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EDITORIAL Open Access

Acetylcholine receptor antagonists in acute
respiratory distress syndrome: much more
than muscle relaxants
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Abstract

Acetylcholine receptor antagonists have been shown
to improve outcome in patients with severe acute
respiratory distress syndrome. However, it is
incompletely understood how these agents improve
outcome. In the current editorial, we discuss the
mechanisms of action of acetylcholine receptor
antagonists beyond neuromuscular blockade.
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Main text
Non-depolarizing neuromuscular blockers (NMBs), such
as rocuronium and cisatracurium, are frequently used in
patients with acute respiratory distress syndrome
(ARDS). The Lung-Safe study reported that NMBs were
used in 6.8% of mild ARDS and up to 37.8% of severe
ARDS patients [1]. Three clinical studies on the use of
NMB in ARDS have been conducted by Papazian and
colleagues [2–4]. In their largest multicenter randomized
controlled trial (ACURASYS study) it was demonstrated
that continuous cisatracurium for 48 h reduced 90-day
mortality (primary outcome) and improved oxygenation,
in particular in patients with PaO2/FiO2 ratio ≤
120 mmHg [4]. Today, it is incompletely understood
how NMBs improve outcome. Possible mechanisms in-
clude reduction of oxygen consumption, decrease in
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cardiac output and pulmonary blood flow, and direct
anti-inflammatory effects of NMBs, but the most intui-
tive mechanism is by abolishing patient breathing effort
and thereby limiting the risk of both alveolar collapse
and over-distention [5, 6]. However, it is remarkable that
no significant differences were found between groups in
tidal volume, PEEP, plateau pressure, and minute ventila-
tion [4]. This suggests that other factors, not directly re-
lated to respiratory mechanics, may play a role in the
beneficial effects of NMBs.

Acetylcholine receptors
NMBs exert their action through interaction with the
acetylcholine receptor (AChR) in the neuromuscular
junction. Two major types of AChRs have been charac-
terized: the metabotropic muscarinic receptors
(mAChRs) and the ionotropic nicotinic receptors
(nAChRs); both are activated by ACh [7]. The nAChR, a
ligand-gated ion channel, is primarily found in the
neuromuscular junction where binding with acetylcho-
line results in inflow of sodium and calcium and outflow
of potassium, depolarizing the motor endplate and creat-
ing a potential that triggers muscle contraction [8, 9]. In
addition, nAChRs are expressed by other tissues and
cells, including brain, autonomic ganglia, macrophages,
endothelial cells, and epithelial cells [7], explaining their
involvement in physiological processes such as addiction,
inflammation, and metabolic tonus. The mAChR is a G-
protein-coupled receptor comprising five subtypes (M1–
5) [7, 10] which are also widely expressed throughout
the body. Table 1 shows an overview of the most import-
ant types of AChRs with their locations and main
function.
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NMBs and inflammation
Given the expression of AChRs in different cells through-
out the body, it is likely that NMBs exert effects other
than neuromuscular blockade. It has been demonstrated
in a rat lung injury model that non-depolarizing NMBs
(cisatracurium and pancuronium) protect against the de-
velopment of ventilator-induced lung injury (VILI)
through a direct, dose-dependent anti-inflammatory effect
mediated by the nAChRα1 expressed on epithelial, endo-
thelial, and CD14+ cells [11]. In patients with early ARDS
(N = 36), continuous administration of cisatracurium for
48 h attenuated pulmonary inflammation (interleukin (IL)

8) and systemic inflammation (IL6, IL8) compared to
placebo [3]. Recently, new data published in Critical Care
by Sottile and colleagues [12] support the anti-
inflammatory role of NMBs in patients with ARDS. The
authors investigated in a secondary analysis of the ARMA
trial [13] the effect of NMBs on surfactant protein D (SP-
D) and von Willebrand factor (VWF), biomarkers specific
for epithelial and endothelial lung injury, respectively, in
addition to markers of systemic inflammation (IL8). In the
overall cohort (N = 446), the use of NMB was significantly
associated with an increase in SP-D, but no effect on VWF
or IL8. Interestingly, after adjusting for multiple con-
founders the use of NMBs was associated with a significant
decrease in SP-D, VWF, and IL8, but only in patients with a
PaO2/FiO2 ratio ≤ 120 and ventilated with low tidal vol-
umes. In patients with higher PaO2/FiO2 ratios, or high
tidal volumes, NMBs did not affect SP-D, VWF, or IL8.
These data provide evidence that NMBs attenuate endothe-
lial and epithelial injury in selected ARDS patients.

Clinical impact on respiratory muscles and further
research
Clinicians may become somewhat confused by the recent
literature regarding the role of disuse in the development of
critical illness-associated respiratory muscle weakness. On
the one hand, excellent data by Goligher et al. [14] demon-
strated that in ventilated ICU patients low diaphragm effort
is associated with decreased thickness of the diaphragm
muscle. In addition, the development of decreased thick-
ness is associated with adverse outcome, including delayed
ventilator weaning. On the other hand, the ACURASYS
trial [4] demonstrated that 48 h of NMB (resulting in full
diaphragm muscle inactivity) improved outcome, including
more ventilator-free days (and no development of muscle
weakness) compared to placebo. An intriguing explanation
is that the beneficial effects of NMBs are at least partly in-
dependent of respiratory muscle pump inactivation, but
more the result of modulation of inflammation and injury
[3, 11, 12] or even unexplored mechanisms. Of note, we
have recently demonstrated in a proof of concept study that
partial neuromuscular blockade (low dose rocuronium)
controls the mechanical effects of high respiratory drive,
resulting in pressures consistent with both lung-protective
ventilation and diaphragm-protective ventilation [15, 16].
So we might “ménager la chèvre et le chou”.
In conclusion, non-depolarizing NMBs have been used

for decades in critical care, but we still do not fully
understand their effects beyond muscle paralysis. New
mechanisms of action may help us to identify patients
that benefit the most from the use of NMBs and help us
to select appropriate doses.
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Table 1 Types of AChR with their locations and main function
Type Location of expression Function

nAChR

Muscle-type Neuromuscular
junction

Muscle contraction, mainly
by increased Na+

and K+ permeability

Neuronal-type Autonomic ganglia Activation of autonomic
nervous system (sympathetic
and parasympathetic),
mainly by increased Na+

and K+ permeability

Hippocampus / cortex Cognition, modulate the
induction of synaptic plasticity,
effect on learning and memory
formation, i.e., can improve
neurovascular coupling

Midbrain Reward center and initiation
of the nicotine addiction process

Neuro-endocrine
neurons in the
hypothalamus

Facilitate the Ca2+-dependent
release of vasopressin and
oxytocin

Others Improvement of neurovascular
coupling (in neurodegenerative
disease and ischemia)

mAChR

M1 Autonomic ganglia Mediates slow EPSP
in postganglionic nerve

Exocrine glands Stimulates secretion

Central nervous system Activates slow after-depolarizing
potentials in neurons

M2 Heart Reduce of heart rate, contractile
forces of the atrium and conduction
velocity in AV node

Central nervous system Activates slow after-depolarizing
potentials in neurons

M3 Smooth muscles Vasoconstriction, vasodilatation,
bronchoconstriction

Endocrine and exocrine
glands

Stimulate secretion

Central nervous system Activates slow after-depolarizing
potentials in neurons

Eye Lacrimation, miosis and accommodation
by contraction of the sphincter papillae
and ciliary body

M4 Central nervous system Activates slow after-depolarizing
potentials in neurons

M5 Not well known -

EPSP excitatory postsynaptic potential
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