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Abstract
Humans can navigate through challenging environments (e.g., cluttered or uneven terrains) by modifying their preferred 
gait pattern (e.g., step length, step width, or speed). Growing behavioral and neuroimaging evidence suggests that the abil-
ity to modify preferred step patterns requires the recruitment of cognitive resources. In children, it is argued that prolonged 
development of complex gait is related to the ongoing development of involved brain regions, but this has not been directly 
investigated yet. Here, we aimed to elucidate the relationship between structural brain properties and complex gait in youth 
aged 9–18 years. We used volumetric analyses of cortical grey matter (GM) and whole-brain voxelwise statistical analy-
ses of white matter (WM), and utilized a treadmill-based precision stepping task to investigate complex gait. Moreover, 
precision stepping was performed on step targets which were either unperturbed or perturbed (i.e., unexpectedly shifting 
to a new location). Our main findings revealed that larger unperturbed precision step error was associated with decreased 
WM microstructural organization of tracts that are particularly associated with attentional and visual processing functions. 
These results strengthen the hypothesis that precision stepping on unperturbed step targets is driven by cortical processes. 
In contrast, no significant correlations were found between perturbed precision stepping and cortical structures, indicating 
that other (neural) mechanisms may be more important for this type of stepping.
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Abbreviations
AD  Axial diffusivity
ARD  Available response distance
ATR   Anterior thalamic radiation
COP  Center of pressure
FA  Fractional anisotropy
FDR  False discovery rate
GM  Grey matter

ICV  Intracranial volume
MD  Mean diffusivity
MNI  Montreal neurological institute common coordi-

nate space
RD  Radial diffusivity
ROI  Regions of interest
SLF  Superior longitudinal fasciculus
STS  Superior temporal sulcus
WM  White matter

Introduction

During childhood, walking (gait) skills are developed, 
going from independent but very unstable gait at infancy 
(10–18 months of age; Forssberg 1985), to adult-like gait 
patterns around 8 years of age. This is reflected by matured 
step speed, step length, stride length, and temporal variabil-
ity of step cycle duration (Hausdorff et al. 1999; Vaughan 
et al. 2003; Dusing and Thorpe 2007; Froehle et al. 2013). 
This holds, however, only for simple forms of gait (i.e., 
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‘basic gait’), in which the preferred gait pattern can be 
maintained. Basic gait is rare in everyday life, as humans 
normally walk through challenging environments (e.g., clut-
tered or uneven terrains), possibly with obstacles that force 
the modification of the preferred gait pattern (i.e., ‘complex 
gait’). Studies illustrate an ongoing refinement of complex 
gait strategies after the age of 8 years during complex gait 
tasks such as obstacle avoidance, precision stepping, and 
dual-task walking. This refinement is reflected by improving 
gait speed and obstacle clearance (Pryde et al. 1997; Michel 
et al. 2010), the presence of adult-like muscle activations 
(McFadyen et al. 2001), and more efficient foot placements 
(Berard and Vallis 2006; Choi et al. 2016; Corporaal et al. 
2016). It has been suggested, but not established, that this 
extended refinement relates to ongoing neural maturation 
of cognitive processes underlying the control of complex 
gait (e.g., Pryde et al. 1997; Choi et al. 2016; Corporaal 
et al. 2016).

A recent systematic review on brain activation during 
imagined walking using MRI/fMRI or during real walk-
ing using measurement systems such as fNIRS, EEG, and 
PET (Hamacher et al. 2015) gave an extensive overview of 
brain areas involved during walking. Although a large net-
work of brain areas is active during walking and walking 
imagery compared to standing [e.g., supplementary motor 
area (SMA), primary motor cortex, prefrontal cortex, pre-
motor cortex, cingulate cortex, temporal gyrus, occipital 
cortex, parietal area, (pre)cuneus, thalamus, parahip-
pocampal gyrus, putamen, globus pallidus, mesencephalic 
locomotor region, and cerebellum], the main message of 
this review article is that the level of involvement of the 
various brain regions depends on the specific task, its level 
of complexity, patient’s pathology and/or participant’s age. 
Specifically, gait tasks with a higher complexity level are 
more likely to be associated with increased activation in 
prefrontal areas, SMA and areas involved in multisensory 
processing (Hamacher et al. 2015). Thus, a wide range of 
cortical areas should probably be matured/developed to 
perform skilled, complex gait.

Considering the structural maturation of GM brain 
regions which are involved during gait and their WM con-
nections, it has been shown that higher order brain regions 
(e.g., prefrontal cortices associated with complex gait) gen-
erally mature later than lower order brain regions (e.g., sen-
sorimotor cortices associated with basic gait) (Sowell et al. 
1999; Gogtay et al. 2004; Casey et al. 2005; Paus 2005; 
Kochunov et al. 2012; Ducharme et al. 2016). Although 
the exact age at which both maturation processes (WM and 
GM) are completed remains unclear, they appear to evolve 
until around 30 years of age (Giedd et al. 1999; Lenroot and 
Giedd 2006; Ostby et al. 2009; Lebel and Beaulieu 2011; 
Raznahan et al. 2011, 2014; Yap et al. 2013; Herting et al. 
2015; Ducharme et al. 2016). In general, such developmental 

brain changes are characterized by decreasing GM volume 
and increasing WM volume, which is likely related to bio-
logical processes such as synaptic pruning and myelination, 
respectively (Huttenlocher 1990; Giedd et al. 1999; Lenroot 
and Giedd 2006; Petanjek et al. 2008; Yap et al. 2013; Kos-
tovic et al. 2014).

These hierarchical maturation patterns of higher versus 
lower level brain regions seem to concur with the devel-
opment of complex versus basic gait. Although studies in 
children are lacking, studies in older adults have illustrated 
the impact of age-related structural brain decline on gait. For 
instance, smaller GM volumes of sensorimotor and frontopa-
rietal regions were associated with shorter steps and longer 
double support times (Rosano et al. 2008), smaller prefrontal 
GM volumes with lower gait speed (Rosano et al. 2012), 
and smaller parietal GM volume with larger variability of 
stride length (Beauchet et al. 2014). In addition, disrupted 
WM properties have been associated with poorer gait per-
formance in older adults (Bhadelia et al. 2009; de Laat et al. 
2011; Koo et al. 2012; Bruijn et al. 2014). For example, 
decreased microstructural organization of the corticospinal 
tract and thalamic radiation was related to decreased gait 
stability (Bruijn et al. 2014), and decreased organization of 
the genu of the corpus callosum with decreased gait perfor-
mance, as measured with Tinetti gait scores (Bhadelia et al. 
2009). Translating these findings to childhood development, 
it may be possible that immature brain structures impact 
complex gait performance in children.

Therefore, the primary aim of the present study was to 
investigate the impact of structural brain changes on com-
plex gait skills in youth aged 9–18 years. We challenged gait 
control by projecting step targets onto a treadmill, similar to 
tests used by other members of our group (Potocanac et al. 
2014; Hoogkamer et al. 2015; Mazaheri et al. 2015). The 
complexity of precision stepping was manipulated by occa-
sionally and unexpectedly shifting step targets to new loca-
tions during the execution phase of the step. On a behavioral 
level, we hypothesized that step accuracy would improve 
with age, yet deteriorate with higher levels of complexity. 
This would be reflected by decreasing step error and step 
variability with age, and increasing step error and step vari-
ability for the higher levels of complexity. Combining brain 
and behavior, we hypothesized that step accuracy would 
improve with whole-brain structural maturation (decreased 
GM volume, increased WM microstructural organization). 
We also explored whether the maturation of higher order 
brain areas involved in motor planning and attention (e.g., 
frontal areas) are relevant for precision stepping perfor-
mances. Moreover, these neurobehavioral relationships 
were assumed to be more pronounced with increasing task 
complexity. This study is a preliminary step towards under-
standing the structural neural underpinnings of complex 
sensorimotor tasks.
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Methods

Participants

Thirty participants were included for behavioral data 
analyses (13 females; age range 9.0–18.5 years; mean age 
14.4 ± 2.6 years). All participants received a brain scan for 
GM and WM analyses. For both GM (N = 28, 13 females, 
age range 9.0–17.9; mean age 14.2 ± 2.6), and WM anal-
yses (N = 28, 13 females, age range 9.0–18.4; mean age 
14.5 ± 2.6), two (different) male participants were excluded 
due to excessive head motion and/or technical problems dur-
ing imaging acquisition. All participants were right-handed 
as indicated by the Oldfield Handedness scale (Oldfield 
1971) (mean: 0.79, SD: 0.19, range: 0.08-1). Most partici-
pants reported a right-foot preference, although one partici-
pant (15.83 years, male) reported a left-foot preference, and 
three participants (14.43 years, female; 15.77 years, female; 
11.64 years, male) reported ambiguous foot preference. Par-
ticipants reported no neurological, muscular, or cognitive 
disorders, and were screened for MRI compatibility (i.e., 
no MRI-incompatible implants, dental braces, and claustro-
phobia). All procedures performed were in accordance with 
the ethical standards of the local ethics committee of the KU 
Leuven, Belgium, and with the 1964 Helsinki declaration 
and its later amendments or comparable ethical standards. 
Informed consent was obtained from all individual partici-
pants included in the study and their parents. Participants 
were financially compensated for participation.

Experimental setup

The participants walked on an instrumented treadmill with 
an embedded force platform (C-Mill, ForceLink, Culem-
burg, The Netherlands) allowing for online detection of gait 
events based on ground reaction forces (1000 Hz sampling 
rate) (Roerdink et al. 2008). The treadmill was equipped 
with a projector (Hitachi CP-A100) to present step targets 

onto the walking surface, adjusted to the participants’ pre-
ferred gait pattern (van Ooijen et al. 2013; Potocanac et al. 
2014; Hoogkamer et al. 2015; Mazaheri et al. 2015). Fur-
thermore, ten infrared cameras (Vicon Nexus version 1.8.5; 
150 samples/s) registered the position of six reflective mark-
ers, which were attached to the shoes of the participant, on 
locations corresponding to the third metatarsal head, lateral 
malleolus, and heel of each foot. During the experiment, 
participants wore a safety harness that was fixed to the ceil-
ing to protect them from falling.

Procedure

After a familiarization period of 5–10 min at 3 km/h of 
treadmill walking, in which no step targets were projected, 
ground reaction forces were obtained from 20 normal strides 
at 3 km/h. From these forces, the center of pressure (COP) 
trajectory was calculated, and used to extract foot-strike 
events, toe-off events, and step lengths (Roerdink et al. 
2008). The obtained step length represented the ‘preferred’ 
step length during unperturbed treadmill walking, which was 
subsequently used to set the anteroposterior center-to-center 
distance between step targets in the experimental trials. Dur-
ing these experimental trials, participants were required to 
step as accurately as possible on the step targets projected 
on the treadmill. The step targets were scaled to the size of 
the shoe (shoe length by shoe width). Due to technical con-
straints (use of split belt), the mediolateral center-to-center 
distance between the targets was set to 20 cm for all partici-
pants (Fig. 1). None of the participants reported problems 
with these step widths.

Projection of the step targets started at 2 m in front of the 
participants, and approached the participants corresponding 
to the belt speed (3 km/h). Participants were instructed to 
place their feet on the step targets as accurately as possible. 
Participants performed a maximum of two practice trials to 
familiarize themselves with the precision stepping procedure 
(59 step targets per trial).

A B

Fig. 1  Schematic overview of the step targets and their shifts in for-
ward–backward direction (Adapted from Mazaheri et  al. 2015). The 
distance between the step targets was determined based on partici-
pant’s preferred step length. At random moments (separated by 5–7 

non-shifted steps), a step target could shift forwards (+ 40% of step 
length) or backwards (− 40% of step length), requiring a longer step 
(a) or shorter-step (b) response. The shift targeted either the right or 
left leg



2042 Brain Structure and Function (2018) 223:2039–2053

1 3

During the experiment, four blocks of step targets were 
randomly presented. One block consisted of a series of 59 
non-shifting step targets, allowing the assessment of step-
ping precision on unperturbed step targets. In the remaining 
three blocks, a series of 248 step targets each was presented. 
Some of these targets occasionally shifted to a predefined 
new position corresponding to 40% of the preferred step 
length forwards or backwards (perturbed precision stepping) 
(Fig. 1). Shifted targets were presented for both the left and 
right foot and were separated by five-to-seven non-shifted 
targets. Forward shifts could occur when the target was at 
different distances from the participant’s COP, resulting in 
four “available response distances” (ARD) conditions of 80, 
100, 130, and 200% of the preferred step length (Potocanac 
et al. 2014; Hoogkamer et al. 2015; Mazaheri et al. 2015). 
The shorter the ARDs were, the faster the step corrections 
had to be made. We, therefore, assumed that shorter ARDs 
increased the difficulty of making accurate step adjustments 
(Hoogkamer et al. 2015). Backward shifts only occurred at 
ARD of 130%, and were solely used to limit anticipation 
to the direction of the gait perturbations. Hence, backward 
shifts were not analyzed. Each ARD shift was repeated 8 
times (4 per foot), with a total of 5 (4 forwards + 1 back-
wards) × 8 = 40 target shifts per block. Participants were told 
in advance whether the block contained shifting targets or 
not, but were naïve to the exact timing of these perturbations.

Data analyses

Stepping accuracy on step targets was defined by two 
error measures, namely, the constant error (step error) and 
variability (step variability). Step error was defined as the 
anteroposterior distance between the centers of the targeting 
foot and the step target at midstance. First, the moment of 
midstance was obtained during the single stance phase of 
the foot, i.e., at 50% between toe off and heel strike of the 
contralateral foot. Second, the center of the foot was defined 
using the 3D coordinates of the foot markers at the moment 
of midstance. The lines connecting the foot markers at the 
heel, toe, and malleolus were used as a representation of the 
foot at midstance. Subsequently, the center of these connect-
ing lines was defined as the center of the foot. The location 
of the step target’s center at the moment of midstance was 
extracted from the C-mill software. Positive error measures 
indicated overshoots of the step targets (i.e., the center of the 
foot landed anterior to the center of the step target), while 
negative values indicated undershoots of the step targets 
(i.e., the center of the foot landed posterior to the center of 
the step target).

For unperturbed precision stepping, the step errors of all 
unperturbed steps within the unperturbed trials were aver-
aged and subsequently normalized to preferred step length, 
resulting in the unperturbed step error. For perturbed 

precision stepping, the step errors of perturbed steps within 
the perturbed trials were averaged (per ARD condition) and 
subsequently normalized to preferred step length, resulting 
in the perturbed step error.

In addition, we calculated the variability of both unper-
turbed and perturbed steps according to the following 
formula:

in which step error represents the step error per step (non-
averaged and non-corrected for step length) in each condi-
tion, and k is the number of steps analyzed. Variability was 
expressed as the percentage of preferred step length.

Image acquisition and analyses

Image acquisition

A Philips Ingenia 3T CX MRI scanner with a standard 32 
channel head coil was used for image acquisition. For all 
participants, a high-resolution T1-weighted structural image 
was acquired using MPRAGE (TR = 9.71 ms, TE = 4.60 ms, 
0.98 × 0.98 × 1  mm3 voxels, field of view = 210.94 × 230 
 mm2, 230 sagittal slices) for anatomical detail. In addition, 
single-shell diffusion-weighted images were acquired using 
the following parameters: single-shot spin echo; slice thick-
ness = 2.5 mm; TR = 7600 ms; TE = 65 ms, number of dif-
fusion directions = 60, number of sagittal slices = 58, voxel 
size = 2.5 × 2.5 × 2.5  mm3; diffusion weighting of b = 1300; 
one non-diffusion-weighted image.

Cortical grey matter: volume processing

Cortical reconstruction and volumetric segmentation were 
performed using the FreeSurfer image analysis suite (v5.1; 
http://surfer.nmr.mgh.harvard.edu/). From the T1-weighted 
images, cortical volume  (mm3) measures were extracted. 
Details of these procedures were described in prior publica-
tions (Dale et al. 1999; Fischl and Dale 2000; Fischl et al. 
2002, 2004a, b). Briefly, this procedure included motion cor-
rection of the raw T1-weighted images (Reuter et al. 2010), 
brain extraction, and Talairach transformation. Then, WM 
and GM were segmented (Fischl and Dale 2000; Fischl et al. 
2004a) and intensity inhomogeneities were normalized (Sled 
et al. 1998). The GM/WM boundary was tessellated and 
the surface was deformed following intensity gradients to 
optimally place the GM/WM and GM/cerebrospinal fluids 
borders at the location, where the greatest shift in intensity 
defines the transition to the other tissue class (Dale and Ser-
eno 1993; Dale et al. 1999; Fischl and Dale 2000). Once the 
cortical models were completed, a refinement procedure was 

Variability =

√

Σ step error2 −
(Σ step error)2

k

k
% preferred step length

http://surfer.nmr.mgh.harvard.edu/
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applied to obtain a representation of the GM/WM bound-
ary. This surface was subsequently deformed outwards to 
obtain an explicit representation of the pial surface, which 
was then divided into distinct cortical regions. The parcella-
tion procedure labeled cortical sulci and gyri to 68 cortical 
regions (i.e., ‘parcels’) (Fischl et al. 2004b; Desikan et al. 
2006), from which cortical volumes were calculated. Corti-
cal volumes of the frontal, temporal, parietal, occipital, and 
insular cortex (i.e., ‘superparcels’) of both the left and right 
hemisphere were calculated as the sum of the volumes of 
each parcel falling within each superparcel (Table 1).

White matter: diffusion—weighted image processing

We performed quality checks on each diffusion-weighted 
imaging volume using Explore DTI (Leemans 2009). As 
recommended by Tournier et al. (2011), we inspected the 
volumes in three orthogonal views (sagittal, coronal, and 
frontal) to identify visible artifacts, such as large signal 
dropouts and geometric distortions. When an artifact was 
detected in an isolated volume, this volume was removed. 
For seven participants, one to a maximum of five isolated 
volumes was removed. One participant moved the head with 
more than 2 mm translation and/or 2° rotation in the 17th 
assembled volume. Therefore, all prior assembled volumes 
were removed (16/61) before the movement onset, making 
sure that at least 2/3 of all volumes remained.

After the quality checks, diffusion-weighted data were 
further preprocessed using the FMRIB (Functional MRI 
of the Brain) Software Library, FSL (Oxford University, 
Oxford, UK; http://www.fmrib.ox.ac.uk/fsl) (Smith et al. 
2004; Woolrich et al. 2009; Jenkinson et al. 2012). For 
each participant, eddy-current-induced geometric distor-
tions and head movements were corrected. Then, the dif-
fusion-weighted volumes were corrected for distortions as 
a result of magnetic field inhomogeneities using fieldmap 
correction and were aligned to their corresponding non-
diffusion-weighted (b0) image. The gradient direction table 
was adjusted to account for rigid transformations resulting 
from motion and eddy-current corrections. Subsequently, 

the diffusion-weighted images were brain-extracted using 
BET (Smith 2002), and a diffusion tensor model was fitted to 
each voxel using DTIfit procedure of the FMRIB’s Diffusion 
Toolbox. This procedure outputs whole-brain FA and MD 
images, and additionally provides three eigenvalues of the 
diffusion tensor model (ʎ1, ʎ2, and ʎ3). From these eigenval-
ues, images of apparent diffusivities in the directions parallel 
(i.e., axial diffusivity (AD) = ʎ1) and perpendicular (i.e., 
radial diffusivity (RD) = (ʎ2 + ʎ3)/2) to the WM tracts were 
created (Kumar et al. 2013).

Statistical analysis

Behavioral analyses

For unperturbed precision stepping trials, age-related 
changes in unperturbed step error and variability were 
assessed via bivariate Pearson correlation analyses (two-
tailed). For perturbed trials, we additionally included the 
effect of ARD on perturbed step error and variability; hence, 
a repeated measures ANCOVA with age as a covariate and 
ARD as a within-subject factor was used. Level of signifi-
cance was set at p < 0.05 for all statistical tests.

Imaging analyses

Grey matter Associations between volumes of cortical GM 
regions of interest (ROIs) from both hemispheres (i.e., the 
frontal, parietal, temporal, occipital and insular superpar-
cels, as well as all the 68 parcels), and step error and vari-
ability of unperturbed and perturbed steps, were assessed 
using Pearson correlations. Since it has been proposed that 
approximately 95% of maximal brain size is reached by 
the age 6  years, we assumed that differences in GM vol-
ume were most likely due to ongoing cortical maturational 
processes, rather than normal physical growth (Lenroot 
and Giedd 2006). However, to account for such a possible 
underlying process, we additionally performed the correla-
tions while correcting for total intracranial volume (ICV). 
Furthermore, we tested the correlations while controlling 

Table 1  Superparcel formation for cortical GM measurements (used with approval of Chalavi et al. 2015)

Superparcel name Cortical parcels

Frontal Caudal and rostral middle frontal, lateral and medial orbito frontal, pars opercularis, pars triangula-
ris and pars orbitalis of the inferior frontal, paracentral, precentral, superior frontal, frontal pole, 
caudal and rostral anterior cingulate

Parietal Superior and inferior parietal, postcentral, precuneus, isthmus and posterior cingulate, supramarginal
Temporal Superior, middle and inferior temporal, temporal pole, transverse temporal, banks of the superior 

temporal sulcus, parahippocampal, entorhinal, fusiform
Occipital Lateral occipital, cuneus, lingual, peri-calcarine
Insula Insula
Whole-brain Sum of the five superparcels (Frontal, Parietal, Temporal, Occipital, Insula)

http://www.fmrib.ox.ac.uk/fsl
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for age, to identify possible variance in the relationship that 
could not be accounted for by age. The resulting p values 
were corrected for multiple comparisons using the false dis-
covery rate (FDR; q < 0.05) per dependent variable (unper-
turbed and perturbed step error and variability) and includ-
ing all superparcels (frontal, parietal, temporal, occipital, 
and insula) or the parcels belonging to each superparcel, 
per hemisphere (Benjamini and Cohen 2017; Drijkoningen 
et al. 2017).

White matter Voxelwise statistical analyses of the FA, MD, 
RD, and AD measures were performed using TBSS (Tract-
Based Spatial Statistics; Smith et  al. 2006), part of FSL 
(Smith et al. 2004). Our rationale for applying TBSS was its 
robustness to systematic differences between participants, 
such as differences in brain size and developmental stage. It 
allows for statistical testing which is less affected by poten-
tial misalignment, and thereby provides more objective 
results (Smith et al. 2006). This method is appropriate for 
the analysis of large white-matter bundles, thereby exclud-
ing superficial white matter consisting of short-range asso-
ciation bundles. All participants’ FA data were aligned to a 
common space using the nonlinear registration tool FNIRT 
(Smith et  al. 2004; Woolrich et  al. 2009; Jenkinson et  al. 
2012), which uses a b-spline representation of the registra-
tion warp field (Rueckert et al. 1999). The mean FA image 
was created and thinned to create a mean FA skeleton which 
represents the centers of all tracts common to the group. 
Each participant’s aligned diffusion data (FA, MD, RD, and 
AD) was then projected onto this skeleton. Demeaned step 
error and variability of unperturbed and perturbed steps 
were correlated against WM microstructural measures, both 
with and without age (demeaned) included as a covariate 
of no interest. For this, we used voxelwise cross-participant 

statistics (Randomize, 5000 permutations; Winkler et  al. 
2014) with threshold-free cluster enhancement (TFCE). 
TFCE is a method of finding clusters in the data (Smith and 
Nichols 2009). The Johns Hopkins University (JHU) trac-
tography atlas was used to identify significant voxels.

Results

Behavioral results

Unperturbed precision stepping

No correlations were found between unperturbed step error 
and age (r(29) = 0.300, p = 0.114), indicating that overall 
unperturbed step error was not different across the stud-
ied age span (Fig. 2a). However, step variability of unper-
turbed steps decreased with age (r(29) = − 0.618, p < 0.001). 
More specifically, older participants performed the task with 
higher consistency than younger participants (Fig. 2b).

Perturbed precision stepping

Perturbed step error was not different across partici-
pants of all ages (F(1,28) = 0.729, p = 0.400) (Fig.  2a). 
The step error seemed to decrease at smaller ARD, but 
there was a large variability and the changes were not 
significant (F(1.460, 40.885) = 1.557, p = 0.224). Moreo-
ver, no interaction between ARD and age was found 
(F(1.460, 40.885) = 1.557, p = 0.224). For variability of per-
turbed trials, values decreased with age (F(1,28) = 15.053, 
p = 0.001) (Fig. 2b). Moreover, no significant effect of ARD 
(F(2.489, 69.687) = 0.904, p = 0.428) or interaction between 
ARD and age was found (F(12.489, 69.687) = 0.607, p = 0.612) 

A

B

Fig. 2  Precision stepping performance on unperturbed and perturbed 
step targets. Step error (a) did not significantly change with age or 
ARD (available response distance) in both unperturbed and perturbed 
precision stepping. Step variability (b) significantly decreased with 

age in both unperturbed and perturbed precision stepping. Moreover, 
a trend was found for increasing variability at shorter ARDs, albeit 
that these changes were non-significant. Each open circle represents a 
participant. Regression lines are displayed in grey
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on step variability in perturbed trials. This indicated that 
the consistency of the foot placements onto the step targets 
in the perturbed condition was not significantly affected by 
decreasing ARDs (nevertheless, Fig. 2b clearly shows a ten-
dency towards larger variability at smaller ARDs).

ARD did not significantly influence perturbed step error 
or variability (i.e., no main effect of ARD or age × ARD 
interaction was found). Guided by these behavioral results, 
the separate analyses of ARD conditions in combination 
with neural measures were no longer considered informa-
tive. Therefore, we subsequently averaged the step error 
and variability measures over all ARD conditions into two 
summary measures. These summary measures were sub-
sequently fed into the statistical models used for detecting 
neural contributors to gait performance. By averaging across 
the ARD conditions, we were able to increase the statistical 
power and reduce the probability of Type I errors in these 
subsequent GM and WM analyses.

Grey matter

Total ICV did not correlate with age (r(26) = − 0.159, 
p = 0.420, Fig. 3), suggesting that maximal head size was 
reached in our sample (Lenroot and Giedd 2006). How-
ever, whole-brain GM volume decreased with age (r(26) 
= − 0.423, p = 0.025), confirming the generally observed 
ongoing maturation of GM during childhood (Lenroot and 
Giedd 2006) (Fig. 3).

No significant correlations were found between GM 
volumes of superparcels (frontal, parietal, temporal, occip-
ital, and insula) from either the left or right hemisphere 
and unperturbed or perturbed step error or variability 
(q > 0.05), with or without controlling for ICV or age.

When assessing the relationship between each parcel 
within a superparcel and step performance, step variabil-
ity in unperturbed precision stepping showed significant 
positive correlations with GM volume of the banks of 

the superior temporal sulcus (bankSTS) in both the left 
(r(25) = 0.528, p = 0.005, q = 0.042) and right hemisphere 
(r(25) = 0.461, p = 0.016, q = 0.141) (Fig. 4). These correla-
tions remained significant after controlling for ICV (left: 
r(24) = 0.551, p = 0.004, q = 0.032; right: r(24) = 0.589, 
p = 0.002, q = 0.014), but disappeared after controlling for 
age. Step error of unperturbed precision stepping showed a 
significant negative correlation with GM volume of the supe-
rior temporal cortex (r(25) = − 0.576, p = 0.002, q = 0.015) 
and insula (r(25) = − 0.383, p = 0.048, q = 0.048) in the right 
hemisphere. However, these associations disappeared after 
controlling for ICV or age. No significant associations were 
found between step error of perturbed precision stepping 
and parcel volumes (all q > 0.05).

White matter

Whole-brain voxelwise statistical analyses revealed asso-
ciations between lower unperturbed step error and higher 
levels of FA in the forceps minor (FM; peak voxel MNI x = 
− 7, y = 18, z = 19), left anterior thalamic radiation (ATR; 
MNI − 23, 31, 14), left superior longitudinal fasciculus 
(SLF; MNI − 45, 16, 16), left inferior longitudinal fascicu-
lus (ILF; MNI − 46, − 9, − 13), and left cingulum (MNI − 9, 
− 60, 26) (Fig. 5). When age was not controlled, associations 
between unperturbed step error and FA remained significant 
in voxels located within the forceps minor (MNI 5, 14, 20) 
and left ATR (MNI − 23, 31, 15). Furthermore, higher RD 
values in voxels within the forceps minor (MNI − 4, 20, 

Fig. 4  Relationships between unperturbed step variability and cor-
tical GM volume of the banks of the STS. Lower cortical GM vol-
umes of the banks of the superior temporal sulcus (bank STS) of both 
the left (r = 0.528, p = 0.005), and right (r = 0.461, p = 0.016) hemi-
spheres were associated to lower unperturbed step variability. These 
correlations remained significant after controlling for ICV (left: 
p = 0.004; right: p = 0.002), but disappeared after controlling for age 
(p > 0.05). Each open circle represents a participant. Correlation lines 
are displayed in grey

Fig. 3  Age-related changes in ICV and total GM volume. Total 
intracranial volume (ICV) did not correlate with age (left), while 
whole-brain GM volume (right) did decrease with age (r = − 0.423, 
p = 0.025). Each open circle represents a participant. Correlation lines 
are displayed in grey
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16) were related to larger unperturbed step error when age 
was controlled (Fig. 6). However, no significant correlations 
were found with RD values when age was not controlled.

MD and AD values showed no significant associations 
with unperturbed step error (with or without controlling 
for age). In addition, FA, MD, RD, and AD were not sig-
nificantly associated with perturbed step error, or (un)per-
turbed step variability (with or without controlling for age).

Discussion

This exploratory study aimed to investigate the potential 
relationship between structural brain properties and complex 
gait performance in youth aged 9–18 years. We utilized a 
treadmill-based precision stepping task to investigate com-
plex gait performance, and volumetric analyses of cortical 
GM and whole-brain voxelwise statistical analyses of WM to 
investigate brain maturation. As hypothesized, (un)perturbed 
step variability decreased with age, yet there was no signifi-
cant effect of the level of task complexity on perturbed step 
variability. Moreover, (un)perturbed step error was not sig-
nificantly correlated with age or level of complexity. On the 
neural level, lower GM volumes of the banks of the superior 
temporal sulcus were associated with decreased unperturbed 
step variability, yet no GM associations were found for per-
turbed step accuracy. Furthermore, increased WM organi-
zation of tracts, connecting higher level brain regions, were 
associated with decreased unperturbed step error, beyond 
the general age effect. These results partly confirmed our 
hypothesis that advanced maturation of GM and WM struc-
tures is beneficial for precision stepping accuracy. However, 
our study was explorative in nature, and future studies are 
needed to confirm our findings.

Neurobehavioral associations with step variability

As hypothesized, our results showed that the variability of 
foot placements on step targets decreases with age, both 
when the targets were placed on regular positions (unper-
turbed), and when they randomly shifted forwards (per-
turbed). These results support the findings of previous stud-
ies in healthy young participants (with ages ranging from 1 
to 3 years to 10–17 years), showing decreases in variability 
of spatiotemporal gait parameters during basic gait (e.g., 
step length, step speed, double and single-support times) 
(Hausdorff et al. 1999; Vaughan et al. 2003; Dusing and 
Thorpe 2007; Froehle et al. 2013; Muller et al. 2013; Bisi 
and Stagni 2016; Gouelle et al. 2016; Manicolo et al. 2016). 
Moreover, during complex gait (e.g., obstacle avoidance 
tasks), age-related reductions have been reported for vari-
ability in foot clearances, take-off and landing distances, and 
muscular activations (McFadyen et al. 2001; Berard and Val-
lis 2006; Stern and Gottschall 2012; Corporaal et al. 2016). 
The origin of this motor variability may lie within any level 

Fig. 5  Negative correlations between fractional anisotropy and unper-
turbed step error. Voxels of which the FA values showed a significant 
negative correlation with unperturbed step error are displayed (red–
yellow) onto a TBSS skeleton (green). These voxels resided in the 
forceps minor, left anterior thalamic radiation, left superior and infe-
rior longitudinal fasciculus, and left cingulum. Labels by JHU White-
matter Tractography Atlas. Results are controlled for age

Fig. 6  Positive correlations between radial diffusivity and unper-
turbed step error. Voxels of which the RD values showed a signifi-
cant positive correlation with unperturbed step error are displayed 
(red–yellow) onto a TBSS skeleton (green). These voxels resided in 
the forceps minor. Labels by JHU White-matter Tractography Atlas. 
Results are controlled for age
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of the motor pathway, from central processes (e.g., motor 
planning) to noise in peripheral processes (e.g., force pro-
duction by muscles) (van Beers 2009; Dhawale et al. 2017).

In our study, we particularly focused on the possible 
role of the central processes (i.e., structural brain matura-
tion), rather than on the peripheral components. Here, we 
hypothesized that structural GM and WM maturation of 
higher order brain regions would relate to improvements 
of step accuracy. Although results showed no relationship 
between WM organization and (un)perturbed step variabil-
ity, regional GM volumes of the bilateral banks of the STS 
were positively associated with unperturbed step variability 
(but not with perturbed step variability; see “neural mecha-
nisms of perturbed stepping”, below). Regarding the poten-
tial specific role of the STS in gait, functional MRI studies 
showed that the superior temporal sulcus deactivates during 
gait, as compared to quiet stance or gait imagery (Jahn et al. 
2004; la Fougere et al. 2010). This deactivation is suggested 
to prevent unwanted movement corrections resulting from 
reflexive mechanisms for balance correction (Brandt et al. 
1998; Jahn et al. 2004; la Fougere et al. 2010). As our pre-
cision stepping task was highly visually cued, it is plausi-
ble that brain regions regulating multisensory integration 
affected performance on this task. Moreover, the superior 
temporal sulcus is one of the latest regions in the temporal 
lobe to reach maturity (Lenroot and Giedd 2006). It is, how-
ever, important to note that the association between unper-
turbed step variability and GM volume of the banks of the 
STS disappeared when controlling for age. The banks of the 
STS lie within the multisensory vestibular cortex, together 
with the posterior insula, retroinsular region, and inferior 
parietal lobule (Dieterich and Brandt 2008), and are known 
to be involved in multisensory processing (i.e., vestibular, 
visual, auditory, and somatosensory information) (Calvert 
2001; Wright et al. 2003; Beauchamp et al. 2004, 2008; van 
Atteveldt et al. 2004; Noesselt et al. 2007). Therefore, the 
effect of GM volume of the banks of the STS on gait vari-
ability might be better explained by general maturational 
processes, which are necessary to perform complex sensori-
motor tasks, including complex gait. These GM maturational 
processes are thought to be driven by different biological 
processes, such as synaptic arborization, synaptic pruning, 
and axonal myelination (Lenroot and Giedd 2006). These 
processes generally increase the effectiveness of cortical 
neural processing. Although our volumetric analysis does 
not reveal which specific mechanism supports this GM 
change, it suggests a possible association between GM matu-
ration of the STS and gait performance in our population.

It has been suggested that motor variability reflects the 
execution of a motor plan, rather than the creation of a motor 
plan, and would, therefore, originate from ‘noisy’ peripheral 
components, rather than central components of the motor 
system (Gouelle et al. 2013, 2016). This is in line with our 

results, showing no associations between step variability and 
structural brain differences in GM regions, or WM pathways, 
associated with motor planning (e.g., frontal regions, motor 
regions, and SMA). Possibly, peripheral sources contributed 
to age-related step variability in our sample such as noisy 
peripheral efferent and afferent pathways (Muller et al. 1994; 
McFadyen et al. 2001) or decreased corporeal awareness due 
to rapidly changing anthropometrics (Froehle et al. 2013). 
It is noteworthy, however, that structural brain maturation 
does not per se occur simultaneously with functional brain 
maturation (Supekar et al. 2010). For example, maturation 
of structural connectivity might be completed, while cortical 
activations and functional connectivity are still immature 
(Supekar et al. 2010; Cignetti et al. 2017). Therefore, infer-
ences on functional associations between brain regions and 
precision stepping performance, based on our results should 
be made with caution.

Neurobehavioral associations with step error

Although we hypothesized that step error would decrease 
with age, our results showed an absence of age-related 
differences in step error during both unperturbed and per-
turbed precision stepping. These findings seemingly contrast 
to the previous studies on other tasks involving complex 
gait, showing that gait strategies improved from childhood 
into adolescence (Pryde et al. 1997; McFadyen et al. 2001; 
Berard and Vallis 2006; Corporaal et al. 2016). Specifically, 
when children planned and executed their own avoidance 
strategies, age-related differences in gait patterns and avoid-
ance success rates emerged (e.g., changes in step length, 
width, and speed, and foot placements and toe clearances 
relative to the obstacle). An important difference between 
these studies and our current experiment is that time pres-
sure was present in the current study but much less in these 
previous studies. Moreover, these studies allowed free choice 
of avoidance strategies, and thus free choice of foot place-
ments, while we constrained foot placements to predefined 
locations instead. Therefore, participants were not required 
to define a new, anticipatory gait strategy per se, but rather 
had to initiate fast goal-directed movements, based on exter-
nal visual cues (i.e., the step targets).

Our results imply that the ability to perform goal-directed 
movements with the lower limbs is mature around the age 
of 8 years. Similarly, Choi et al. (2016) revealed stable, 
adult-like step accuracy on step targets in children aged 
11–16 years (comparable to our sample of 9–18 years). 
These authors did, however, show decreasing step accuracy 
in younger children aged 6–10 years. This suggests that the 
maturation of processes underlying goal-directed move-
ments of the lower limbs is not completed until approxi-
mately the age of 10 years. These results are consistent with 
the developmental trend found for manual goal-directed 



2048 Brain Structure and Function (2018) 223:2039–2053

1 3

movements, showing that adult-like movements emerge 
around 8–11 years of age (Yan et al. 2000; Contreras-Vidal 
et al. 2005; Contreras-Vidal 2006; Favilla 2006; Kagerer and 
Clark 2014). Considering the findings of these studies, it 
may be suggested that cued goal-directed behavior (as used 
in precision stepping) matures earlier in life (around the age 
of 8–10 years) as compared to anticipatory planning behav-
ior (e.g., free strategy selection during anticipated obsta-
cle avoidance) which seems to mature at a more advanced 
age. Furthermore, we hypothesized that precision step error 
would decrease with more mature GM and WM brain struc-
tures. Results revealed no associations between GM volumes 
and step error in (un)perturbed precision stepping. WM 
microstructural organization, however, did reveal associa-
tions with unperturbed step error in the forceps minor, left 
anterior thalamic radiation, cingulum, and left superior, and 
inferior longitudinal fasciculus (but not for perturbed preci-
sion stepping error; see “Neural mechanisms of perturbed 
stepping”, below). Importantly, these results were particu-
larly significant after controlling for age, which suggests that 
these brain–behavior associations were present beyond gen-
eral maturation processes. These WM pathways are known 
to provide widespread reciprocal connections between sev-
eral brain regions such as frontal, temporal, parietal, and 
occipital regions. Improved microstructural organization of 
these pathways has previously been associated with better 
performance on several spatiotemporal gait parameters (e.g., 
gait stability, stride length, single-support times, and gait 
speed), or specific gait tests (e.g., the timed up-and-go task 
or the number of steps while turning) in patients suffering 
from hydrocephalus and Alzheimer’s Disease (Marumoto 
et al. 2012) or Dementia (Scherder et al. 2011) and in older 
adults (Scherder et al. 2011; Marumoto et al. 2012; Bolan-
dzadeh et al. 2014; Bruijn et al. 2014; Verlinden et al. 2016; 
Seiler and Pirpamer 2017). For example, the forceps minor 
(connecting bilateral prefrontal cortices) has previously been 
associated with gait speed (Seiler and Pirpamer 2017) and 
abnormal gait scores on a Tinetti gait assessment (Bhadelia 
et al. 2009) in older adults. In addition, these WM pathways 
have been associated with several cognitive functions. The 
forceps minor has been associated with visuomotor speed, 
memory, and executive function (Biesbroek et al. 2016), the 
SLF with attention, visuospatial ability, and sensorimotor 
integration (Makris et al. 2005; Turken et al. 2008; Scherder 
et al. 2011; Vestergaard et al. 2011; Chaddock-Heyman et al. 
2013; Klarborg et al. 2013; Kamali et al. 2014; Rodriguez-
Herreros et al. 2015; Urger et al. 2015; Amemiya and Naito 
2016), and the ATR with spatial information processing, 
movement initiation, and planning (Scherder et al. 2011).

Since end-point accuracy of precision steps has been 
shown to require profound visuospatial attention (e.g., 
Smid and den Otter 2013; Hollands et al. 1995), it is, there-
fore, plausible that tracts involved in such functions show 

associations with precision step error in our task (Patla and 
Vickers 1997, 2003; Higuchi 2013; Koenraadt et al. 2014). 
Importantly, the WM associations with unperturbed preci-
sion step error that were found in our study were particu-
larly present after we controlled for age-related variations 
in WM characteristics (i.e., by including age as covariate 
of no interest). This demonstrates that these associations 
were possibly not driven by WM differences related to age, 
but rather to normal WM heterogeneity within the popula-
tion. These results, therefore, substantiate the assumption 
that age-related structural brain differences do not primar-
ily predict goal-directed precision stepping performance in 
our sample. It has been shown, however, that age-related 
structural brain changes are ongoing in the age range con-
sidered in this study (Giedd et al. 1999; Gogtay et al. 2004; 
Lenroot and Giedd 2006; Raznahan et al. 2011; Yap et al. 
2013; Ducharme et al. 2016) and it can, therefore, not be 
ruled out completely that structural brain maturation has no 
(direct or mediating) role in gait performance. For instance, 
in children aged 5–17 years, age-related changes in the SLF 
have been associated with improved cognitive functions such 
as set-shifting and attention (Urger et al. 2015), which is 
assumed to play a role in the visually cued task examined 
here. Functional compensatory mechanisms may attenuate 
the relationship between structural maturity and behavioral 
outcome, such as in older adults (Heuninckx et al. 2008; 
Goble et al. 2010). Future studies may shed light on these 
possible compensatory mechanisms in children.

Neural mechanisms of perturbed stepping

We hypothesized that the impact of age-related structural 
brain changes in higher order cortical regions on step-
ping accuracy would be stronger in perturbed as compared 
to unperturbed precision stepping. As briefly mentioned 
above, however, we found no associations between GM or 
WM maturation and perturbed precision stepping accuracy, 
whereas we did for unperturbed stepping.

A recent review on the neural control of fast gait adjust-
ments by Potocanac and Duysens (2017) suggested that fast 
motor responses to perturbations in the environment likely 
engage different neural mechanisms than unperturbed envi-
ronments (Weerdesteyn et al. 2004; Reynolds and Day 2005; 
Potocanac et al. 2014; Hoogkamer et al. 2015; Mazaheri 
et al. 2015). For instance, Weerdesteyn et al. (2004) showed 
that when sudden obstacles had to be avoided, this provoked 
faster than voluntary responses, suggesting involvement of 
‘fast’ subcortical rather than ‘slow’ cortical pathways. This 
was substantiated by findings of Marigold et al. (2007), who 
showed that re-direction of visual gaze towards an obstacle 
does not always occur when responding to its unpredictable 
appearance. These findings suggest that the production of 
fast stepping responses may require less cortical processing 
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(e.g., of visuospatial information) than preplanned stepping 
responses. Possibly, other neural mechanisms (e.g., subcorti-
cal) may be involved. If these observations translate to our 
precision stepping task, it may be that the impact of matu-
rational processes of cortical brain structures is smaller for 
perturbed as compared to unperturbed precision stepping.

Although the present data may provide evidence for a role 
of subcortical processing, they should, however, not be taken 
as evidence that online step adjustments are entirely inde-
pendent of cortical processing. It should be pointed out that 
online corrections normally involve a mixture of subcortical 
and cortical pathways. Cortical areas, such as the posterior 
parietal cortex, may play a supervisory role over faster sub-
cortical routes (Glickstein 2003; Reynolds and Day 2012). 
In addition, there is evidence for fast cortical processing 
(not reaching conscious levels; see Potocanac and Duysens 
2017). Possibly, these cortical involvements in online step 
adjustments are not of primary importance in the age group 
investigated in the present study. In young adults (around 
25 years of age), the addition of a dual task barely affected 
performance in a similar perturbed precision stepping task 
(Mazaheri et al. 2015). In contrast, this task was more dif-
ficult to perform in older as opposed to younger adults when 
the task was combined with a dual task (relying on cortical 
resources; Mazaheri et al. 2014, 2015). It thus appears that 
there is a shift towards more cortical involvement in aged 
groups. If this also applies to young participants, increased 
cognitive involvement may overcome the adverse effects 
of suboptimal cortical structures on behavior, similar to 
compensatory mechanisms on motor control in older adults 
(Heuninckx et al. 2008; Goble et al. 2010). Future studies 
may be able to shed light on the interplay between functional 
and structural cognitive involvement in the online adjust-
ments of steps.

Limitations

This study aimed to explore the relationship between struc-
tural brain maturation and complex gait performance in a 
population of 9–18 years. It has to be noted that many devel-
opmental changes take place during this age period. Aside 
from structural brain maturation, for example, also func-
tional brain development is ongoing. Furthermore, lower 
levels of the CNS are developing and the musculoskeletal 
system is changing. These changes may decrease corporeal 
awareness due to rapidly changing anthropometrics (Froe-
hle et al. 2013). Although we controlled for differences in 
body size by normalizing our gait parameters to individual’s 
body proportions (Hof 1996; Vaughan et al. 2003), we can-
not completely rule out the possibility that developmental 
processes other than structural brain properties may have 
influenced our results. On the other hand, structural brain 

maturation may have impacted other sensorimotor processes, 
which (in)directly affected gait performance. Thus, complex 
sensorimotor coordination, irrespective of the specific motor 
task, should be investigated beyond the typical structural 
brain maturation analyses. Therefore, our results should be 
interpreted with caution, and should be used as preliminary 
evidence for a potential relationship between gait matura-
tion and brain maturation. Future research may adopt an 
approach in which multiple developmental processes are 
considered as potential mediators for gait development.

Conclusion

Both unperturbed and perturbed precision stepping mature 
surprisingly fast as expressed by an absence of significant 
age-related changes in step error. Variability, however, does 
decrease with age and this may indicate the presence of 
slower maturational processes. In addition, the present study 
has provided, for the first time, preliminary insights into 
the potential link between structural brain properties and 
precision stepping performance in youth. For unperturbed 
precision stepping, the precision step error was associated 
with WM microstructural organization of pathways involved 
in attentional and visual processing. Such correlations were 
absent for perturbed precision stepping, requiring online 
adjustments of steps. This difference is consistent with the 
viewpoint that the neural control may differ, in particular 
pointing to a dominant role for fast pathways in online cor-
rections, possibly involving subcortical circuits.
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