that in ING the inhibition arrives1165

at an E phase less than 2τ and thus [Fig. 2(c)] has a smaller1166

phase-delaying impact than in PING, where it arrives at 2τ or1167

later. We note that the slope of the light green curve is larger1168

than the slope of the dark green line. In other words, the ING1169

frequency is more sensitive to a change of the I drive 1/�I1170

than the insensitive PING frequency.1171

Figure 7(c) shows the frequency of rhythms as we fix 1/�I1172

and vary 1/�E . For small E drive [e.g., 0.42 � 1/�E � 0.461173

in Fig. 7(c)], the ING rhythm governs the dynamics of the1174

full network: With our network parameters, it is the scenario 21175

ING rhythm for 0.42 � 1/�E � 0.44 and the scenario 3 ING1176

rhythm for 0.44 � 1/�E � 0.46 (present for 0.44 � 1/�E �1177

0.47). As in Fig. 7(b), in Fig. 7(c) the full network ING rhythm1178

(εE→I > 0, light green) has a higher frequency than the pure1179

ING rhythm (εE→I = 0, blue line) since the nonzero excitatory1180

input from the E neuron advances the spiking of the I neuron.1181

The higher the E drive, the earlier does the E spike arrive in the1182

period of the I neuron and the smaller is its excitatory effect1183

due to the I neuron’s PRC and transfer function [Fig. 2(c)].1184

The frequency of the ING rhythm thus slightly decreases with1185

increasing E drive.1186

The absence of a PING rhythm for small E drive, where the1187

pure ING frequency is higher than the pure PING frequency,1188

can be understood from Eqs. (95) and (57), which specify1189

the pure PING and pure ING frequencies, respectively. Equa-1190

tion (95) implies that the pure PING frequency is determined by1191

the interval between spikes of the E neuron, which is subject 1192

to the inhibition εI→E arriving at E phase 2τ . According to 1193

Eq. (57), the pure ING frequency is determined by the interval 1194

between spikes of the I neuron subject to the inhibition εI→I . 1195

In a full network generating PING, the inhibition arrives at 1196

E phase 2τ or later, if the excitation of the I neuron is not 1197

suprathreshold. Since the delaying effect of the inhibition 1198

increases the larger the E phase is at its arrival, the spiking 1199

interval of the full network E neuron is larger or equal to that 1200

in the pure PING network. For the full network to generate 1201

PING, the spiking interval of the E neuron subject to inhibition 1202

εI→E must at least be shorter than the spiking interval of the 1203

I neuron subject to inhibition εI→I (the spiking interval in the 1204

pure ING network), since the additionally arriving excitation 1205

εE→I further decreases the spike interval of the I neuron. 1206

When already the frequency of pure ING is higher than that of 1207

pure PING, this necessary condition is violated and the PING 1208

rhythm is excluded. 1209

As the E drive increases, the pure PING frequency starts 1210

to exceed the pure ING frequency [in Fig. 7(c) near 1/�E = 1211

0.46] and the full network becomes able to generate a PING 1212

rhythm. In the subsequent parameter region, the full network 1213

can generate either PING or ING depending on the initial state 1214

of the neurons. As the E drive increases further, the ING rhythm 1215

disappears [near 1/�E = 0.47 in Fig. 7(c)]. This is because the 1216

phase advance of the I neuron due to the E spike becomes too 1217

small compared to the decreasing interval between spikes of 1218

the E neuron [Fig. 7(c): the light green curve meets the dark 1219

green one]. We note that the (negative) slope of the light green 1220

curve is smaller in absolute value than the (positive) slope of 1221

the dark green curve. In other words, the PING frequency is 1222

more sensitive to a change of the E drive 1/�E than the ING 1223

frequency. 1224

C. Analysis of PING-ING interactions in networks 1225

with type I E and type II I neurons 1226

We will now analyze interactions between PING and ING 1227

rhythms for networks with type I LIF E and type II sine I 1228

neurons for varying I and E drives; see Fig. 8. As in Fig. 7, 1229

the blue surface or curves in Fig. 8 represent the frequency of 1230

the pure ING rhythm, red stands for the pure PING rhythm, 1231

and green for full network rhythms. The frequency of the pure 1232

ING rhythm is again given by Eq. (57). The pure PING rhythm 1233

assumes spiking of the I neuron at time τ after spiking of the 1234

E neuron. The frequency of the pure PING rhythm is thus 1235

again given by Eq. (95). As mentioned above (Sec. III B), the 1236

sine I neuron without an external constant drive cannot reach 1237

the threshold for finite value of εE→I ; it can nevertheless get 1238

close, such that the temporal distance between E and I spike 1239

is approximately τ . We need to keep this point in mind when 1240

comparing pure PING and full network PING. 1241

In contrast to the case of networks with type I E and I 1242

neurons, the full network with type I E and type II I neurons 1243

generates a stable oscillation with a frequency between those of 1244

pure ING and pure PING rhythms. Furthermore, our analysis 1245

reveals an unstable oscillation (scenario 2) generated by the 1246

full network, with a frequency that is much higher than the 1247

stable one for our parameters. For smaller I drive [lower 1248

1/�I ; see Fig. 8(b)] the full network generates a PING rhythm 1249
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FIG. 8. Transitions between PING and ING in a network of a type I (leaky integrate-and-fire) E neuron and a type II (sine) I neuron. The
blue and red surfaces or curves show the oscillation frequencies of pure ING and pure PING rhythms, respectively. The green surfaces or curves
show the frequency of oscillations in the full two-neuron network. Panel (a) displays the frequency of network oscillations versus the E and I
drives (measured by intrinsic period−1). Panels (b) and (c) show cross sections of the surfaces given in (a): The drive of the I neuron (b) or of
the E neuron (c) increases from left to right while the other drive is kept fixed. The light green (b) or the dark green (c) curves are continued by
black dashed lines with the curves’ average slope to allow a better comparison to the slopes of the other curves. The light green surface with
comparably high frequencies in (a) and the related light green curves in (b) and (c) correspond to a scenario 2 unstable ING rhythm, while the
light green surface and curves with lower frequency correspond to a scenario 3 stable ING rhythm. Dark green shows the frequency of the full
network PING rhythm (scenarios 5, 1 in alternation). Parameter settings: εI→E = −0.2, εE→I = 0.5, εI→I = −0.42, and τ = 0.4; in (b) the
drive to the E neuron is 1/�E = 0.74 and in (c) the drive to the I neuron is 1/�I = 0.5.

[alternating scenarios 5 and 1; dark green curve in Fig. 8(b)].1250

Its frequency is higher than the pure ING frequency; this is1251

due to the fact that in the PING rhythm the E spike arrives1252

in the second part of period of the sine neuron, i.e., between1253

]�I /2,�I [, and it thus has an excitatory effect. Since the E1254

spike brings the I neuron only close to its threshold �I , the1255

next spike time still depends on the I drive: The larger the1256

drive, the shorter the time that the I neuron needs to reach the1257

threshold after the E-spike arrival. Since this time is always at1258

least slightly larger than zero, the full network PING frequency1259

is lower than the pure PING frequency.1260

As we increase the I drive further, the full network switches1261

from operating in PING mode to ING mode [scenario 3; light1262

green curve in Fig. 8(b); the switch occurs near 1/�I = 0.5].1263

As for networks of two type I neurons [cf. Fig. 7(b)], the 1264

rate of change of ING frequency is higher than that of PING 1265

frequency; the ING frequency is more sensitive to a change 1266

of the I drive 1/�I than the PING frequency [compare the 1267

dark green curve with the black dashed line in Fig. 8(b)]. The 1268

ING rhythm [light green curve in Fig. 8(b)] appears, in contrast 1269

to the case of two type I neurons, at the same point where the 1270

PING rhythm vanishes. The latter happens where the frequency 1271

of the pure ING rhythm becomes higher than that of the pure 1272

PING rhythm. This can be understood as in the case of two 1273

type I neurons, since the excitatory input in the full network 1274

PING also advances the phase of the type II I neuron. The full 1275

network ING frequency is smaller than the pure ING frequency 1276

because in the full network there is an additional input from the 1277
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E neuron. This causes a phase delay since the E spike arrives1278

at an early phase in the spiking cycle of the type II sine neuron.1279

The frequency of the full network at the transition point1280

where it switches from PING to ING is the same as the1281

intersecting pure ING (blue curve) and pure PING (red line)1282

frequencies. This is because at the transition point, the I neuron1283

spikes just before the E spike arrives and the E spike meets the I1284

neuron at a phase near zero. It therefore has a negligible effect1285

on the phase of the sine I neuron [cf. Fig. 1(d)] and the full1286

network behaves like the reduced ING network. Further, the I1287

neuron’s spiking and thus its effect on the E neuron is the same1288

as in the pure PING network. So the frequencies of the full and1289

the pure PING network are also the same.1290

For decreased E drive [see Fig. 8(c)], the I drive imposes an1291

ING rhythm, which governs the dynamics of the full network,1292

just as for networks of two type I neurons. However, as in1293

the case of large I drive [Fig. 8(b)], for the network with1294

the type II I neuron, we observe that the ING frequency is1295

lower than the pure ING frequency since the E spike has a1296

phase-delaying effect on the I neuron. The full network ING1297

frequency is higher than the pure PING frequency since the1298

I spike in the full network ING rhythm always arrives at an1299

E phase less than 2τ and it thus has less inhibitory effect.1300

When the E drive increases, there is again a transition without1301

a coexistence region. Beyond it, the full network assumes a1302

PING rhythm (alternation of scenarios 5 and 1). The slope of1303

the light green curve (ING frequency) is lower than that of1304

the dark green curve (PING frequency) [cf. light green curve1305

and black dashed line in Fig. 8(c)]; that is, as for networks of1306

two type I neurons, the PING frequency is more sensitive to1307

a change of the E drive 1/�E than the ING frequency. Near1308

the right-hand side of the transition point, the E spike arrives1309

when the I neuron is near threshold. The E spike therefore1310

brings the I neuron’s phase very close to the phase threshold1311

�I , which explains why the frequency of the PING rhythm is1312

close to the frequency of the pure PING rhythm. The PING1313

frequency always lies below the pure PING frequency since it1314

still takes some time for the I neuron to reach threshold after1315

input from the E neuron. Thus, its inhibition does not arrive1316

at the E neuron’s phase 2τ but later and has a larger delaying1317

impact.1318

VII. SUMMARY AND DISCUSSION1319

In this study, we investigate the interaction between ING1320

and PING oscillations using an analytical approach for a simple1321

neuronal network. In this network, two neural oscillators, an1322

excitatory (E) and an inhibitory (I) neuron, are reciprocally1323

connected and, additionally, the I neuron has self-inhibition.1324

The E neuron mimics a synchronized group of pyramidal1325

cells, while the I neuron represents a synchronized group of1326

interneurons.1327

An important aspect of this model is the type of neurons1328

(type I versus type II). Most results on the type of firing and on1329

the PRC of pyramidal cells in the literature suggest that pyrami-1330

dal cells in different brain areas belong to the category of type1331

I neurons [73–75] (see, however, [76–78]). We adopt this view1332

and model the E neuron as a (type I) leaky integrate-and-fire1333

neuron. We review the derivation of the phase representation1334

for this model, in particular, the derivation of the transfer1335

function H , which maps the phase of the neuronal oscillator 1336

before synaptic input to the phase after synaptic input. A full, 1337

general derivation of the phase representation for type I neurons 1338

was provided in a previous study (see [65]). The appropriate 1339

choice of interneuron phase response curve type is less clear. 1340

Oscillation-relevant interneurons can be either of type I [79] 1341

or type II [62] depending on the brain area. Therefore, we 1342

consider both options in our study: We model the I neuron as 1343

a type I leaky integrate-and-fire neuron or as a type II sine 1344

neuron. The interactions between the neurons are modeled by 1345

Dirac delta pulses, which induce a jump in the voltage of the 1346

receiving neuron by an amount that is described by the strength 1347

of the synaptic connection and independently of the voltage. In 1348

the present study we show how to derive the phase dynamics 1349

for such neural oscillators, if they have an iPRC of type II. In 1350

particular, for our type II sine I neuron, we derive the voltage 1351

dynamics and the full phase representation from its iPRC. 1352

The chosen iPRC shows a change from negative to positive as 1353

typical for type II neurons. Concretely, we use the (inverted) 1354

sine iPRC of a normal form oscillator of the Hopf bifurcation 1355

(cf. [68]). Using the phase description we can provide a full 1356

theoretical analysis of the dynamics of a network model with 1357

an E neuron and an I neuron of arbitrary type and arbitrary 1358

details of the dynamics. 1359

Our results are also relevant for single oscillator studies, 1360

since they allow us to investigate how different an oscillator 1361

model is from a model expressible by one-dimensional voltage 1362

dynamics with voltage-independent inputs. As an example, 1363

we consider the classical radial isochron clock [1,5,80]. In 1364

this model, a point circulates on its attractor cycle in the 1365

x, y plane. Synaptic inputs cause deviations from the stable 1366

attractor cycle. Assuming that the radial deflection after an 1367

input quickly relaxes back while the change in the angular 1368

variable remains, this model reduces to a phase oscillator. For 1369

infinitesimal inputs, the resulting phase response is given by 1370

a sine iPRC. However, comparing the PRC with that in our 1371

study reveals a difference in the series expansion of the synaptic 1372

strength ε from second order on; see the Appendix. 1373

To theoretically investigate oscillations in our two-neuron 1374

networks, we first provide a basic framework by deriving the 1375

five relevant scenarios for the change of phase differences upon 1376

interactions of the E and I neurons (see Fig. 4). This allows us 1377

to construct various modes of synchronization [71] between 1378

the two oscillators by concatenating and repeating scenarios 1379

and determining whether this results in periodic dynamics. For 1380

example, scenarios 5 and 1 can be concatenated in alternation 1381

to obtain 1:1 synchronization between the E and I oscillators. 1382

For our study, we focus on 1:1 synchronization because both 1383

the population of interneurons and the population of pyramidal 1384

cells display increased activity only once per gamma cycle 1385

[81,82]. 1386

When our two-neuron network operates in PING mode, the 1387

output of the E neuron elicits the spiking of the I neuron. 1388

This happens in scenario 4 and it can happen in the mode 1389

of alternating scenarios 5 and 1. The interpretation of a mode 1390

with repeating scenario 4 as PING is straightforward, due to 1391

the suprathreshold excitation of the I neuron. In contrast, the 1392

interpretation of modes of alternating scenarios 5,1 requires 1393

some caution. Such modes should be interpreted as PING, 1394

if the E neuron nearly excites the I neuron to spike, i.e., if 1395
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the E neuron’s spike brings the I neuron so close to threshold1396

that it spikes shortly thereafter. In the considered parameter1397

region around the crossing of the pure PING and the pure1398

ING network oscillation frequencies, this is the case in all1399

our simulations of scenarios 5,1 rhythms: The I neuron spikes1400

less than 0.1T after the E spike arrives, where T is the1401

period of the rhythm. For simplicity, we therefore refer to1402

the scenarios 5,1 rhythm as PING throughout the present1403

article. A comparison with experimental findings corroborates1404

our interpretation: Ref. [83] demonstrates that in PING the1405

discharge probability of the CA3 pyramidal cells in the gamma1406

cycle (T ≈ 18.9 ms) reaches its maximum 3.1 ms before the1407

maximal discharge probability of the CA3 interneurons. The1408

latency of a monosynaptic connection is approximately 1.31409

ms [84,101], so the discharge probability of the interneurons1410

reaches a maximum 1.8 ms (=3.1 ms − 1.3 ms) after the arrival1411

of the inputs. This temporal difference is about (1.8/18.9) ≈1412

0.1 of the oscillation period T .1413

We find that when the full network operates in PING mode,1414

its frequency is more sensitive to changes of the external drive1415

to the E neuron than to changes of the external drive to the I1416

neuron [see Fig. 7, panels (b) and (c), and Fig. 8, panels (b)1417

and (c)]. When the full network operates in ING mode, the1418

frequency more strongly depends on the external current given1419

to the I neuron.1420

Our theoretical study also shows that the qualitative relation1421

of the frequency of the full network and the frequencies of pure1422

ING oscillations (εE→I = 0) and of pure PING oscillations (no1423

or negligible I drive) depends on whether the I neuron belongs1424

to the category of type I or type II. When the I neuron is a type1425

I LIF neuron, the frequency of the full network is above the1426

pure ING and pure PING frequencies or equals the pure PING1427

frequency. The former can be understood from the fact that the1428

excitatory output from the E neuron to the I neuron advances1429

the phase of the type I I neuron and therefore shortens the cycle1430

and increases the frequency. In contrast, when the I neuron1431

is a type II sine neuron, the frequency of the full network is1432

between the frequencies of pure ING and pure PING. This can1433

be understood from the fact that the excitatory input from the1434

E neuron delays the phase of the I neuron when the spike from1435

the E neuron arrives early in the phase of the I neuron. This1436

increases the cycle duration and thus decreases the frequency.1437

Throughout the article, the type I neurons in our networks1438

are LIF neurons. We have likewise explored networks with two1439

type I quadratic integrate-and-fire (QIF) neurons [5] in phase1440

representation (cf. Sec. II). In these networks with the QIF1441

E neuron and QIF I neuron, we observe the same qualitative1442

frequency relations as in networks of two LIF neurons, if the1443

pure ING frequency is higher than the pure PING frequency:1444

The frequency of the full network is slightly above the pure1445

ING frequency. However, when the pure PING frequency is1446

higher than the pure ING frequency, the full network frequency1447

of coupled QIF neurons is below the pure PING frequency.1448

This is because in the pure PING rhythm we assume that the1449

excitatory input excites the I neuron to spike immediately at1450

its arrival. For a QIF I neuron, this would require an infinitely1451

large excitatory coupling strength. Since in the full network1452

the coupling strengths are finite, the QIF I neuron cannot reach1453

threshold instantaneously at spike arrival, in contrast to a LIF1454

neuron. Consequently, the QIF I neuron spikes later in the1455

cycle and the full network frequency is lower than the pure 1456

PING frequency. 1457

When we compare the results of the two-neuron networks, 1458

which contain two LIF or one LIF and one sine neuron, to 1459

the results from simulations in a large network of biologically 1460

more detailed pyramidal cells and interneurons, the latter show 1461

similar qualitative relations [58]: The frequency of the full 1462

network with type I interneurons is slightly above the frequency 1463

of pure ING and of pure PING, while the frequency of the full 1464

network with type II interneurons can be in between. However, 1465

the full network PING frequency of the two-neuron network 1466

with the type II I neuron is intermediate between the pure ING 1467

and pure PING frequencies [cf. Fig. 8, panels (b) and (c)], while 1468

it is slightly above for the large networks (cf. Fig. 7, panels (b) 1469

and (c), in Ref. [58]). The key to understanding this discrepancy 1470

is the net value of the excitatory output from the E neuron (or 1471

from the population of the pyramidal cells) to the I neuron 1472

(or to the population of the interneurons). In the pure PING 1473

two-neuron network the coupling is assumed to be so strong 1474

that the E spike excites the I neuron to spike immediately, 1475

while in the full two-neuron network the I neuron’s phase 1476

still needs to slightly increase to reach threshold. This causes 1477

the frequency of pure PING to be higher than that of the full 1478

network. However, the net values of the excitatory outputs in 1479

both large-network topologies are approximately the same. 1480

With additional drive to the interneurons in the full large 1481

network, its frequency is thus higher than that of the pure PING 1482

large network. Another discrepancy between the results for 1483

the two-neuron network and the results for the large networks 1484

in Ref. [58] concerns network bistability. The phase iteration 1485

map of two-neuron networks with type I LIF E and I neurons 1486

has two stable fixed points (one corresponding to ING and one 1487

corresponding to PING) for parameter values near the crossing 1488

of the pure ING and pure PING frequencies, giving rise to 1489

bistability between ING and PING; see Fig. 7, panels (b) and 1490

(c). In contrast, the simulations of the large network reveal 1491

only one oscillation frequency near the crossing. Presumably, 1492

this is due to noise added to the input to the neurons in 1493

the large network. This gives rise to slightly different firing 1494

frequencies of the network’s neurons, which may together 1495

obscure the bistability into a gradual transition between ING 1496

and PING. A second fixed point also occurs for the phase 1497

iteration map of the two-neuron network with the type II I 1498

neuron; cf. Figs. 6 and 8. It is unstable and corresponds to 1499

an unstable oscillation with higher frequency. In contrast, the 1500

large network simulations again reveal only one frequency. An 1501

obvious explanation is that the employed simulations cannot 1502

generate unstable oscillations due to noise. Although the results 1503

based on the two-neuron networks and the large networks 1504

[58] yield differences in some detail, the general picture is 1505

similar. In particular, the stable rhythm of the full network is 1506

usually realized by the one of ING or PING that generates 1507

the higher frequency. That is, the mechanism that generates 1508

the higher frequency “wins” in the sense that it determines the 1509

frequency of the full network. In the two-neuron network this 1510

is also the rhythm that generates the higher frequency in the 1511

corresponding pure networks. The rough explanation is that the 1512

higher frequency generating mechanism absorbs the resources 1513

necessary to maintain a rhythm: A neuron will generally spike 1514

earlier due to recruitment into a higher frequency rhythm and is 1515
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then not able to spike again to contribute to the lower frequency1516

one. However, our analytical approaches in the present article1517

allow for more detailed analyses; see Sec. VI.1518

Most studies with a large impact on the field using two-1519

neuron (oscillator) networks were conducted either for purely1520

inhibitory networks [85–92] or purely excitatory networks1521

[85,90,92–96]. Studies for two-neuron networks, in which1522

one is excitatory and another is inhibitory, are less common1523

and many of them are in different contexts [42,74,97–99].1524

Börgers and Kopell [56] presented a study related to ours, but1525

without coupling delays and assuming that εE→I is always1526

suprathreshold. The article reports that when the intrinsic1527

frequency of the I neuron is higher than the frequency of1528

the PING network rhythm, the latter is destroyed via phase1529

walk-through, which results in an irregular oscillation (the I1530

neuron spikes more than once per cycle).1531

Our study considers both type I and type II I oscillators1532

as well as a finite coupling delay. The consideration of1533

the frequency aspect yields an intriguing dependence of the1534

frequency changes when changing external drive, on the phase1535

response curve of the oscillators as presented in Sec. VI.1536

Unlike other methods for studying the two-neuron network,1537

our method does not focus on determining the mode of the1538

phase locking directly but based on fundamental interaction1539

scenarios, which can be used to construct different modes of1540

locking under the assumption that the phase difference between1541

the two oscillators changes only when either an input arrives1542

or a phase is reset; the assumption is valid in our study because1543

the connections are modeled by Dirac delta pulses. By this, we1544

consider fast postsynaptic current (PSC) kinetics that ignores1545

a PSC’s rise and decay. Van Vreeswijk et al. [85] and others1546

[100] have shown that the duration of the PSCs relative to the1547

interval of spiking is important. Since the time constant of the1548

synapses relevant to gamma oscillations is on the order of a few1549

milliseconds [52,101–103], which is short against the period1550

of gamma oscillations (around 20 ms), modeling the PSCs as1551

delta pulses seems reasonable. The assumption that the choice1552

of Dirac delta pulses does not affect the central conclusions1553

of our study is also corroborated by our comparisons with1554

biologically more detailed, larger scale networks [58].1555

The results of this study are relevant for in vitro and in1556

vivo experimental studies, since they imply that a seemingly1557

straightforward interpretation of an observed rhythm as ING1558

or PING has to be done with care. Our findings highlight1559

that frequent firing of the pyramidal cells does not necessarily1560

imply that the network is dominated by PING. Similar spike1561

patterns can be generated both by ING and by PING rhythms.1562

In particular, the network can generate ING rhythms, where1563

the pyramidal cells spike before the interneurons (scenario 3).1564

Various experiments show shifts of the frequency generated1565

by cortical circuits when the influence of the excitatory input1566

on the interneurons decreases due to optogenetic silencing of1567

the local pyramidal cells in vivo [104] or applying an antagonist1568

of fast excitatory synaptic coupling in vitro [105]. One might1569

guess that if the cortical circuits produce oscillations whose1570

frequency changes when one decreases the local excitatory1571

input, the oscillations are likely to be PING because the1572

oscillations depend on the excitation-inhibition loop. However,1573

our studies in the two-neuron networks and in larger networks1574

[58] suggest that knowing only that the frequency changes1575

when removing the local E to I inputs εE→I (by silencing 1576

pyramidal cells or disabling fast excitatory synaptic inputs) is 1577

not enough to determine whether the cortical circuits operate 1578

in either PING or ING mode. We also need to know the type of 1579

the interneurons and the direction of change of the frequency 1580

to gain information about the operation mode. 1581

Overall, we provide a mathematical framework to construct 1582

phase oscillators that can be described by a single voltage 1583

variable with voltage-independent input, based on basically 1584

any smooth infinitesimal phase response curve. Furthermore, 1585

we construct iteration maps characterizing the dynamics of 1586

two-neuron networks. We use them to analyze how regular 1587

PING and ING oscillations in the two-neuron networks inter- 1588

act. Our results show that the winning mechanism (either PING 1589

or ING) is the one with the higher frequency in the full and 1590

pure networks. Except for possible small coexistence regions 1591

it will suppress the other one since it absorbs all “resources” 1592

(neurons ready to spike) available to maintain a rhythm. 1593
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APPENDIX: COMPARISON OF OUR SINE NEURON WITH 1601

THE RADIAL ISOCHRON CLOCK 1602

The radial isochron clock (RIC) or Andronov-Hopf oscilla- 1603

tor (e.g., [1,5,80]) is the normal form of oscillating systems near 1604

Hopf bifurcations. It is a two-dimensional dynamical system 1605

with the unit cycle as attractor. The dynamical equations for 1606

the radial and angular state variables are 1607

dr

dt
= �r (1 − r2), (A1)

dϕ

dt
= 1, (A2)

with sufficiently large parameter � such that deflections in the 1608

radial direction are quickly eliminated and input pulses meet 1609

the system practically on the limit cycle. In contrast, angular 1610

perturbations remain; see Eq. (A2). The oscillator spikes and 1611

is reset when its angle reaches � = 2π from below. One can 1612

now posit that inputs cause a deflection into the direction of 1613

the x coordinate, 1614[
cos(ϕ)
sin(ϕ)

]
→

[
cos(ϕ) + ε

sin(ϕ)

]
; (A3)

see [5,80]. Note that by this definition an input cannot cause 1615

the oscillator to cross threshold, as it changes the state parallel 1616

to it. Assuming that we are and stay in the first quadrant, 1617

the angle changes as ϕ → arctan( sin(ϕ)
ε+cos(ϕ) ). Since the angular 1618

deflection is conserved while the radial variable relaxes to one, 1619

the phase after the input is HRIC(ϕ, ε) = arctan( sin(ϕ)
ε+cos(ϕ) ). If 1620

we do not stay within the first quadrant, we need to extend the 1621
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definition, 1622

HRIC(ϕ, ε) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
arctan

(
sin(ϕ)

ε+cos(ϕ)

)
, for ϕ ∈ ]0, π [ and cos(ϕ) + ε > 0,

arctan
(

sin(ϕ)
ε+cos(ϕ)

)
+ π, for cos(ϕ) + ε < 0,

arctan
(

sin(ϕ)
ε+cos(ϕ)

)
+ 2π, for ϕ ∈ ]π, 2π [ and cos(ϕ) + ε > 0,

(A4)

with the appropriate continuations at the borders. The first1623

derivative with respect to ε reads1624

∂HRIC(ϕ, ε)

∂ε
= − sin(ϕ)

1 + 2ε cos(ϕ) + ε2
. (A5)

Equation (A5) specifies in linear approximation the change of1625

the current phase HRIC(ϕ, ε), in terms of the already received1626

input ε and the initial phase ϕ. This is conceptually related to1627

Eq. (23). It is distinct from a differential equation for the current1628

phase, which specifies the change of the current phase in terms1629

of the current phase [like Eq. (31)] and, if nonautonomous (see1630

below), the independent variable, i.e., where the right-hand side1631

would be a function of HRIC(ϕ, ε) and ε. For ε = 0 Eq. (A5)1632

yields the iPRC. Since1633

∂HRIC(ϕ, ε)

∂ε

∣∣∣∣
ε=0

= − sin(ϕ), (A6)

the neuron is a sine neuron. It is, however, not the same sine1634

neuron as ours; see Sec. III B. The transfer function of our1635

sine neuron can be obtained via the autonomous differential1636

equation1637

∂Hsine(ϕ, ε)

∂ε
= Z(Hsine(ϕ, ε)) = − sin[Hsine(ϕ, ε)],

(A7)

with initial condition Hsine(ϕ, 0) = ϕ; cf. Eq. (31). The right- 1638

hand side of the equation does not depend on ε and is 1639

therefore uniquely specified by the iPRC. Solving Eq. (A7) 1640

using separation of variables yields for a neuron with period 1641

� = 2π 1642

Hsine(ϕ, ε)

=
{

2 arctan
[
tan

(
ϕ

2

)
e−ε

]
, for ϕ ∈ ]0, π [,

2 arctan
[
tan

(
ϕ

2

)
e−ε

] + 2π, for ϕ ∈ ]π, 2π [,
(A8)

with appropriate continuations; cf. Eq. (39). The first derivative 1643

[e.g., computed from Eq. (A7)] then explicitly reads 1644

∂Hsine(ϕ, ε)

∂ε
= − sin[Hsine(ϕ, ε)]

= − sin
{

2 arctan
[
tan

(ϕ

2

)
e−ε

]}
= − 2eε tan

(
ϕ

2

)
e2ε + tan

(
ϕ

2

)2 , (A9)

which agrees only for ε = 0 with Eq. (A5). We may conclude 1645

that HRIC(ϕ, ε) does not obey the autonomous differential 1646

FIG. 9. Comparison of Hsine(ϕ, ε) (green) with HRIC(ϕ, ε) (blue) for different values of ε. Panels (a), (b), (c), and (d) show the transfer
functions for ε = 0.3, 0.8, 1, and 1.1, respectively.
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equation Eq. (31), but a nonautonomous one, where the right-1647

hand side depends explicitly on the independent variable ε1648

and which reduces to the iPRC at ε = 0. Graphically speak-1649

ing, consider a small input piece dε̃ of a total input ε. dε̃1650

arrives after the input piece ε̃ of ε has already been received.1651

Then the impact of dε̃ does not only depend on the phase1652

ϕ(ε̃) = HRIC(ϕ, ε̃) reached due to ε̃ but also explicitly on ε̃1653

itself.1654

The series expansions in ε of HRIC(ϕ, ε) and Hsine(ϕ, ε)1655

around zero differ from second order on (they agree by1656

definition up to first order),1657

HRIC(ϕ, ε) = ϕ − sin(ϕ)ε + 1
2 sin(2ϕ)ε2

− 1
3 sin(3ϕ)ε3 + O(ε4), (A10)

Hsine(ϕ, ε) = ϕ − sin(ϕ)ε + 1
4 sin(2ϕ)ε2

− 1
12 [sin(3ϕ) − sin(ϕ)]ε3 + O(ε4). (A11)

Equations (31) and (A7) allow us to compute expressions for 1658

the higher order derivatives and thus Taylor coefficients of its 1659

solution by differentiating both sides and replacing derivatives 1660

appearing on the right-hand side using the original equa- 1661

tion. We note that as second derivative we obtain ∂2H (ϕ,ε)
∂ε2 = 1662

Z′(ϕ)Z(ϕ), which implies a second order Taylor coefficient 1663

1
2 [sin(ϕ) cos(ϕ)] = 1

4 sin(2ϕ) as present in Eq. (A11) but not 1664

in Eq. (A10). Figure 9 illustrates the increasing discrepancy 1665

of HRIC(ϕ, ε) and Hsine(ϕ, ε) for increasing ε. For ε = 1, 1666

HRIC(ϕ, ε) has a singularity (at ϕ = π ) and beyond a discon- 1667

tinuity. 1668
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