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ABSTRACT Long-lasting and sterile homologous protection against malaria can be
achieved by the exposure of malaria-naive volunteers under chemoprophylaxis to
Plasmodium falciparum-infected mosquitoes (chemoprophylaxis and sporozoite [CPS] im-
munization). While CPS-induced antibodies neutralize sporozoite infectivity in vitro and
in vivo, antibody-mediated effector mechanisms are still poorly understood. Here, we in-
vestigated whether complement contributes to CPS-induced preerythrocytic immunity.
Sera collected before and after CPS immunization in the presence of active or inactive
complement were assessed for the recognition of homologous NF54 and heterologous
NF135.C10 sporozoites, complement fixation, sporozoite lysis, and possible subsequent
effects on in vitro sporozoite infectivity in human hepatocytes. CPS immunization in-
duced sporozoite-specific IgM (P � 0.0001) and IgG (P � 0.001) antibodies with
complement-fixing capacities (P � 0.0001). Sporozoite lysis (P � 0.017), traversal
(P � 0.0001), and hepatocyte invasion inhibition (P � 0.0001) by CPS-induced antibodies
were strongly enhanced in the presence of active complement. Complement-mediated
invasion inhibition in the presence of CPS-induced antibodies negatively correlated with
cumulative parasitemia during CPS immunizations (P � 0.013). While IgG antibodies sim-
ilarly recognized homologous and heterologous sporozoites, IgM binding to heterolo-
gous sporozoites was reduced (P � 0.023). Although CPS-induced antibodies did not dif-
fer in their abilities to fix complement, lyse sporozoites, or inhibit the traversal of
homologous and heterologous sporozoites, heterologous sporozoite invasion was more
strongly inhibited in the presence of active complement (P � 0.008). These findings
demonstrate that CPS-induced antibodies have complement-fixing activity, thereby sig-
nificantly further enhancing the functional inhibition of homologous and heterologous
sporozoite infectivity in vitro. The combined data highlight the importance of comple-
ment as an additional immune effector mechanism in preerythrocytic immunity after
whole-parasite immunization against Plasmodium falciparum malaria.

KEYWORDS chemoprophylaxis, sporozoites, IgG, Plasmodium falciparum, antibodies,
complement, controlled human malaria infection, immunization, liver stage,
sporozoites

Malaria is one of the world’s chief causes of morbidity and mortality by infectious
diseases and has a significant impact on public and economic health worldwide.

Nearly half of the world’s population is at risk of malaria, and in 2015, there were
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roughly 200 million clinical cases and nearly half a million deaths attributed to malaria
(1). Malaria is caused by the protozoan parasite Plasmodium and is characterized by a
complex multistage life cycle in the human host. Sporozoites deposited into the skin by
a female Plasmodium falciparum-infected Anopheles mosquito first travel to the liver by
gliding motility (2) and cross cell barriers by breaching host cell membranes (3). After
an invasion-and-maturation step in the liver, merozoites progress to invade erythro-
cytes, leading to the clinical symptoms of malaria (4). Although a significant decrease
in malaria mortality rates has been observed in the last 15 years (1), malaria control
efforts are threatened by the emergence of drug-resistant parasites (5) and insecticide-
resistant mosquitoes (6), stressing the need for a highly effective vaccine.

While achieving sterile immunity by subunit vaccination has proven to be difficult
(7–9), long-lasting and sterile protection against a homologous P. falciparum malaria
infection can be accomplished experimentally by whole-parasite immunization with
live attenuated sporozoites. For instance, this can be achieved in healthy human
volunteers by the intravenous injection of 150,000 cryopreserved sporozoites (PfSPZ-
CVac) (10) or by exposure to bites of 30 to 45 P. falciparum-infected mosquitoes under
chloroquine chemoprophylaxis (chemoprophylaxis and sporozoites [CPS]) (11, 12). This
immunity is long-lasting, involving effector memory T-cell responses as well as memory
B-cell and antibody responses recognizing preerythrocytic-stage antigens (12–17).
CPS-induced antibodies show neutralizing activity against sporozoite and liver-stage
parasites and are capable of reducing liver-stage infection in hepatocytes in vitro and
in vivo in a human liver-chimeric mouse model (18). CPS-induced antibodies show a
much stronger effect on reducing liver-stage infection in vivo than in vitro, suggesting
that additional effector mechanisms besides the direct neutralization of sporozoites by
antibodies may be involved.

One possible mechanism is the activation of complement, representing a system of
heat-sensitive, soluble, and cell surface-associated proteins that are involved in pathogen
opsonization, the recruitment of phagocytes, and pathogen lysis via downstream C3
complement protein deposition (19). The complement pathway plays a key role in the
antibody-mediated inhibition of P. falciparum merozoite invasion, thereby reducing P.
falciparum blood-stage replication and preventing clinical disease (20). Additionally, P.
falciparum sporozoites are susceptible to complement activation by human antibodies that
are naturally acquired after exposure to multiple infections in areas where malaria is
endemic. Naturally acquired antibodies are able to promote complement deposition and
activation, resulting in enhanced antibody-mediated traversal inhibition in vitro (21). Here,
we studied whether antibody-dependent complement activation contributes to
preerythrocytic-antibody-mediated protective immunity against P. falciparum malaria
sporozoites induced by CPS immunization. To this end, CPS-induced antibodies were
assessed for their functional capacity to fix complement proteins on sporozoites, induce
sporozoite lysis, and further impact in vitro hepatocyte traversal and invasion by sporozoites
in the presence of active complement, tested for both the homologous NF54 strain the
genetically and geographically distinct NF135.C10 parasite clone.

RESULTS
CPS immunization induces sporozoite-specific IgG and IgM antibodies.

Sporozoite-specific IgG antibodies were specifically induced in 15 out of 16 volunteers
after completed CPS immunization using NF54-infected mosquitoes, with a median fold
increase of 1.6 and an interquartile range (IQR) of 1.2 to 3.1 (P � 0.0001 [Fig. 1A] and
P � 0.004 [see Fig. S1A and S1C in the supplemental material]) compared to the
baseline. CPS immunization also strongly induced sporozoite-specific IgM antibodies in
15 out of 16 volunteers, with a median fold increase of 2.3 (IQR, 1.8 to 2.9; P � 0.0001
[Fig. 1B] and P � 0.0001 [Fig. S1B and S1D]). There was no correlation between IgG and
IgM antibodies (P � 0.192) (Fig. S2A). Specific IgG and IgM antibodies against the
dominant circumsporozoite protein (CSP) were induced (P � 0.0026 and P � 0.0012)
(Fig. S1C and S1D) and were positively correlated (P � 0.0194) (Fig. S2B). While
whole-sporozoite-specific IgG antibodies did not correlate with anti-CSP-specific IgG
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(anti-CSP-IgG) antibody levels (P � 0.269) (Fig. S2C), sporozoite-specific IgM antibodies
correlated with anti-CSP-IgM antibody levels (P � 0.003) (Fig. S2D).

IgG1 and IgM isotype antibodies to CSP are most prevalent in CPS-immunized
volunteers. Antibody isotype is a major factor in the subsequent activation of the
classical complement pathway. Levels of both anti-CSP-specific IgM (P � 0.0012) (Fig.
1D) and IgG1 (P � 0.0123) (Fig. 1E) antibodies were significantly increased, while IgG2,
IgG3, and IgG4 antibodies against CSP remained undetectable after CPS immunization
(data not shown). Anti-CSP-IgG1 levels strongly correlated with total CSP-specific IgG,
confirming that CSP-IgG1 antibodies are primarily induced in CPS-immunized volun-
teers (P � 0.0001) (Fig. 1E). The combined data demonstrate that CPS immunization
predominantly induces IgG1 and IgM antibodies, both of which are known to be potent
activators of the complement pathway (22).

CPS-induced antibodies fix complement and lyse homologous P. falciparum
NF54 sporozoites. C3 complement protein deposition on sporozoites and sporozoite

FIG 1 Recognition of homologous P. falciparum NF54 sporozoites by CPS-induced antibodies. Homologous NF54 sporo-
zoites were preincubated with 10% inactive complement and 10% heat-inactivated pre- or postimmunization serum from
CPS-immunized volunteers (n � 16). (A and B) The amounts of CPS-induced IgG (A) and IgM (B) antibodies recognizing
sporozoites were determined by flow cytometry and are shown as geometric mean fluorescence intensities (MFI). (C and
D) Levels of IgG (C) and IgM (D) antibodies to CSP before (Pre) and after (Post) completed CPS immunization in
CPS-immunized volunteers (n � 24) were determined by ELISAs and are shown as arbitrary units (AU), as defined by serial
dilutions of a reference standard serum pool with high antibody concentrations. (E) CSP-specific IgG1 antibodies in pre-
and postimmunization samples from CPS-immunized volunteers (n � 15) were determined by CSP-specific IgG1 subclass
ELISAs and are shown as arbitrary units. Differences between pre- and postimmunization samples were determined by
paired Student’s t test, and a P value of �0.05 was considered statistically significant.
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membrane permeability were strongly enhanced in the presence of postimmunization
antibodies and active complement (P � 0.0001 and P � 0.016) (Fig. 2A and B). As
expected, there was a strong correlation between C3 deposition and sporozoite
membrane permeability, suggesting that antibody-dependent C3 deposition on sporo-
zoites results in functional sporozoite lysis (P � 0.0067) (Fig. 2C).

Activation of the complement pathway can also occur via antibody-independent
pathways. Indeed, C3 deposition and sporozoite lysis also occurred in the presence of
preimmunization serum, with median fold increases of 12.2 (IQR, 10.2 to 13.7) and 1.30

FIG 2 Complement activation and lysis of homologous P. falciparum NF54 sporozoites by CPS-induced antibodies. Homolo-
gous NF54 sporozoites were preincubated with 10% inactive or active complement and 10% heat-inactivated pre- or
postimmunization serum from CPS-immunized volunteers. (A) C3 complement protein deposition on NF54 sporozoites in 10%
postimmunization serum (n � 12 volunteers) in the presence of inactive or active of complement was assessed and is shown
as MFI. C3 deposition by postimmunization serum was corrected for baseline responses by subtracting C3 deposition by that
for preimmunization serum. (B) Sporozoite damage by CPS-induced antibodies (n � 12 volunteers) in the presence of 10%
inactive or active complement, shown as percent sporozoite damage and corrected by subtracting the percent sporozoite
damage in the presence of preimmunization antibodies. (C) Scatter plots showing C3 complement protein deposition. The
percent damaged sporozoites per donor was corrected for preimmunization values and analyzed by Spearman correlation
analysis (n � 12 CPS-immunized volunteers). Samples in the presence or absence of active complement are shown with gray
circles and black squares, respectively. (D and E) NF54 sporozoites were preincubated with 10 mg/ml of purified preimmu-
nization IgGs, postimmunization IgGs, and postimmunization IgGs depleted from CSP-specific antibodies (n � 5 volunteers)
in the presence of 10% active complement. C3 complement protein deposition (D) and sporozoite damage by purified IgGs
(E) are shown as C3 deposition (MFI) and the percentage of sporozoite damage, respectively. Comparisons between multiple
groups were performed by one-way ANOVA with a Bonferroni multiple-comparison post hoc test. Data are shown as the means
of results from duplicate measurements and presented as black squares or gray circles for samples tested in the presence of
inactive or active complement, respectively. Asterisks represent P values of �0.05 (*) and �0.01 (**).
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(IQR, 1.1 to 1.6), respectively (P � 0.0001 and P � 0.0009) (see Fig. S3A and S3B in the
supplemental material). However, this effect was much weaker than that in the pres-
ence of CPS-induced antibodies (P � 0.0001 and P � 0.002) (Fig. S3C and S3D), with
median fold increases of 16.2 (IQR, 14.5 to 20.0) and 1.8 (IQR, 1.4 to 2.2). Thus,
complement activation against sporozoites via the antibody-dependent classical path-
way is more potent than those via antibody-independent pathways.

We next investigated to which degree complement activation is mediated by anti-CSP-
specific IgG antibodies. C3 deposition on sporozoites and sporozoite lysis were enhanced
in the presence of postimmunization rather than preimmunization IgG (P � 0.05 and P �

0.01) (Fig. 2D and E). The level of sporozoite lysis in the presence of anti-CSP-depleted
postimmunization IgG was also significantly lower than that in the presence of postimmu-
nization IgG (P � 0.05) (Fig. 2E). The combined data suggest that anti-CSP-IgG antibodies
contribute to the functional CPS-induced complement-mediated antibody response but
also show that antibodies to other sporozoite surface-expressed proteins may be involved
as well.

Complement-dependent inhibition of homologous P. falciparum NF54 sporo-
zoite infectivity. Antibody-mediated inhibition of sporozoite traversal was enhanced
in the presence of active complement, with median traversal inhibition percentages of
31.2% (IQR, 16.2 to 40.4%) and 60.8% (IQR, 48.3 to 64.6%) for inactive and active
complement, respectively (P � 0.0001) (Fig. 3A). Similarly, sporozoite invasion was
reduced more efficiently in the presence of active complement, with median invasion
inhibition percentages of 87.2% (IQR, 77.2 to 90.1%) and 70.1% (IQR, 59.4 to 78.4%) for
active and inactive complement, respectively (P � 0.0001) (Fig. 3B). Cumulative para-
sitemia during CPS immunizations negatively correlated with NF54 invasion inhibition
in vitro by CPS-induced antibodies in the presence of active complement (P � 0.013)

FIG 3 In vitro traversal and invasion inhibition of homologous P. falciparum NF54 sporozoites by CPS-
induced antibodies in the presence or absence of complement. (A and B) The percent inhibition of traversal
(14 volunteers) (A) and invasion (17 volunteers) (B) was calculated for 10% postimmunization serum
compared to preimmunization serum for each volunteer in the presence of 10% inactive or active
complement. (C) Spearman correlation analysis between cumulative parasitemia (P. falciparum parasites per
milliliter) during three CPS immunizations and invasion inhibition by CPS-induced antibodies (Abs) in the
presence of active complement (uncorrected for HIS) (n � 17 volunteers). Data are shown as the means of
results from duplicate measurements and presented as black squares or gray circles for samples tested in
the presence of inactive or active complement, respectively.
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(Fig. 3C) but not inactive complement (P � 0.2518) (see Fig. S4A in the supplemental
material).

Complement-dependent inhibition of heterologous P. falciparum NF135.C10
sporozoite infectivity. It was shown previously that CPS-induced antibodies can
inhibit in vitro hepatocyte invasion by sporozoites of the homologous NF54 strain but
also the genetically and geographically distinct NF135.C10 clone (23, 24). Therefore, we
next examined whether the effects of complement on NF54 sporozoites also extend to
heterologous NF135.C10 sporozoites. Both CPS-induced IgG and IgM antibodies rec-
ognized NF135.C10 sporozoites (P � 0.0001) (Fig. 4A and B). Complement fixation and

FIG 4 Complement activation and inhibition of heterologous P. falciparum NF135.C10 sporozoites. Heterologous P. falciparum
NF135.C10 sporozoites were preincubated with 10% heat-inactivated pre- or postimmunization serum (n � 24 volunteers) and
10% inactive complement. (A and B) The amounts of CPS-induced IgG (A) and IgM (B) antibodies recognizing sporozoites were
determined by flow cytometry and are shown as MFI. (C) C3 complement deposition on NF135.C10 sporozoites in the presence
of 10% inactive (black) or active (gray) complement by 10% pre- or postimmunization CPS serum (n � 15 volunteers), shown
as the MFI. C3 complement protein deposition in the presence of postimmunization serum was corrected for C3 deposition
in the presence of preimmunization serum. (D) Sporozoite damage by pre- or postimmunization antibodies (n � 14 volunteers)
in the presence of 10% active or inactive complement, shown as the percent sporozoite damage and corrected for the percent
sporozoite damage in the presence of preimmunization antibodies. (E and F) The percentages of inhibition of heterologous
sporozoite traversal (13 volunteers) (E) and invasion (n � 8 volunteers) (F) were calculated for 10% postimmunization serum
compared to preimmunization serum for each volunteer in the presence of 10% inactive or active complement. Data are
shown as the means of results from duplicate measurements and presented as black squares or gray circles for samples tested
in the presence of inactive or active complement, respectively. Differences between pre- and postimmunization samples or
inactive and active complement were determined by paired Student’s t test, and a P value of �0.05 was considered statistically
significant.
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lysis of heterologous sporozoites were also enhanced by postimmunization antibodies
in the presence of active complement (P � 0.012 and P � 0.029) (Fig. 4C and D). Similar
to NF54 sporozoites, heterologous traversal and invasion were inhibited more effi-
ciently by postimmunization antibodies in the presence of active complement
(P � 0.0001) (Fig. 4E and F). Median traversal inhibition percentages were 71.6% (IQR,
59.0 to 78.2%) and 28.2% (IQR, 17.7 to 34.3%), and median invasion inhibition percent-
ages were 91.8% (IQR, 90.5 to 94.5%) and 53.0% (IQR, 38.4 to 62.2%) for active and
inactive complement, respectively. There was no correlation between complement-
dependent NF135.C10 invasion inhibition by CPS-induced antibodies in vitro and that
during the prepatent period following NF135.C10 challenge infection, although only a
limited number of volunteers could be tested (P � 0.083; n � 4 volunteers) (see Fig. S4B
in the supplemental material). These combined data suggest that broadly neutralizing and
complement-fixing antibodies are also potent against heterologous parasites.

Comparison of complement-mediated effects on P. falciparum NF54 and
NF135.C10 sporozoite infectivity. There were no significant differences in the binding
of specific IgG antibodies to NF54 and NF135.C10 sporozoites (P � 0.494) (Fig. 5A). In
contrast, NF135.C10 sporozoites were less opsonized by specific IgM antibodies than
were NF54 sporozoites (P � 0.023) (Fig. 5B). Nevertheless, this did not translate into
differences in C3 deposition and lysis (P � 0.53 and P � 0.69) (Fig. 5C and D). Traversal
inhibition was not significantly different between the two strains (P � 0.18) (Fig. 5E),
with median percent enhanced traversal inhibition values of 29.4% (IQR, 23.4 to 41.1%)
and 48.4% (IQR, 27.3 to 57.7%) for NF54 and NF135.C10 sporozoites, respectively. NF54
sporozoite invasion was neutralized more strongly by CPS-induced antibodies in the
absence of active complement, with median percent invasion inhibition values of 70.1%
(IQR, 59.4 to 78.4%) and 53.0% (IQR, 38.4 to 62.2%) for NF54 and NF135.C10 sporozoites,
respectively (P � 0.019). Percent invasion inhibition values for NF54 and NF135.C10
sporozoites in the presence of active complement were not significantly different
(medians, 87.2% [IQR, 77.2 to 90.2%] and 91.8% [IQR, 90.5 to 94.5%] for NF54 and
NF135.C10, respectively). However, the invasion of heterologous sporozoites in the
presence of active complement was inhibited more strongly than was the invasion of
NF54 sporozoites (P � 0.008) (Fig. 5F), with median enhanced invasion inhibition values
of 22.5% (IQR, �2.7 to 25.5%) and 42.3% (IQR, 36.4 to 46.4%) for NF54 and NF135.C10
sporozoites, respectively.

DISCUSSION

The present study shows that CPS immunization with P. falciparum NF54 sporozoites
induces complement-fixing antibodies that are capable of activating the classical
complement pathway, resulting in membrane-compromised sporozoites and a further
reduction of homologous and heterologous sporozoite infectivity in vitro. This is
supported by previous findings from in vitro assays with Plasmodium gallinaceum
revealing the importance of the classical complement pathway in inducing sporozoite
death (25).

Sporozoite-specific IgM responses contribute to CPS-induced immunity, with the
potential benefits of higher avidity for P. falciparum target antigens and efficient
complement fixation (26). Some volunteers tend to have a stronger induction of
sporozoite-specific IgM than IgG antibodies, while sporozoite-specific IgG antibodies
are induced more strongly in other volunteers. As shown in the present study, CSP- and
sporozoite-specific IgM antibodies are still present 18 weeks after the last CPS immu-
nization, corroborating previous observations (27). This suggests that an initial IgM
response is developed, whereby not all epitope-specific responses might be followed
by class switching to IgG over the next 2 to 3 weeks (28). The functional relevance and
importance of IgM antibodies were shown previously in the Plasmodium chabaudi
model, where Plasmodium-specific IgM-producing memory B cells were readily induced
in response to repeated parasite exposure (29). Interestingly, the magnitude and
breadth of P. falciparum-specific IgM antibody responses are also higher in African
adults with naturally acquired antimalarial immunity who are resistant to malaria than
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in adults who are susceptible to malaria (30). Additionally, it was shown very recently
that immunization of Tanzanian individuals with radiation-attenuated cryopreserved P.
falciparum sporozoites (PfSPZ) induces functional antisporozoite IgM antibodies with
human hepatocyte invasion-inhibitory and complement-fixing activities (31).

Humoral reactivity to CSP is induced following CPS immunization (16, 17), but the
induction of sporozoite-specific IgG does not correlate with anti-CSP-IgG levels. In fact,
even the virtually complete depletion of anti-CSP-specific IgG (median percent CSP
depletion, 91.7% [IQR, 79.8 to 96.4%]) (see Table S2 in the supplemental material) still

FIG 5 Comparison of complement activation and inhibition between NF54 and NF135.C10 sporozoites. (A and B) Recognition
of homologous NF54 and heterologous NF135.C10 sporozoites by postimmunization IgG (A) and IgM (B) antibodies, shown as
fold increases over baseline (preimmunization) antibody values (n � 16 CPS-immunized volunteers). (C) Enhanced C3
complement protein deposition on homologous and heterologous sporozoites, shown as the MFI and corrected for comple-
ment fixation by preimmunization antibodies and inactive complement (n � 12 volunteers). (D) Enhanced sporozoite damage
of homologous and heterologous sporozoites, shown as percent sporozoite damage and corrected for damage in the presence
of preimmunization antibodies and inactive complement (n � 11 volunteers). (E and F) The percentages of enhanced
inhibition of both homologous and heterologous sporozoite traversal (n � 9 volunteers) (E) and invasion (n � 7 volunteers)
(F) in the presence of active complement were calculated for 10% postimmunization serum compared to preimmunization
serum for each volunteer in the presence of 10% inactive or active complement. To calculate the percent enhanced inhibition
by active complement and postimmunization antibodies, inhibition in the presence of complement was corrected for
inhibition in the presence of inactive complement. Data are shown as the means of results from duplicate measurements.
Differences between parasite strains were determined by paired Student’s t test, and a P value of �0.05 was considered
statistically significant.
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leaves complement-fixing activity against sporozoites intact. This may suggest that only
a fraction of anti-CSP-specific antibodies may still be sufficient for complement activa-
tion. It is more likely, however, that CPS-induced IgG antibodies with different antigenic
specificities than CSP (17, 27) might show functional activity.

Showing some variation between volunteers, it is clear that CPS-induced antibodies
can efficiently enhance C3 fixation, with subsequent enhanced homologous and het-
erologous sporozoite lysis. Complement fixation efficacy depends on antibody-intrinsic
features, such as the epitope specificity of antibodies, antibody affinity as well as
antibody isotype, or Fc receptor glycosylation. High-affinity antibodies can activate
complement more efficiently, since antibodies may switch classes in a particular order
depending on the degree of affinity maturation (32–35). As for antibody isotype, it is
very likely that some individuals with low IgG concentrations may have high IgM levels,
while other individuals might rely more on IgGs for complement-fixing activity. While
CPS immunization predominantly induces anti-CSP-specific IgG1 and IgM antibodies,
RTS,S (CSP) subunit vaccination primarily induces IgG1 antibodies against CSP repeats
(36). On the other hand, CSP-specific naturally acquired antibodies are mainly IgG1,
IgG3, and IgM (21), showing that the induction of anti-CSP antibody isotypes differs
between these immunizations. A possible explanation for the absence of IgG2, IgG3,
and IgG4 responses following CPS immunization might be that IgG subclass responses
following whole-sporozoite immunization may be polarized toward IgG1, the most
abundant immunoglobulin, and induced upon exposure to soluble protein antigens
and membrane proteins (22). IgG2 and IgG4 antibody responses are produced only
following exposure to bacterial polysaccharide antigens, in response to helminth
infections, or following repeated or long-term exposure to noninfectious antigens
(allergens) (37).

Alternatively, the observed variation in classical complement activation might be
due to variation in the density of fragment crystallizable (Fc) regions, since a minimum
threshold concentration of Fc regions is required for stronger classical pathway acti-
vation (34). Moreover, Fc receptor glycosylation can affect antigen-binding character-
istics and, thus, antibody activity (22, 38).

As a next step, we studied the functional consequences of enhanced complement
fixation on sporozoite infectivity in vitro. NF54 human hepatocyte invasion is inhibited
by CPS-induced antibodies more strongly than is NF135.C10 invasion in the absence of
active complement, as recently reported by us (26). Despite lower levels of IgM binding
to NF135.C10 sporozoites, which is most likely due to genetic diversity in the CSP
protein sequence (24), there were no differences in complement protein deposition
and sporozoite lysis. This can be explained by the fact that IgM antibodies generally
have a lower threshold for complement fixation than IgG antibodies and are therefore
still very efficient in complement activation, despite the fact that they bind less
efficiently to heterologous NF135.C10 sporozoites. Interestingly, the level of NF135.C10
invasion inhibition is twice as high as the level of NF54 inhibition in the presence of
active complement. These data suggest that opsonization for complement might also
occur independently of strain-specific epitopes and that complement has more added
value when antibodies alone are less efficient in binding and neutralization, e.g., due to
parasite genetic diversity. Antibody-mediated complement activation may also have
additional indirect effects on sporozoite clearance, including modulation of the inflam-
matory response, induction of antibody-dependent cellular cytotoxicity (ADCC), or
phagocytosis (39).

Unexpectedly, some C3 deposition and sporozoite death also take place before
immunization, suggesting that some C3 complement proteins may bind directly to
sporozoites via the alternative pathway. Some sporozoite proteins may contain carbo-
hydrates that might activate the antibody-independent mannose-binding lectin (MBL)
pathway (40–45). While MBL-deficient mice show no altered resistance to liver-stage
infection, MBL binding may take place and modulate host defense (46). More likely,
malaria-naive volunteers may have cross-reactive antibodies that recognize sporozoites
or mosquito salivary gland material and thus are able to interact with complement
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proteins. Although possibly contributing, our data clearly show that complement
activation is activated and functional primarily in the presence of malaria-specific
antibodies. Additionally, it was recently shown that C3 deposition on CSP by naturally
acquired antibodies strongly correlates with C1q fixation to CSP (21). Here, we show
that NF54 invasion inhibition by CPS-induced antibodies and active complement is
negatively associated with cumulative parasitemia during CPS immunizations. Previous
studies in human and animal models of malaria support a role for complement
activation during malaria infection with increased membrane attack complex (47) or
reduced serum complement protein (48–53) levels. It was observed previously in a
humanized liver-chimeric mouse model that CPS-induced antibodies had a much
stronger inhibitory effect on P. falciparum liver-stage infection in vivo than in vitro (18).
A possible explanation for this observation might be that CPS-induced IgGs could
potentially interact with human complement, which was shown previously to be
produced by human hepatocytes in human liver-chimeric mice (54), resulting in a more
pronounced effect on liver-stage inhibition in vivo. Additionally, resistance to natural
infection with Plasmodium malaria parasites has been associated with IgG1 and IgG3
antibody isotypes, both of which are very potent in fixing complement and activating
the complement system (20, 55–57). This is further supported by the fact that children
living in an area where P. falciparum is holoendemic in Papua New Guinea who have
high levels of complement-fixing antibodies to CSP have a reduced risk of clinical
malaria compared to children with undetectable functional antibodies (21). Taken
together, data from these studies suggest that the complement system plays a role in
antimalarial immunity and protection from malaria infection in vivo.

In summary, these findings demonstrate for the first time that CPS-induced anti-
bodies can interact with the complement system, further reducing homologous and
heterologous sporozoite infectivity in vitro. Together, these data highlight the impor-
tance of the complement pathway and provide new knowledge on antibody-mediated
immune mechanisms involved in preerythrocytic immunity to homologous and heter-
ologous sporozoites after whole-parasite immunization against P. falciparum malaria.

MATERIALS AND METHODS
Study design of experimental controlled human malaria infection. Citrated plasma and serum

samples were used from a double-blind, randomized, placebo-controlled CPS immunization trial con-
ducted at the Radboud University Medical Center in 2015 (Nijmegen, The Netherlands) (ClinicalTrials.gov
registration number NCT02098590) (24). Due to limited plasma sample availability, citrated plasma
samples from a second open-labeled, randomized, CPS immunization study conducted in 2014 to 2015
(ClinicalTrials.gov registration number NCT02080026) were used. All study subjects provided written
informed consent, and both studies were approved by the Central Committee for Research Involving
Human Subjects of The Netherlands (CCMO) (approval numbers NL48732.091.14 and NL48301.091.14).

In both CPS trials (ClinicalTrials.gov registration numbers NCT02098590 and NCT02080026), volun-
teers were subjected to NF54 CPS immunization. While receiving chloroquine in a prophylactic dose,
subjects were immunized three times (ClinicalTrials.gov registration number NCT02098590) or four times
(ClinicalTrials.gov registration number NCT02080026) at monthly intervals by exposure to bites from 15
P. falciparum NF54-infected Anopheles stephensi mosquitoes. Fourteen weeks after the discontinuation of
chloroquine prophylaxis, subjects underwent a primary challenge infection by exposure to bites of 5
mosquitoes infected with the homologous P. falciparum NF54 strain (58) or the genetically distinct
NF135.C10 (23) and NF166.C8 (59) clones. Of note, study subjects from the second, open-label, random-
ized CPS immunization study were exposed only to NF54-infected mosquito bites (ClinicalTrials.gov
registration number NCT02080026). All subjects were monitored closely from days 6 to 10 after each CPS
immunization and from days 6 to 21 after mosquito bite challenge infection for symptoms and signs of
malaria. When the treatment threshold (100 parasites per ml of blood) by quantitative PCR (qPCR)
between days 7 and 9 was reached (60, 61), blood-stage parasitemia was treated with a curative regimen
of atovaquone and proguanil once daily for 3 days. Cumulative blood-stage parasitemia during all three
CPS immunizations (ClinicalTrials.gov registration number NCT02098590) was calculated by summing up
the number of parasites per milliliter of blood, as determined by qPCR, from days 6 to 10 after each CPS
immunization. NF54 CPS immunization induced sterile protection against NF54, NF135.C10, and
NF166.C8 mosquito bite challenge infections in 5/5, 2/10, and 1/9 subjects, respectively. Six of ten
NF135.C10-challenged subjects showed a prolonged prepatent period (ClinicalTrials.gov registration
number NCT02098590). With respect to the second CPS immunization study (ClinicalTrials.gov registra-
tion number NCT02080026), 5/9 study subjects were completely protected from homologous NF54
mosquito bite challenge.

Parasite strains. P. falciparum NF54 and NF135.C10 sporozoites were used for in vitro sporozoite
assays. Plasmodium falciparum NF54 was isolated from an individual near Schiphol Airport (The Neth-
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erlands) and most likely originated from West Africa (58, 62). The genetically and geographically distinct
P. falciparum NF135.C10 clone originated from a clinical isolate in Cambodia (23).

Parasite culture and generation of P. falciparum-infected mosquitoes. P. falciparum NF54 and
NF135.C10 asexual and sexual blood-stage parasites were cultured in a semiautomated culture system,
as described previously (63–65). Anopheles stephensi mosquitoes were reared in the insectary of the
Radboud University Medical Center, and female mosquitoes were infected by standard membrane
feeding on NF54 or NF135.C10 gametocyte cultures (66). For in vitro sporozoite assays, salivary glands
from infected mosquitoes were hand dissected 14 to 28 days after mosquito infection, collected in
Leibovitz culture medium without serum, and homogenized in a homemade glass grinder. The number
of P. falciparum NF54 or NF135.C10 sporozoites was determined with a Bürker-Türk counting chamber,
using phase-contrast microscopy (18).

Human hepatoma HC-04 cell line. The HC-04 human hepatocyte cell line (Homo sapiens HC-04;
MRA-965), deposited by Jetsumon Sattabongkot (67), was acquired through the Malaria Research and
Reference Reagent Resource Center (MR4) as part of the Biodefense and Emerging Infections Research
Resources Repository (BEI Resources). Cells were maintained in Dulbecco’s modified Eagle medium
(DMEM)–Ham’s F-12 nutrient mixture medium (Gibco) supplemented with 10% heat-inactivated fetal
bovine serum (FBS; Gibco), 1% glutamine (Gibco), and 1% penicillin-streptomycin (Gibco) at 37°C in an
atmosphere of 5% CO2.

Citrated plasma, serum samples, and complement source. Citrated plasma samples and serum
samples from 24 CPS-immunized volunteers were collected 11 to 14 days before the first CPS immuni-
zation (preimmunization) and 1 day before challenge infection (18 weeks after the last immunization)
(postimmunization) (ClinicalTrials.gov registration number NCT02098590) by using citrated Vacutainer
cell preparation tubes (CPT Vacutainers; Becton Dickinson) or serum Vacutainer tubes (Becton Dickinson).
Samples were used for the determination of immunoglobulin subclasses, antibody opsonization assays
(citrated plasma samples), or in vitro sporozoite assays (serum). Samples were stored in aliquots at �20°C.
Prior to use in in vitro sporozoite assays, serum aliquots were heat inactivated for 30 min at 56°C,
centrifuged at 13,000 rpm for 5 min at room temperature, and kept at 4°C.

Due to limited plasma availability, additional citrated plasma samples were collected 1 week before
the first CPS immunization (preimmunization) and 1 day before challenge infection (15 weeks after the
last immunization) (postimmunization) from 5 sterilely protected CPS-immunized volunteers (ClinicalTri-
als.gov registration number NCT02080026) and used for IgG purifications and depletion of CSP-specific
antibodies. Purified IgGs were assessed for their ability to activate complement and induce sporozoite
lysis in the presence or absence of CSP-specific antibodies.

An external source of human complement was used for all in vitro sporozoite assays to determine the
complement-fixing activity of CPS-induced antibodies (either heat-inactivated CPS serum or purified
IgGs) independently of possible differences in complement activity present in each CPS-immunized
volunteer. This specific batch was consistently used for all experiments and samples and either added
fresh (normal human serum [NHS]) (active complement) or heat inactivated (heat-inactivated serum
[HIS]) (inactive complement). Heat inactivation was validated previously. This complement source
consisted of pooled sera from 5 malaria-naive Australian donors and was validated for the absence of
CSP-specific antibodies by a standardized enzyme-linked immunosorbent assay (ELISA), as described
previously (21).

Purification of IgG from citrated plasma samples. Purification of IgG from citrated pre- and
postimmunization plasma samples from CPS-immunized volunteers (n � 5) was performed by using a
5-ml HiTrap protein G HP affinity column (Amersham Biosciences) according to the manufacturer’s
instructions. A fraction of purified postimmunization IgGs was depleted from CSP-specific antibodies by
running IgGs three times over a CSP affinity column that was constructed by coupling CSP (Gennova
Biotechniques Pvt. Ltd., India) to a 1-ml HiTrap NHS-activated HP affinity column (catalog number
17-0717-01; GE Healthcare). IgGs were purified and depleted from CSP-specific antibodies by using an
Äkta prime machine and Unicorn software (version 1.0; GE Healthcare). Purified IgGs were taken up in
phosphate-buffered saline (PBS). IgG concentrations and CSP depletion efficacy (see Tables S1 and S2 in
the supplemental material) were determined by standardized total IgG and CSP-IgG ELISAs prior to use
in in vitro complement deposition and sporozoite damage assays.

Total IgG, CSP-IgG, CSP-IgM, and CSP-specific Ig subclass ELISAs. Total IgG concentrations and
CSP-specific IgG antibodies in purified preimmunization IgGs, postimmunization IgGs, and CSP-depleted
postimmunization IgGs and CSP-specific IgM antibody levels in pre- and postimmunization plasma
samples were determined by total IgG, CSP-IgG, and CSP-IgM ELISAs. CPS-induced immunoglobulin
isotypes to CSP were determined by CSP-specific Ig subclass ELISAs. All these ELISAs are described in
detail in supplemental material.

IgG and IgM antibody opsonization of whole sporozoites. The recognition of whole sporozoites
by immunization-induced IgG and IgM antibodies was determined by an in vitro flow cytometry-based
antibody opsonization assay, as described in detail in the supplemental material. Briefly, 5 � 104 P.
falciparum NF54 or NF135.C10 sporozoites/well in a V-bottom 96-well plate were incubated with 10%
heat-inactivated pre- or postimmunization serum and 10% heat-inactivated normal human serum
(inactive complement) for 30 min at 37°C. Following incubation, samples were washed with PBS,
centrifuged at 3,220 � g for 5 min at room temperature, and stained with fluorescently labeled
antibodies targeting sporozoite CSP, IgG, and IgM for 30 min in the dark at 4°C. Unstained sporozoites
and single compensation controls were included. Following incubation, samples were fixed with 1%
paraformaldehyde (PFA) for 20 min in the dark at 4°C and taken up in PBS. Samples were kept at 4°C in
the dark until flow cytometric analysis was performed. Flow cytometric analysis was performed with an
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LSRII flow cytometer (BD BioSciences), and data analysis was performed with FlowJo software (version
10.0.8; TreeStar).

In vitro complement deposition and sporozoite damage assay. C3 complement protein deposi-
tion on whole sporozoites and sporozoite damage due to complement activation in the presence or
absence of immunization-induced antibodies were assessed with an in vitro flow cytometry-based assay,
as described in detail in the supplemental material. Briefly, 5 � 104 P. falciparum NF54 or NF135.C10
sporozoites/well in a V-bottom 96-well plate were incubated with 10% heat-inactivated pre- or postim-
munization serum and 10% fresh normal human serum (active complement) or 10% inactive comple-
ment for 30 min at 37°C. In the case of purified IgGs, sporozoites were incubated with 10 mg/ml
preimmunization IgGs, postimmunization IgGs, or postimmunization IgGs depleted from CSP in the
presence of 10% active complement. Following incubation, PBS–20 mM EDTA was added to all samples,
and plates were incubated at 4°C for 5 min to inactivate complement. Subsequently, sporozoites were
stained with fluorescently labeled antibodies targeting sporozoite CSP, C3 complement protein depo-
sition, and a fixable viability dye for 30 min in the dark at 4°C. Unstained sporozoites and single
compensation controls were taken along. After incubation, samples were processed and analyzed as
described above. The geometric mean fluorescence intensity (MFI) and the percentage of membrane-
compromised sporozoites in postimmunization samples were corrected for those for preimmunization
responses by subtracting the MFI and percentage of membrane-compromised sporozoites for preim-
munization responses from that for postimmunization responses.

In vitro sporozoite hepatocyte traversal inhibition assay. The antibody-dependent complement-
mediated effect of CPS-induced antibodies on further augmenting the inhibition of in vitro human
hepatocyte traversal by P. falciparum sporozoites in the presence of active complement was assessed as
described previously, with small adaptations (18). Briefly, freshly dissected NF54 and NF135.C10 sporo-
zoites were preincubated with 10% heat-inactivated pre- or postimmunization CPS serum for 30 min at
4°C. Subsequently, 5 � 104 sporozoites/well were added in duplicate to flat-bottom 96-well plates
containing monolayers of 5 � 104 HC-04 cells in the presence of 10% active or inactive complement and
0.5 mg/ml fixable tetramethylrhodamine dextran (Thermo Fisher Scientific). HC-04 cells alone in the
presence of dextran served as a background control. After 2 h of incubation at 37°C in 5% CO2, cells were
washed gently and processed for flow cytometric analysis. Flow cytometric analysis was performed with
a cyan ADP flow cytometer (Beckman Coulter), and data were analyzed with FlowJo software (version
9.6.7; TreeStar). The percentage of dextran-positive cells was first corrected for background reactivity by
subtracting the background, and the percent traversal inhibition was calculated as follows: 1 � (average
percent dextran-positive cells in postimmunization cultures/average percent dextran-positive cells in
preimmunization cultures) � 100%.

In vitro sporozoite infectivity assay with a human hepatoma cell line. The neutralization of P.
falciparum sporozoite hepatocyte invasion in vitro by CPS-induced antibodies was assessed by a flow
cytometry-based in vitro invasion assay, as described in detail in the supplemental material. Briefly, P.
falciparum NF54 or NF135.C10 sporozoites were preincubated with 10% heat-inactivated pre- or postim-
munization CPS serum for 30 min at 4°C. Subsequently, 5 � 104 sporozoites/well were added to
flat-bottom 96-well plates containing monolayers of 5 � 104 HC-04 cells in the presence of 10% active
or inactive complement. After 3 h of incubation at 37°C in 5% CO2, intracellular and invaded parasites
were stained with a fluorescently labeled antibody targeting CSP, and cells were processed for flow
cytometric analysis. Flow cytometric analysis was performed with a Gallios flow cytometer (Beckman
Coulter), and data were analyzed with FlowJo software (version 10.0.8; TreeStar). The percentage of
CSP-positive sporozoites was first corrected for background reactivity by subtracting the background
(uninfected HC-04 cells in the presence of 3SP2-Alexa Fluor 488 antibody). The percent invasion
inhibition was calculated as follows: 1 � (average percent CSP-positive cells in postimmunization
cultures/average percent CSP-positive cells in preimmunization cultures) � 100%.

Statistical analysis. Statistical analysis was performed by using GraphPad Prism software (version 5;
GraphPad Software Inc., CA, USA). For analysis of in vitro sporozoite data, antibody binding, C3
complement deposition on sporozoites, and sporozoite lysis, differences between pre- and postimmu-
nization samples, HIS and NHS, or parasite strains were tested by using two-tailed paired Student’s t test.
Comparisons of two nonmatching groups (controls versus CPS-immunized volunteers) or comparisons
between multiple groups (pre- and postimmunization IgGs and CSP-depleted postimmunization IgGs)
were tested with unpaired Student’s t test or one-way analysis of variance (ANOVA) with a Bonferroni
multiple-comparison post hoc test, respectively. Correlation analyses were conducted with Spearman
correlation analysis. A P value of �0.05 was considered significant.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/IAI
.00920-17.

SUPPLEMENTAL FILE 1, PDF file, 0.5 MB.
SUPPLEMENTAL FILE 2, PDF file, 0.3 MB.
SUPPLEMENTAL FILE 3, PDF file, 0.2 MB.
SUPPLEMENTAL FILE 4, PDF file, 0.2 MB.
SUPPLEMENTAL FILE 5, TIF file, 0.7 MB.
SUPPLEMENTAL FILE 6, TIF file, 0.9 MB.
SUPPLEMENTAL FILE 7, TIF file, 0.8 MB.
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