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Stochasticity and limited precision of synaptic weights in neural network models are key aspects of both
biological and hardware modeling of learning processes. Here we show that a neural network model with
stochastic binary weights naturally gives prominence to exponentially rare dense regions of solutions with a
number of desirable properties such as robustness and good generalization performance, while typical
solutions are isolated and hard to find. Binary solutions of the standard perceptron problem are obtained
from a simple gradient descent procedure on a set of real values parametrizing a probability distribution
over the binary synapses. Both analytical and numerical results are presented. An algorithmic extension
that allows to train discrete deep neural networks is also investigated.
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Learning can be regarded as an optimization process
over the connection weights of a neural network. In nature,
synaptic weights are known to be plastic, low precision,
and unreliable, and it is an interesting issue to understand if
this stochasticity can help learning or if it is an obstacle.
The debate about this issue has a long history and is still
unresolved (see Ref. [1] and references therein). Here,
we provide quantitative evidence that the stochasticity
associated with noisy low-precision synapses can drive
elementary supervised learning processes towards a par-
ticular type of solutions which, despite being rare, is robust
to noise and generalizes well—two crucial features for
learning processes.
In recent years, multilayer (deep) neural networks have

gained prominence as powerful tools for tackling a large
number of cognitive tasks [2]. In a K-class classification
task, neural network architectures are typically trained as
follows. For any input x ∈ X (the input space X typically
being a tensor space) and for a given set of parameters W
called synaptic weights, the network defines a probability
density function Pðyjx;WÞ over the K possible outcomes.
This is done through composition of affine transformations
involving the synaptic weights W, elementwise nonlinear
operators, and finally a softmax operator that turns the
outcome of previous operations into a probability density
function [3]. The weights W are adjusted in a supervised
learning scenario using a training set D of M known
input-output associations, D ¼ fðxμ; yμÞgMμ¼1. The learning
problem is reframed into the problem of maximizing a log-
likelihood L̃ðWÞ over the synaptic weights W:

max
W

L̃ðWÞ ≔
X

ðx;yÞ∈D
logPðyjx;WÞ: ð1Þ

The maximization problem is approximately solved
using variants of the stochastic gradient descent (SGD)
procedure over the loss function −L̃ðWÞ [4]. In a Bayesian
approach instead, one is interested in computing the
posterior distribution PðWjDÞ ∝ PðDjWÞPðWÞ, where
PðWÞ is some prior over the weights W. In deep networks,
unfortunately, the exact computation of PðWjDÞ is typi-
cally infeasible, and various approximated approaches have
been proposed [5–7].
Shallow neural network models, such as the perceptron

model for binary classification, are amenable to analytic
treatment while exposing a rich phenomenology. They have
attracted great attention from the statistical physics commu-
nity for many decades [8–16]. In the perceptron problem, we
have binary outputs y ∈ f−1;þ1g, while inputs x and
weightsW are N-component vectors. Under some statistical
assumptions on the training set D and for large N, single
variable marginal probabilities PðWijDÞ can be computed
efficiently using belief propagation [17–19]. The learning
dynamics has also been analyzed, in particular, in the online
learning setting [11,20]. In a slightly different perspective,
the perceptron problem is often framed as the task of
minimizing the error-counting Hamiltonian

min
W

HðWÞ ≔
X

ðx;yÞ∈D
Θ
�
−y

XN
i¼1

Wixi

�
; ð2Þ
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whereΘðxÞ is theHeaviside step function,ΘðxÞ ¼ 1 ifx > 0,
and 0 otherwise.As a constraint satisfaction problem, it is said
to be satisfiable (SAT) if zero energy [i.e., HðWÞ ¼ 0]
configurations exist, and unsatisfiable (UNSAT) otherwise.
We call solutions such configurations. Statistical physics
analysis assuming random and uncorrelatedD shows a sharp
threshold at a certain αc ¼ M=N, when N grows large,
separating a SAT phase from an UNSAT one. Moreover,
restricting the synaptic space to binary valuesWi ¼ �1 leads
to a more complex scenario: most solutions are essentially
isolated and computationally hard to find [13,21]. Some
efficient algorithms do exist though [12,22] and generally
land in a region dense of solutions. This apparent incon-
sistency has been solved through a large deviation analysis
which revealed the existence of subdominant and dense
regions of solutions [14,23]. This analysis introduced the
concept of local entropy [14],which subsequently led to other
algorithmic developments [24–26] (see, also, Ref. [27] for a
related analysis).
In the generalization perspective, solutions within a dense

region may be loosely considered as representative of the
entire region itself and, therefore, act as better pointwise
predictors than isolated solutions, since the optimal
Bayesian predictor is obtained averaging all solutions [14].
Here, we propose a method to solve the binary percep-

tron problem (2) through a relaxation to a distributional
space. We introduce a perceptron problem with stochastic
discrete weights and show how the learning process is
naturally driven towards dense regions of solutions, even in
the regime in which they are exponentially rare compared
to the isolated ones. In perspective, the same approach can
be extended to the general learning problem (1), as we
will show.
Denote with QθðWÞ a family of probability distributions

over W parametrized by a set of variables θ. Consider the
following problem:

max
θ

LðθÞ ≔
X

ðx;yÞ∈D
logEW∼Qθ

Pðyjx;WÞ: ð3Þ

Here, LðθÞ is the log-likelihood of a model where for
each training example ðx; yÞ ∈ D the synaptic weights are
independently sampled according to QθðWÞ. Within this
scheme, two class predictors can be devised for any input x:
ŷ1ðxÞ ¼ argmaxyPðyjx; ŴÞ, where Ŵ ¼ argmaxWQθðWÞ,
and ŷ2ðxÞ ¼ argmaxy

R
dWPðyjx;WÞQθðWÞ. In this Letter,

we will analyze the quality of the training error given by the
first predictor. Generally, dealing with problem (3) is more
difficult than dealing with problem (1), since it retains some
of thedifficulties of the computationofPðWjDÞ. Also, notice
that for any maximizer W⋆ of problem (1) we have that
δðW −W⋆Þ is a maximizer of problem (3) provided that it
belongs to the parametric family, as can be shown using
Jensen’s inequality. Problem (3) is a “distributional” relax-
ation of problem (1).

Optimizing LðθÞ instead of L̃ðWÞ may seem an unnec-
essary complication. In this Letter, we argue that there are
two reasons for dealingwith this kind of task. First, when the
configuration space of each synapse is restricted to discrete
values, the network cannot be trained with SGD procedures.
The problem, while being very important for computational
efficiency and memory gains, has been tackled only very
recently [5,28]. Since variables θ typically lie in a continu-
ous manifold instead, standard continuous optimization
tools can be applied to LðθÞ. Also, the learning dynamics
on LðθÞ enjoys some additional properties when compared
to the dynamics on L̃ðWÞ. In the latter case, additional
regularizers, such as dropout and L2 norm, are commonly
used to improve generalization properties [4]. The SGD in
the θ space instead already incorporates the kind of natural
regularization intrinsic in the Bayesian approach and the
robustness associated to high local entropy [14]. Here, we
make a case for these arguments by a numerical and
analytical study of the proposed approach for the binary
perceptron. We also present promising preliminary numeri-
cal results on deeper networks.
Learning for the stochastic perceptron.—Following the

above discussion, we now introduce our binary stochastic
perceptron model. For each input x presented, N synaptic
weights W ¼ ðW1;…;WNÞ, Wi ∈ f−1;þ1g are randomly
extracted according to the distribution

QmðWÞ ¼
YN
i¼1

�
1þmi

2
δWi;þ1 þ

1 −mi

2
δWi;−1

�
; ð4Þ

where δa;b is the Kronecker delta symbol. We will refer to
the set m ¼ ðmiÞi, where mi ∈ ½−1; 1� ∀ i, as the mag-
netizations or the control parameters. We choose the
probability Pðyjx;WÞ on the class y ∈ f−1;þ1g for a
given input x as follows:

Pðyjx;WÞ ¼ Θ
�
y
XN
i¼1

Wixi

�
: ð5Þ

While other possibilities for Pðyjx;WÞ could be con-
sidered, this particular choice is directly related to the form
of the Hamiltonian in problem (2), which we ultimately aim
to solve. Given a training set D ¼ fðxμ; yμÞgMμ¼1, we can
then compute the log-likelihood function of Eq. (3), with
the additional assumption that N is large and the central
limit theorem applies. It reads

LðmÞ ¼
X

ðx;yÞ∈D
logH

�
−

y
P

imixiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ið1 −m2

i Þx2i
p

�
; ð6Þ

where HðxÞ ≔ R
∞
x dze−z

2=2=
ffiffiffiffiffiffi
2π

p
. Minimizing −LðmÞ

instead of finding the solutions of problem (2) allows us
to use the simplest method for approximately solving
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continuous optimization problems, the gradient descent
(GD) algorithm:

mtþ1
i ← clip(mt

i þ η∂mi
LðmtÞ): ð7Þ

We could have adopted the more efficient SGD
approach; however, in our case, simple GD is already
effective. In the last equation, η is a suitable learning
rate and clipðxÞ ≔ max ( − 1;min ð1; xÞ) is applied ele-
mentwise. The parameters are randomly initialized to
small values, m0

i ∼N ð0; N−1Þ. At any epoch t in the
GD dynamics, a binarized configuration Ŵt

i ¼ sgnðmt
iÞ

can be used to compute the training error Êt ¼
ð1=MÞHðŴtÞ. We consider a training set D where each
input component xμi is sampled uniformly and independ-
ently in f−1; 1g (with this choice, we can set yμ ¼ 1 ∀ μ
without loss of generality). The evolution of the network
during GD is shown in Fig. 1. The training error goes
progressively to zero while the mean squared norm of
the control variables qt⋆ ¼ ð1=NÞPiðmt

iÞ2 approaches 1.
Therefore, the distribution Qm concentrates around a single
configuration as the training is progressing. This natural
flow is similar to the annealing of the coupling parameter
manually performed in local entropy inspired algorithms
[25,26]. We also show in Fig. 1 the probability over the
realizations ofD of finding a solution of the binary problem
as a function of the load α ¼ M=N. The algorithmic
capacity of GD is approximately αGD ≈ 0.63. This value
has to be compared to the theoretical capacity αc ≈ 0.83,
above which there are almost surely no solutions [9] and
state-of-the-art algorithms based on message passing heu-
ristics for which we have a range of capacities αMP ∈
½0.6; 0.74� [12,22,29]. Therefore, GD reaches loads only
slightly worse than those reached by much more fine-tuned
algorithms, a surprising result for such a simple procedure.
Also, for α slightly above αGD, the training error remains
comparably low, as shown in Fig. 1. In our experiments,
most variants of the GD procedure of Eq. (7) performed
just as well: e.g., SGD or GD computed on the fields

hti ¼ tanh−1ðmt
iÞ rather than the magnetizations [30]. Other

update rules for the control parameters can be derived as
multiple passes of online Bayesian learning [31,32].
Variations of rule (7) towards biological plausibility are
discussed in the Supplemental Material [33].
Deep networks.—We applied our framework to deep

neural networks with binary stochastic weights and sgn
activation functions. Using an uncorrelated neuron approxi-
mation, as in Ref. [6], we trained the network using the
standard SGD algorithm with backpropagation. We give
the details in the Supplemental Material [33]. On the
MNIST benchmark problem [45], using a network with
three hidden layers, we achieved ∼1.7% test error, a very
good result for a network with binary weights and
activations and with no convolutional layers [46]. No other
existing approach to the binary perceptron problem has
been extended yet to deeper settings.
Statistical mechanics analysis.—We now proceed with

the analytical investigation of the equilibrium properties of
the stochastic perceptron, which partly motivates the good
performance of the GD dynamics. The starting point of the
analysis is the partition function

Z ¼
Z
Ω

Y
i

dmiδ

�X
i

m2
i − q⋆N

�
eβLðmÞ; ð8Þ

where Ω ¼ ½−1; 1�N , β is an inverse temperature, and we
constrained the squared norm to q⋆N in order to mimic the
natural flow of qt⋆ in the training process. The dependence
on the training set D is implicit in last equation. We shall
denote with ED the average over a training set with input
and output components independently and uniformly
distributed in f−1; 1g. We investigate the average proper-
ties of the system for large N and fixed load α ¼ M=N
using the replica method in the replica symmetric (RS)
ansatz [47]. Unfortunately the RS solution becomes locally
unstable for very large β. Therefore, instead of taking the
infinite β limit to maximize the likelihood, we will present
the results obtained for β large but still in the RS region.
The details of the free energy calculation and of the stability
check can be found in the Supplemental Material [33].
Energy of the binarized configuration.—We now ana-

lyze some properties of the mode of the distribution
QmðWÞ, namely, Ŵi ¼ sgnðmiÞ, that we call the binarized
configuration (BC). The average training error per pattern is

E ¼ lim
N→∞

1

αN
ED

� X
ðx;yÞ∈D

�
Θ
�
−y

X
i

sgnðmiÞxi
���

; ð9Þ

where h•i is the thermal average over m according to the
partition function (8), which implicitly depends on D, q⋆,
and β. The last equation can be computed analytically
within the replica framework (see the Supplemental
Material [33]). In Fig. 2 (left), we show that for large β

FIG. 1. (Left) The training error and the squared norm against
the number of training epochs for α ¼ 0.55 and N ¼ 10001
averaged over 100 samples. (Right) Success probability in the
classification task as a function of the load α for networks of size
N ¼ 1001, 10001 averaging 1000 and 100 samples, respectively.
In the inset, we show the average training error at the end of GD
as a function of α.
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the BC becomes a solution of the problem when q⋆
approaches 1. This is compared to the values of the training
error obtained from GD dynamics at corresponding values
of q⋆ and a modified GD dynamics where we let the system
equilibrate at fixed q⋆. The latter case, although we are at
finite N and we are considering a dynamical process that
could suffer from the presence of local minima, is in
reasonable agreement with the equilibrium result of Eq. (9).
Geometrical structure of the solution space.—Most

solutions of the binary perceptron problem are isolated
[13], while a subdominant but still exponentially large
number belongs to a connected dense region [14].
Solutions in the dense region are the only ones that are
algorithmically accessible. Here, we show that the BCs of
the stochastic binary perceptron typically belong to the
dense region, provided q⋆ is high enough. To prove this, we
count the number of solutions at a fixed Hamming distance
d from the typical BC (this corresponds to fixing an overlap
p ¼ 1–2dÞ. Following the approach of Franz and Parisi
[48], we introduce the constrained partition function

Zðd;mÞ ¼
X
W

Y
ðx;yÞ∈D

Θ
�
y
X
i

Wixi

�

× δ

�
Nð1 − 2dÞ −

X
i

sgnðmiÞWi

�
; ð10Þ

where the sum is over the f−1;þ1gN binary configura-
tions. The Franz-Parisi entropy SðdÞ is then given by

SðdÞ ¼ lim
N→∞

1

N
EDhlogZðd;mÞi: ð11Þ

We show how to compute SðdÞ in the Supplemental
Material [33]. In Fig. 2 (right), we compare SðdÞ for the
stochastic perceptron with the analogous entropies obtained

substituting the expectation h•i over m in Eq. (11) with a
uniform sampling from the solution space of the spherical
(the model of Ref. [8]) and the binary (as in Ref. [13])
perceptron. The distance gap between the BC and the
nearest binary solutions [i.e., the value of the distance after
which SðdÞ becomes positive] vanishes as q⋆ is increased:
in this regime, the BC belongs to the dense cluster, and we
have an exponential number of solutions at any distance
d > 0. Typical binary solutions and binarized solutions of
the continuous perceptron are isolated instead [finite gap
corresponding to SðdÞ ¼ 0 at small distances]. In the
Supplemental Material [33], we provide additional numeri-
cal results on the properties of the energetic landscape in
the neighborhood of different types of solutions, showing
that solutions in flatter basins achieve better generalization
than those in sharp ones.
Conclusions.—Our analysis shows that stochasticity in

the synaptic connections may play a fundamental role in
learning processes by effectively reweighting the error loss
function, enhancing dense robust regions, suppressing
narrow local minima, and improving generalization.
The simple perceptron model allows us to derive

analytical results as well as to perform numerical tests.
Moreover, as we show in the Supplemental Material [33],
when considering discretized priors, there exists a con-
nection with the dropout procedure which is popular in
modern deep learning practice. However, the most prom-
ising immediate application is in the deep learning sce-
nario, where this framework can be extended adapting the
tools developed in Refs. [6,7] and where we already
achieved state-of-the-art results in our preliminary
investigations.
Hopefully, the general mechanism shown here can also

help shed some light on biological learning processes, where
the role of low precision and stochasticity is still an open
question. Finally, we note that this procedure is not limited to
neural network models; for instance, the application to
constraint satisfaction problems is straightforward.
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