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Experiments in various neural systems found avalanches: bursts of activity with characteristics typical
for critical dynamics. A possible explanation for their occurrence is an underlying network that self-
organizes into a critical state. We propose a simple spiking model for developing neural networks, showing

how these may “grow into” criticality. Avalanches generated by our model correspond to clusters of widely
applied Hawkes processes. We analytically derive the cluster size and duration distributions and find that
they agree with those of experimentally observed neuronal avalanches.

DOI: 10.1103/PhysRevLett.121.058301

Introduction.—A hallmark of systems at criticality is the
variability of their responses to small perturbations. While
small responses are most likely, the probability of large,
system-size effects is non-negligible. Various natural and
model complex systems show similar behavior [1]. One
explanation is that they drive themselves close to a critical
state (“self-organized criticality” [2,3]). The dynamics of
such systems are characterized by “events” or “avalanches.”
Their sizes and durations follow power-law distributions,
frequently with exponents 3/2 and 2, indicating an under-
lying critical branching process [4—7]. Apparent critical
dynamics, ‘“neuronal avalanches,” in biological neural
networks were first reported in Refs. [8,9]. It has been
suggested that they foster information storage and transfer
[10,11]. Experimental studies often report power-law size
and duration distributions with exponents 3/2 and 2. They
further indicate that neuronal avalanches emerge during
development [12-15], suggesting that neural networks
develop into a critical state.

The development of neural networks is determined by an
interplay of genetic determinants and environmental influ-
ence. Of pivotal importance is neural activity [16,17].
As a general rule, neurons with low activity level extend
their neurites and form more activating connections,
while highly active cells reduce these [18—20]. Thereby,
neurons maintain their average activity at a particular level
(homeostasis) [21-23].

Computational models for avalanches in neural systems
rely on static, tuned connectivity [14,24], on short-term
synaptic plasticity [25,26], or on long-term network
changes [27-30]. Here we propose a continuous-time
spiking neural network model belonging to the third class.
The avalanche dynamics follow from a network growth
process towards a critical state, which uses local informa-
tion only [31-33]. The model is rooted in previous models
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for neural network development [27,29,34], but sufficiently
simple to be analytically tractable.

Neuron model.—Like biological neurons, our model
neurons communicate by sending and receiving spikes in
continuous time. Spiking is stochastic, according to an
inhomogeneous Poisson point process with instantaneous
rate f;(t) for neuron i [27,35-38]. In isolation neurons have
a low spontaneous rate f, e.g., due to spontaneous synaptic
release or channel fluctuations [39,40]. A spike from neuron
Jj increases f; by the size of the time-dependent connection
strength gA;;. The increment decays exponentially with time
constant 7, which accounts for relaxation due to leak
currents. The couplings are excitatory; this is the dominant
connection type in developing neural systems [34]. Taken
together, f;’s dynamics follow

tfi(t) = fo— fi(t) + TQZAU(I_)Z(S(I -1), (1)

where 7; denotes the spike times of neuron j (& is the Dirac
delta distribution). For simplicity, we assume that all neurons
have the same parameters. For constant couplings, the
network dynamics form a multivariate Hawkes point process
[37,38,41].

Network growth.—Neurons are commonly arranged in
single or stacked layers. We thus represent neurite extents
by disks with radii R;(¢), with centers, representing cell
somas, randomly and uniformly distributed in a planar area
[27,34,42]. Since neurons with more neurite overlap can
grow more synaptic connections [43,44], connection
strengths are set proportional to the overlap areas A;;(¢)
of the disks, with proportionality constant g. We incorpo-
rate homeostatic neurite growth by evolving extents as

© 2018 American Physical Society
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FIG. 1. Neuron dynamics. (a) Neurons’ somas and neurite
extents are represented by disks with evolving radii. Coupling
strengths are proportional to neurite overlap areas. (b) Neurite
radii increase linearly (upper traces), own spike sendings (lower
trace) result in instantaneous shrinkage. Spike arrivals increase
the instantaneous firing rate by the coupling strength, it decays
exponentially in between (middle trace).

Ri(t) = K(l _fiz(s(z—ii)) 2)

sat }[

Fig. 1. Between spikes of neuron i, R;(t) grows linearly
with rate K. At spike sending, it shrinks by a constant
amount K/f, which determines the rate f, at which
growth and shrinkage equilibrate. There are no self-
connections. Growth takes much longer than decay of
activity, 1/K > 7 (spatial scales of the population are of
order one). Furthermore, we assume f, > f,, in agree-
ment with experiments [15,40,45]. Spontaneously inactive
neurons would reduce the relevant average f, [45]. The
growth model is biologically inspired; it is a simplification
of previous growth models [23,27,29,34]. However, many
slow homeostatic processes [21,22,48] with f, > fo will
yield similar results.

The neurons are initially mostly isolated. Over time,
they extend their neurites, form connections, and develop a
network, Fig. 2. At intermediate stages, neurites and
overlaps can overshoot [15,29,34]. When neuron i’s
time-averaged firing rate f; reaches f,, its average growth
stops [Eq. (2)]. Our networks grow into a stationary state,
where f; = f, for all i. In the following, we investigate
this state.

Stationary state dynamics.—We first compute the aver-
age number of spikes that a spike directly causes: Identical
f; imply identical time-averaged total overlaps > /A,- =
A; =A and input coupling strengths. Time averaging
Eq. (1), f; = fo+79>_;A;f; [here and henceforth we
neglect the small fluctuations of A,;(#) around Aij], and
inserting f, yields 7gA = 1 — f/f < A spike of neuron j
at 7; adds gA;;(17)e~=1/7@(1 - 1;) to f,(1) [Eq. (1), © is
the Heaviside function], such that the number of addition-
ally induced spikes in neuron i is Poisson distributed with
mean rgAij(?]T). Averaged over the randomness of spike
generation each spike thus generates in total

azngAljzrgﬁzl—& (3)
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FIG. 2. Network dynamics. (a) Extents of neurites. (b) Spikes
generated by 25 sample neurons (100 s windows). (c) Scaled total
overlaps of 25 sample neurons (gray) and the population average
(black) as a function of time. For (a) and (b) from left to right:
initial state (red), state with growth on average (blue), stationary
state (green). Color coded vertical lines in (c) indicate the three
different time points in (a) and (b).

spikes, where we used the symmetry of overlaps, A;; = Aj;,
SA=> jA,- 7 = A. Equation (3) holds independently of
network activity and neuron identity, due to the linearity of
Eq. (1) and the homogeneity of parameters. In particular, o
equals also the time and population average number of
induced spikes (o fo — fo) per spike (x fa)-

The independence of spike offspring generation from
other spikes allows us to understand the dynamics as a
branching process with branching parameter o. More spe-
cifically, we have an age-dependent or Crump-Mode-Jagers
branching process [49]: Individuals (spikes) generate off-
spring at an age-dependent rate. Neuronal avalanches are
trees of offspring, started by a spontaneous spike. For their
overall size only the distribution of single spike offspring
matters. It is Poissonian with parameter . The avalanche
sizes s therefore follow the Borel distribution [50],

P(s) =2 ¢ (4)

We apply Stirling’s approximation to obtain

Pappr(s) _ 2”0-3—3/28—(0—1no—1)s’ (5)

explicitly highlighting the power-law tail with exponent 3/2
of a critical branching process for ¢ =1 [4-7]. For a
subcritical process (o < 1), Eq. (5) is a power law with
exponential cutoff around s.(6) = (6 —Ino — 1)~ It sig-
nifies subcritical dynamics [4,5,51], not a finite size effect
[3,5]; the size distribution is independent of neuron number.
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Equation (5) inherits the good quality of Stirling’s approxi-
mation [52], with relative error about 1/(12s).

The heights of Crump-Mode-Jagers trees, i.e., the
temporal differences T between their first and last indi-
viduals, represent the durations of the corresponding
neuronal avalanches. In the following we derive their
probability density p(T). Because of the additivity of
Poisson processes, the superposition of all neurons’ spike
trains can be described as an inhomogeneous Poisson
process with rate f(z) = >_,f:(¢). Summing Eq. (1) over
i and inserting A = ¢/(gz) [Eq. (3)] yields zf(t) = Nf, —
f(t) + 6>_;6(t — ) with the number of neurons N. 7 are the
neurons’ spike times; they occur with instantaneous rate
f(t). The spiking dynamics may thus be interpreted as a
self-exciting Hawkes process. It is Markovian due to the
exponentially decaying impact kernel [53,54]. The sponta-
neous background rate Nf initiates avalanches. To deter-
mine their durations, we consider an analogous process
with instantaneous rate f,(f) and without spontaneous
spiking, which is initiated at t = 0 by an external spike,

o

Tfa(t> :—fa(l‘)-f—GZ(S(l‘—}a), fa(()):;' (6)

The duration of an avalanche is the time 7T of this process’
last spike. The probability that it has occurred before 7 gives
the distribution function P(T < t) of durations. We first
compute this probability conditioned on the instantaneous
rate f,(¢) at the end of the considered interval:

P(T < 1|f,(1)) = P(nospikein (2, 00)|f (1))
— f,mfa(t’)dt’ — ¢ fal0), (7)

where we use that the process behaves like a Poisson
process with exponentially decaying rate, if no spike is
generated. Averaging over f,(t) yields

P(T<1) = /ooo P(T <1 fo(1)p(fa(2))df o(1)
= E(e~/a(0). (8)

E(-) denotes the expectation value over the process, Eq. (6).
Importantly, Eq. (8) shows that P(T <t) equals the
Laplace transform of the random variable f,(t), evaluated
at the decay time 7. This Laplace transform has recently
been derived [55-57]. Inserting our parameters yields
E(e~"a(0) = ¢0a(0/7 where a(t) satisfies

a(t) = —a(t) /v + e”0/7 — 1, a(0)=-z. (9)
The resulting P(T < ) = ¢°*/7@(¢) with ©(0) = 1 has
the density

p(T) = 6a(T)e® M) *O(T) /t + e7°5(T).  (10)

We can generalize Eq. (9) to Hawkes processes with
different kernels using the integral equation for cluster
duration distributions [58,59].

We finally approximate p(7) by closed-form expres-
sions with a focus on its tail near criticality. For large ¢,
P(T < t) approaches 1, so a(r) approaches 0. Generally,
ca(t)/r stays between —1 and 0. Expanding ¢”*(")/7 in
Eq. (9) around ca(t)/r = 0 to second order,

a(t)~(e—1a(t)/t+0%a(1)?/(27%), a(0)=-t,  (I1)

yields closed-form approximations for a(z). In particular,
for nearly critical systems with o~ 1, the first term on
the right-hand side vanishes and the solution is ay(f) =

—(27)2/(27 + t), leading to a probability density
Pa(T) = 2622 + T) 2etan QT + 7 15(T),  (12)

which approaches for large 7 a power law with critical
exponent 2. For large ¢ the error in the expansion Eq. (11)
becomes negligible, .y, (#) thus has the right slope and
Pappr(T) equals p(T) up to a factor (Fig. 3). We conclude
that the duration distribution has a power-law tail with
critical exponent 2. Expanding the exponential to third
order yields a closed-form distribution that is a good
approximation also for small 7.

Simulations.—We complement our analytics with sim-
ulations to (i) compare the avalanche distributions,
(ii) exemplify the irrelevance of connectivity fluctuations,
(iii) investigate the spatial spread of avalanches, (iv) address
the robustness of the results, and (v) consider a typical
experimental manipulation. If not stated otherwise,

(@ 7 (b) 1
10-1— 1072_5
T 1073 g 1073 3
10757 '
107 1

1 10 10 10% 10* 10t 1 10 10% 10°

s T (ms)
FIG. 3. Avalanche sizes and durations. (a) Analytical size

distributions Eq. (5) (discrete points connected) and simulation
results for subcritical (fg, = 0.04 Hz, 6 = 0.75, t;, = 30 ms,
blue and gray) and near-critical (f =2Hz, 6=0.995, ty;,=
45ms, red and black) states. Equation (4) yields visually
indistinguishable analytics. (b) Analytical duration distributions
Eq. (10) and simulation results, for subcritical (green and gray)
and near-critical (orange and black) states, and closed-form
approximation Eq. (12) (red).
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N =100, =10 ms [60], g =500 Hz, f, = 0.01 Hz,
fsat = 2 Hz [15,40], somas are placed on unit square,
K™ ' =10°s (quick growth, accelerating simulations)
[15,21,22,29]. The simulations use an event-based algo-
rithm. Next spike times are determined using inverse
transform sampling of the interspike-interval distribution;
we avoid nonelementary functions by splitting each neu-
ron’s Poisson process into a homogeneous (rate f)) and an
inhomogeneous one.

An avalanche should be a sequence of offspring spikes
of one spontaneous progenitor. To keep contact with the
experimental literature, we analyze numerical data by
binning time and considering spike sequences that are
not separated by an empty bin as one avalanche [8,61-63].
Our model yields analytical estimates for the probabilities
that binning splits the first avalanche spikes or merges them
with the next avalanche, as well as for splitting or merging
an average avalanche. Keeping them moderate provides
our bin sizes f;, in terms of experimentally accessible
quantities (fqo, 7, N, fe) [45]. Results are robust against
changing f;,.

(1) In all simulations the model reaches a stationary state.
The avalanche distributions agree well with the analytically
derived ones, Fig. 3, the effects of binning and avalanche
overlaps are small. We quantitatively test this agreement
using the methods described in Refs. [64,65]. For both size
and duration distributions a pure power law is ruled out,
as expected. For the size distribution, a power law with
exponential cutoff, cf. Eq. (§), yields a good fit. The
analytical values of the power-law exponent, the cutoff
s.(0), and the resulting ¢ are closely matched.

(ii) The fluctuations of ) ;A;;(¢) and the deviations of fi

from f, are small (< 1%, Fig. 2). Freezing the network
(K =0) in the stationary state has no effect on the
avalanche statistics: Neuronal growth carries the system
close to a critical point, but is not required later on. This is
in agreement with self-organized criticality and excludes
other mechanisms [66—-68].

(iii) To investigate spatial spread near criticality, we
compute covariances C;; = (m;n;) — (n;)(n;) between
numbers n;, n; of spikes contributed to single avalanches
by neurons i, j with various distances. Covariances decay
comparably slowly. Covariances and thus avalanches
spread beyond direct connections, Fig. 4(a).

(iv) To test robustness, we first freeze the growth in the
stationary state and shuffle the output vectors (columns of
the coupling matrix) between neurons. While this alters the
network topology and breaks coupling symmetry, it leaves
the essential total coupling strengths unchanged. Indeed,
we observe little effect on avalanche sizes and durations.
Second, we consider moderate nonadditivity of spike
impacts. We introduce an absolute refractory period 7.
after a sent spike, during which the neuron cannot spike
again. We observe that although the refractory period limits
the firing rate, the network reaches a stationary state with

(@) (b)
Ciji A
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FIG. 4. (a) Pairwise spike number covariances and overlaps as
functions of the intersomatic distances d,; (averages around a
particular intersomatic distance, bars: standard deviations),
0 =0.995, t,;, =45 ms. (b) Avalanche size distributions for
the same model as in Fig. 3, but with absolute refractory period
Tt = 7 (red), 7, = 47 (green), 7, = 0 ms (gray) for reference,
tyin =45 ms; 7 =5 ms, 7 = 47, fo = 0.1 Hz, f, = 0.8 Hz,
tyin = 10 ms (blue, #,;, = 45 ms: light blue).

the same average individual rate f, as before: larger
overlaps compensate refractoriness. For a refractory period
about 7, which is often biologically plausible [39,60], the
statistics resemble the original one for small and medium
size avalanches [Fig. 4(b), red vs. gray]. Larger couplings
and stop of avalanches lacking available neurons cause an
excess of larger avalanches, followed by a strong reduction.
Neurons still frequently contribute several spikes to ava-
lanches. With long refractoriness, little similarity remains
[Fig. 4(b), green and blue; blue: our model with parameters
adapted from Ref. [27], calcium variable present in
Ref. [27] does not affect distribution shape].

(v) Manipulation of neural excitability or coupling
strength via g causes subcriticality (decreased g) or excess
of large avalanches (increased g), as in experiments [8,69].
Our model predicts that the latter is balanced by network
plasticity faster than the former, due to strongly increased
activity [45].

Discussion and conclusion.—We suggest an analytically
tractable model for neural network growth, which may
explain the emergence of subcritical and critical avalanche
dynamics. It covers essential features of biological neurons
such as operation in continuous time, spiking, leak currents,
and network growth. Still, it allows the analytical compu-
tation of the avalanche size and duration distributions for
subcritical and critical stationary states. Our numerical
analysis confirms their validity and robustness and yields
additional insight.

Two features are responsible for the emergence of the
(near-)critical state (Fig. 3): (i) homeostatic growth to attain
a saturation rate that is high compared to the spontaneous
one (precise values of f, and f, are irrelevant), and
(i1) linear summation of spike impacts. (i) implies that in the
stationary state on average each spike generates nearly one
successor. This holds for all networks with largely self-
sustained activity. Usually, however, branching parameters
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vary, for example at high network activity spikes generate less
offspring. This drives activity excursions back and generates
non-power-law distributions [70,71]. In our networks,
(ii) implies that the branching parameter is the same for each
spike. Small saturation rates yield subcritical dynamics
(Fig. 3), strong nonlinearities other deviations [Fig. 4(b)].
Our model thus predicts that neural networks may develop
criticality already due to their growth, that spontaneous
spiking in such networks is low compared to saturation,
and that spike effects add rather linearly and are independent
of activity level. For example, starburst amacrine cells have
radial dendritic trees, interact during development via
dendro-dendritic excitatory connections, and are reported
to generate critical avalanches [14]. Our model predicts that
higher precision measurements will reveal deviations as in
Fig. 4(b), due to the cells’ long refractory periods.

Our network model is based on the neurobiologically
more detailed ones [27,29,34]. Motivated by experiments,
Ref. [34] proposes radial activity dependent neurite out-
growth steered by calcium dynamics and finds convergence
to a stationary state for certain parameter ranges. To study
avalanches, Ref. [27] adds stochastically spiking neurons,
albeit with long refractoriness and larger f/ f» impeding
analytical treatment and causing large deviations from
criticality [Fig. 4(b)]; Ref. [29] assumes antagonistic growth
of axons and dendrites and finds criticality, if a certain
fraction of neurons becomes inhibitory; Refs. [48,72,73]
consider more abstract homeostasis and neuron models.

Usually, models for neuronal avalanches only allow to
estimate size and duration distributions numerically
[14,25,27,29,30]. Reference [24] obtains an analytical
expression of the size distribution for a discrete-time
network. Our article derives size and duration distributions
for a continuous-time spiking network model after self-
organization. These distributions depend only on the
experimentally accessible parameters f/f, and 7 (dura-
tion scaling). The power-law exponents agree with exper-
imentally found ones and those of simple branching
processes [4,6,8,14]. The duration distribution has
power-law scaling at the tail [4,6,14], a fit to short
avalanches [8] would yield different results. Our analytical
expressions allow fast parameter scans, delineations of the
(near-)critical regime and parameter estimations.

From a general perspective, avalanches in our model are
clusters of a Hawkes process. While their size distribution
can be straightforwardly computed [Eq. (4)], their duration
distribution generally requires solving a nonlinear integral
equation [58,59]. Here we show that for Markovian
Hawkes processes it follows from the solution of an
ordinary differential equation [Egs. (9), (10)] and we give
closed-form approximations. This may find straightforward
application in further fields of science where these proc-
esses are employed, for example, to characterize durations
of financial market fluctuations [57], earthquakes [74],
violence [75], and epidemics [76,77].

We thank Matthias Hennig, Anna Levina, Viola
Priesemann, and Johannes Zierenberg for helpful discus-
sions and the German Federal Ministry of Education and
Research (BMBF) for support via the Bernstein Network
(Bernstein Award 2014, 01GQ1501 and 01GQ1710).
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