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We consider the extended Hubbard model and introduce a corresponding Heisenberg-like problem
written in terms of spin operators. The derived formalism is reminiscent of Anderson’s idea of the effective
exchange interaction and takes into account nonlocal correlation effects. The results for the exchange
interaction and spin susceptibility in the magnetic phase are expressed in terms of single-particle quantities.
This fact not only can be used for realistic calculations of multiband systems but also allows us to
reconsider a general description of many-body effects in the most interesting physical regimes, where the
physical properties of the system are dominated by collective (bosonic) fluctuations. In the strongly spin-
polarized limit, when the local magnetic moment is well defined, the exchange interaction reduces to a
standard expression of the density functional theory that has been successfully used in practical calculations
of magnetic properties of real materials.

DOI: 10.1103/PhysRevLett.121.037204

The theory of magnetism is one of the most attractive
and discussed areas of physics. Additional interest in this
topic is heated up by the theoretical prediction [1] and
experimental observation [2–4] of topologically stable
Skyrmionic spin textures that are intensively studied
now in the context of spintronics and magnetic data storage
[5–7]. Also, a correct accounting of spin excitations is
important for realization of the Kitaev spin model [8,9] and
its practical application in Majorana quantum computers
[10–15]. A quantitative description of the mentioned effects
requires knowledge of the exchange interaction between
two spins. However, this problem is challenging when
applied to many magnetic materials that are, by definition,
strongly correlated quantum systems.
Originally, the development of the theory of exchange

interactions in solids and molecules was based on the
Heitler-London theory of the hydrogen molecule [16]. It
was demonstrated, however, in the early 1960s by Freeman
and Watson [17] that this theory, being applied to ferro-
magnetic transition metals, gives a completely wrong order
of magnitude and even an incorrect sign of the exchange
parameters. For magnetic insulators, a semiempirical
theory of exchange interactions was developed in the
1950s, known as the Goodenough-Kanamori-Anderson
rules [18–21]; however, it was not quantitative. An analysis
of “superexchange” in particular compounds always
assumed some model considerations, that is, the impor-
tance and nonimportance of specific intermediate states.
When the density functional theory (DFT) became the base
of microscopic quantum theory of molecules and crystals
[22–24], the most straightforward way to estimate the
exchange interactions was simply the calculation of the

total energy difference between ferromagnetic and anti-
ferromagnetic phases. This assumes the applicability of
the Heisenberg model, which is frequently not the case,
especially for itinerant electron systems [24–27].
A general, model-independent and parameter-free

method to calculate exchange interactions within DFT
was suggested in Refs. [28–30] based on the “magnetic
local force theorem.” It is based on the consideration of
second-order variations of the total energy with respect to
small rotations of magnetic moments starting from equi-
librium ground states. Later, this approach was generalized
to strongly correlated systems [31,32] [within the frame-
work of dynamical mean-field theory (DMFT) [33,34] ],
magnetic systems out of equilibrium [35], and relativistic
magnetic interactions, such as the Dzyaloshinskii-Moriya
interaction [36–38]. This theory was successfully used
for many calculations of real systems, such as magnetic
semiconductors [39], molecular magnets [40,41], ferro-
magnetic transition metals [42,43], and half-metallic fer-
romagnets [44].
Despite the success of this approach, its conceptual

status remains unclear. Indeed, a mapping from DFT or
from a Hubbard model to the Heisenberg model is, in
general, impossible; exchange interactions obtained from
the magnetic force theorem are classical and dependent on
the magnetic configuration (see, e.g., Ref. [45]). Their
relation to observables is not very clear; strictly speaking,
only the spin-wave stiffness constant in ferromagnets is a
well-defined quantity since we can be sure that in the limit
of slow times and large spatial scales the phenomenological
Landau-Lifshitz equations are correct. This was empha-
sized already in a previous paper [28]. Observables are
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directly related to the dynamic magnetic susceptibility, but
to establish relations between the magnetic local force
approach and the standard language of response functions
is not an easy problem to solve. It was solved only within
the local spin-density approximation in DFT [46] and
within the time-dependent mean-field approach in the
Hubbard model [47]. However, most of the interesting
magnetic materials are strongly correlated systems, and
these approximations seem to be insufficient (or, at least,
not completely justified) to describe spin dynamics.
In this Letter we show that the extended Hubbard

Hamiltonian can be mapped onto an effective
Heisenberg model. Inspired by the Dual Boson (DB)
formalism [48–51], we construct a bosonic model whose
interaction is reminiscent of Anderson’s superexchange
mechanism [52,53]. Importantly, the derived formalism
remains applicable not only in the strongly localized regime
and allows the description of every magnetic system with a
well-defined local magnetic moment. Moreover, the pres-
ence of the latter allows us to reveal a general way of the
description of a complicated quantum many-body problem
in terms of single-particle quantities with the use of Ward
identities [54,55].
Effective s–d model.—We consider the action of the

extended Hubbard model for correlated electrons,

S ¼ −
X

k;ν;σ

c�kνσ½iνþ μ − εk�ckνσ

þ U
X

q;ω

n�qω↑nqω↓ þ
1

2

X

q;ω;ς

ρ�ςqω½Vq�ςςρςqω: ð1Þ

Here, c�kνσ (ckνσ) are Grassmann variables corresponding to
creation (annihilation) of an electron with momentum k,
fermionic Matsubara frequency ν, and spin σ labels. The
label ς ¼ fc; sg depicts charge c and spin s ¼ fx; y; zg
degrees of freedom (d.o.f.), so U corresponds to local
Coulomb interaction, ½Vq�cc ¼ Vq and ½Vq�ss ¼ −Jdq=2
describe nonlocal Coulomb and direct ferromagnetic
exchange interactions, respectively. Here, we also
introduce bosonic variables: ρςqω ¼ nςqω − hnςqωi, where
nςqω ¼ P

kνσσ0c
�
kνσσ

ς
σσ0ckþq;νþω;σ0 is the charge (ς ¼ c)

and spin (ς ¼ s) density of electrons with the momentum
q, bosonic frequency ω, and Pauli matrices σς ¼ f1; σsg.
Expressing the effective exchange interaction in terms of

correlation functions is a nontrivial task since it is not an
observable. Furthermore, in the strongly correlated regime
charge and spin fluctuations are entangled in a complicated
way. Both challenges can be approached within the dual
boson formalism [48–51] since it naturally separates charge
and spin d.o.f. by representing them in terms of bosonic
fields entering an effective action. To this aim, one splits the
lattice action (1) into the local impurity problem of the
extended dynamical mean-field theory (EDMFT [56–61])
and the remaining nonlocal part, which is a bilinear
function of c�ðcÞ and ρ variables. Within the DB approach

this remaining part is decoupled by two Hubbard-
Stratonovich transformations, thus introducing dual fer-
mionic f�ðfÞ and bosonic ϕ fields. Then, the initial
fermionic d.o.f. c�ðcÞ can be integrated out, leading to
the interaction part W̃½f;ϕ� of the resulting dual action
being expressed in terms of the full vertex functions of the
local impurity problem (for details see the Supplemental
Material [62]). Thus, by construction, local correlations are
already embedded in the bare propagators and interactions
of the DB problem, which is very convenient for practical
calculations. In the following we restrict ourselves to the
lowest order terms in W̃½f;ϕ� stemming from the four-point
γ̄νν0ω and three-point γνω vertices [62].
Dual fields f�ðfÞ and ϕ have no direct physical

interpretation, but this fact does not represent a significant
obstacle for the calculation of physical observables since
there is an exact connection between dual and lattice
quantities [48–51]. However, for our goal of deriving an
effective bosonic model that describes initial (lattice) d.o.f.,
it is crucial to formulate the problem in terms of bosonic
fields that have a clear physical meaning. To remedy this
problem, we perform the reverse Hubbard-Stratonovich
transformation for the bosonic variables ϕ introducing
fields ρ̄. In this we were inspired by the works of
Dupuis [63–65], where a similar trick was performed for
fermionic d.o.f. After integrating over dual bosonic fields
ϕ, one gets the following action reminiscent of the s–d
model [62]:

Ss–d¼−
X

k;ν;σ

f�kνσG̃
−1
0 fkνσ−

1

2

X

q;ω;ςð0Þ
ρ̄�ςqω½XE�−1ςς0 ρ̄ς

0
qωþW: ð2Þ

Here, XE is the EDMFT susceptibility and G̃0 is the
nonlocal part of the EDMFT Green’s function.
Importantly, after all transformations the field ρ̄ indeed
has the same physical meaning as the original composite
bosonic field ρ of the lattice problem (1), as shown in
Ref. [62]. The decisive advantage of the variable ρ̄ is that it
can now be treated as the elementary bosonic field that has
a well-defined propagator and is independent of fermionic
d.o.f. c�ðcÞ. Remarkably, W½f; ρ̄� keeps the practical form
of the dual interaction W̃½f;ϕ� with the replacement of
bosonic variable ϕ → ρ̄, although the four-fermionic term
is modified under these transformations. As we argue in
Ref. [62] and numerically check below, in the case of well-
developed bosonic fluctuations, this modification results in
the corresponding contribution to the interaction W½f; ρ�
becoming negligibly small, and the latter takes the simple
formW½f; ρ� ≃P

k;q

P
ν;ω;ς γ

ς
νωρ

�ς
qωf�kνσfkþq;νþω;σ0 . At last,

we mention that the fermionic d.o.f. are kept in the dual
space, which will prove to be useful to discriminate
between local and nonlocal contributions to the lattice
susceptibility.
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Magnetic susceptibility.—In order to design an effective
Heisenberg model for spin d.o.f., one has to assume that the
local magnetization hmi ¼ 2hSzi is described well at the
dynamical mean-field level, and fluctuations revealed by
the system beyond EDMFT are mostly bosonic. In order to
have well-defined local magnetic moment, the effective
impurity model has to be considered for the spin-polarized
state. For an easier description, one can transform spin
variables from the s ¼ fx; y; zg to the s ¼ fþ;−; zg basis
with S� ¼ ðρx � iρyÞ=2. In the spin-polarized case, charge
and spin z channels are yet entangled, but the � spin
channel can be separated in the collinear case [66,67].
Thus, for the correct description of the spin fluctuations,
one may consider correlations only in the � spin channel,
and the contribution of the z channel to the exchange
interaction can later be restored from symmetry arguments.
For simplicity, � spin labels are omitted wherever they are
not crucial for understanding.
Now, one can integrate out fermionic d.o.f. in the

effective action (2) and get the following spin model:

Sspin ¼ −
1

2

X

q;ω

S−qω½X−þ
qω �−1Sþ−q;−ω þ H:c: ð3Þ

A first approximation for the magnetic susceptibility Xqω

can be obtained for the case when the interaction W½f; ρ�
contains only the three-point vertex γ�νω, as discussed
above. Therefore, the expansion of the partition function
of the action (2) up to the second order with respect to
bosonic fields gives [62]

½Xð2Þ
qω�−1 ¼ Jdq þ Λω þ χ−1ω − Π̃ð2Þ

qω: ð4Þ

Here, Λω and χω are the bosonic hybridization function and
susceptibility of the impurity problem, respectively. Also,

ð5Þ

is the second-order polarization function [49]. Note that a
conserving description of spin fluctuations is given by the
two-particle ladder approximation of the magnetic suscep-
tibility provided by the ladder DB approach [50] that
accounts for the four-fermionic contribution in W½f; ρ̄�
and treats bosonic hybridization Λ as a constant [55]

½Xladd
qω �−1 ¼ Jdq þ Λþ ½XDMFT

qω �−1: ð6Þ

Here, XDMFT
qω ¼ χω þ χωΠ̃ladd

qω χω is the DMFT- [33,34], or
dynamical vertex approximation (DΓA)-like [68] suscep-
tibility written in terms of local two-particle irreducible
four-point vertices and lattice Green’s functions. Π̃ladd

qω is the
dual polarization in the ladder form [62,69] that contains

Π̃ð2Þ
qω as the lowest order term. Therefore, the hybridization

Λ plays the role of the Moriyaesque λ correction that was
introduced in DΓA [70] by hand similarly to the Moriya
and Kawabata theory of weak itinerant magnets [71,72] and
now is derived analytically.
Importantly, the expressions for magnetic susceptibility

(4) and (6) can be drastically simplified to be applicable
for realistic multiband calculations, for which the two-
particle quantities can hardly be obtained. As was discussed
above, the system with a well-defined local magnetic
moment exhibits mostly bosonic fluctuations. Therefore,
one can expect that local vertex functions are mostly
described by the bosonic frequency ω, while the depend-
ence on fermionic frequencies ν, ν0 is negligible and can be
averaged out. In order to perform this averaging consis-
tently, it is carried out using the local Ward identities
[54,55], which leads to the following approximation of a
three-point vertex [62]:

γþνω ¼ γ−νþω;−ω ≃ χ−1ω þ δΣνω ≃ χ0−1ω : ð7Þ

Here, χ0ω ¼ P
νgνþω↑gν↓ is the bare spin susceptibility, gνσ

and Σνσ are the full Green’s function and self-energy of
the impurity problem, and δΣνω ¼ ðΣνþω↑ − Σν↓Þ=hmi.
Therefore, exploiting the system being in the magnetic
phase allows us to rewrite the complicated many-body
problem (1) in a much simpler form of Eq. (2) introducing
bosonic fields that correspond to the collective magnetic
fluctuations. In this case, the expression for the correspond-
ing fermion-boson coupling γ�νω can be drastically simpli-
fied (7), leading to a similar expression that was recently
postulated in Ref. [73] and numerically checked using brute
force calculations [74].
Exact numerical solution.—In order to exemplify the

above approximations, we consider the half-filled Hubbard
model (1) (Vq, Jdq, Λ ¼ 0) on the hypercubic lattice in
infinite dimensions. In this case, the exact result for the
magnetic susceptibility is known to be given by the DMFT

FIG. 1. The antiferromagnetic phase of the half-filled Hubbard
model. Squares mark where calculations were done, the red
shading depicts the magnitude of the magnetic moment hSzi, and
the asterisk marks the Néel temperature TN ≈ 0.186. (Inset) The
total DOS at β ¼ 6, 7, and 10 for U ¼ 5.
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expression (6) and can be compared to the simplified result
of Eq. (4). At low temperatures this system favors anti-
ferromagnetic (AFM) order over paramagnetism, as shown
in the phase diagram in Fig. 1.
The local four-point vertex γ̄νν0ω is measured at U ¼ 5

for the three temperatures marked in Fig. 1, roughly below
the maximum of the AFM dome, where TN ≈ 0.186 is
obtained using the DMFT [62]. As the temperature is
lowered from β ¼ 6 to β ¼ 10, the magnetization hmi
increases from ≃0.42 to 0.84. We validate in Fig. 2 that at
large magnetization the dependence of the four-point vertex
γ̄νν0ω on fermionic frequencies ν; ν0 is small. Consequently,
one may indeed use the approximated form of the vertex
γ̄νν0ω ≃ γ̄νhν0iω, which leads to Eq. (7).
We evaluate Eq. (6) in the AFM phase at the q ¼ 0 point

of the reduced Brillouin zone. The transversal susceptibility
is a 2 × 2 matrix with the homogeneous susceptibility
XhomðωÞ as a diagonal element [75]. Figure 3 shows
XhomðωÞ, which is real, as well as the off-diagonal
element XoffðωÞ. Remarkably, despite the approximation
of the vertex functions, Xhomðω ≠ 0Þ ¼ 0 and
Xoffðω ≠ 0Þ ¼ −2ihmi=ω, which are exact constraints
due to global spin conservation [62], hold to very good
accuracy.

At U ¼ 5 the eigenvalue of the ladder equation (6)
corresponding to Xhomðω ¼ 0Þ is large (≃0.715).
Therefore, one can not approximate the polarization
Π̃ladd

qω by the second-order expression Π̃ð2Þ
qω in Eq. (6).

The corresponding approximation for ReXhomðω ¼ 0Þ
and ImXoffðω ¼ 2πβÞ is marked in Fig. 3 with open
triangles and is indeed clearly distinguishable from Eq. (6).
Nonetheless, the simplified expression for magnetic

susceptibility Xð2Þ (4) with the vertex approximation (7)
shows a good agreement with Xladd (6). Importantly, the
approximation for the magnetic susceptibility obtained in
Eq. (4) should not be confused with the truncation of the
ladder equation, even though it formally uses the same
quantity Π̃ð2Þ

qω. The good agreement of the simplified result
Xð2Þ with the much more advanced ladder approximation
(6) shows that the bosonic fluctuations indeed dominate
in the polarized regime of the impurity model, which was
assumed while deriving Eq. (4).
Classical Heisenberg Hamiltonian.—Although the

action (3) is general and can be used for the description
of quantum effects in terms of susceptibilities, at low
temperatures it can be mapped onto an effective classical
Heisenberg Hamiltonian Hspin ¼ −

P
qJqSqS−q that

describes small spin fluctuations around the AFM ground
state [29]. To this aim, spin variables S�qω in Eq. (3) are
replaced by classical vectors Sq of the length hSzi, and the
contribution from the z spin channel is restored from the
requirement of rotational invariance. Then, an effective
exchange interaction Jq can be defined as a nonlocal part of
the inverse spin susceptibility at the zero bosonic frequency
[31]. Thus, the effective exchange interaction that corre-
sponds to the simplified form of magnetic susceptibility (4)
reads

Jq ¼ Jdq −
X

k;ν

γ−ν;ω¼0G̃kþq;ν↑G̃kν↓γ
þ
ν;ω¼0; ð8Þ

while the exchange interaction in the ladder approximation
is detailed in Ref. [62]. This result is reminiscent of
Anderson’s idea of the superexchange interaction
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FIG. 2. Real part of the four-point vertex γ̄νν0ω in the � spin
channel at U ¼ 5 for three different temperatures (see the marked
points in Fig. 1). The plot shows γ̄νν0ω as a function of ν for fixed
ω and ν0. Diamonds and squares show data for ω ¼ ω0 and ω1,
respectively. Red (ω0) and blue (ω1) lines serve as guides for the
eye, whereas lighter colors indicate larger ν0. Black circles and
lines show γ̄νhν0iω, which does not depend on ν0.
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[52,53]. Indeed, the first and the second term in Eq. (8)
describe the direct ferromagnetic and kinetic antiferromag-
netic exchange interactions, respectively. As a result, in the
strongly localized regime and in the case of an antiferro-
magnetic dimer, the kinetic part of the exchange interaction
takes the well-known form J ¼ −2t2=U [62].
It is worth mentioning that the three-point vertex γν;ω that

enters the kinetic part of the exchange interaction describes
the total spin splitting. In the spin-polarized case, one can
again use the simplified form of the vertex function [the
first approximation in Eq. (7)]. In the strongly polarized
regime, the potential contribution to the spin splitting δΣνω

is much larger than the kinetic one χ−1ω . Therefore, the latter
can be neglected and the result for the exchange interaction
(8) reduces to the expression obtained in Ref. [31] that
was successfully applied to the description of many
realistic systems [39–44]. Note that in Ref. [31] the
exchange interaction was derived assuming the existence
of the collinear spin ground state, while here we show
that the limit of applicability of the derived expression is
much broader. If the dependence of the three-point
vertex on the fermionic frequencies is fully disregarded
[the second approximation in Eq. (7)], the exchange
interaction reduces to the “Hartree-Fock” approximation
Jq ¼ χ0−1ω¼0X

0
q;ω¼0χ

0−1
ω¼0 [62] derived in Ref. [76].

Conclusion.—To conclude, here we derived the action
for effective s–d and Heisenberg-like problems for the
extended Hubbard model. We observed that, by virtue of a
local Ward identity, the vertex functions of the impurity
model can be well approximated, provided its weak
dependence on the fermionic frequencies. Our results show
that this criterion is indeed satisfied in the AFM phase of
the Hubbard model in infinite dimensions when the
staggered magnetization is sufficiently large. As a conse-
quence, it is possible to obtain the magnetic susceptibility
without a costly measurement of the impurity vertex
functions, which is very useful for the realistic multiband
calculations. For the considered parameters this approxi-
mation becomes accurate enough to reach an agreement
with the global spin conservation. In finite dimensions this
is of importance for a sound description of magnon spectra
in accord with Goldstone’s theorem. In the classical limit,
the derived spin action reduces to an effective Heisenberg
Hamiltonian. In the spin-polarized case, the result for the
kinetic part of the effective exchange interaction simplifies
to the expression derived in Ref. [31], which is argued to be
a good approximation for the case of many real materials.
We believe that this approximation can be applied in
different and, in particular, more realistic contexts. We
further speculate that similar approximations could prove
valuable in any physical regime where it can be argued that
the behavior of the vertex functions is strongly dominated
by the transferred momentum.
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