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Abstract

Metabolomics studies of disease conditions related to chronic alcohol consumption provide

compelling evidence of several perturbed metabolic pathways underlying the pathophysiology

of alcoholism. The objective of the present study was to utilize proton nuclear magnetic reso-

nance (1H-NMR) spectroscopy metabolomics to study the holistic metabolic consequences of

acute alcohol consumption in humans. The experimental design was a cross-over interven-

tion study which included a number of substances to be consumed—alcohol, a nicotinamide

adenine dinucleotide (NAD) supplement, and a benzoic acid-containing flavoured water vehi-

cle. The experimental subjects—24 healthy, moderate-drinking young men—each provided

six hourly-collected urine samples for analysis. Complete data sets were obtained from 20 of

the subjects and used for data generation, analysis and interpretation. The results from the

NMR approach produced complex spectral data, which could be resolved sufficiently through

the application of a combination of univariate and multivariate methods of statistical analysis.

The metabolite profiles resulting from acute alcohol consumption indicated that alcohol-

induced NAD+ depletion, and the production of an excessive amount of reducing equivalents,

greatly perturbed the hepatocyte redox homeostasis, resulting in essentially three major met-

abolic disturbances—up-regulated lactic acid metabolism, down-regulated purine catabolism

and osmoregulation. Of these, the urinary excretion of the osmolyte sorbitol proved to be

novel, and suggests hepatocyte swelling due to ethanol influx following acute alcohol con-

sumption. Time-dependent metabolomics investigations, using designed interventions,

provide a way of interpreting the variation induced by the different factors of a designed exper-

iment, thereby also giving methodological significance to this study. The outcomes of this

approach have the potential to significantly advance our understanding of the serious impact

of the pathophysiological perturbations which arise from the consumption of a single, large

dose of alcohol—a simulation of a widespread, and mostly naive, social practice.
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Introduction

The use of metabolomics in intervention, or challenge, studies greatly enhances the holistic

understanding of the effects of single, or combined, consumed substances on metabolic path-

ways [1,2,3]. In this paper, we present the experimental design and outcome of an intervention

study, which included a number of interventions: (1) vehicle only—commercial flavoured

water containing sodium benzoate as preservative [3]; (2) a defined acute dose of alcohol, con-

sumed alongside the vehicle; (3) an NAD supplement, taken one hour prior to the study, fol-

lowed by consumption of the vehicle; and (4) the NAD supplement, followed by consumption

of the vehicle and the alcohol dose. Alcohol oxidation by alcohol dehydrogenase (ADH) and

aldehyde dehydrogenase (ALDH) results in the reduction of oxidized NAD (NAD+) to its

reduced form (NADH), thereby generating a highly reduced cytosolic environment in hepato-

cytes. An increased NADH:NAD+ ratio has been described to influence several metabolic pro-

cesses, resulting in, amongst others, decreased glycolysis [4], reduced Krebs cycle [5,6], and

decreased gluconeogenesis [6,7]. The use here of NAD as a supplement is based on a perceived

view that it has a therapeutic capacity if taken prior to alcohol consumption; the theory being

that it supplements alcohol-induced NAD+ depletion.

The data set of the present study was generated from longitudinal (urine samples, collected

hourly over a five-hour period), multi-subject (several experimental participants) and multi-

group (in this case four, separate interventions) measurements, and expressed as multivariate

data—numerous variables generated and identified through a metabolomics approach utiliz-

ing 1H-NMR spectroscopy. The main aim of the investigation was to determine the effect of

acute (a single dose indigested in a short time) alcohol consumption, as well as the potential

effect of an NAD supplement on the resulting metabolite profile. Several metabolomics studies

have been reported on the pathophysiological consequences of chronic consumption and alco-

holism in humans [8,9,10,11], as well as on chronic intragastric alcohol feeding of rodents, fol-

lowed by mass spectrometric based metabolite profiling [12,13]. The metabolomics technique

has been applied for global metabolite profiling using GC–MS [14,15], in several LC–MS stud-

ies [12,13,16,17], as well as in untargeted studies using 1H-NMR spectroscopy (examples

hereof are summarized in Table 1). 1H-NMR spectroscopy is a robust method with broad

metabolite-class coverage (albeit with limited sensitivity), and is well suited for the diverse

metabolomics studies listed in Table 1 using rodents [18,19,20,21,22], selected human volun-

teers at risk for cardiovascular diseases [23], and population-based cohorts [24]. With the

exception of the study by Bradford et al. [19], all the studies listed in Table 1 used serum or tis-

sue material as the samples for the generation of the metabolite data. Here we report on an

untargeted NMR metabolomics intervention study on acute alcohol consumption, which

expands the limited data on alcohol-induced metabolic profiling in humans. This study fol-

lowed a non-invasive sampling procedure (hourly-collected urine samples) which is ideal for

generating the untargeted 1H-NMR-based metabolic profiles required for the longitudinal

experimental design. As a biological waste material, urine is the biofluid of choice [25] to

reflect the metabolic breakdown products following acute alcohol consumption, as well as any

potential by-products derived from the gut microbiome, which has been shown to be impor-

tant in several alcohol-related studies [14,16,26]. The data pre-processing applied to the spec-

tral data in the present study are comparable to the approaches applied in the studies listed in

Table 1, albeit with minor differences.

The statistical methods used in the intervention studies listed in Table 1 all use a pre vs post

approach—multivariate model-based analysis (PCA, PLS–DA, OPLS and ANOVAs) of the

data was performed to determine the metabolites responsible for the separation of the control

(“pre”) versus the alcohol-treated (“post”) groups. Analysis of the data set from the present
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Table 1. A summary of the experimental designs, data analysis approaches and main metabolic conclusions of some NMR-based ethanol administration studies.

Authors (year) &

Summary of design

Data pre-processing Statistical analysis Conclusion on metabolic observations

Nicolas et al (2008)

C: Sprague–Dawley rats (N = 5). S:

Serum and tissue. E: Single dose/

binge protocol. A: Untargeted

(1) Zero-filled. (2) Fourier transformed.

(3) Baseline corrected

D: Spectral bins. T: Mean centred. G: Pre

vs Post. U: t-test. M: PCA

A cycle of aborted gluconeogenesis

stimulated by the increased NADH/NAD

ratio but short-circuited by decreased

alanine levels during hepatic ethanol

metabolism.

Bradford et al (2008)

C: Male C57Bl/6J mice (N = 4). S:

Urine, serum and liver. E: Chronic:

7–36 g/kg/day; Fed ad libitum. A:

Untargeted

(1) Spectra phased. (2) Baseline

corrected. (3) Normalized to the sum of

all integrals set to 1000

D: Spectral bins. T: Pareto scaled. G: Pre

vs Post. U: t-test. M: PCA & OPLS

Energy utilization is important in

understanding the pathogenesis of alcohol

induced liver injury, with acetylglutamine,

n-acetylglycine and taurine potential novel

non-invasive markers of alcohol

consumption and oxidative stress.

Masuo et al (2009)

C: Female Fisher rats (N = 5). S: Liver

and brain. E: Chronic: 10 mo 15%

Sake; Fed ad libitum. A: Untargeted

(1) Spectra normalize to total integral

area. (2) Referenced to Na-TMS-tetra-

1H-propionate

D: Spectral bins. T: Pareto scaled. G: Pre

vs Post. U: t-test. M: PCA & PLS–DA

In liver: An attenuation of mitochondrial

function; In brain: (1) Perturbed amino

acids (Increased and decreased); and (2)

Decreased N-acetyl-aspartate, taurine and

GABA. Chronic Sake intake may cause

alterations in the intoxicated body but also

in the next generation.

Fernando et al (2010)

C: Male Fischer rats (N = 344). S:

Plasma and liver. E: Chronic: 5%

alcohol diet. A: Lipidome

(1) Spectra manually phased. Referenced

to TMS. (2) Spectra divided into equal

bins of 0.01 ppm width. (3) Baseline

corrected

D: Spectral bins. T: Auto scaled. G: Pre vs

Post. U: t-test. M: Hierarchical clustering

& PCA

Alcohol consumption alters metabolism of

cholesterol, triglycerides and phospholipids

that could contribute to the development of

fatty liver and indicates that fatty liver

precedes oxidative stress and inflammation.

Yoseph et al (2013)

C: Male FVB/N mice (N: 8–9). S:

Pancreatic tissue. E: Chronic; Fed ad
libitum with increased interventions.

A: Untargeted/Focus: Pancreatic

metabolome

(1) Spectra phased. (2) Baseline

corrected. (3) Spiking experiments to

validate suspected metabolites identified

in the spectra.

D: 52 Metabolites (mM). T: Variance

scaled. G: Pre vs Post. U: t-test & MW

test. M: PLS–DA & One-way ANOVA

(Tukey post-test)

Pancreatic metabolome following chronic

alcohol intake indicates increased acetate,

adenosine, xanthine, acetoacetate,

3-hydroxybutyrate and betaine; and (2)

decreased cytidine, uracil, fumarate,

creatine phosphate creatine, and choline.

Mice with chronic alcohol ingestion have

increased mortality when encountered with

sepsis.

Vázquez-Fresno et al (2012)

C: Males volunteers at risk (Age�55;

N = 61). S: 24-hour urine. E:

Nutritional wine. A: Untargeted and

selected metabolites

Untargeted: (1) Spectra divided into

equal bins. (2) Profiling integration. (3)

Spectra phased. (4) Baseline corrected.

(5) Calibrated. Selected metabolites:
Chenomx NMR Suite 7.0 profiler

compared on: HMDB/BMRB/MMCD

and literature

D: Spectral bins. T: Pareto scaled. G: Pre

vs Post. U: t-test; Pearson’s correlation.

M: ANOVA & Fisher’s LSD

(1) Food metabolome: Mannitol (diet);

tartrate (wine intake). (2) Endogenous

modifications after wine consumption

indicated by branch-chain amino acids. (3)

Gut metabolites, 4-hydroxy phenylacetate

and hippurate

Wurtz et al (2016)

C: 3 population-based cohorts,

(meta-analysis N = 9778). S: Serum.

E: Habitual consumption. A:

Targeted lipids and 86 metabolic

measures

Automated NMR metabolite profiling:

Robotics-controlled and fully automated

with a capacity of about 150–180

samples in 24 h. Integrated

computational methods for the data-

driven systems biology approach to

biomedical research

D: Computational generated. T: Loge

transformed & SD Scaled. G: Cross-

sectional (i.e. 2 group comparisons). U:

Bonferroni method; t-test & MW test. M:

Linear regression (R-squared)

Prominent metabolic associations with

alcohol consumption include

monounsaturated fatty acids, omega-6 fatty

acids, glutamine, citrate and lipoprotein

particle size. Many of these cardiometabolic

biomarkers strongly associated with alcohol

intake as HDL cholesterol.

Irwin et al (the present study)

C: Healthy males (Age~22; N = 24).

S: Hourly urine (5 times). E: Acute

(1.5 g vodka/kg). A: Untargeted and

quantified metabolites

Normalized relative to the creatinine at

4.05 ppm. Baseline corrected– 50% zero-

filter. Batch comparisons using QC

samples

D: Spectral bins (excluding H2O region).

T: loge transformed; Auto-scaled. G:

Cross-over, time dependent matched

series. U: WR-test; ES; FC. M: Hierarchal

cluster; Multi-level PCA. The NAD-

effect: 2-way RM ANOVA

Aims: (1) Effect of vehicle consumption:

Irwin et al (2016) PLOS ONE. 11:e0167309.

(2) Impact of consumption of a single large

dose of alcohol (time dependence). (3)

Statistical analysis of quantified metabolites

following consumption. (4) Effect of NAD

supplementation. (5) Model of the

metabolite profile following acute alcohol

consumption

Abbreviations used in columns 1 and 3: C: Cases studied (experimental animals or humans); S: Samples used for metabolite identification; E: Ethanol exposure; A:

Approach for the generation of the variable or metabolite data; N: number of experimental cases studied; D: Data used for statistical analyses; T: Transformation and

scaling approach; G: Groups compared; U: Univariate analyses applied; M: Multivariate analyses applied.

Other abbreviations: ES: Effect Size; FC: Fold Change; ANOVA: Analysis of variance; MW: Mann-Whitney test; PCA: Principal Component Analysis; PLS-DA: Partial

Least Squares-Discriminant Analysis; RM: Repeated Measures; WC: Wilcoxon test.

https://doi.org/10.1371/journal.pone.0196850.t001

Metabolomics of acute alcohol consumption

PLOS ONE | https://doi.org/10.1371/journal.pone.0196850 May 10, 2018 3 / 20

https://doi.org/10.1371/journal.pone.0196850.t001
https://doi.org/10.1371/journal.pone.0196850


study is theoretically complex and required methods specifically designed for longitudinal,

multi-subject, multi-group and multivariate data [27,28]. We accordingly generated a

matched-sample series through a cross-over study of participating subjects, collecting samples

over a distinct time frame. First, data from the “vehicle only” and “alcohol plus vehicle” inter-

ventions were compared at each time point to determine the impact of the consumption of a

single, large dose of alcohol. Next, the statistical analysis focused on the metabolic perturba-

tions due to the acute consumption of alcohol, measured over time. A shortlist of significantly

perturbed NMR spectral bins was compiled and quantified as relative concentrations for bio-

logical interpretation. Finally, the effect of NAD supplementation was evaluated for a select list

of biologically relevant metabolites.

Most remarkable in the present study was the highly increased presence of urinary sorbitol,

a response to alcohol consumption not observed in the studies listed in Table 1, nor previously

reported elsewhere. The other main metabolic observations that emanated from this NMR-

based intervention study was the increased levels of urinary lactic acid (indicated as a bio-

marker in two of the listed rodent studies) and hypoxanthine (not observed in the studies listed

in Table 1, but observed in another metabolomics study on patients with liver cirrhosis [11]).

Both these observations strongly support the view that the reduced cytosolic environment is

the primary metabolic consequence of acute alcohol consumption. Taken together, the meta-

bolic information acquired from this metabolomics study further underscores the view that

alcohol consumption is associated with severe risks and remains one of the world’s leading

health risk factors for disability, morbidity and mortality. This is succinctly expressed in the

2014 World Health Organization global status report on alcohol [29]: “Of all deaths worldwide,

5.9% are attributable to alcohol consumption; this is greater than, for example, the proportion of
deaths from HIV/AIDS (2.8%), violence (0.9%) or tuberculosis (1.7%)”.

Materials and methods

Chemicals and reagents

The substances used for the interventions reported here were: commercial flavoured water as

vehicle (aQuellé lemon-flavoured sparkling water, containing carbonated natural spring water;

fructose; citric acid; flavouring; sodium benzoate preservative; sodium cyclamate, aspartame,

acesulfame K non-nutritive sweeteners; and vitamin C– www.aquelle.co.za, product of South

Africa); commercial alcohol for consumption (Smirnoff No. 21 triple-distilled vodka: 43%

alcohol–product of South Africa); NAD (NAD ASSIST–product of Future Health, South

Africa); and commercial bottled water (Valpré still spring water, inorganic contents specified–

product of South Africa). The internal standard for the 1H-NMR analysis was trimethyl-

2,2,3,3-tetradeuteropropionic acid (TSP, sodium salt; Sigma Aldrich).

Experimental subjects and protocol

The participants in the intervention study consisted of a group of 24 medically confirmed

healthy males, of various ethnicities, between 20 and 24 years of age. All of the participants

were in a healthy, athletic condition, with weights in the 61–92 kg range. They were neither

alcohol addicts nor total abstainers, but confirmed their use of alcohol at a moderate social

level. No participants took any medication, all were asked to refrain from vitamins, minerals,

and other supplementation, and were requested to follow a similar dietary and lifestyle pattern

for the duration of the study. The complete protocol, described previously [3], was approved

by the Health Sciences Ethical Committee of North-West University (Ethical approval num-

ber: NWU-00045-12-S1) and conducted in accordance with guidelines for good clinical prac-

tice. The study was performed at the Health Clinic of the university, under the supervision of a

Metabolomics of acute alcohol consumption
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medical doctor as well as a nurse, and all participants could leave the premises only after

approval by the doctor.

The experiments were conducted on Saturday mornings between 08:00 and 12:00. All par-

ticipants had to abstain from breakfast and had to provide an early morning urine sample, col-

lected one hour before the start of the experiment (time –1). The participants were randomly

assigned to an intervention group until all 24 had participated in all four interventions (“vehi-

cle only”, “alcohol plus vehicle”, “vehicle plus NAD” and “vehicle plus alcohol and NAD”).

Owing to commitments of some participants, the experiments were performed over a period

of 7 consecutive Saturdays. However, three of the participants failed to participate in all four

interventions, and their samples were therefore excluded from the data generation process.

Through data analysis, one further participant was marked as an outlier in one of the interven-

tions, and was therefore also excluded from further analyses. Thus, the data generated were

based on the complete sets of information obtained from 20 participants.

The four interventions consisted of the consumption of: (1) 500 mL lemon-flavoured water

only, to measure the baseline effect of the vehicle; (2) 1.5 g vodka per kg body mass; (3) one

tablet containing 50 mg NAD; and (4) 1.5 g vodka per kg body mass plus 50 mg NAD. In all

three of the latter interventions, the substances were consumed with 500 mL flavoured water

as vehicle. NAD (where applicable) was taken one hour before the start of the experiment,

directly after collection of the first (time –1) urine sample. The dose and time schedule for con-

suming the alcohol (maximally five minutes) comply with established criteria to result in a tol-

erable but moderately severe level of acute alcohol intoxication [30]. All participants were

provided with 1.5 L pure spring water, which was the only substance that could be consumed

over the four-hour period of sample collection. Urine samples were collected at time 0, just

prior to consumption of the substances, followed by four further samples at 1, 2, 3 and 4 hours

thereafter, providing six samples in total from each participant for each of the four interven-

tions. All samples were treated, stored, prepared and analysed according to the protocol

described previously [3] and included in Sections A.1 and A.2 in S1 File. Although repeatabil-

ity and reproducibility are not major concerns in NMR analyses [31], the measurement design

included the use of pooled quality control (QC) samples to estimate any batch effect or other

interfering analytical aspect. The collected samples were analyzed in 24 separate batches, each

batch containing the 24 samples of a single subject and three QC samples. The batch analysis

order is given in Section A.1 in S1 File. The quality assurance results (given in Section A.3.2

and Figure A in S1 File) indicated that the QC samples clustered close together and therefore

no batch correction was required.

Uric acid does not have NMR-detectable protons at physiological pH, making it essentially

‘‘NMR invisible” [25]. Uric acid concentrations were therefore determined in each sample

individually on a ThermoFisher Scientific Clinica Chemistry Analyzer (type 863), using Ther-

moFisher Scientific Uric Acid Reagents (details on the analysis are included in Section B in S1

File).

Data analysis

The original NMR spectral data (referred to in Section C in S1 File and available in S2 File)

were subjected to pre-processing—data were normalized relative to the CH2 creatinine peak

(at 4.05 ppm), and very low values were replaced with zero, before performing a 50% zero-filter

(details in Section A.3.1 in S1 File). Further bin reduction, based on batch comparisons of the

coefficient of variation of the bins from the QC samples, yielded 289 bins for further analyses.

The resulting data were analysed along all dimensions in order to understand the metabolic

effect of the different interventions in time, as well as the differences between the participants,

Metabolomics of acute alcohol consumption
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even when considering a relatively homogeneous group such as the subjects involved in this

study. The analysis was performed on different cross-sections and blocks of the data tensor.

Univariate as well as multivariate methods were applied. Data were log transformed (natural

log with shift parameter equal to 1) and auto-scaled (per bin) prior to univariate (parametric

tests only) and multivariate analysis.

The first analysis aimed to shed light on the impact of the consumption of a single, large

dose of alcohol. To illustrate this effect, data from the “vehicle only” and “alcohol plus vehicle”

interventions were compared at each point in time. Cross-sectional analysis made use of multi-

variate techniques, including hierarchal cluster analysis (Euclidian distance and Ward linkage)

and multi-level principal component analysis (ML–PCA) [32]. Univariate approaches

included determining Wilcoxon signed-rank test (WRT) p-values and associated effect size, as

well as fold change (FC) values.

Next, statistical analysis focused on the metabolic perturbations that result from the con-

sumption of alcohol as measured in time. Through the application of a combination of statisti-

cal methods, and using time 0 as a reference point, or control group, a shortlist of significantly

perturbed NMR spectral bins was compiled and quantified from the “alcohol plus vehicle”

intervention data for biological interpretation. This list of important bins was extended

through the inclusion of metabolites that were well presented in the spectra, although they did

not contribute significantly to the statistical differentiation within the “alcohol plus vehicle”

consumption profiles.

Lastly, the effect of NAD supplementation was of interest. In order to evaluate this interven-

tion, a select list of biologically relevant metabolites was modelled across the time period and

across all four interventions using a two-way repeated measures analysis of variance (2-way

RM ANOVA) model. The significance of the differences was calculated using Greenhouse–

Geisser-corrected p-values. In addition, Wilcoxon signed-rank tests were performed to calcu-

late the significance of the differences between selected pairs of measurements.

Results

An example of a 1H-NMR spectrum (10.00 to 0.00 ppm), generated from the analysis of a rep-

resentative experimental sample collected one hour following the “alcohol plus vehicle” inter-

vention, is shown in Fig 1A, together with enlargements of four sections of the spectrum to

further illustrate some detail (Fig 1B–1E).

The dominating peaks in Fig 1A were from ethanol (due to the alcohol consumption), hip-

puric acid (the biotransformation product of benzoic acid, derived from the gut microbiome

and present in the vehicle used in all the interventions, as well as observed in a moderate red

wine nutritional study) [23], creatinine (a normal constituent of urine), and trimethylamine-

N-oxide (TMAO), a known osmolyte and protein stabilizer. Most notable was the presence of

an exceedingly complex area, approximately between 3.60 and 3.90 ppm (Fig 1B). Interpreta-

tion of this region is particularly difficult, since it may contain overlapping resonances from

several metabolites. The strong signals observed at 3.60–3.69, 3.73, 3.74–3.80 and 3.85 ppm

were suggestive of sorbitol in the urine, following alcohol consumption. This suggestion was

confirmed by comparing the spectra obtained through two-dimensional (2D) correlation spec-

troscopy (COSY) analysis of an experimental sample, obtained one hour after alcohol con-

sumption, and a sample containing sorbitol as a standard (Fig 2).

Next, an area with several related amines or amine derivatives is shown in Fig 1C, while Fig

1D indicates the presence of hypoxanthine (an intermediate in the catabolism of purines

towards uric acid) and indoxyl sulphate (a biotransformation product of tryptophan). Finally,

Fig 1E indicates the presence of ethanol itself, as well as the lactic acid doublet (1.33 ppm), the
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main known marker of lactic acidosis, and one of the primary effects of acute alcohol

consumption.

Spectral analysis of the representative sample gives a clear indication of the important

metabolites present in urine following alcohol consumption (Fig 1), but no information on the

underlying dynamic effects following the consumption. The next step was therefore to deter-

mine the time-dependent impact of the consumption of a single, large dose of alcohol. Statisti-

cal analyses of the data obtained from the experimental samples from the “vehicle only” and

“alcohol plus vehicle” interventions provide such information, and are illustrated in Fig 3. The

NMR spectra generated were dominated by the presence of hippuric acid (see [3]). Exclusion

of hippuric acid from the data set, however, did not significantly affect the relevant informa-

tion on alcohol consumption.

1.350 1.300 1.250 1.200 1.150

LA
EtOH

e

8.00 7.75 ppm

HX

IS IS

d

3.00 2.90 2.80 2.70 2.60 2.50

DMG

TMA

MA

CA

DMF DMF

CTc

3.900 3.800 3.700 3.600 ppm

GLY

SO

CT

b

10.00 7.50 5.00 2.50 0.00 ppm

HA

Cr

TMAO
HA

SA

a

Fig 1. Representative 1H-NMR spectrum of urine collected one hour following the “alcohol plus vehicle” intervention. EtOH = ethanol (1.18 t,

3.64 q); LA = lactic acid (1.33 d, 4.12 q); SA = succinic acid (2.41 s); TMAO = trimethylamine-N-oxide (3.27 s); CA = citric acid (2.61 AB);

MA = methylamine (2.61 s); TMA = trimethylamine (2.90 s); DMG = N,N-dimethylglycine (2.93 s); DMF = N,N-dimethylformamide (2.87 s, 3.02

s); CT = creatine (3.04 s, 3.93 s); GLY = glycine (3.57 s); SO = sorbitol (3.60–3.69 m, 3.73 d, 3.74–3.80 m, 3.82 d, 3.85 m); IS = indoxyl sulphate (7.51

d, 7.70 d); HX = hypoxanthine (8.20 d); HA = hippuric acid (3.97 d, 7.56 tt, 7.64 tt, 7.84 dd); Cr = creatinine (3.05 s, 4.06 s). [Not observed in the

present spectrum: fumaric acid (6.52 s) and 3-hydroxybutyric acid (1.20 d, 2.36 m, 4.15 m)].

https://doi.org/10.1371/journal.pone.0196850.g001
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Fig 3A and 3D (time 0) showed no group separation prior to vehicle or alcohol consump-

tion. It did, however, become apparent that one individual may have used an exogenous sub-

stance on the day of his “vehicle only” intervention experiment, which completely separated

this person from all others in the group (indicated as a red square in Fig 3A). This rendered

the data from this individual unfit for analysis, producing the final number of 20 cases used for

further analysis. The bin profiles obtained two hours after the “vehicle only” and “alcohol plus

vehicle” interventions clearly indicated group differences in the unsupervised analyses due to

the addition of alcohol (Fig 3B and 3E). The Volcano plot from data collected one hour after

alcohol consumption revealed a larger number of bins with significant up- and down-regu-

lated values (p� 0.05 and │FC│� 2) relative to the number of bins from data collected one

hour after vehicle consumption (data not shown). This number of significant bins increased to

at least 58 out of the 289 bins (20%) two hours following consumption (Fig 3H). The number

of these bins progressively decreased 3 and 4 hours after consumption, becoming only 13 bins

after 4 hours that differed significantly between the two interventions (Fig 3I).

Given this marked effect, the next set of analyses were performed to identify and rank the

bins most affected by the consumption of alcohol using time 0 as a point of reference. Bins
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Fig 2. Confirmation of sorbitol annotation. (a) 1D 1H-NMR of a representative urine sample collected one hour after alcohol consumption,

zoomed into the 3.50–3.90 ppm region (black), compared to the pure compound spectrum of sorbitol (blue). (b) Correlating 2D 1H-NMR COSY,

confirming the sorbitol annotation based upon proton correlation.

https://doi.org/10.1371/journal.pone.0196850.g002
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were shortlisted if they differed significantly within the “alcohol plus vehicle” intervention at

any point in time (relative to time 0) based on a significant WRT p-value� 0.05 and |FC|� 2.

This shortlist of bins was linked to a set of metabolites and quantified. This list, including only

the most perturbed metabolites, was then extended through the inclusion of metabolites which

were well presented in the spectra, but did not contribute significantly to the statistical differ-

entiation within the “alcohol plus vehicle” consumption profiles. Quantified uric acid data

(not identified by NMR analysis, but determined individually for each urine sample) was also

added to this final shortlist of 13 important metabolites. The concentrations of these 14 metab-

olites, at all five time points related to the “alcohol plus vehicle” intervention, are given in

Table 2, together with the relevant summary statistics, determined one (early effect) and four
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Fig 3. Group separation between participants, based on equidistant binned spectral data from the “vehicle only” and the “alcohol plus vehicle”

interventions, illustrated as dendrograms, ML–PCA plots and Volcano plots. The respective analyses were constructed on subsets of the data

representing the same three time points—time 0 (a, d and g), 2 hours (b, e and h) and 4 hours (c, f and i) following the two interventions. Data from

the 21 participants in the dendrograms and ML–PCA plots are shown as blue dots/areas for the “vehicle only” intervention and pink dots/areas for the

“alcohol plus vehicle” intervention. The single outlier is shown as a red square in the dendrograms. All data from this participant were excluded from

further analyses, resulting in the analysis of the data from a total of 20 participants.

https://doi.org/10.1371/journal.pone.0196850.g003
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(late effect) hours after alcohol consumption. Time –1 is not included in Table 2 since it

reflects the past several hours prior to the intervention, and is not related to the “alcohol plus

vehicle” intake. The purpose of Table 2 was then to rank metabolites for biological interpreta-

tion of the consequences of the intervention.

The data summarized in Table 2 indicate that seven metabolites (ethanol, hypoxanthine,

indoxyl sulphate, lactic acid, methylamine, sorbitol and TMAO) were significantly up-regu-

lated (p� 0.05) in the first hour following alcohol consumption. Five of these metabolites (eth-

anol, hypoxanthine, lactic acid, sorbitol and TMAO) remained up-regulated at every time

point up to time 4 after alcohol consumption, although less significantly so (p� 0.05) than

after the first hour. This observation illustrates a general characteristic of metabolic profiling,

Table 2. Quantified data of important metabolites following alcohol consumption.

Variable Time 0 vs Time 1 (early effect) Time 0 Time 1 Time 2 Time 3 Time 4 Time 0 vs Time 4 (late effect)

WRT p-value WRT Effect Size Mean Mean Mean Mean Mean WRT p-value WRT Effect Size

[BH Adjusted p-

value]

[FC] [SD] [SD] [SD] [SD] [SD] [BH Adjusted p-

value]

[FC]

DMF (N,N-dimethylformamide) 0.057 0.301 15.98 16.58 15.64 16.01 17.12 0.017 0.378

[0.079] [+1.038] [2.292] [2.613] [2.795] [2.308] [2.699] [0.047] [+1.071]

DMG (N,N-dimethylglycine) 0.052 0.307 8.472 9.656 9.190 8.168 8.438 1.000 0.000

[0.079] [+1.140] [7.965] [10.02] [9.230] [7.640] [7.274] [1.000] [–1.004]

Ethanol <0.0001 0.620 0.000 1389 6448 3440 1912 <0.0001 0.620

[0.0004] [> +100] [0.000] [1556] [2673] [1984] [1250] [0.001] [> +100]

Glycine 0.044 0.319 160.2 183.4 151.4 146.6 158.3 0.601 0.083

[0.077] [+1.145] [84.90] [86.26] [44.68] [50.45] [56.11] [0.701] [–1.012]

Hippuric acid 0.313 0.159 220.4 380.2 87.66 138.1 178.9 0.100 0.260

[0.313] [+1.725] [217.2] [393.7] [124.4] [344.7] [333.7] [0.156] [–1.232]

Hypoxanthine <0.0001 0.620 9.604 78.63 29.82 14.44 12.48 0.044 0.319

[0.0004] [+8.187] [7.029] [45.97] [14.99] [5.716] [5.191] [0.077] [+1.299]

Indoxyl sulphate 0.002 0.490 24.30 27.86 24.87 21.51 22.87 0.794 0.041

[0.005] [+1.147] [10.29] [13.42] [16.04] [14.25] [11.19] [0.855] [–1.063]

Lactic acid 0.001 0.508 70.90 179.9 92.74 75.96 72.79 0.006 0.431

[0.004] [+2.537] [61.39] [274.8] [19.59] [14.04] [16.26] [0.022] [+1.027]

Methylamine 0.006 0.431 4.556 5.282 5.937 5.186 5.059 0.033 0.336

[0.013] [+1.159] [2.146] [2.477] [2.256] [2.380] [2.263] [0.073] [+1.110]

Sorbitol <0.0001 0.620 0.000 653.2 852.8 426.2 289.0 0.000 0.614

[0.0004] [> +100] [0.000] [462.0] [625.7] [331.6] [253.3] [0.001] [> +100]

Taurine 0.062 0.295 100.6 108.2 109.7 113.5 118.7 0.006 0.437

[0.079] [+1.076] [29.71] [32.54] [29.86] [37.45] [36.49] [0.022] [+1.180]

TMAO (trimethylamine N-

oxide)

0.002 0.502 51.18 58.32 60.31 62.45 62.00 0.037 0.331

[0.004] [+1.139] [23.90] [25.48] [29.26] [35.68] [32.48] [0.073] [+1.211]

Trimethylamine 0.100 0.260 1.753 1.987 1.763 1.654 1.615 0.167 0.218

[0.117] [+1.133] [1.229] [1.657] [1.680] [1.578] [1.436] [0.234] [–1.085]

Uric acid 0.247 0.183 0.963 0.713 0.336 0.487 0.743 0.211 0.198

[0.266] [–1.351] [0.760] [0.279] [0.168] [0.243] [0.566] [0.269] [–1.296]

All quantified values, except those for uric acid (expressed as mmol/L), are from NMR-determined urine analyses, and are expressed as μmol metabolite/mmol

creatinine. WRT p-values are based on the comparison of the respective metabolite concentrations relative to time 0 for time 1 and time 4 of the “alcohol plus vehicle”

intervention. P-values adjusted for multiple testing (14 tests in total) are also reported based on the Benjamini & Hochberg (BH) approach for controlling the rate of

false discoveries. Positive and negative fold change values indicate up- and down-regulation of metabolites, relative to time 0, respectively.

https://doi.org/10.1371/journal.pone.0196850.t002
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well known in the area of inherited diseases: serial examinations of urinary metabolites show

that the amounts of these acids excreted varies greatly in time following a perturbation, mostly

due to different metabolic consequences related to the perturbation. The uric acid excretion

profile observed in this study further emphasizes this characteristic. The profile of urinary uric

acid differed distinctly from those of the other metabolites mentioned—its concentration

decreased from time 0, and became significantly reduced 2 and 3 hours after alcohol consump-

tion (p� 0.05 relative to time 0). Thereafter, its concentration steadily increased to near its

initial level after 4 hours. Three other metabolites, DMF, taurine and glycine, became signifi-

cantly up-regulated at some stage following alcohol consumption. The up-regulation of two

metabolites, DMG and trimethylamine, was not significant at any time point relative to time 0

following the intervention. The excretion profile of hippuric acid followed the same trend as

previously reported for the “vehicle only” intervention [3].

These mean values of the metabolites over time indicate the dynamic aspect following alco-

hol consumption, but do not reflect individual responses towards the intervention. Inter-indi-

vidual variation has already been well established even for consumption of only the vehicle

used in this study [3], and therefore, this aspect is not discussed in detail here. Instead, focus

was placed on the individual, as well as the group, concentration changes of the five important

metabolites that were significantly up-regulated during the whole time period following alco-

hol consumption, as well as on the concentration changes of uric acid, owing to its unique

excretion profile.

Fig 4 displays subplots as a set of solid lines (and one dotted line) representing the observa-

tions from the 20 individuals across 5 time points for each of the six metabolites shown to be

significantly up-regulated in Table 2. The black dashed lines represent one potential LOWESS

(locally weighted scatterplot smoothing) regression for each metabolite against time using a

bi-weight kernel. Most individuals excreted a limited amount of ethanol in their urine one

hour after alcohol consumption, and, generally, ethanol excretion peaked two hours following

alcohol consumption (Fig 4A). Likewise, most individuals showed a distinct excretion of the

osmolyte sorbitol one hour after alcohol consumption (Fig 4B), albeit at different concentra-

tions. The LOWESS regression curve for sorbitol, however, peaked at 2 hours for the group as

a whole. The concentration of TMAO, another osmolyte, increased significantly from time 0

(Fig 4C), reaching a plateau at 3 hours. Its final concentration was, however, still higher

(p = 0.037) than the baseline value at time 0.

The next observations from Fig 4 are closely associated with the known alcohol-induced

disturbance of the NAD+:NADH ratio in hepatocytes. The excretion of lactic acid for the

group peaked at 2 hours, but 4 individuals showed an early and excessive response one hour

after alcohol consumption (Fig 4D). The profile of the LOWESS regression curve for hypoxan-

thine (Fig 4E) distinctly peaked one hour following alcohol consumption. Two of the early

high lactic acid responders showed similar, high hypoxanthine excretion profiles. The general

profile of uric acid excretion (Fig 4F) was a mirror image of that of hypoxanthine, indicating

the NAD+-dependence of its formation through dehydrogenation of hypoxanthine (catalysed

by xanthine dehydrogenase; EC 1.17.1.4).

Most individuals followed the general trend indicated by the LOWESS regression line,

although one showed an early excretion of ethanol following alcohol consumption (shown as a

red dotted line in Fig 4). Compared to the group, this individual also presented with a high

excretion of sorbitol and TMAO, peaking at one hour, an early and extremely high lactic acid

excretion, high excretion of hypoxanthine, but comparable excretion of uric acid. Since this

person did not present as an outlier, we attribute this variation to the unique response of this

individual to alcohol consumption. Diversity in the excretion profiles of the individuals within

the group, emphasized by the one highlighted person, clearly illustrates the importance of
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inter-individuality, previously described for the consumption of only the vehicle [3]. Taken

together, the combination of observations summarized in Table 2 and illustrated in Fig 4 indi-

cate that the cases themselves are a noteworthy source of variation, while the group response

provided the opportunity for the development of a holistic model of the effect of acute alcohol

consumption.

Finally, the ingestion of one tablet of an NAD-containing supplement, proposed to poten-

tially counteract the effects of alcohol consumption, did not show a notable effect if taken one

hour before the alcohol dose. To illustrate this, the complete design of this study (that is, four

interventions measured over 6 time points) was modelled for quantified hypoxanthine and

sorbitol, using a 2-way RM ANOVA model based on log transformed data to improve normal-

ity. Reported in the graphs are the Greenhouse–Geisser-corrected p-values for the main effects

(where significant), as well as specific comparisons based on the Wilcoxon signed-rank tests

(Section A.3.3 in S1 File provides more details on this analysis). These two metabolites were

selected based on the NAD+-dependence of their catabolism (hypoxanthine! xanthine!

uric acid, both reactions catalysed by xanthine dehydrogenase; and sorbitol! fructose, cata-

lysed by sorbitol dehydrogenase (SD; EC 1.1.1.14), respectively). Fig 5 provides a brief over-

view of the information extracted from this model.

Et
OH

Time

0

5000

10000

15000

0 1 2 3 4

a

So
rb

ito
l

Time

0

1000

2000

3000

0 1 2 3 4

b

Hy
po

xa
nth

ine

Time
0

100

50

150

200

0 1 2 3 4

e

Ur
ic 

ac
id

Time

0

1

2

3

0 1 2 3 4

f

Subject 1 2 3 5 6 7 9 11 12 13 14 15 16 17 18 19 20 21 22 23

La
cti

c a
cid

Time

0

800

400

600

200

1000

1200

0 1 2 3 4

d

TM
AO

Time

0

50

150

100

200

0 1 2 3 4

c
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observations from the 20 individuals across 5 time points for a given metabolite: (a) ethanol; (b) sorbitol; (c) TMAO; (d) lactic acid; (e)
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https://doi.org/10.1371/journal.pone.0196850.g004
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Fig 5A and 5C indicate a significant difference in the average levels of hypoxanthine and

sorbitol, respectively, between the interventions including and excluding alcohol, as well as in

time between the interventions including alcohol. Fig 5B and 5D, likewise, indicate a signifi-

cant difference in the average change in the levels of hypoxanthine and sorbitol across the time

period between the four interventions. All the results from this approach therefore arrive at

the same conclusion—the observed differences were mainly attributable to the consumption

of alcohol. For sorbitol, the differences were only significant when comparing the two inter-

ventions involving alcohol with the two not involving alcohol. No significant differences were

observed between the two interventions not involving alcohol, nor between the two interven-

tions involving alcohol. For hypoxanthine, significant differences were observed between the

“alcohol plus vehicle” and the “vehicle plus alcohol and NAD” interventions at 2 and 3 hours

after consumption, with significance on the average levels at 2 and 4 hours, respectively.

Although alcohol consumption caused increased hypoxanthine excretion, it appears that the

addition of NAD resulted in even higher amounts of hypoxanthine being excreted. These

results indicate that NAD, as used in this study, might potentially have an effect in the later
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Fig 5. Indications of differences in the average levels of hypoxanthine and sorbitol across the four interventions and six time points. (a)
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hypoxanthine levels, measured from time 0, following the four interventions. (c and d) The comparative results for sorbitol. Significant differences
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https://doi.org/10.1371/journal.pone.0196850.g005
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phases following alcohol consumption, but, as a whole, do not justify its application as a sup-

plement to counteract the effects of alcohol consumption.

Discussion

It is known that three mechanisms for ethanol metabolism may be operative in the liver: (1)

the ADH-pathway in the cytosol; (2) the microsomal ethanol oxidizing system (MEOS) of the

endoplasmic reticulum; and (3) the catalase mechanism, located in peroxisomes [33]. In the

ADH-pathway, ethanol is converted to acetaldehyde and acetate in two consecutive dehydro-

genase reactions, both dependent on NAD+. During both of these reactions NAD+ is reduced,

generating excess amounts of NADH. Following acute alcohol consumption, NAD+ depletion,

and the subsequent excessive production of reducing equivalents, greatly perturb the hepato-

cyte redox homeostasis. This perturbation is known, but, through the present NMR metabolo-

mics study, new insights were revealed—illustrated in Fig 6. This figure proposes a model that

ACUTE ALCOHOL
CONSUMPTION

GUT

LIVER

Ethanol
Benzoic

acid

Benzoic
acid

Hepatocytes

Ethanol

Osmolytes

Osmoregulation

Purine degradation
Sorbitol Glucose

Fructose Fructose-1-P G-3-PEthanol

Acetaldehyde Lactic acid Pyruvic acid

Glycolysis

Ketogenesis
Acetyl–Co–A

Acetoacetic acid
Krebs cycle

ATP

ADP

NAD+ NADH+H+

ATP + CoA

AMP

SD

AR

AMP IMP

Adenosine Inosine

Hypoxanthine

Xanthine

Benzoic acid

Glycine

GLYAT
detoxification

Hippuric acid

Uric acid

TMAO

Polyol
pathway

NAD ↓

NAD ↓

NAD ↓

NAD ↓

NAD ↓

OHH3C

Citric acid

Succinic acid

Fumaric acid

Electron
transport

•
OXPHOS

Fig 6. Model of the metabolite profile based on the important metabolites up-regulated following alcohol consumption. The main organs involved

are the gut and the liver. Ethanol absorption is indicated in the upper region of the gut, and benzoic acid (from the vehicle and microbiome metabolism)

in the lower gut. The main metabolism of ethanol, and the associated consequences of the disturbed NAD+:NADH ratio, occur in the liver. The structural

formulas and names of the six important metabolites are shown in red (uric acid is indicated in brackets because it was not measured by NMR). Blue

arrows are not related to enzyme kinetic reactions, but are used as indicators of the proposed flow directions following alcohol consumption.

Osmoregulation is proposed as efflux in hepatocytes in the early phases following alcohol consumption, and potential influx (shown in brackets) in the

later phases. Abbreviations: ATP, adenosine triphosphate; ADP, adenosine diphosphate; AMP, adenosine monophosphate; IMP, inosine monophosphate;

G-3-P, glyceraldehyde-3-phosphate; GLYAT, glycine-N-acyltransferase; SD, sorbitol dehydrogenase; AR, aldose reductase; OXPHOS, oxidative

phosphorylation.

https://doi.org/10.1371/journal.pone.0196850.g006
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outlines three essential disturbances that occur following acute alcohol consumption—up-reg-

ulated lactic acid metabolism, down-regulated purine catabolism and osmoregulation.

First, up-regulation of lactic acid is coupled to the high hepatic NADH:NAD+ ratio (due to

ADH- and ALDH-catalysed ethanol catabolism), which diverts pyruvic acid metabolism

towards lactic acid, and subsequently inhibits gluconeogenesis. During low or chronic alcohol

consumption, excess lactic acid is exported from the liver to peripheral tissues, where NADH

levels are lower, and lactic acid may be reconverted to pyruvic acid for metabolic needs. Dur-

ing acute alcohol consumption, however, aerobic oxidation (that is, the Krebs cycle, the respi-

ratory chain and oxidative phosphorylation) is known to be inhibited [5,6], which was

indicated in our study by the increased levels of fumaric acid (not observed in all experimental

subjects) and succinic acid. Similarly, due to the high hepatic NADH:NAD+ ratio and inhibi-

tion of the Krebs cycle, ethanol-derived acetyl-CoA may be converted to acetoacetic acid and

3-ketobutyric acid, as seen in the urine samples from some of our experimental subjects. The

values of these metabolites were, however, generally too low to enable their quantification. A

noteworthy observation was that a few of the experimental subjects showed excessive urinary

lactic acid excretion shortly after alcohol intake (Fig 4D), whereas the excretion of the majority

of the subjects peaked at two hours following alcohol consumption. These observations are yet

a further example of the individual differences in coping with the consumed alcohol. The com-

mon paradigm is that variation in response to alcohol consumption is genetically controlled,

and is suspected to cause a predisposition towards the development of alcohol-induced liver

disease and alcoholism [34]. Furthermore, we observed that the mean value of urinary lactic

acid peaked one hour after alcohol consumption (increasing roughly 2.5 times from 70.90 mM

to 179.9 mM (p = 0.001)) and declined to a near normal value three hours after consumption

(75.90 mM). This is comparable to the decreased lactic acid levels measured in liver and serum

samples from rats, decapitated three hours following treatment with a single intragastric dose

of ethanol [18].

Second, hypoxanthine, an intermediate in purine catabolism and a precursor of uric acid,

appeared to be an important indicator of acute alcohol consumption (Fig 4E). This is in agree-

ment with the increased hypoxanthine observed in patients suffering from alcohol- and hepati-

tis B-induced cirrhosis [11], and in those listed with stearamide as biomarker for hepatic

cirrhosis [17]. In addition, several intravenous ethanol infusion, and related, studies on purine

metabolism in humans (reviewed in [35]) indicated that many factors affect this metabolic

pathway—daily drinking habits; the type of alcoholic beverages; exercise; and, ultimately,

ALDH polymorphisms, are all important contributing factors. Increased AMP following alco-

hol consumption seems to be the important metabolic departure point in reflecting on purine

catabolism—alcohol-induced diminished ATP production via glycolysis [36] and increased

adenine nucleotide turnover [37], contribute towards increased ADP levels, and its increased

conversion to AMP. Additionally, during the ADH- and ALDH-catalysed degradation of etha-

nol, two equivalents of ATP are consumed and two equivalents of AMP are produced for each

equivalent of ethanol converted to acetyl-CoA [38]. All these perturbations lead to a consider-

able alcohol-induced increase in AMP, which is then catabolised and reflected in the hypoxan-

thine and, ultimately, uric acid profiles. Hyperuricaemia, gout and increased urinary uric acid

excretion, accompanied by raised urinary hypoxanthine and xanthine concentrations, are

accepted indicators of chronic alcohol consumption, although excretion of hypoxanthine was

shown to be lower than that of xanthine in regular drinkers [39]. In our study, we observed a

highly significant increase (Table 2: p� 0.0001; FC = +8.187) in hypoxanthine excretion in all

20 cases studies, which peaked at one hour after alcohol consumption in 18 of the cases, and at

2 hours in the other two cases (Fig 4E). The general pattern of the urinary excretion of uric

acid (Fig 4F) presents as a mirror image to that of hypoxanthine, initially decreasing and then
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returning to near its starting concentration. We relate these observations to the alcohol-

induced perturbed hepatic redox state—depleted NAD+, the cofactor for xanthine dehydroge-

nase, interrupts the purine catabolic pathway, decreasing the conversions of hypoxanthine to

xanthine, and xanthine to uric acid. However, as the NADH:NAD+ ratio normalizes, these

reactions can once again take place, resulting in the catabolism of hypoxanthine to produce

uric acid. It should, however, be noted that lactic acid, which is highly increased following

alcohol consumption, competitively inhibits the clearance of uric acid through the renal proxi-

mal tubule [40], which further supports the observed initial decrease in uric acid excretion fol-

lowing alcohol consumption. Thus, while hyperuricaemia is an accepted marker of regular

and chronic alcohol consumption, increased excretion of hypoxanthine may possibly act as an

indicator of acute alcohol consumption.

Third, of notable interest, was the observation of the increased urinary excretion of sorbitol

following ethanol consumption, which is not listed in the review on global metabolic profiling

studies on alcohol-related disorders, covering NMR, GC–MS and LC–MS approaches [17].

Sorbitol was not detected in any of the urine samples collected prior to any of the interventions

(normal reference value: 3.506 ± 2.24 μmol/mmol creatinine) [25]. Its excretion, however,

increased rapidly in most individuals following alcohol consumption (Fig 4B). Moreover, the

sorbitol excretion profile did not seem to be affected by the consumption of the NAD supple-

ment, taken prior to alcohol consumption (Fig 5C and 5D). Sorbitol is an organic osmolyte

present in all human cells, and, together with other osmolytes, reaches very high concentra-

tions (in the millimolar range) in the cytosol. In human cells, the osmolytes are classified into

three groups [41]: (1) amino acids and their derivatives (including taurine); (2) methylamines

(including TMAO); and (3) polyols (including sorbitol). Osmolytes play key roles as cytopro-

tectants, and in maintaining cell volume homeostasis [42]. They function as nonperturbing

solutes, which permits their accumulation to high levels and large shifts in their concentrations

without having deleterious effects on cellular structure and function [41]. These unique char-

acteristics of osmolytes opened several lines of thought regarding the perturbation of sorbitol

following acute alcohol consumption. Of these postulates, sorbitol synthesis and catabolism

(occurring in the polyol pathway), as well as its function in osmoregulation, are pertinent:

(1) The NADPH-dependent enzyme aldose reductase (AR; EC 1.1.1.21) catalyses the syn-

thesis of sorbitol from glucose. This reaction is highly operative under hyperglycaemic condi-

tions, such as in diabetes mellitus [43], when up to 30% of glucose is channelled into the AR-

catalysed polyol pathway. However, given the fasting state of the experimental subjects before

the “alcohol plus vehicle” intervention, and the increased anaerobic oxidation of glucose

towards lactic acid, it seems unlikely that sorbitol accumulation was due to the activation of

sorbitol synthesis. (2) The next step in the polyol pathway is the degradation of sorbitol to fruc-

tose, a reaction catalysed by the NAD+-dependent enzyme sorbitol dehydrogenase (SD). In

this study, sorbitol accumulation may be attributed to the alcohol-induced inhibition of its

catabolism—due to the metabolism of ethanol, the NAD+ required for the dehydrogenation of

sorbitol becomes depleted. Furthermore, significant down-regulation of SD has been observed

in a study on the changes of the cytoplasmic proteome in response to alcoholic hepatotoxicity

in rats [44], which lends support to this viewpoint. (3) Increased sorbitol as a consequence of

its role in osmoregulation, however, seems to be the preferred explanation for interpreting the

observed urinary excretion profile of sorbitol. Ethanol is both water and lipid soluble, which

renders it a membrane-permeable substance. Abnormal cell volume regulation significantly

contributes to the pathophysiology of several disorders, and cells respond to these changes by

importing, exporting, or synthesizing osmolytes to maintain volume homeostasis [45]. On an

experimental level, oedema/cell swelling could be induced by binge-simulated ethanol expo-

sure in slice cultures of the developing rat brain [46]. In a cell-to-medium flux study,
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hyperosmotically induced intracellular accumulation of sorbitol in renal epithelial cells showed

a greater than 150-fold increased efflux within five minutes after exposure to an isosmotic

medium. We thus speculate that the increased sorbitol excretion in our alcohol-exposed sub-

jects relates to ethanol-induced hepatocyte swelling, which is compensated for by sorbitol

release in order to maintain cellular volume homeostasis. Although less pronounced in this

study than that of sorbitol, perturbations of other osmolytes, such as TMAO and taurine

(observed in this study, see Table 2), should also be considered in the examination of osmolyte

responses.

In summary, we have described the urinary metabolite profile of healthy, young males fol-

lowing acute alcohol consumption as part of a designed intervention study. The complex

NMR spectral data, generated from individuals participating in a time-dependent cross-over

study, could be resolved sufficiently through the application of univariate and multivariate sta-

tistical analyses. This approach provided a novel method for the analysis and understanding of

the complex metabolomics data that were produced due to acute alcohol consumption. We

indicate that NAD+ depletion, and the production of an excessive amount of reducing equiva-

lents, greatly perturb the hepatocyte redox homeostasis, resulting in metabolic disturbances, of

which urinary excretion of sorbitol is novel. We postulate that sorbitol is a marker of a cell vol-

ume regulatory response to ethanol-induced hepatocyte swelling. This may have a wider sig-

nificance related to brain oedema-induced neurodegenerative damage following chronic binge

alcohol exposure [46,47].
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