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Abstract
The classical model of the declarative memory system describes the hippocampus and its interactions

with representational brain areas in posterior neocortex as being essential for the formation of long-

term episodic memories. However, new evidence suggests an extension of this classical model by

assigning the medial prefrontal cortex (mPFC) a specific, yet not fully defined role in episodic memory.

In this study, we utilized 1H magnetic resonance spectroscopy (MRS) and psychophysiological inter-

action (PPI) analysis to lend further support for the idea of a mnemonic role of the mPFC in humans.

By using MRS, we measured mPFC g-aminobutyric acid (GABA) and glutamate/glutamine (GLx) con-

centrations before and after volunteers memorized face–name association. We demonstrate that

mPFC GLx but not GABA levels increased during the memory task, which appeared to be related to

memory performance. Regarding functional connectivity, we used the subsequent memory paradigm

and found that the GLx increase was associated with stronger mPFC connectivity to thalamus and

hippocampus for associations subsequently recognized with high confidence as opposed to subse-

quently recognized with low confidence/forgotten. Taken together, we provide new evidence for an

mPFC involvement in episodic memory by showing a memory-related increase in mPFC excitatory

neurotransmitter levels that was associated with better memory and stronger memory-related func-

tional connectivity in a medial prefrontal–thalamus–hippocampus network.
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SIGNIFICANCE STATEMENT

In this study, we combined 1H magnetic resonance spectroscopy

(MRS) and functional magnet resonance imaging (fMRI) to lend further

support for a role of the medial prefrontal cortex (mPFC) in episodic

memory. The combination of MRS and fMRI can provide deeper insight

in the neuronal correlates of episodic memory as MRS offers additional

information in the dynamics of biochemistry in an activated brain. By

combining these measurements, we were able to provide new evidence

for an mPFC involvement in episodic memory by showing a memory-

related increase in excitatory neurotransmitter levels that was associ-

ated with better memory and stronger memory-related functional con-

nectivity in a memory network.

1 | INTRODUCTION

The literature on the medial prefrontal cortex (mPFC) is dominated by

studies regarding its role in decision making (Euston, Gruber, &

McNaughton, 2012), but recent evidence suggests that the mPFC may

also play a role in memory (Szczepanski and Knight, 2014; Preston and

Eichenbaum, 2013; van Kesteren, Rijpkema, Ruiter, & Fern�andez,

2013; Euston et al., 2012; van Kesteren, Ruiter, Fernandez, & Henson,

2012; Takashima et al., 2006; Bontempi, Laurent-Demir, Destrade, &

Jaffard, 1999). The mPFC appears to serve as a critical hub obtaining,

integrating and applying knowledge for long-term use (Fern�andez,

2017). This role is supported by anatomical connections revealed in

nonhuman primates and rodents showing that the mPFC receives uni-

directional afferents from the hippocampus (Aggleton, Dumont, & War-

burton, 2011; Insausti and Munoz, 2001; Barbas and Blatt, 1995) and

in turn, has reciprocal connections to several thalamic nuclei including

anterior, medial dorsal, and midline nuclei, which are indirectly or

directly reciprocally connected to the hippocampus (Aggleton et al.,

2011). Thus, the unidirectional connection from hippocampus to mPFC

may be reciprocated via routes through the thalamus. Indeed, a recent

rodent study showed that the mPFC controls the excitability of hippo-

campal neurons via midline thalamic nuclei during fear memory encod-

ing (Xu and S€udhof, 2013), and in humans, it has been shown that

midline thalamic nuclei mediate between mPFC and hippocampus dur-

ing high-confidence memory retrieval (Thielen, Takashima, Rutters,

Tendolkar, & Fern�andez, 2015). Previous imaging studies have already

shown that successfully and confidentially remembered associations

lead to increased activation in hippocampal and medial prefrontal corti-

ces during encoding (Sperling et al., 2003; Chua, Rand-Giovannetti,

Schacter, Albert, & Sperling, 2004; Chua, Schacter, Rand-Giovannetti,

& Sperling, 2007).

Functional MRI, however, offers only indirect measures of neural

activity and does not disclose the underlying biological mechanism.

Neural activation that is related to GABAergic and glutamatergic trans-

mission induces different cellular processes that result in long-lasting

synaptic alterations as, for instance, long-term potentiation (LTP). Ani-

mal and in vitro data have shown that manipulating GABAergic and glu-

tamatergic transmission via receptor specific ligands has specific effects

on LTP (L€uscher and Malenka 2012; Maffei 2011; Kullmann & Lamsa,

2011). In this regard, it has been shown that blocking glutamatergic

transmission causes LTP reduction and impaired learning (Davis,

Butcher, & Morris, 1992; Stäubli, Rogers, & Lynch, 1994) whereas

blocking GABAergic transmission facilitates LTP and learning (Stäubli,

Scafidi, & Chun, 1999; Kalueff and Nutt 1997). Moreover, in animals,

it has been shown that forebrain concentrations of glutamate and glu-

tamine were increased after passive avoidance learning (Hertz,

O’Dowd, Ng, & Gibbs, 2003) indicating glutamate/glutamine synthesis

during learning. The detection of such a specific modulation of neuro-

transmitter concentrations in the human mPFC would lend further

support for the proposal that it serves a mnemonic role because it

may link it to neural plasticity and not just activity. Recent progress in

MR spectroscopy appears to enable measuring learning-related

changes in neurotransmitter concentrations. By utilizing 1HMR-spec-

troscopy, it has been shown that learning novel motor skills decreases

GABA concentrations in the motor cortex (Floyer-Lea, Wylezinska,

Kincses, & Matthews, 2006; Sampaio-Baptista et al., 2015) suggesting

a potential role of GABA reactivity in associative learning. Also with

respect to the mPFC some initial evidence is reported. Michels et al.

(2012) showed a decrease in GABA concentration after a working

memory task, whereas Huang et al. (2015) revealed an increase in glu-

tamate/glutamine (GLx) when subjects engage in a mental imagery

task. To date, however, evidence is lacking whether changes in medial

prefrontal neurotransmitter levels are more clearly associated with

memory and whether such effects are related to the mPFC–thalamus–

hippocampus network.

In light of these aforementioned findings, the present study aimed

at probing associative memory networks in the human mPFC–thala-

mus–hippocampus network by utilizing functional connectivity analysis

and its relation to task-related neurotransmitter (GABA/GLx) changes

(reactivity) in the mPFC. Therefore, encoding-related functional con-

nectivity in the mPFC–thalamus–hippocampus network was assessed

as a function of subsequent memory and its relation to GABA/GLx

reactivity.

2 | METHODS

2.1 | Subjects

Twenty-seven healthy subjects participated (18 females, all right-

handed, mean age 23.1 years). None of the subjects used any medica-

tion, had a history of neurological or psychiatric illness, drug abuse, or

head trauma. The study was approved by the local medical ethics com-

mittee and written informed consent was obtained for each subject.

2.2 | Experimental design

Subjects underwent initially an MRS scan of a single voxel positioned

in the mPFC, which was followed by the study phase of a face name

association task during which whole-brain functional images were

acquired. Thereafter, a second MRS session of the same mPFC voxel

was carried out. After scanning, subjects performed a memory test

(Figure 1).

2382 | THIELEN ET AL.



2.3 | Face–name association task

During fMRI, 120 photographs of unknown faces (half males) uniquely

associated with names written underneath were sequentially displayed

at the center of the screen for 2 s each (mean ISI: 6.7 s; range: 3–10 s).

The faces were standardized according to several criteria such as no

strong emotional facial expression, direct gaze contact, no glasses, no

beard, no headdress, and so on, and the length of names ranged from 3

to 8 letters (mean length6 SD55.0461.23). Subjects were explicitly

instructed to memorize the face–name associations for a subsequent

memory test. To encourage elaboration of the stimuli, subjects were

asked to judge whether the face fitted well with the name or not. The

face–name trials were intermixed with 120 trials (each 2 s) of visual fix-

ation (null event). The fixation (and null event) stimulus was a white fix-

ation cross-centered on a black background. After the second MRS

session, subjects completed a cued-recall memory test for all 120 face–

name associations outside the scanner. Here, each face was presented

on the screen, now shown with three names printed in white letters

below the face; the correct name that was actually paired with the face

during encoding, and two incorrect names which were originally paired

with different faces during encoding. Subjects were instructed to indi-

cate which name was correctly associated during study and whether

they had high or low confidence that they made the correct choice.

As behavioral research has shown that the subjective feeling of

confidence is related to the recollection of specific episodic details and

memory contend vividness (Chua et al., 2004; Robinson, Johnson, &

Herndon, 1997; Robinson, Johnson, & Robertson, 2000; Robinson &

Johnson, 1996), we assume that the level of confidence reflects the

strength and/or associative richness of the retrieved memory. In this

regard, we assume that associations remembered with high confidence

reflect strong memories, whereas associations remembered with low

confidence reflect a mixture of familiarity and guesses that occur by

chance (Chua et al., 2004; Sperling et al., 2003; Otten, Henson, & Rugg,

2001), which would be functionally equivalent to incorrect responses

(Section 3.1). Therefore, memory performance was determined by the

number of high confident remembered minus the number incorrect

plus the number of low confident remembered associations.

2.4 | MR data acquisition

Scanning was performed using a 3 T (Magnetom Trio TIM 3 T, Siemens,

Munich) scanner with a 32-channel head-coil. Before MRS acquisition,

a three-dimensional T1-weighted structural image was acquired to

guide voxel placement (MPRAGE; FOV 5 240 mm 3 240 mm, TR

52300 ms, TI51100 ms, TE53.03 ms, 192 slices, spatial resolution

51 3 1 3 1 mm3, flip angle58 degrees). Afterwards, single voxel

edited 1H-MR Spectra from the left ventral medial prefrontal cortex

(20 3 20 3 20mm) were acquired before and after the fMRI task. We

performed a unilateral analysis to avoid partial volume effects caused

by midline CSF and we chose the left hemisphere since face–name

association learning involves in particular left prefrontal cortices (Chua

et al., 2004). To ensure that MRS voxel positioning before and after

fMRI were not distorted by subject movements, an auto alignment

sequence (AAScout) were run before the structural scan and before

each MRS acquisition. The AAScout takes two low-resolution whole-

brain scans which were utilized to positioning the subject brain accord-

ing a vendor brain atlas on the scanner. Moreover, after positioning of

the first MRS voxel according to anatomical landmarks (left mPFC,

below the bent of corpus callosum), the positioning parameters were

stored and used for the second MRS voxel positioning. To ensure

goodness of fit, any cases where shimming resulted in FWHM >20 Hz

were rejected. Single-volume, MEGA point-resolved spectroscopy

(PRESS), J-difference editing sequence was used to measure GABA and

glutamate/glutamine (Mescher, Merkle, Kirsch, Garwood, & Gruetter,

1998). For each spectrum (edit on and edit off), 128 spectral scans

were acquired (TR51600 ms, TE568 ms,). For functional MRI, we

acquired with ascending slice acquisition a T2*-weighted echo-planar

imaging sequence (31 axial slices; volume repetition time (TR), 2.39 s;

echo time (TE), 9.4 ms; 908 flip angle; slice matrix, 64 3 64; slice thick-

ness, 3.0 mm; field of view, 13443 1344mm).

2.5 | MRS data processing

The difference spectra were calculated by subtracting the edit on and

edit off spectra. The ratio of GABA and glutamate/glutamine (GLx) to

NAA was determined using the AMARES package (Vanhamme, Sundin,

Hecke, & Huffel, 2001) that is integrated within the jMRUI software

(Naressi, Couturier, Castang, de Beer, & Graveron-Demilly, 2001). We

have chosen to calculate the ratio to relative NAA and not creatine,

because GABA and creatine resonate at similar frequencies. As a con-

sequence, the creatine peak in the “edit off spectrum” is a summation

of GABA and creatine and a reduction/increase of GABA would also

change the creatine peak in the “edit off spectrum” accordingly. Prior

to fitting in jMRUI, all spectra were apodized with a 5 Hz Lorenzian

FIGURE 1 Illustration of the experimental design. Before and after the study phase (fMRI), GABA and GLx in the mPFC (black square)
were assessed with single-voxel MR spectroscopy (MRS). After scanning, subjects performed a cued-recall memory test [Color figure can be
viewed at wileyonlinelibrary.com]
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filter (see Figure 2 for a representative edited spectrum). Whereas

NAA was modeled from the “edit off spectra” as a single Lorentzian

peak, GABA and GLx were modeled from the “different spectra” as a

pair of Lorentzian peaks with the same line width as NAA. To probe

memory-related changes in GABA and GLx concentrations, repeated

measures ANOVA’s were conducted with GABA/NAA and GLx/NAA

levels before versus after the fMRI task as inputs. Moreover, we used

the difference scores (MRS2 2 MRS1) to evaluate the relation of

encoding-related neurotransmitter reactivity with memory performance

and functional connectivity.

2.6 | MRI data preprocessing

Using SPM8 (www.fil.ion.ucl.ac.uk/spm/software/spm8), functional

images were realigned, and the subject mean was coregistered with the

corresponding structural MRI by using mutual information optimization.

These images were subsequently slice-time corrected, spatially normal-

ized and transformed into a common space, as defined by the Montreal

Neurological Institute (MNI) T1 template, as well as spatially filtered by

convolving the functional images with an isotropic 3D Gaussian kernel

(8 mm3 full-width at half-maximum).

2.7 | fMRI analysis (determination seed voxels for PPI)

In line with our primary aim, we probed mPFC–thalamus–hippocampus

network properties (as measured with PPI) by contrasting successfully

remembered with high confidence over low confident remembered/

incorrect. Therefore, the explanatory variables (onsets for high confi-

dent remembered; low confident remembered/incorrect; judgement

and null events [fixation cross]) were temporally convolved with the

canonical hemodynamic response function along with its temporal

derivatives provided by SPM8. For the statistical analysis, appropriate

contrast parameter images were generated for each subject by weight-

ing high confident remembered with 1 and low confident remem-

bered/incorrect with 21, respectively. Subsequently, these contrast

images were subjected to a second-level random effects analysis in

which the brain map was initially thresholded with p5 .001 with a test

statistic on cluster-size thresholded at p� .05 (family-wise error cor-

rected). As we were interested in encoding-related effects on GABA/

GLx concentrations in the mPFC and its relation to functional connec-

tivity in the mPFC–thalamus–hippocampus network, we used the

memory-related brain activation cluster that overlaid with the area of

the MRS voxel position as seed region for the subsequent PPI analyses.

2.8 | Functional connectivity analysis

We performed a PPI analysis from the seed region. The PPI analysis

probed encoding related functional connectivity for face–name pairs

that were subsequently remembered with high confidence versus low

confident remembered/incorrect.

For the PPI analyses, the first eigenvariate of the time course

within the seed region was extracted as the physiological factor. Then,

the psychological factors were computed. Here, the onset times for

high confident remembered and low confident remembered/incorrect

were temporally convolved with the canonical hemodynamic response

function (weighted with 11 for high confident remembered and 21

for low confident remembered/incorrect). Finally, the interaction fac-

tors (PPI) were calculated as an interaction term of the physiological

and psychological factors. In the last step, a GLM was conducted with

the PPI regressors (physiological, psychological, and interaction factors)

of the seed region together with the other experimental condition

regressors (onsets for high confident remembered; low confident

remembered/incorrect; judgment and null events [fixation cross]), tem-

porally convolved with the hemodynamic response function along with

its temporal derivatives, and the six motion regressors derived from

realignment parameters during preprocessing of the functional scans.

To probe whether functional connectivity is related to neurotrans-

mitter reactivity in the mPFC, the subject-specific contrast images for

the interaction term (PPI.ppi) were used as inputs for a second-level

regression analyses with the task-related changes in neurotransmitter

level (MRS after-MRS before) as covariate of interest. We used the dif-

ference score as covariate to assess whether neurotransmitter concen-

tration changes, due to memory related processes, predict functional

connectivity in the mPFC–thalamus–hippocampus network. For statis-

tical testing, we initially thresholded the whole brain map with p5 .001

FIGURE 2 The figure shows the proton magnetic resonance
spectroscopy spectra with the editing radiofrequency pulse off (top
panel) and on (middle panel). With the editing pulse off, a standard
spectroscopy spectrum is obtained, allowing quantification of the
N-acetylaspartate (NAA) peak. The spectrum on the bottom is the
difference of the spectra “edit off” minus “edit on” yielding the
g-aminobutyric acid (GABA) and glutamate-glutamine (Glx) peaks
[Color figure can be viewed at wileyonlinelibrary.com]
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to provide input for our test statistics on cluster-size threholded at

p� .05 (family-wise error corrected). Given our a priori interest in the

mPFC–thalamus–hippocampus network, we reduced our search space

by applying small-volume correction within these brain regions in all

PPI analyses applying the same statistical threshold (p� .05, family-

wise error corrected).

2.9 | Correlation analysis

Pearson’s partial correlations analyses were performed by means of

SPSS (IBM 21) software to assess the relations between memory per-

formance and neurotransmitter and functional connectivity. As afore-

mentioned, memory performance was determined by the amount of

high confident remembered minus the amount of low confident and

incorrect remembered associations. Regarding the neurotransmitter,

we used the difference scores (MRS2 2 MRS1) as input to evaluate

the relation of encoding-related neurotransmitter reactivity and mem-

ory performance. For functional connectivity, we extracted the mean

beta values of the functional connectivity clusters that reached statisti-

cal significance. For this purpose, we used MarsBaR toolbox (Brett,

Anton, Valabregue, & Poline, 2002) to create separate masks of the sig-

nificant clusters which in turn were used in the REX toolbox to extract

the mean functional connectivity beta-values of each cluster for all sub-

jects. We used Bonferroni correction for multiple testing whenever

applicable.

3 | RESULTS

3.1 | Memory performance

Subjects correctly identified the name associated with the face with

high confidence in 36% and with low confidence in 27% of the trials. In

37% of the trials, the subjects were incorrect. One-sample t test

revealed that performance for high confidence remembered (high-con-

fidence hit minus high-confidence false alarm: t(26)58.23, p< .0001)

was above chance level, whereas low confident remembered was at

chance level (low confidence hit minus low confidence false alarm: t

(26)520.36, p 5.724). As low confident responses appeared at

chance level, they are likely not associated with the recollection of spe-

cific episodic details but rather guessing (Chua et al., 2004; Sperling

et al., 2003; Otten et al.,2001). Therefore, we used the contrast high

confident remembered versus low confident remembered plus incor-

rect in all analyses. Regarding confidence rating, we could not find a

tendency that some participants always have chosen the extreme cases

as both the low and the high confident ratings were normally

distributed.

3.2 | MRS analyses

The mean voxel position (center) was x526, y544, z527 in MNI

space with a mean percentage of 53% (SD5 .089) gray matter, 40%

(SD5 .096) white matter, and 7% (SD5 .025) CSF. First, we assessed

whether NAA levels remained stable as assumed. A repeated measures

ANOVA comparing NAA levels before and after study revealed no sig-

nificant change (F(1,26)5 .17, p5 .85). Subjecting GLx/NAA ratios of

MRS 1 (before study) and MRS 2 (after study) to a repeated measures

ANOVA revealed a significant increase (F(1,26)57.42, p5 .011), show-

ing that the face–association encoding task was associated with an

increase of medial prefrontal GLx concentration. An analog repeated

measures ANOVA with GABA/NAA ratios as input did not reveal any

significant change (F(1,26)5 .24, p5 .62, Figure 3B).

3.3 | fMRI analyses

We contrasted high confident remembered over low confident remem-

bered plus incorrect to reveal a seed region for the PPI analyses. Given

our a priori interest, we reduced our search space to the mPFC–thala-

mus–hippocampus network by applying small-volume correction within

these brain regions. In this analysis, we found a significant cluster in

the mPFC (maxima5MMI 26 54 210; p5 .03; Figure 4) that over-

lapped with the location of the MRS voxel (Figure 3A). Note, this acti-

vation cluster represents the significant mean group effect and is just a

FIGURE 3 (a) The functional map is overlaid on the MRIcron template brain (ch256). The brain region (yellow cluster) in the mPFC that
showed increased memory related brain activation is depicted. The black square indicates the mean position of the MRS voxel, which
overlaps with fMRI voxels of the activation cluster. Therefore, this activation cluster served as seed region for the PPI analyses. (b)
Concentrations of GABA and GLx before and after the fMRI task are depicted, whereas GABA did not change, Glx concentration increased
over time. (c) The Increase in GLx (MRS 2 2 MRS 1) correlated positively with memory performance (high confident remembered minus low
confident remembered/incorrect) [Color figure can be viewed at wileyonlinelibrary.com]
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measure of central tendency over all participants (Seghier & Price,

2016). This mPFC cluster was subsequently used as seed region for the

PPI analyses. The whole-brain analysis revealed differential activation

in several brain regions (Figure 4) as, for instance, the hippocampus

(maxima5MMI 30 212 218; p< .001; maxima5MMI 220 222

218; p< .001 Figure 4), fusiform gyrus (maxima5MMI 42 246 214;

p< .001; maxima5MMI 240 254 220; p< .001; Figure 4) and left

prefrontal cortex (maxima5MMI 234 34 26; p< .001; maxi-

ma5MMI 240224 20; p< .001; Figure 4)

3.4 | Psychophysiological interaction

Contrasting encoding-related mPFC connectivity pattern for face–

name pairs subsequently remembered with high confidence compared

to low confidence/incorrect revealed stronger connectivity to right hip-

pocampus (maxima5MMI 28 24 222; p5 .05). When taking the

GLx/NAA difference scores as covariates of interest (high confident

remembered compared to low confident remembered/incorrect1GLx),

we found a positive relation between the GLx/NAA different score and

mPFC–thalamic connectivity (ventral anterior nuclei: maxima5MMI

26 10 14/8 214 14; p5 .025; dorsal margin: maxima5MMI 20 216

16; p5 .016; Figure 5). Moreover, we found a positive relation

between the GLx/NAA different score and mPFC–hippocampus con-

nectivity (maxima5MMI 34 218 212; p5 .05). Thus, the more GLx/

NAA increased over the memory task, the stronger the mPFC2thala-

mic and mPFC2hippocampus functional connectivity.

In a next step, we assessed whether the GLx reactivity and the

functional connectivity parameters are relevant for memory perform-

ance. Using Pearson’s partial correlation, we found a positive correla-

tion between the GLx/NAA difference scores and memory

performance across subjects (r5 .42; p5 .03; Figure 3C). Hence, those

individuals with the highest increase in mPFC GLx concentration were

those that preformed best and vice versa. Moreover, we found a posi-

tive correlation between memory performance and the mPFC

connectivity parameters (mean b values) of one thalamic cluster (dorsal

margin: r5 .39; p5 .04) and the hippocampus cluster (r5 .56; p5 .004)

that revealed a positive relation between the GLx different score and

functional connectivity (high confident remembered over low confident

remembered/incorrect1GLx; Table 1).

To integrate these findings further, we assessed the relationship

between the significant correlations by utilizing mediation analysis

(Hayes, 2013). We performed two separate analyses to test whether

the GLx related mPFC–thalamus (dorsal margin) and/or mPFC–hippo-

campus functional connectivity mediated the association between GLx

reactivity and memory performance. Regarding mPFC–thalamus (dorsal

margin) functional connectivity (Figure 6B), we found that the standar-

dized regression coefficients between GLx reactivity and memory per-

formance (c-path), GLx reactivity, and functional connectivity (a-path)

and functional connectivity and memory performance (b-path) were

statistically significant (Figure 6B). The standardized indirect effect

(a 3 b) was (.67)(.39)5 .26. We tested the significance of this indirect

effect using bootstrapping procedures via the PROCESS macro for

SPSS (PROCESS v2.16, Hayes 2016). Standardized indirect effects

FIGURE 4 The functional maps are overlaid on the MRIcron
template brain (ch256). The images show the significant brain
activation. Brain activation was modeled by weighting high
confident remembered over low confident remembered/incorrect
trials [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 The functional maps are overlaid on the MRIcron
template brain (ch256). The images show the different functional
connectivity’s in the mPFC–thalamus–hippocampus network. The
yellow cluster in the mPFC indicates the seed region for the PPI
analyses. The purple cluster indicate functional connectivity between

the mPFC and the right hippocampus (high confident remembered vs
low confident remembered/incorrect) not related to GLx. The red
clusters indicate functional connectivity between the mPFC and
thalamus (high confident remembered vs low confident remembered/
incorrect 1GLx) and right hippocampus that is related to the change
in GLx concentration (the more GLx increase the more functional
connectivity). 1GLx5 covariate GLx (different score) [Color figure
can be viewed at wileyonlinelibrary.com]
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were computed for each of 10,000 bootstrapped samples, and the

95% confidence interval was computed by determining the indirect

effects at the 2.5th and 97.5th percentiles. The bootstrapped standar-

dized indirect effect was .26, and the 95% confidence interval ranged

from 2.02 to .69. The indirect effect was statistically not significant

(p5 .29) as tested with the Sobel test, implemented in the PROCESS

macro. Regarding mPFC–hippocampus functional connectivity (Figure

6A), we found also a significant a-path and b-path. The standardized

indirect effect (a 3 b) was (.59)(.56)5 .33 (95% confidence interval

ranged from .03 to .68) which was statistically significant (p5 .05).

Thus, the positive association between GLx reactivity (GLx/NAA differ-

ent scores) and memory performance seems to be mediated by func-

tional connectivity between mPFC and hippocampus.

4 | DISCUSSION

This study aimed at elucidating the role of the human mPFC–thala-

mus–hippocampus network in associative memory formation and its

relation to neurotransmitter reactivity. Therefore, encoding-related

mPFC concentration changes of GABA and GLx were assessed and

related to memory performance and memory-related functional con-

nectivity in the mPFC–thalamus–hippocampus network. In the follow-

ing, we discuss first the GABA/Glx reactivity in the mPFC, its relation

to memory performance and then its relation to the mPFC–thalamus–

hippocampus network.

Whereas metabolite concentrations at rest have been frequently

assessed, the dynamics of GABA and GLx during task performance

have been less frequently investigated (K€uhn et al., 2016). Here we

show that GLx but not GABA increased in the mPFC when subjects

memorized face–name associations. This finding complements that of

Hertz et al. (2003) who showed increased forebrain concentrations of

glutamate and glutamine after passive avoidance learning in animals.

Notably, the authors found also a reduction in glycogen concentrations,

which suggest increased de novo synthesis of glutamate/glutamine

from glucose or glycogen during learning (Hertz et al., 2003). However,

what may be the function of increasing glutamate and glutamine? Glu-

tamine is the metabolic precursor of glutamate in the mammalian brain

(Petroff, 2002). After synaptic transmission of glutamate, surrounding

TABLE 1 The correlations between memory performance and the different functional connectivity’s (Figure 4) are depicted

Functional connectivity Performance

High conf. remembered over low conf. remembered/
incorrect

(mPFC 2 right hippocampus) r5 .24

High conf. remembered over low conf. remembered/
incorrect1Glx

(mPFC 2 right hippocampus) r5 .56b

High conf. remembered over low conf. remembered/
incorrect1Glx

(mPFC 2 dorsal margin of thalamus) r5 .39a

High conf. remembered over low conf. remembered/
incorrect1Glx

(mPFC 2 ventral anterior nucleus of thalamus) r5 .22

The GLx/NAA reactivity (MRS 2 2 MRS 1)-related functional connectivities of mPFC to the dorsal margin of thalamus (high confident remembered
over low confident remembered/incorrect 1GLx) and right hippocampus correlate positive with memory performance.
aUncorrected significant.
bSignificant after Bonferroni correction.

FIGURE 6 The outcome of the mediation analyses. (a) The diagram shows that the relationship between GLx reactivity (GLx/NAA different
scores) and memory performance was mediated by functional connectivity between mPFC and hippocampus (high confident remembered vs
low confident remembered/incorrect1GLx). GLx different scores were positively associated with mPFC/hippocampus functional
connectivity (apath). MPFC/hippocampus functional connectivity predicted memory performance (b-path). GLx different scores directly
predicted memory performance (c-path) but if controlled for the mediator this effect diminished (c’- path). The indirect effect (a, b) was .33
which was statistically significant (Sobel test). (b) The diagram shows that the relationship between GLx reactivity (GLx/NAA different
scores) and memory performance seems also mediated by functional connectivity between mPFC and thalamus (high confident remembered
vs low confident remembered/incorrect1GLx); however, the indirect effect (a)(b) 5.26 was not statistically significant [Color figure can be
viewed at wileyonlinelibrary.com]
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glia cells metabolize glutamate to glutamine, which is in turn trans-

ported to the neurons were it is synthesized to glutamate (Petroff,

2002). Thus, one may speculate that the increase in glutamate/gluta-

mine is related to an increased need of synaptic glutamate to maintain

sustained glutamatergic transmission. It is generally accepted that glu-

tamatergic transmission results in LTP a leading candidate for the neu-

rophysiological substrate of learning and memory (Myhrer, 2002).

Manipulating glutamatergic receptors appear to affect LTP and mem-

ory. For instance, blocking glutamatergic transmission via an NMDA

receptor antagonist causes LTP reduction and impaired learning (Davis

et al.,1992; Stäubli et al.,1994). Therefore, the assumption of increased

glutamatergic transmission would be in line with our finding regarding

memory performance. We found that individuals with a higher increase

in GLx remembered more associations with high confidence. Thus, it is

possible that the GLx increase reflects enhanced glutamatergic trans-

mission that resulted in increased synaptic plasticity and therefore bet-

ter memory performance. To summarize, memorizing face–name

associations increased GLx concentrations in the mPFC and this

increase was associated with better subsequent memory suggesting

that the mPFC GLx reactivity is functionally important for memory for-

mation and not merely a reflection of neural processing.

Previous studies reported a decrease in cortical GABA concentra-

tions when subjects learned novel motor skills (Floyer-Lea et al., 2006;

Sampaio-Baptista et al., 2015) suggesting a potential role of GABA

reactivity in associative learning. In this study, however, we did not

observe such a reduction in mPFC GABA concentrations. The finding

that GABA levels remained stable may be related to the timeframe

between the two MRS measurements. For instance, Michels et al.

(2012) showed an initial increase in frontal GABA that gradually

decreased during a working memory task suggesting time as an impor-

tant variable. Moreover, Floyer-Lea et al. (2006) reported a 5% reduc-

tion of GABA after 30 min but 18% after 50 min of motor learning,

whereas K€uhn et al. (2016) found increased GABA in the ACC after the

engagement in an interference task for 13 min. Thus, it is possible that

our second MRS measurement (22 min after baseline) was at a time

point when GABA has gradually “recovered” from an initial increase.

Therefore, future studies should measure the mPFC GABA/GLx

dynamics on multiple time points during associative learning.

Regarding network properties, we discuss first the functional con-

nectivity and then the functional connectivity associated to GLx reac-

tivity. If seeded from the mPFC, we found increased functional

connectivity to the right anterior hippocampus for associations later

remembered with high confidence compared to low confident remem-

bered/incorrect. This functional connectivity, however, did not predict

memory performance. With other words, subjects that had a stronger

functional mPFC–hippocampus (anterior) connectivity did not remem-

ber more face–name associations.

Concerning mPFC GLx reactivity, we found a positive association

between mPFC GLx increase and mPFC functional connectivity to

both the thalamus and the hippocampus. This findings are in line with

rodent data showing that ketamine (NMDA receptor antagonist) alters

functional connectivity between several mPFC regions and thalamic

nuclei and hippocampus (Dawson et al., 2015; Dawson, Morris, & Pratt,

2013).

With respect to the mPfC–thalamic functional connectivity, we

found increased GLx (reactivity)-related functional connectivity to the

ventral anterior nuclei (bilateral) and to the dorsal margin of the thala-

mus. Regarding the ventral anterior nuclei, our findings are in line with

the model proposed by Aggleton et al. (2011) and Aggleton & Brown

(1999). These authors proposed that anterior thalamic nuclei, as the

ventral anterior nucleus, and its connections to the hippocampus are

essential for recollection based recognition. In addition, the authors

indicated that prefrontal cortices interact with this thalamic–hippocam-

pal system, engaging in efficient encoding strategies that may aid sub-

sequent recollection (Aggleton & Brown, 1999). With respect to the

functional connectivity to the dorsal margin of the thalamus, albeit

speculative, one may assume that this thalamic region represents the

thalamic reticular nucleus (Viviano and Schneider, 2015; Zikopoulos

and Barbas, 2006; Jones, 1985), a layer of GABAergic cells wrapping

the dorsolateral segments of the thalamus (Jones, 1985; Zikopoulos

and Barbas, 2006). GABAergic neurons in the thalamic reticular nucleus

modulate both corticothalamic and thalamocortical communications

(Slotnick, Moo, Kraut, Lesser, & Hart, 2002; Lozs�adi, 1995; Steriade,

Contreras, Curr�o Dossi, & Nu~nez, 1993; Jones, 1985). For instance, the

thalamic reticular nucleus receives excitatory inputs from cortex and

other thalamic nuclei and sends inhibitory projections (GABAergic)

back to thalamic nuclei thereby controlling the activity/oscillations in

thalamocortical loops (Slotnick et al., 2002; Lozs�adi, 1995; Steriade

et al.,1993). Brain oscillations result in synaptic plasticity via synchro-

nizing and desynchronizing neural assemblies and are therefore one of

the core mechanisms underlying episodic memory (Hanslmayr, Stare-

sina, & Bowman, 2016). These, specific functions of the thalamic reticu-

lar nucleus may explain the finding that GLx related mPFC–thalamic

reticular nucleus functional connectivity predicted memory perform-

ance. In detail, we found that individuals with higher mPFC–thalamic

reticular nucleus functional connectivity beta-values remembered more

associations with high confidence jwcompared to low confident

remembered/incorrect. With respect to GLx (reactivity) related mPFC–

hippocampus functional connectivity, we found increased functional

connectivity to the right hippocampus. This GLx (reactivity)-related

mPFC–hippocampus functional connectivity predicted not only mem-

ory performance but also appeared to mediate the positive association

between GLx reactivity and memory performance. Together, we found

that the task-related change in mPFC GLx concentration was associ-

ated with mPFC functional connectivity to both the thalamus and hip-

pocampus, which appeared to be functionally relevant in terms of

memory performance.

In summary, this study demonstrates that mPFC GLx levels

increased during associative memory encoding, which was positively

associated with memory performance. Moreover, we found that mPFC

GLx reactivity appeared to modulate functional connectivity within the

mPFC–thalamus–hippocampus network. Subjects with a higher

increase in GLx were those that had stronger functional connectivity in

this network for associations subsequently remembered with high con-

fidence compared to low confident remembered/incorrect. In addition,
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this GLx-related functional connectivity was associated with better

memory for the face–name associations and appeared to mediate the

positive association between GLx reactivity and memory performance.

These findings suggest that mPFC–thalamic–hippocampus interactions

during encoding are related to neurotransmitter reactivity, which might

facilitate the formation of detailed and vivid memories.
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