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Abstract 37 
Cis-Natural Antisense Transcripts (cis-NATs), which overlap protein coding genes and are 38 

transcribed from the opposite DNA strand, constitute an important group of non-coding RNAs. 39 

Whereas several examples of cis-NATs regulating the expression of their cognate sense gene are 40 

known, most cis-NATs function by altering the steady-state level or structure of mRNA via changes 41 

in transcription, mRNA stability or splicing, and very few cases involve the regulation of sense 42 

mRNA translation. This study was designed to systematically search for cis-NATs influencing 43 

cognate sense mRNA translation in Arabidopsis thaliana. Establishment of a pipeline relying on 44 

sequencing of total polyA+ and polysomal RNA from Arabidopsis grown under various conditions 45 

(i.e., nutrient deprivation and phytohormone treatments) allowed the identification of 14 cis-NATs 46 

whose expression correlated either positively or negatively with cognate sense mRNA translation. 47 

Using a combination of cis-NAT stable over-expression in transgenic plants and transient 48 

expression in protoplasts, the impact of cis-NAT expression on mRNA translation was confirmed 49 

for 4 out of 5 tested cis-NAT:sense mRNA pairs. These results expand the number of cis-NATs 50 

known to regulate cognate sense mRNA translation and provide a foundation for future studies of 51 

their mode of action. Moreover, this study highlights the role of this class of non-coding RNAs in 52 

translation regulation. 53 

 54 

 55 

  56 
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 57 

Introduction 58 

A large proportion of the genome of eukaryotes is transcribed into RNA that is not coding for 59 

proteins or house-keeping RNAs (e.g. tRNAs, ribosomal RNAs) (Djebali et al., 2012). Whereas 60 

first being considered as transcriptional noise, non-coding RNAs have emerged as major regulators 61 

of gene expression (Rinn and Chang, 2012; Bonasio and Shiekhattar, 2014; Chekanova, 2015; 62 

Ransohoff et al., 2018). Besides the well-characterized small RNAs that include short interfering 63 

RNAs (siRNAs) and micro RNAs (miRNAs), abundant long non-coding RNAs (lncRNAs) have 64 

been identified across a wide spectrum of organisms. LncRNAs are typically defined as capped and 65 

polyadenylated transcripts longer than 200 bases that do not contain conserved open reading frame 66 

capable of encoding proteins (Rinn and Chang, 2012; Bonasio and Shiekhattar, 2014; Chekanova, 67 

2015; Ransohoff et al., 2018). However, recent studies have indicated that some lncRNAs could 68 

associate with ribosomes and, in some cases, generate small peptides (Ji et al., 2015; Hsu et al., 69 

2016; Bazin et al., 2017). Whereas most of the lncRNAs identified by genome-wide studies have 70 

yet unknown functions, an increasing number has been shown to be involved in critical biological 71 

processes such as X chromosome inactivation in mammals (Brockdorff et al., 1992) or flowering in 72 

plants (Liu et al., 2010; Heo and Sung, 2011).  73 

 74 

LncRNAs located in intergenic regions relative to coding genes are defined as long intergenic non-75 

coding RNA (lincRNAs), whereas lncRNAs overlapping coding genes and transcribed from the 76 

opposite DNA strand are categorized as cis-Natural Antisense Transcripts (cis-NATs) (Rinn and 77 

Chang, 2012). In addition, lincRNAs able to bind target mRNAs by partial base-pair 78 

complementarity are defined as trans-Natural Antisense Transcripts (trans-NAT) (Lapidot and 79 

Pilpel, 2006). Cis-NATs are widespread in eukaryotes, with 20–70% of coding genes having an 80 

associated cis-NAT in Saccharomyces cerevisiae, Drosophila melanogaster, mice, human, and 81 

Arabidopsis thaliana (Faghihi and Wahlestedt, 2009; Liu et al., 2015). Cis-NATs can overlap 82 

completely with their cognate mRNAs or only at the 5' (head-to-head orientation) or the 3' end (tail-83 

to-tail orientation).  84 

 85 

Whereas various modes of action have been reported for lncRNAs impacting the regulation of 86 

target gene expression, the majority involves changes in the steady-state level or structure of mRNA 87 

via changes in transcription, mRNA stability or splicing (Rinn and Chang, 2012; Bonasio and 88 

Shiekhattar, 2014; Chekanova, 2015; Ransohoff et al., 2018). This is true for either lincRNAs or 89 

cis-NATs and applies to both animal and plant models. Well-characterized mechanisms by which 90 

lncRNAs affect gene transcription include recruitment of chromatin or transcription regulators and 91 
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displacement of transcriptional repressors. Examples of such mechanisms in animals includes 92 

inhibition of transcription via histone methylation by HOTAIR (Gupta et al., 2010) or DNA 93 

methylation by pRNA (Schmitz et al., 2010), stimulation of transcription by the recruitment of the 94 

activator PYGO2 by the lincRNA PCGEM1 (Schmitz et al., 2010), and the displacement of the 95 

repressive glucocorticoid response element by the lincRNA Gas5 (Kino et al., 2010). Similar 96 

mechanisms for lncRNAs in plants have been described, such as histone modification at the 97 

flowering locus FLC triggered by the cis-NAT COOLAIR (Liu et al., 2010) or the intronic lncRNA 98 

COLDAIR (Heo and Sung, 2011), as well as the transcriptional activation of pathogen-responsive 99 

gene PR1 via the recruitment of a Mediator component by lincRNA ELF18 (Seo et al., 2017). 100 

LincRNA can also interact with splicing factors to regulate alternative splicing, as described for 101 

lincRNA MALAT1 in animals (Tripathi et al., 2010) and ASCO in plants (Bardou et al., 2014). 102 

Moreover, lincRNA can control mRNA stability via interaction with members of the Staufen 103 

double-stranded RNA (dsRNA)-binding proteins in animals (Gong and Maquat, 2011) or inhibition 104 

of microRNA action on mRNA degradation via target mimicry, as described for the Arabidopsis 105 

IPS1 lincRNA involved in the response of plants to inorganic phosphate (Pi) deficiency (Franco-106 

Zorilla et al., 2007). Another mechanism for the decrease in steady-state mRNA level associated 107 

with cis-NAT expression is the generation of siRNA via processing of double-stranded RNA 108 

generated by the overlapping cis-NAT with its cognate sense mRNA (Khorkova et al., 2014). 109 

However, considering the large number of potential cis-NAT:sense mRNA pairs in animal and plant 110 

genomes, relatively few examples of siRNA-mediated effects for cis-NATs have been described, 111 

indicating that this mechanism may be less frequently employed than initially thought.    112 

 113 

In contrasts to the effects of lncRNA on transcription and mRNA levels, examples of modulation of 114 

mRNA translation by lncRNA are rather rare. Examples involving lincRNAs in human cell lines are 115 

the inhibition of translation of targets CTNNB1 and JUNB via recruitment of the translational 116 

repressor Rck by the lincRNA-p21 (Yoon et al., 2012) and the inhibition of c-Myc translation by the 117 

recruitment of the eukaryotic initiation factor eIF4E by lncRNA GAS5 (Hu et al., 2014). Repression 118 

of mRNA translation was also demonstrated for the cis-NAT of the PU.1 gene, encoding a 119 

transcription factor in mammals (Ebralidze et al., 2008). Recently, three examples for the 120 

enhancement of translation by cis-NATs have been described. In rice (Oryza sativa), expression of 121 

the cis-NAT of the Pi exporter gene PHO1;2 was shown to enhance the association of the cognate 122 

mRNA to polysomes, leading to the accumulation of PHO1;2 protein despite unchanged steady-123 

state level of the corresponding mRNA (Jabnoune et al., 2013). In mice, Uchl1 mRNA translation is 124 

enhanced by a cis-NAT that is exported to the cytoplasm upon inhibition of the Target of 125 

Rapamycin (TOR) pathway (Carrieri et al., 2012). Finally, the human regulator of megakaryocyte 126 
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differentiation RBM15 is also translationally enhanced by a cis-NAT (Tran et al., 2016). Little is 127 

known about the mechanisms of action of the three translation enhancer cis-NATs reported so far. 128 

All three pairs are oriented in a head-to-head manner (5'-5'). For RBM15, the region of the antisense 129 

overlapping with the sense mRNA 5’UTR alone was found to be sufficient to enhance translation 130 

(Tran et al., 2016). In contrast, for Uchl1, two elements in the cis-NAT were found to be essential, 131 

namely the region overlapping with the 5' end of Uchl1 mRNA and a non-overlapping inverted 132 

Short Interspersed Nuclear Element (SINE) B2 element, a class of retrotransposable repeat element 133 

(Carrieri et al., 2012). More recently, cis-NATs containing distinct SINE elements have been 134 

identified in mammals as potential translation enhancers (Schein et al., 2016), whereas expression 135 

of some ribosome-associated cis-NATs in plants were correlated with increased mRNA translation 136 

(Bazin et al., 2017).  137 

 138 

The low number of cis-NATs experimentally validated to influence translation of the cognate 139 

mRNA might reflect the fact that most genome-wide studies of cis-NATs examined the correlation 140 

between steady-state level of mRNAs and the expression of cis-NATs, an approach that is not 141 

suitable for studying translation. In the present study, we took advantage of the polysome profiling 142 

method combined with strand-specific RNA sequencing to identify, in A. thaliana plants, cis-NATs 143 

whose expression level were associated with a change of cognate sense mRNA level, as well as 144 

translation across a range of experimental conditions. The impact of cis-NAT expression on cognate 145 

mRNA translation was further validated by expression of several cis-NATs in transgenic A. 146 

thaliana and/or by transient expression in protoplasts. 147 

 148 

  149 
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RESULTS 152 

Experimental setup to identify cis-NATs associated with changes in mRNA level and mRNA 153 

translation 154 

In order to identify cis-NATs impacting their cognate sense mRNA transcript level as well as 155 

mRNA translation, an experimental procedure was set up allowing the quantification of steady-state 156 

levels of coding and non-coding RNAs along with the determination of mRNA translation 157 

efficiency genome-wide in A. thaliana seedlings grown under various conditions. Whole seedlings 158 

grown in liquid cultures in the presence of a high (1 mM) or low (100 µM) concentration of Pi were 159 

analyzed, as well as roots and shoots from seedlings grown on agar-solidified medium 160 

supplemented with different phytohormones, namely auxin (indole acetic acid, IAA), abscisic acid 161 

(ABA), methyl-jasmonate (MeJA) or 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor 162 

of ethylene. For each sample, steady-state levels of cis-NATs and mRNAs were determined by 163 

strand-specific sequencing of total polyA+ RNA, whereas translation efficiency was assessed for the 164 

same sample by sequencing polysome-associated RNA purified by centrifugation through sucrose 165 

density gradients. Sequencing of each total or polysomal RNA sample yielded between 30 and 60 166 

million paired-end reads. Three independent biological replicates were analyzed for each treatment, 167 

and a total of at least 120 million paired-end reads were obtained per condition. 168 

 169 

The genes up- or down-regulated in response to the different treatments were identified by pairwise 170 

comparisons between hormone treated or low Pi samples and their corresponding controls. In 171 

response to low Pi, 2,991 protein-coding genes (according to the TAIR10 annotation) were 172 

significantly up-regulated with a fold change > 2 and adjusted p-value  (adj.pval) < 0.1, and 2,149 173 

were significantly down-regulated (Figure 1A, Supplemental Table S1-S2). Fewer genes were 174 

differentially expressed in response to the different hormone treatments (Supplemental Figure S1, 175 

Supplemental Table S1-S2). For example, upon auxin treatment, 377 and 120 protein-coding genes 176 

were up-regulated in roots and shoots, respectively (Supplemental Table S2). Untreated root and 177 

shoot tissues were also compared and their transcriptomes were dramatically different, as expected 178 

for two different organs, with 3,906 and 4,742 protein-coding genes significantly up- or down-179 

regulated, respectively, in roots relative to shoots (Supplemental Table S2).  180 

 181 

Quality assessment of the transcriptomic data was first performed by Gene Ontology (GO) term 182 

enrichment analyses for each set of up-regulated genes. This analysis confirmed the strong 183 

induction of marker genes associated with the different treatments. The genes up-regulated in 184 

response to low Pi were significantly enriched for the GO term “cellular response to Pi starvation” 185 

(GO:0016036 adj.pval=5.3x10-11) (Supplemental Figure S2A). Among these, Induced by Phosphate 186 
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Starvation 1 (IPS1), a known highly induced marker of Pi deficiency, was strongly over-expressed 187 

(fold change=127.9, Figure 1A, C). Similarly, the up-regulated genes were significantly enriched in 188 

GO terms “response to abscisic acid” (GO:0009737, adj.pval=1.3x10-10), “response to auxin” 189 

(GO:0009733, adj.pval=6.5x10-11), “jasmonic acid metabolic process” (GO:0009694, 190 

adj.pval=5.6x10-11,) and “ethylene-activated signaling pathway” (GO:0009873, adj.pval=6.4x10-8) 191 

in root samples treated with auxin, ABA, methyl jasmonate and ACC, respectively, compared to 192 

untreated roots (Supplemental Figure S2B-E). 193 

 194 

The genes differentially expressed in response to low Pi and ABA treatments were further 195 

compared to previously published datasets (Supplemental Figure S3). Approximately 71% of the 196 

genes up-regulated in whole seedlings upon ABA treatment in the study of Song et al. (2016) were 197 

also up-regulated in ABA-treated roots and/or shoots in our dataset (941 genes out of 1,327). 198 

Similarly, 79% of genes up-regulated in the study of Bazin et al. (2017) (154 / 194) and 30.5% of 199 

genes up-regulated either in roots or shoot in Yuan et al. (2016) were common with the genes up-200 

regulated under our low-Pi condition. The lower proportion of common differentially expressed 201 

genes with that reported by Yuan et al. (2016) might be explained by the differences in terms of 202 
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tissue analyzed (root versus whole seedlings) and growth conditions (e.g. liquid versus solid 203 

medium and different Pi concentrations).  204 

 205 

Analysis of differential mRNA translation 206 

Translation efficiency of coding genes can be estimated by measuring the proportion of mRNA 207 

molecules associated with polysomes relative to the amount of total RNA, as previously described 208 

(Mustroph et al., 2009; Juntawong et al., 2014). Using sequencing data from polysome-associated 209 

RNA, the ratio of polysome association (PA) was calculated for each gene by dividing the 210 

normalized readcount in the polysomal RNA fraction by the normalized readcount measured for 211 

total RNA steady-state level. The treated samples were compared to that in the corresponding 212 

control conditions and loci with a 30% increase or decrease in PA ratio and an adj.pval < 0.1 were 213 

considered differentially associated with polysomes, and thus potentially regulated translationally 214 

(Supplemental Table S1, S3). In response to growth under low-Pi conditions, 300 and 340 protein-215 

coding genes were significantly more and less associated with polysomes, respectively, compared to 216 

that under high-Pi conditions (Figure 1A). GO enrichment analyses revealed that the coding genes 217 

with a lower association with polysomes in response to low Pi were strongly enriched for ribosomal 218 

proteins (GO:0022626cellular component “cytosolic ribosome”, adj.pval=2.26x10-11) (Figure 1B, 219 

Supplemental Figure S4A), such as the cytosolic ribosomal protein RPS15AE (Figure 1D). This 220 

finding was consistent with that of previous reports, where a similar down-regulation of the 221 

translation of the ribosomal proteins was observed by ribosome footprints in response to both Pi 222 

deficiency (Bazin et al., 2017) and hypoxia (Juntawong et al., 2014), validating both techniques for 223 

the analysis of mRNA translation. Of note, most of the genes constituting chloroplastic ribosomal 224 

proteins, such as RPL34 (Figure 1B, E) showed a strong decrease in mRNA steady-state level 225 

without significant change in PA. The genes encoding mitochondrial ribosomal proteins on the 226 

other hand were globally less associated with polysomes, similarly to those encoding cytosolic 227 

ribosomal proteins (Figure 1B).  228 

 229 

Many genes were also found differentially associated with polysomes when comparing root and 230 

shoot tissues (Supplemental Figure S5, Supplemental Table S3). For example, 946 protein-coding 231 

genes were significantly more associated with polysomes in roots and 1,033 in shoots, in untreated 232 

samples. Interestingly, the strongest enrichment within the set of genes with higher PA in shoots 233 

corresponds to GO:0008380 “mRNA splicing” (adj.pval= 6x10-11) (Supplemental Figure S4B). 234 

SERRATE and SR45, for example, were strongly associated with polysomes in shoots and very 235 

poorly in roots (fold change PA = 5.3 and 4.2 for SERRATE and SR45, respectively), despite similar 236 

steady-state levels of mRNA in both tissues (Supplemental Figure S5B-D). Both SERRATE and 237 
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SR45 have been experimentally validated to participate in splicing, with an additional role for 238 

SERRATE in microRNA processing (Laubinger et al., 2008; Zhang et al., 2017).  239 

 240 

De novo identification of cis-NATs  241 

Cis-NATs expressed in response to the different treatments were identified using the pipeline 242 

described in the Materials and Methods (Figure 2A). In this pipeline, pairs of protein-coding genes 243 

having mRNAs that may overlap in a sense-antisense fashion are not included as bona fide cis-244 

NATs. De novo transcriptome annotations corresponding to each of the 12 experimental conditions 245 

analyzed were merged, and, after comparison to the TAIR10.31 annotation (Berardini et al., 2015), 246 

a novel set of 4,411 cis-NATs were identified. Approximately 9% (374) of these cis-NATs were 247 

recently annotated in the Araport11 database (Cheng et al., 2017). We then used the FEELnc tool 248 

(Wucher et al., 2017) (see Materials and Methods and Supplemental Materials and Methods for 249 

details) to determine in silico the coding potential of all the newly identified cis-NATs. The large 250 

majority of these cis-NATs (98.5%) were lacking coding potential and only 63 were predicted to be 251 

potentially coding. This prediction of coding potential was well supported by our experimental 252 

polysome profiling data since the cis-NATs predicted to be coding were significantly more 253 

associated with polysomes than seen for the non-coding cis-NATs (Figure 2B). A similar difference 254 

was observed when comparing protein-coding and non-coding genes annotated in the TAIR10 255 

database.  256 

 257 

Exploring the conservation across plant genomes of the peptides encoded by the 63 cis-NATs with 258 

high coding potential, we identified a group of 10 peptides that were well conserved amongst plant 259 

genomes, and a second group of nine peptides conserved amongst Brassicaceae species only 260 

(Supplemental Figure S6). The remaining 44 predicted coding cis-NATs were poorly or not 261 

conserved. Seven of the cis-NATs encoding conserved peptides (Group I or II) were recently 262 

annotated as (putative) protein-coding genes in the ARAPORT11 database but not in TAIR10. The 263 

transcripts encoding these evolutionary conserved peptides should thus likely be considered as 264 

novel protein-coding genes.  265 

 266 

Expression of the identified cis-NATs was well supported by published epigenetic profiling data 267 

from Jégu T. et al. (2017). The predicted transcription start sites of the cis-NATs were strongly 268 

enriched for the activating histone mark H3K9Ac as well as micrococcal S7 nuclease (Mnase) 269 

footprints to the same extent as that in TAIR10 protein-coding loci, confirming the transcriptionally 270 

active state of the promoter regions of the cis-NATs (Supplemental Figure S7). Moreover, 60% of 271 
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the cis-NATs detected in our dataset overlapped with cis-NATs previously identified in at least one 272 

of the three datasets used for comparison: the PlncDB database (Jin et al., 2013; Wang et al., 2014)• 273 

as well as the work of Yuan et al. (2016) and Bazin et al. (2017)• (Supplemental Figure S8).  274 

 275 

Cis-NATs were on average shorter, expressed at a lower level and had a weaker genomic sequence 276 

conservation (PHASTcons score) compared to that of TAIR10 annotated non-coding RNA and 277 

protein-coding mRNAs (Figure 2C-E), consistent with previous reports of cis-NATs in plants and 278 

other eukaryotes (Wang et al., 2005; Khorkova et al., 2014; Yuan et al., 2015). Furthermore, the 279 

polysome association value of cis-NATs was significantly lower (0.64) compared to that of mRNAs 280 

(1.19), but similar to that of the non-coding transcripts annotated in the TAIR10 database (0.54) 281 

(Figure 2B).  282 

 283 

To validate our pipeline of identification of differentially expressed cis-NATs and protein-coding 284 

genes, we analyzed by RT-qPCR the expression level of six protein-coding genes and six cis-NATs 285 

predicted to be up- or down-regulated in response to phosphate starvation. For the 12 genes 286 

analyzed, the RT-qPCR results showed a significant increase or decrease in RNA steady-state level 287 

in agreement with the RNAseq data (Supplemental Figure S9). 288 

 www.plantphysiol.orgon May 22, 2019 - Published by Downloaded from 
Copyright © 2019 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 13

13

 289 

Cis-NATs associated with changes in steady-state level of their cognate mRNA 290 

To identify cis-NATs potentially regulating the expression of their cognate mRNA at the 291 

transcriptional or translational level, we looked for correlation between expression levels of all 292 

available cis-NATs (e.g. cis-NATs identified in this study and those included in TAIR10.31, total of 293 

4,846 cis-NATs) and cognate sense mRNA steady-state levels or polysome association across the 294 

different experimental conditions analyzed, comparing hormone treated samples with untreated 295 

controls for root and shoot tissues as well as seedlings grown under low- or high-Pi conditions. 296 

Untreated root and shoot tissues were also compared to identify cis-NATs potentially regulating 297 

tissue-specific gene expression. All cis-NAT:sense mRNA pairs were put into four categories 298 

considering their region of overlap, namely overlap in the 5' end, 3' end, completely included within 299 

the sense region, or cis-NATs that extend beyond the 5' and 3' region of the coding sense 300 

(overhanging) (Supplemental Figure S10).  301 

 302 

Analysis for potential effects of cis-NAT expression on steady-state sense mRNA level was 303 

performed. For each pairwise comparison, the cis-NAT:mRNA pairs were considered correlated if 304 

both the cis-NAT and the cognate mRNA were differentially expressed, with a fold change of at 305 

least 2 and a FDR < 0.1. A total of 1,310 cis-NATs, including 67 annotated in TAIR10, were 306 

differentially expressed in at least one condition (Supplemental Table S1). For 107 of these loci, 307 

steady-state level of the cognate mRNA was positively correlated to cis-NAT expression (Table 1, 308 

Supplemental Table S4). For example, both the mRNA and the cis-NAT of the locus AT2G37580 309 

were significantly up-regulated upon ABA treatment in shoots (FC= 2.13, adj.pval=0.029 for the 310 

mRNA and FC=2.06, adj.pval=1.3x10-2 for the cis-NAT) (Figure 3A). We also found 41 pairs with 311 

a negative correlation, such as AT1G68940, whose mRNA was up-regulated in response to low-Pi 312 

conditions (FC=2.16, adj.pval=7.9x10-3), whereas the cis-NAT was down-regulated (FC= 0.39, 313 

adj.pval=7.2x10-2) (Figure 3B). Pearson correlation coefficient between cis-NAT and mRNA 314 

expression was calculated across the 12 experimental conditions analyzed, taking advantage of the 315 

whole experimental dataset to identify cis-NATs with stronger positive and negative expression 316 

correlation with their cognate sense mRNA. This analysis revealed that 86 cis-NAT:sense mRNA 317 

pairs out of 107  had a positive correlation coefficient higher than 0.4, whereas 27 cis-NAT:sense 318 

mRNA pairs out of 41 had a negative correlation coefficient lower than -0.4, across all 12 319 

experimental conditions  (Figure 3E-F, Table 1).  320 

 321 

Identification of putative translation regulator cis-NATs 322 
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In order to identify cis-NATs influencing the translation of their cognate sense mRNA, we looked 323 

for cis-NAT:sense mRNA pairs where the cis-NAT was differentially expressed (fold change > 2 324 

and adj.pval < 0.1) and the sense mRNA that was differentially associated with polysomes (at least 325 

30% increase or decrease, adj.pval < 0.1) in response to treatment. A finer filtering step was also 326 

performed using additional criteria such as the size of the overlapping region or the relative level of 327 

expression between cis-NAT and mRNA (see Material and Methods for further details). A total of 328 

eight cis-NAT:sense mRNA pairs were identified for which cis-NAT differential expression was 329 

positively correlated to mRNA differential association with polysomes in at least one pairwise 330 

comparison (Supplemental Table S4). For example, AT1G03410 mRNA was more associated with 331 

polysomes (FC=1.79, adj.pval=0.01) when the cis-NAT was more expressed (FC=2.71, 332 

ajd.pval=5.6x10-18) in untreated roots samples compared to untreated shoots (Figure 3C). A total of 333 

six pairs showed a negative correlation between cis-NAT expression and cognate mRNA 334 

association with polysomes (Supplemental Table S4), including the CuAO1 locus whose sense 335 

mRNA was more associated with polysomes (FC=1.68, adj.pval=0.05) when the cis-NAT was less 336 

abundant (FC=0.29, adj.pval=1.3x10-5) in Pi-deficient seedlings (Figure 3D). The expression of 337 

three out of the eight cis-NAT:sense mRNA pairs with a positive correlation and three out of the six 338 

pairs with negative correlation had a Pearson correlation coefficient > 0.4 and < -0.4, respectively, 339 
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with polysome association of their cognate mRNAs across the 12 experimental conditions (Figure 340 

3G-H, Table 1, Supplemental Table S4).  341 

 342 

The cis-NATs identified that positively or negatively correlated with sense mRNA steady-state 343 

transcript level or polysome association were further analyzed for relation with miRNAs, i.e. 344 

presence of miRNA precursor sequence, miRNA target sequence, and potential as a microRNA 345 

target mimic (see Material and Methods). Out of the 4,846 cis-NATs analyzed, 14% (682) were 346 

predicted to contain at least one miRNA binding site (Supplemental Table 1), including 7 and 14 347 

cis-NATs negatively and positively correlated to cognate mRNA steady-state level, respectively 348 

(Supplemental Table 1). Two cis-NATs positively correlated with mRNA polysome association 349 

were predicted to contain miRNA binding sites, but none of the cis-NATs with a negative 350 

correlation. Only seven cis-NATs were predicted as miRNA precursors and 69 contained potential 351 

miRNA target mimic sites, including two cis-NATs positively correlated with cognate mRNA 352 

expression and one cis-NAT positively correlated with mRNA polysome association (Supplemental 353 

Table S1). No cis-NAT negatively correlated to mRNA expression or polysome association 354 

contained a putative miRNA target mimic site. 355 

 356 

We also took advantage of 40 publicly available small RNA datasets to analyze the cis-NATs in 357 

relation to siRNAs. We identified 24,119,910 small reads between 18 and 28 nucleotides long 358 

mapping to TAIR10 reference genome. Of those, 666,181 mapped to cis-NAT loci and were 359 

considered as cis-NAT-siRNAs. Most of them were 21 and 24 nucleotides long (Supplemental 360 

Figure S11A) and the overlapping region of cis-NATs showed a significantly higher density in 361 

small RNAs compared to that of non-overlapping regions (Supplemental Figure S11B), in 362 

agreement with previous reports (Zhou et al., 2009; Yuan et al., 2015). We identified 1336 potential 363 

siRNA precursor cis-NATs, with at least five small reads mapping to the overlapping region and a 364 

read density at least two-fold higher in the overlapping region than that in the non-overlapping 365 

region. From this set of 1,336 cis-NATs, 25 belonged to the group of putative transcription 366 

enhancers (representing 23% of the 107 candidates), 10 to the group of putative transcription 367 

inhibitors (representing 24% of the 41 candidates), one to the group of putative translation 368 

enhancers (representing 12.5% of the 8 candidate) and none to the group of putative translation 369 

repressors (Supplemental Table S1). 370 

We also looked for the presence of transposable elements or inverted repeats within the cis-NATs 371 

identified (see Material and Methods) (Supplemental Table S1). Approximately 10.5% of the cis-372 
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NATs (i.e. 508) contained at least part of transposable element sequences, including one positively 373 

correlated and one negatively correlated to mRNA translation. Transposable element sequences 374 

were found in 15 out of the 107 cis-NATs correlated with cognate mRNA steady-state level. 375 

Similarly, we found that 121 cis-NATs contained inverted repeats, including one in a cis-NAT 376 

positively correlated with cognate mRNA translation and one in a cis-NATs negatively correlated 377 

with cognate mRNA steady-state level. 378 

 379 

Experimental validation of cis-NAT regulation of cognate sense mRNA translation 380 

A positive or negative correlation between cis-NAT expression and cognate mRNA association 381 

with polysomes could indicate translation enhancement or repression of the mRNA by the cis-NAT. 382 

To experimentally validate such a potential translation regulation activity, two cis-NATs with 383 

potential translation enhancer activity and two with putative translation repressor activity were 384 

cloned after the CaMV35S promoter and used to transform A. thaliana to produce transgenic lines 385 

over-expressing the cis-NATs in trans. Two independent transgenic lines were selected for each cis-386 

NAT construct with a robust (>10-fold) over-expression of the transgenic cis-NAT compared to the 387 

steady-state level of the endogenous cis-NAT in wild-type lines but without a significant change of 388 

steady-state level of the endogenous cognate mRNA (Supplemental Figure S12). Polysome 389 

association of each cognate sense mRNA was analyzed by sucrose density gradient in the lines 390 

over-expressing the cis-NATs compared to that in a control line transformed with an empty vector. 391 

The distribution of mRNAs along the sucrose density gradient was determined by RT-qPCR (Figure 392 

4B and E, 5B and E, and Supplemental Figure S13). In order to quantify the changes in terms of 393 

association with polysomes in a more robust manner, the proportion of mRNA present either in 394 

fractions containing free mRNA or monosomes (fractions 1 to 3) versus fractions containing 395 

polysomal mRNAs (fractions 4 to 6) was calculated for each of the eight independent biological 396 

replicates (Figure 4C and F, 5C and F). This analysis revealed that over-expression of the cis-NAT 397 

associated with the CuAO1 locus was associated with a decrease in translation of the cognate 398 

mRNA (Figure 4B, C), in agreement with the negative correlation between cis-NAT steady-state 399 

level and mRNA polysome association (Figure 4A). In contrast, polysome association of the mRNA 400 

of locus At1g54260, encoding a potential transcription factor, was not significantly changed by the 401 

over-expression of its cis-NAT in trans (Figure 4E, F), despite the positive correlation (Figure 4D).  402 

 403 

Similar analysis performed for two cis-NATs that displayed positive correlation with their cognate 404 

mRNA translation (Figure 5A, D) showed that lines over-expressing the cis-NAT to locus 405 

At3g26240 showed a reproducible shift of the its cognate mRNA towards the heavy polysome 406 
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fractions in eight independent biological replicates, indicating a stimulatory effect of cis-NAT 407 

expression on translation (Figure 5B, C). In contrast, over-expression of the cis-NAT to locus 408 

WRKY45 (AT3G01970) did not change significantly the polysome profile of its cognate sense 409 

mRNAs (Figure 5E, F).  410 

 411 

A protoplast co-transformation system was developed to independently validate the effects of cis-412 

NAT expression on the translation of their cognate sense mRNA. Protoplasts were transformed with 413 

a plasmid containing a sense-coding gene fused to NanoLuc luciferase (Nluc), in the presence or 414 

absence of a plasmid expressing the cognate cis-NAT. The sense-Nluc vectors contained also an 415 

independent expression cassette for the firefly luciferase (Fluc), used as an internal transformation 416 

and loading control (see Materials and Methods for further details). The ratio Nluc:Fluc activity was 417 

used to assess the effect of each selected cis-NAT on its sense-encoded protein accumulation. 418 

Increasing the molar amounts of cis-NATCuAO1 resulted in a corresponding decrease in the 419 

expression of the CuAO1-Nluc fusion protein as detected by a decrease in the Nluc:Fluc ratio 420 

(Figure 6A). Importantly, this inhibitory effect was not observed at the transcript level 421 

(Supplemental Figure S14). Similarly, increasing amounts of cis-NATAT1G54260 resulted in reduction 422 
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in expression of the AT1G54260-Nluc fusion protein (Figure 6B) without an effect on transcript 423 

level (Supplemental Figure S14), although the effect was less pronounced than the one observed for 424 

the cis-NATCuAO1-sense construct pair. These later results are in contrast to the lack of significant 425 

effect observed in stable transgenic lines overexpressing cis-NATAT1G54260 and analyzed by 426 

quantification of polysomal mRNA in sucrose gradient fractions (Figure 4E and F). Such 427 

discrepancy may reflect the higher variability of the transgenic-polysomal approach or the higher 428 

sensitivity of the protoplast transformation method. To further validate the specificity of the effects 429 

of cis-NAT on translation of the corresponding sense mRNA, cis-NATCuAO1 was co-transformed 430 

with the AT1G54260-Nluc construct, and cis-NATAT1G54260 was co-transformed with the CuAO1-431 

Nluc construct. In this cis-NAT swap experiment, no effect on Nluc:Fluc ratio were observed 432 

(Figure 6C and 6D), revealing that the inhibitory effect of cis-NATAT1G54260 and cis-NATCuAO1 on 433 

translation was specific to their cognate sense genes. 434 

 435 

The protoplast system was also used to test the two cis-NATs acting as potential translational 436 

enhancers that were previously analyzed in transgenic plants, namely the cis-NATs to AT3G26240 437 

and WRKY45, as well as an additional third candidate, 2A6 (AT1G03410) (Figure 7). There was a 438 

significant increase in Nluc:Fluc ratio upon addition of increasing amount of cis-NATAT3G26240 to its 439 
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cognate sense construct, without a corresponding increase in transcript levels (Figure 7A and 440 

Supplemental Figure S14), confirming the translational enhancement of this cis-NAT. Similar to the 441 

results obtained with stable transgenic plants (Figure 5E, F), there was no significant effect of 442 

addition of cis-NATWRKY45 on the expression of the WRKY45-Nluc construct (Figure 7C). Although 443 

we did not generate transgenic lines to test the effect of cis-NAT2A6 on the translation of its cognate 444 

sense mRNA, protoplast analysis revealed an increasing Nluc:Fluc ratio associated with the 445 

addition of cisNAT2A6 to its corresponding sense 2A6-Nluc construct, without changes in mRNA 446 

levels (Figure 7B and Supplemental Figure S14), revealing a similar translational enhancement 447 

effect as those observed with cis-NATAT3G26240. A swap experiment performed between the cis-448 

NATAT3G26240 and cis-NAT2A6 showed no enhancement effect on unrelated sense-Nluc fusion 449 

(Figure 7D-E), confirming that the stimulatory effect of cis-NATAT3G26240 and cis-NAT2A6 on 450 

translation was specific to their cognate sense genes.   451 

 452 

Over-expression of the putative translation inhibitor cis-NATCuAO1 in transgenic lines probably 453 

resulted in lower levels of endogenous CuAO1 protein although we were not able to detect and 454 

quantify reliably CuAO1 protein by targeted mass spectrometry using N15-labeled plants (Hart-455 
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Smith et al., 2017). Since Arabidopsis CuAO1 knock-down mutants were shown to be impaired 456 

in NO production induced by polyamines (Wimalasekera et al., 2011), we undertook to 457 

quantify NO production upon spermidine treatment in two independent cis-NATCuAO1 over-458 

expressing transgenic lines along with a CuAO1 T-DNA knock-down mutant. NO production 459 

was strongly impaired in CuAO1 knock-down mutant, in agreement with the previous results of 460 

Wimalasekera et al. (2011), but also in the cis-NATCuAO1 over-expressing line #1 461 

(Supplemental Figure S15). The second cis-NAT over-expressing line also showed a 462 

reproducible reduction in NO production compared to that in the Col0 control although the 463 

associated p-value was above 0.05 (0.13). 464 

 465 
 466 
  467 
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Discussion 469 
 470 
Out of a total set of 4,846 cis-NATs identified in this study or annotated in TAIR10, 157 (3.24%) 471 

were found to have a potential to regulate the expression of their cognate sense mRNA based on 472 

positive or negative correlations with either the steady-state mRNA level or polysome association. 473 

The great majority of those potential regulatory cis-NATs (147 out of 157; Table 1) were associated 474 

with changes in the transcript level of the cognate sense mRNA, with a stronger bias towards 475 

concordant expression (107 out of 147). This bias towards concordance is somewhat surprising 476 

since negative effect of cis-NAT expression on steady-state mRNA level is more commonly 477 

described in the literature than positive effects (Khorkova et al., 2014). It is possible that 478 

phenotypes associated with the disruption of cis-NATs with discordant expression pattern may be 479 

more apparent than for concordant expression pattern. Furthermore, co-expression of cis-NAT and 480 

cognate sense mRNA could, in many cases, be simply a consequence of local changes in chromatin 481 

state encompassing a whole locus that would equally affect the access of the transcription 482 

machinery to both the sense and antisense promoters, and thus would not be associated with a 483 

regulatory mechanism for controlling sense mRNA expression. However, numerous examples exist 484 

in the literature showing that increased expression of a cis-NAT may negatively affect sense mRNA 485 

steady-state level via changes in histone marks localized primarily at the promoters of the sense 486 

genes (Khorkova et al., 2014). Whereas fewer examples of similar local effect only on the promoter 487 

activity of the sense genes have been described for cis-NATs having concordant expression pattern 488 

(Mondal et al., 2010), more examples may be found through a more systematic analysis of this 489 

group of cis-NATs in Arabidopsis.  490 

 491 

Non-coding RNAs, and particularly lincRNAs, can regulate the expression of coding mRNA by 492 

either masking a miRNA binding site via base pairing or by acting as a miRNA mimic (Wang et al., 493 

2013; Cho and Paszkowski, 2017). At least one example has been described in animals for a cis-494 

NAT masking a miRNA binding site present in the cognate sense gene (Faghihi et al., 2010). In the 495 

present study, 600 sense genes associated with a cis-NAT were found to be a potential target for a 496 

microRNA and 69 cis-NATs were found to contain a sequence that could act as a miRNA mimic 497 

(Supplemental Table S1).  Of those, only two cis-NATs were found in the group associated with 498 

changes in steady-state mRNA level (both concordant) and only one associated with changes in 499 

mRNA polysome association, namely cis-NATWRKY45. However, the effect of cis-NATWRKY45 in its 500 

cognate sense RNA could not be experimentally validated either in transgenic plants nor in 501 

protoplasts (Figure 5D and 7C). Thus, whereas it is possible that some plant cis-NATs may function 502 

in miRNA masking or as a miRNA mimic, it would not appear to be common.  503 

 504 
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Overlap between cis-NATs and their cognate sense mRNAs can potentially generate siRNAs 505 

leading to gene silencing. There are several examples of cis-NATs down-regulating the cognate 506 

mRNA level via a siRNA-mediated silencing pathway, including in Arabidopsis (Held et al., 2008; 507 

Ron et al., 2010). It is thus possible that some of the cis-NATs identified in this study are potential 508 

transcription inhibitors and the associated cis-NAT-siRNAs may act through a siRNA pathway. 509 

There is also an example in Arabidopsis where cis-NAT expression leads to an increase in cognate 510 

sense mRNA transcript via the generation of cis-NAT-siRNAs that inhibit the action of a 511 

microRNA targeting the same cognate sense mRNA, thus leading to an increase in sense mRNA 512 

level (Gao et al., 2015). Such a mechanism could potentially apply to three genes having cis-NATs 513 

identified as potential transcription enhancers and associated with cis-NAT-siRNAs, namely 514 

At1g23090, At2g44430 and At2g45850, which could be targeted by miR826a, miR838 and 515 

miR837, respectively.  In contrast, the only gene with a cis-NAT generating cis-NAT-siRNAs that 516 

belongs to the group of potential translation regulators does not harbor miRNA targets.  517 

 518 

In silico analysis of the set of cis-NATs identified a small group of 63 cis-NATs that had a higher 519 

coding potential and that were more associated with polysomes than were other non-coding RNAs. 520 

Further analysis revealed that 19 of those cis-NATs could encode polypetides that were conserved 521 

either mainly in Brassicaceae (Group II, 9 cis-NATs) or more broadly in plants (Group I, 10 cis-522 

NATs) (Supplemental Figure S6). Only one out of these 63 cis-NATs was positively correlated with 523 

change in sense mRNA steady-state level (cis-NATAT1G69260), but none were correlated with 524 

changes in mRNA translation (Supplemental Table S1). Association of mRNA with polysomes 525 

does not directly show if the RNA is being actively translated into a polypetide. However, analysis 526 

of RNA translation by ribosome footprint in both plants and animals have revealed that a 527 

remarkably broad spectrum of RNAs previously thought to be non-coding are actively being 528 

translated by ribosomes (Aspden et al., 2014; Ji et al., 2015; Hsu et al., 2016; Bazin et al., 2017). 529 

Recent analysis of non-coding RNAs in Arabidopsis roots revealed that 568 out of 1,676 cis-NATs 530 

had ribosome footprints consistent with translation (Bazin et al., 2017). Interestingly, translation of 531 

a small ORF present in a tasiRNA was shown to enhance tasiRNA production (Bazin et al., 2017), 532 

suggesting that whereas many lincRNAs and cis-NATs may indeed be translated into peptides, the 533 

act of translation itself rather than the specific sequence of the polypeptide may, in some cases, be 534 

the predominant mechanism of regulation. In that context, four cis-NATs found by Bazin et al. 535 

(2017) to have ribosome footprints are included in the group of 19 cis-NATs with coding potential 536 

that are well conserved in plants (Supplemental Figure S6). These four cis-NATs may be good 537 

candidates for transcripts coding for biologically active polypeptides.  538 

 539 
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In contrast to numerous reports of the effects of cis-NAT expression on sense gene transcription 540 

and/or transcript stability, very few examples of cis-NATs affecting the translation of their cognate 541 

sense mRNA have been described. Repression of mRNA translation by a cis-NAT has only been 542 

described for the PU.1 gene in mouse (Ebralidze et al., 2008), whereas cis-NATs enhancing cognate 543 

mRNA translation have been reported for the rice PHO1.2, the mouse Uchl1 and the human RBM15 544 

genes (Carrieri et al., 2012; Jabnoune et al., 2013; Tran et al., 2016). A major goal of this work has 545 

thus been to systematically explore the role of cis-NAT expression on translation of their cognate 546 

mRNA in Arabidopsis. A total of 14 candidate cis-NATs with putative repressive or stimulatory 547 

effects on cognate mRNA translation were found, which is 10-fold less compared to the number of 548 

cis-NATs with effects on mRNA steady-state level. Analysis of the configuration of the cis-NATs 549 

relative to the sense mRNA showed that cis-NATs associated with either translational stimulation 550 

or repression had a higher proportion of head-to-head configuration compared to that of all other 551 

cis-NATs (Supplemental Figure S10), although the low number of cis-NATs associated with 552 

translation makes this distinction not statistically significant. Furthermore, some of the Arabidopsis 553 

cis-NATs that were experimentally confirmed to affect translation have other configurations, such 554 

as tail-to-tail (AT1G54260, AT3G26240). 555 

 556 

The effects of cis-NAT expression on cognate mRNA translation were experimentally tested by 557 

either stable transformation in plants and/or transient expression in leaf protoplasts for 5 of the 14 558 

candidates. Four of those were validated, namely two cis-NATs mediating translational repression 559 

(CuAO1 and AT1G54260) and two cis-NATs mediating translational stimulation (AT3G26240 and 560 

AT1G03410). These results highlight the robustness of the experimental pipeline used to identify 561 

the candidates. 562 

 563 

CuOA1 encodes a copper amine oxidase involved in the catabolism of polyamines (Wimalasekera 564 

et al., 2011). CuAO1 has been shown to be involved in the generation of nitric oxide, a key 565 

signaling molecule involved in a wide range of functions in plants, including seed germination, root 566 

development and ABA-induced stomatal closure (Besson-Bard et al., 2008). The Arabidopsis 567 

cuao1-1 T-DNA knock-down mutant shows reduced production of NO after treatment with 568 

spermidine (Wimalasekera et al., 2011). Several stress conditions are known to induce NO 569 

synthesis, including phosphate deficiency (Sun et al., 2016). Although proteomic experiments could 570 

not reliably quantify the amount of CuAO1 protein in transgenic lines overexpressing cis-571 

NATCuAO1, the same lines did show reduced NO production to levels similar to that of the cuao1-1 572 

mutant, supporting an inhibitory effect of cis-NATCuAO1 expression on CuAO1 production 573 

(Supplemental Figure S15).   574 

 www.plantphysiol.orgon May 22, 2019 - Published by Downloaded from 
Copyright © 2019 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 25

25

 575 

AT1g54260 harbors a highly conserved central globular domain (GH1) present in the linker histone 576 

H1, proteins that perform important functions on chromatin structure and influencing accessibility 577 

of trans-acting factors to DNA (Hergeth and Schneider, 2015; Kotlinski et al., 2017). The GH1 578 

domain is known to bind DNA and the AT1G54260 protein belongs to the winged helix family of 579 

DNA binding proteins. Beside histones H1, proteins containing GH1 domain have been shown to 580 

binds to DNA, including at the telomeres, and potentially act at various level in the regulation of 581 

chromatin structure (Zhou et al., 2016). The cis-NAT to AT1G54260 is up-regulated by both ABA 582 

and low Pi (Supplemental Table S1). Modulation of AT1G54260 protein synthesis via expression 583 

of its cis-NAT could thus have broad impact on chromatin structure and gene regulation under 584 

various stress. 585 

 586 

AT3G26240 encodes a protein of unknown function. AT1g03410 (2A6) encodes a protein 587 

containing a domain associated with oxoglutarate and iron-dependent dioxygenase. In plants, 588 

enzymes containing this domain catalyze the formation of plant hormones, such as ethylene, 589 

gibberellins, anthocyanidins and pigments such as flavones. The cis-NATAT1G03410 is of particular 590 

interest since it corresponds to a retroelement of the Sadhu family (Rangwala and Richards, 2010). 591 

The stimulatory activity of the cis-NAT of the mouse Uchl1 on translation was shown to be 592 

dependent on the SINEB2 retroelement (Carrieri et al., 2012). Sadhu retroelements resemble SINEs 593 

in their structure, except that they do not contain similarity to known non-coding RNAs, such as 594 

5SrRNA or tRNAs (the SINEB2 element is derived from a tRNA) (Weiner, 2002). Whereas the cis-595 

NATs of both Uchl1 and AT1g03410 are in the head-to-head configuration, the SINEB2 element of 596 

cis-NATUchl1 is located at the non-overlapping 3' end of the cis-NAT and cis-NATAT1G03410 is almost 597 

completely overlapping with the 5'UTR region of the sense mRNA except for the last 56 598 

nucleotides (Supplemental Figure S16) (Carrieri et al., 2012). Whether or not SINEB2 elements and 599 

Sadhu retrotransposon stimulates mRNA translation by a similar mechanism remains to be 600 

determined.  601 

 602 

The success of the validation methods relying on stable expression of cis-NATs in transgenic plants 603 

or transient expression in protoplast reveals that the effect of cis-NAT expression on sense mRNA 604 

translation can occur in trans. This implies that the cis-NAT produced from a distinct locus must be 605 

sufficiently stable to locate and anneal to its target mRNA and recruit or sequester factors that affect 606 

translation. This may, however, not always be the case, since the effects of some cis-NATs on 607 

mRNA transcript level have been found to occur only in cis and not in trans (Fedak et al., 2016; 608 

Rosa et al., 2016).  Thus experimental validation of some cis-NATs for regulation of sense mRNA 609 
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translation may, in some cases, require other methods working in cis, such as precise mutation of 610 

the cis-NAT locus by CRISPR/Cas9. 611 

 612 

In conclusion, the experimental pipeline described in this work identified and validated a number of 613 

novel cis-NATs in Arabidopsis that influence cognate sense mRNA translation. Although the 614 

proportion of cis-NATs associated with changes in mRNA translation was relatively low compared 615 

to the total number of cis-NATs expressed in the genome, it is likely that more candidates will be 616 

found when plants are grown under different experimental conditions that lead to greater spectrum 617 

of cis-NAT expression. Considering that a broad range of mechanisms have been identified for the 618 

effect of lincRNAs and cis-NATs on transcriptional regulation, it is likely that the mechanisms 619 

through which cis-NATs enhance or repress translation will also be quite diverse. 620 

  621 
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Materials and Methods 622 
 623 
Plant materials 624 

A. thaliana seeds (Col0) were germinated in half-strength Murashige and Skoog (MS) liquid 625 

medium containing 1 mM (high) or 100 uM (low) Pi. On day 5 and 6 after germination, the medium 626 

was replaced to maintain a constant level of Pi. On day 7, whole seedlings were harvested and used 627 

for total RNA extraction and polysome profiling. A. thaliana seeds were also germinated on agar-628 

solidified half-strength MS medium for 10 days, after which the seedlings were flooded with a 629 

solution of half-strength MS containing 5 µM IAA, 10 µM ABA, 10 µM MeJA, 10 µM ACC, or no 630 

hormone for the untreated control. After 3 h of incubation, roots and shoots were split and harvested 631 

separately. For each of the 12 experimental conditions, 3 independent biological replicates were 632 

carried out at different times. 633 

 634 

Total and polysomal RNA extraction 635 

Plant samples (whole seedlings, roots or shoots) were flash frozen and ground in a mortar and 636 

pestle, and the polysomes were extracted essentially as described in Mustroph et al. (2009) with 637 

minor modifications (see Supplemental Materials and Methods).  638 

 639 

Library preparation and RNA sequencing 640 

From each total and polysomal RNA sample, strand specific libraries were prepared using the 641 

TruSeq Stranded Total RNA kit (Illumina) and polyA+ RNAs were selected according to 642 

manufacturer's instructions. The libraries were sequenced on a HiSeq 2500 Illumina sequencer and 643 

about 30 million of paired-end reads per sample were obtained. In total, about 120 million reads 644 

were obtained for each of the 12 experimental conditions. 645 

 646 

Identification of cis-NATs and analysis of their coding potential  647 

To identify cis-NATs, the paired-end reads from the 3 replicates were pooled together and uniquely 648 

mapped to the TAIR10 genome using Hisat2 (Kim et al., 2015). For each of the 12 conditions, the 649 

transcriptome was determined de novo with Cufflinks (Trapnell et al., 2010), using the TAIR10.31 650 

annotation as guide. The 12 annotation files obtained were merged using the Cuffmerge tool 651 

(Trapnell et al., 2010). This transcriptome was then compared to TAIR10.31 using Cuffcompare 652 

(Trapnell et al., 2010), and transcripts antisense to TAIR10.31 coding genes (class_code_x) were 653 

considered as putative cis-NATs. The readcount for each TAIR10.31 protein coding gene and each 654 

identified cis-NATs was determined using HTSeq-count (mode Union) and the identified cis-NATs 655 

with a ratio read count cis-NAT / coding gene < 0.01 were discarded as false positives likely due to 656 

imperfect strand specificity of the library preparation protocol (99.9%). 657 
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 658 

The “FEELnc codpot” module from FEELnc (version 0.01) (Wucher et al., 2017) was used to 659 

identify cis-NATs that could potentially be coding for polypeptides (see Supplemental Material and 660 

Methods).  661 

 662 

Characterization of cis-NATs 663 

Basic features such as length or GC content of transcripts, average steady-state levels or polysome 664 

association were determined for each cis-NAT using custom functions written in Python. To 665 

analyze the nucleotide conservation, PHASTcons scores where extracted from the 20 angiosperm 666 

genome alignment as described by Hupalo et al. (2013). For each transcript, the average 667 

PHASTcons score was calculated for exonic and intronic sequences. The presence of inverted 668 

repeats was determined using the einverted program (EMBOSS; 669 

http://emboss.bioinformatics.nl/cgi-bin/emboss/einverted) using default parameters. The presence 670 

of miRNA binding sites within cis-NATs and coding transcripts was determined using 671 

psRNATarget server (http://plantgrn.noble.org/psRNATarget/) with an expectation <= 3 and 672 

unpaired energy (UPE) <= 25. Potential miRNA precursors were identified by comparing the 673 

cDNA sequences of cis-NATs against a database of miRNA hairpins downloaded from miRBase 674 

(http://www.mirbase.org).  675 

 676 

The presence of potential miRNA target mimic sites was determined using custom python functions 677 

following the rules edicted in Wu et al. (2013), namely: (i) perfect nucleotide pairing was required 678 

at the second to eighth positions of miRNA sequence, (ii)  bulges were only permitted at the 5' end 679 

ninth to 12th positions of miRNA sequence, and (iii) should be composed of only three nucleotides. 680 

No more than 3 mismatches or G/U pairs were allowed in pairing regions (not considering the 681 

bulge). 682 

 683 

Analysis of siRNAs that could be generated by cis-NATs was essentially performed according to 684 

the method described by Yuan et al. (2015) using the Arabidopsis small RNA dataset available on 685 

GEO. Briefly, the small reads 18–28 nucleotides long were mapped to the TAIR10 reference 686 

genome using bowtie. For each cis-NAT locus, the length and density in small RNAs was 687 

calculated for overlapping and non-overlapping regions by dividing the number of mapped small 688 

reads by the length of the region using custom scripts and the python library pysam. 689 

 690 
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The presence of transposable elements within cis-NAT transcripts was determined by comparing 691 

the cis-NATs sequences against a database containing all transposable elements annotated in 692 

TAIR10 using Blastn with a cutoff of evalue=1e-12 and percent identify > 50. 693 

 694 

Quantification of TAIR10 and identified loci and identification of DEG 695 

For each experimental condition and biological replicate, the read count of TAIR10 as well as 696 

identified loci was determined with HTSeq-count (mode Union) (Anders et al., 2015), and 697 

normalized with DESeq2 (Love et al., 2014). A gene was considered differentially expressed 698 

comparing two conditions if the adj.pval was < 0.1 and the fold change > 2 or < 0.5.  699 

 700 

Validation for DEG by RT-qPCR 701 

A. thaliana seedlings were grown in liquid cultures in the presence of a high or low concentration of 702 

inorganic phosphate as described above in the “Plant materials” section. Total RNA was extracted 703 

from whole seedlings with Trizol following manufacturer’s instructions. One microgram of RNA 704 

was then used for reverse-transcription using the M-MLV Reverse Transcriptase (Promega) and 705 

oligo d(T)15 as primer using manufacturer's instructions. RT-qPCR analysis to measure mRNA 706 

steady-state level was completed using SYBR select Master Mix (Applied Biosystems) with a 707 

primer set specific of the gene of interest as well as a primers specific of ACT2 gene used as 708 

reference. Log2 fold changes were calculated by the ΔΔCt method. 709 

 710 

Determination of polysome association (PA) ratio 711 

To estimate the translation efficiency for each gene, the polysomes association (AP) ratio was 712 

determined using Xtail package (Xiao et al., 2016), which calculates the ratio between read count 713 

from polysomal RNA sample and total RNA sample. Genes with a Xtail adj.pval < 0.1 and at least a 714 

30% increase or decrease of the AP ratio were considered differentially associated with polysomes. 715 

 716 

Identification cis-NATs influencing steady-state level or polysome association of cognate sense 717 

mRNA 718 

The candidate regulatory cis-NATs were identified by pairwise comparisons between whole 719 

seedlings grown under high- or low-Pi conditions, roots or shoots treated with phytohormones and 720 

appropriate untreated controls, as well as between untreated root and shoot tissues, using a series of 721 

criteria. Only the pairs coding gene / cis-NAT overlapping by at least 50 nucleotides and with a 722 

normalized read count for both coding gene and cis-NAT > 20 were considered.  A cis-NAT was 723 

considered positively correlated to its cognate coding mRNA expression if both cis-NAT and 724 

coding mRNA were either up-regulated or down-regulated (fold change > 2 and adj.pval < 0.1) 725 
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between the two conditions compared. It was considered negatively correlated if one partner was 726 

up-regulated whereas the other was down-regulated (fold change > 2 and adj.pval < 0.1) between 727 

the two conditions compared. To identify the putative translation regulatory cis-NATs, only the 728 

pairs for which the coding gene was differentially translated with fold change > 1.3 and adj.pval < 729 

0.1 between the two conditions compared, and with fold-change of mRNA steady-state level < 3 730 

were kept. From these pairs, the cis-NATs had to be differentially expressed, with fold change > 2 731 

and adj.pval  < 0.1 and the ratio readcount cis-NAT / readcount coding gene had to be above 0.2, in 732 

at least one condition. The cis-NATs up-regulated when their cognate mRNA was more associated 733 

with polysomes were considered as putative translation enhancers, whereas cis-NATs up-regulated 734 

when their cognate mRNA was less associated with polysomes were considered as putative 735 

translation repressors.  736 

 737 

Pearson correlation coefficient between mRNA and cis-NAT steady-state level was also calculated 738 

across the 12 experimental conditions analyzed for each candidate pair with a positive or negative 739 

correlation between cis-NAT and mRNA expression. Similarly, the correlation between PA ratio, 740 

and cis-NAT steady-state level was also calculated across the 12 experimental conditions for each 741 

translation regulator cis-NAT candidate. The candidate pairs with a correlation factor > 0.4 or < -742 

0.4 were considered as the most robust candidates. 743 

 744 

Creation and analysis of transgenic lines over-expressing putative translation regulatory cis-745 

NATs 746 

To create transgenic plants over-expressing the candidate translation regulator cis-NATs, the 747 

genomic sequence encompassing the transcribed region was cloned into the vector pFAST-R02 748 

(Shimada et al., 2010), in the correct orientation, to allow synthesis of the cis-NAT transcript under 749 

the control of the cauliflower mosaic virus 35S promoter. The constructs were introduced into A. 750 

thaliana by Agrobacterium tumefaciens-mediated transformation using floral dipping (Clough and 751 

Bent, 1998). Transgenic lines over-expressing the different cis-NAT constructs or transformed with 752 

empty vector were grown for 10 days on agar-solidified half-strength MS medium containing Basta 753 

as a selection marker. Whole seedlings were crushed in liquid nitrogen and total RNA was extracted 754 

using standard procedure.  755 

 756 

To purify polysomes, 10-day-old seedlings were ground into powder in liquid nitrogen and 2 757 

volumes of polysome extraction buffer were added. The mixture was incubated for 15 minutes on 758 

ice, centrifuged at 16,000 g to pellet debris and 200 µL of supernatant were loaded on top of 5 mL 759 

sucrose gradients. After 75 min of centrifugation at 55,000 rpm in a SW55 rotor (Beckman) at 4°C, 760 
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the gradients were collected and split into 6 fractions. For each fraction, 500 µL was transferred into 761 

a new eppendorf tube and RNA was extracted with 1 mL of Trizol according to manufacturer's 762 

instructions. An additional step of acetate ammonium precipitation with ethanol and washing was 763 

added to remove remaining salt and phenol traces. For each sample, 300 ng of RNA was then used 764 

for reverse transcription using the M-MLV Reverse Transcriptase (Promega) and oligo d(T)15 as 765 

primer using manufacturer's instructions. To analyze WRKY45 mRNA, due to the full overlap 766 

between cis-NAT and mRNA, the reverse transcription was performed in the same conditions but 767 

using a mix of reverse primers specific to WRKY45 and ACT2 mRNA instead of oligo d(T)15. RT-768 

qPCR analysis to quantify the relative amount of endogenous mRNA in each fraction was 769 

performed with a primer set specific for the gene of interest as well as a primer specific for the 770 

ACT2 gene used as reference. The results are presented as relative proportion of endogenous mRNA 771 

in each fraction of the gradient, as described in Faye et al.  (2014). The average of 8 independent 772 

biological replicates obtained with 2 independent transgenic lines is reported. To be able to quantify 773 

in a more robust manner the changes in terms of polysome association, the sum of the proportions 774 

of mRNA in fractions 1–3 and fractions 4–6 were calculated to compare the proportion of mRNA 775 

not or poorly translated, e.g. free mRNA (fraction 1 and 2) or associated with monosomes (fraction 776 

3), versus the proportion of mRNA efficiently translated, e.g. associated with low (fraction 4) or 777 

high polysomes (fractions 5–6).  778 

 779 

Transient translation assays in Arabidopsis protoplasts 780 

Plasmids used for protoplast transformation were assembled using BsaI-based Golden Gate cloning, 781 

and the final constructs contained a recombination site for Gateway™ cloning. A Gateway™ 782 

destination vector, for cloning and expression of sense-coding genes, included a C-terminal in-783 

frame fusion with a foot-and-mouth disease virus (FMDV) 2A peptide, followed by fusion with 784 

NanoLuc® luciferase (Nluc) (plasmid nLucFlucGW, GenBank MH552885). Additionally, an 785 

independent expression cassette driving firefly luciferase (Fluc) was also included in this vector. 786 

Another Gateway™ destination vector, for cloning and expression of antisense noncoding genes, 787 

was produced without any fusion or additional expression cassette (plasmid RHIP1pGW, GenBank 788 

MH552886). Both Gateway™ destination vectors expressed the cloned gene, sense or antisense, 789 

under control of the same promoter (1.1 kbp genomic sequence upstream of AT4G26410) and 790 

terminator (250 bp downstream of AT5G59720). Genomic sequences for sense-coding genes (from 791 

5'UTR to last codon, without STOP) and antisense-noncoding genes were cloned via Gateway™ 792 

cloning into their corresponding vector. 793 

 794 
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Protoplasts were produced and transformed essentially as described by Yoo et al. (2007) with minor 795 

modifications (see Supplemental Material and Methods). Protoplasts were harvested by 796 

centrifugation at 6,000 g for 1 min, and resuspended in 1X Passive Lysis Buffer (Promega, E1941). 797 

The lysate was cleared by centrifugation and used for luminescence quantification using Nano-798 

Glo® Dual-Luciferase® Reporter Assay System (Promega, N1610), according to the manufacture’s 799 

instructions. Luminescence values for Nluc fused to sense-coding gene were normalized against 800 

Fluc to control for loading and transfection efficiency. Statistical significant differences (Student’s 801 

t-test, p-value < 0.05) in ratio Nluc:Fluc were used to assess the effect of antisense noncoding gene 802 

co-expression. 803 

 804 

Quantification of NO production 805 

NO production was quantified in 10-day-old seedlings treated with spermidine following the 806 

procedure described in Wimalakasera et al. (2011). Briefly, 5–6 seedlings were equilibrated in 3 mL 807 

of MES buffer (30 mM MES, 0.1 mM CaCl2, 1 mM KCl) for 2 h. Then 4,5-diaminofluorescein 808 

diacetate and spermidine or DMSO was added to the medium. After 30 min incubation at 24°C 809 

under light with shaking, 100 µL of medium was transferred to 96 well plate and fluorescence was 810 

quantified. Eight independent biological replicates were analyzed and the florescence was 811 

normalized by mg of fresh weight of spermidine-treated seedlings or untreated control. 812 

 813 

Accession numbers 814 

The data reported in this paper have been deposited in the Gene Expression Omnibus (GEO) 815 

database, https//www.ncbi.nlm.nih.gov/geo (accession no. GSE116553). The processed data tables 816 

(Supplemental Table S1 and S4) are included as additional files for this article. The sequence of 817 

created plasmids used in this study has been submitted to GenBank, MH552885 and MH552886.  818 

 819 

Supplemental Data 820 

The following supplemental materials are available. 821 

Supplemental Figure S1. Steady state mRNA expression level and association with polysomes in 822 

response to treatment with phytohormones. 823 

Supplemental Figure S2. GO terms enriched in the set of genes up-regulated in plants grown in 824 

low Pi conditions or treated with various phytohormones. 825 

Supplemental Figure S3. Analysis of the degree of overlap between independent studies analyzing 826 

gene expression in response of low Pi or ABA treatment.  827 
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Supplemental Figure S4. GO terms enriched in the set of genes with changes in polysome 828 

association.  829 

Supplemental Figure S5. Steady state mRNA expression level and association with polysomes in 830 

untreated roots compared to shoots.  831 

Supplemental Figure S6. Evolutionary conservation of cis-NAT encoded peptides.  832 

Supplemental Figure S7. Analysis of histone acetylation and nucleosome occupancy near the 833 

transcription start site of cis-NATs.  834 

Supplemental Figure S8. Analysis of the degree of overlap in cis-NATs identified in distinct 835 

studies. 836 

Supplemental Figure S9. Validation of differentially expressed genes by RT-qPCR.  837 

Supplemental Figure S10. Proportion of the different types of orientation for the cis-NAT – sense 838 

mRNA pairs. 839 

Supplemental Figure S11. Analysis of cis-NAT-siRNAs.  840 

Supplemental Figure S12. Quantification of the endogenous cognate mRNA in cis-NAT 841 

overexpressing lines. 842 

Supplemental Figure S13. Polysome profile.  843 

Supplemental Figure S14. Levels of sense mRNA-NanoLuc luciferase (Nluc) fusion transcripts in 844 

transiently transformed protoplasts.  845 

Supplemental Figure S15. Quantification in NO production upon spermidine treatment. 846 

Supplemental Figure S16. Organization of the cis-NAT:mRNA pair at AT1G03410 locus. 847 

Supplemental Table S1. Summary of features associated with each transcript 848 

Supplemental Table S2. Genes differentially expressed in various conditions 849 

Supplemental Table S3. Number of mRNAs differentially associated with polysomes. 850 

Supplemental Table S4. RNAseq and polysome profiling data relative to putative transcription or 851 

translation regulatory cis-NATs. 852 

Supplemental Materials and Methods  853 

 854 

  855 
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 863 

Tables 864 

Table 1. Number of cis-NATs correlated with cognate gene steady-state mRNA expression or 865 
association with polysomes. Number of mRNA / cis-NAT pairs with either a positive or negative 866 
correlation between cis-NAT and cognate gene steady-state mRNA expression (second and third 867 
columns), and number of pairs with positive or negative correlation between cis-NAT expression 868 
and cognate gene mRNA polysome association (PA) (fourth and fifth columns). The experimental 869 
conditions compared are indicated in the first column where root and shoot tissues are indicated 870 
with the prefix R and S, respectively, and untreated control conditions indicated with the suffix ctrl. 871 
The figures in brackets show the number of those pairs with a Pearson correlation coefficient > 0.4 872 
or < -0.4 across the 12 experimental correlations. 873 
 874 

Treatment 
Positive correlation 
cis-NAT / mRNA 

expression 

Negative correlation 
cis-NAT / mRNA 

expression 

Positive correlation 
cis-NAT expression / 

mRNA PA 

Negative correlation 
cis-NAT expression / 

mRNA PA 

Low / high Pi 40 (33) 10 (3) 4 (1) 1 (1) 

RIAA / Rctrl 2 (2) 0 0 0 

RABA / Rctrl 17 (13) 0 1 (0) 1 (0) 

RMeJA / Rctrl 6 (4) 0 0 0 

SABA / Sctrl 10 (7) 1 (0) 0 0 

SMeJA / Sctrl 3 (3) 1 (0) 0 0 
Rctrl / Sctrl 47 (41) 29 (24) 3 (2) 4 (2) 
Total (unique) 107 (86) 41 (27) 8 (3) 6 (3) 
 875 

 876 

Figure legends 877 

 878 

Figure 1. Steady state mRNA expression level and association with polysomes in response to 879 

growth of Arabidopsis under low-Pi conditions. A, Relation between log2-fold change of mRNA 880 

steady-state level (x axis) is plotted against the log2-fold change in polysome association (y axis). 881 

Coding genes significantly up- or down-regulated at the mRNA steady-state level are colored in 882 

yellow and cyan, respectively, whereas mRNA significantly more or less associated with polysomes 883 
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are colored in red and blue, respectively. The genes not showing any statistical difference are 884 

colored in grey. B, Same plot as A where genes associated with GO terms “Response to Pi 885 

starvation”, “Cytosolic ribosome”, “Mitochondrial ribosome”, and “Chloroplastic ribosome” are 886 

colored in pink, dark blue, light blue and green, respectively. C to E, Normalized RNA-seq 887 

coverage plots for the IPS1, RPS15AE and RPL34 genes. The two upper panels show the coverage 888 

plots for total mRNA and polysomal RNA from high Pi samples and the two lower panels 889 

correspond to low phosphate samples. The schematic exonic organization of each gene is 890 

represented by red boxes and lines below the plots. 891 

Figure 2: Identification and characterization of cis-NATs. A, Schematic diagram of the pipeline 892 

used for de novo cis-NAT identification from the 12 different experimental conditions. B, Boxplot 893 

comparing polysome association of cis-NATs predicted to be noncoding (green) or coding (pink), 894 

ncRNA (cyan) and protein-coding genes (salmon) annotated in TAIR10 database. C and D, Plots 895 

comparing transcript length (C) and RNA steady-state-level (D) of cis-NATs predicted to be 896 

noncoding (green) or coding (pink), ncRNA (cyan) and protein-coding genes (salmon) annotated in 897 

TAIR10 database. E, Boxplots comparing the nucleotide conservation across 20 angiosperm 898 

genomes within exonic and intronic regions of the four categories of transcripts listed above. 899 

Figure 3: Correlations between expression of cis-NATs and changes in steady-state level or 900 

poylsome association of the cognate sense mRNA. A to D, Coverage plots showing the density of 901 

RNA-seq reads per position at AT2G37580, AT1G68940, AT1G03410 and CuAO1 loci. The red 902 

and blue areas represent the density of reads mapping to the sense mRNA and cis-NATs, 903 

respectively. For each experimental condition, the upper part corresponds to total RNA-seq reads 904 

and the lower part to polysomal RNA-seq reads. The red and blue arrows below indicate the cis-905 

NAT-mRNA pair orientation. E to H, Correlation plots showing the steady-state level of the coding 906 

mRNA (red dots) and cis-NAT (green dots) for AT2G37580 and AT1G68940 loci (E and F, 907 

respectively) or the steady-state level of the cis-NAT (cyan dots) and the association with 908 

polysomes of the cognate sense mRNA (purple dots) for AT1G03410 and CuAO1 loci (G and H, 909 

respectively). The Z-score of normalized read counts calculated from the 12 experimental 910 

conditions is represented on the y-axis. Pearson correlation coefficients between the two variables 911 

shown in each plot are indicated on top of the plots.  912 

Figure 4: Expression of putative translation repressor cis-NATs in transgenic A. thaliana.  A 913 

and D, Coverage plots showing the density of RNA-seq reads per position for the CuAO1 (A) and 914 

AT1G54260 (D) loci, with the red and blue areas representing the sense mRNA and cis-NATs, 915 

respectively. B and E, Polysome profiles showing the proportion of endogenous mRNA in each of 916 
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the six fractions of the sucrose gradient for transgenic lines over-expressing the cis-NAT (red) 917 

versus that in control lines transformed with an empty vector (turquoise) for the CuAO1 (B) and 918 

AT1G54260 (E) sense mRNA-cis-NAT pair. C and F, Proportion of mRNA present in the first 919 

three fractions (free RNA and monosomes) and in the last three fractions (polysomes) of the 920 

gradient. Determinations were in transgenic lines over-expressing cis-NAT (red) and in control 921 

lines transformed with an empty vector (turquoise) for the CuAO1 (C) and AT1G54260 (F) sense 922 

mRNA-cis-NAT pair. Data in B, C, E and F represent the average of 8 independent biological 923 

replicates obtained with 2 independent transgenic lines. The error bars represent the confidence 924 

intervals with alpha=0.05. Asterisks indicate significant differences (Student’s t-test with p-value 925 

<0.05). 926 

Figure 5: Expression of putative translation activator cis-NATs in transgenic A. thaliana.  A 927 

and D, Coverage plots showing the density of RNA-seq reads per position for the AT3G26240 (A) 928 

and WRKY45 (D) loci, with the red and blue areas representing the sense mRNA and cis-NATs, 929 

respectively. B and E, Polysome profiles showing the proportion of endogenous mRNA in each of 930 

the six fractions of the sucrose gradient for transgenic lines over-expressing the cis-NAT (red) 931 

versus that in control lines transformed with an empty vector (turquoise) for the AT3G26240 (B) 932 

and WRKY45 (E) sense mRNA-cis-NAT pair. C and F, Proportion of mRNA present in the first 933 

three fractions (free RNA and monosomes) and in the last three fractions (polysomes) of the 934 

gradient, in transgenic lines over-expressing cis-NAT (red) and in control lines transformed with an 935 

empty vector (turquoise) for the AT3G26240 (C) and WRKY45 (F) sense mRNA-cis-NAT pair. 936 

Data in B, C, E and F represent the average of 8 independent biological replicates obtained with 2 937 

independent transgenic lines. The error bars represent the confidence intervals with alpha=0.05. 938 

Asterisks indicate significant differences (Student’s t-test with p-value <0.05). 939 

 940 
Figure 6. Transient expression of putative translation repressor cis-NATs in protoplasts. 941 

Arabidopsis leaf protoplasts were co-transformed with a plasmid combining a sense mRNA-942 

NanoLuc luciferase (Nluc) fusion and a firefly luciferase (Fluc) along with various molar ratios of 943 

an independent plasmid for expression of a cis-NAT. The ratio of Nluc over Fluc activity is plotted 944 

for each combination of sense and cis-NAT plasmids. A, Co-expression of CuAO1-Nluc fusion with 945 

its cognate cis-NAT. B, Co-expression of AT1G54260-Nluc with its cognate cis-NAT. C, Co-946 

expression of CuAO1-Nluc with the cis-NAT to AT1G54260. D, Co-expression of AT1G54260-947 

Nluc with the cis-NAT to CuAO1. Statistically significant differences (Student’s t-test, p-value < 948 

0.05; four biological replicates) between treatments are indicated by distinct letters above the boxes.  949 

 950 
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Figure 7. Transient expression of putative translation activator cis-NATs in protoplasts. 951 

Arabidopsis leaf protoplasts were co-transformed with a plasmid combining a sense mRNA-952 

NanoLuc luciferase (Nluc) fusion and a firefly luciferase (Fluc) along with various molar ratios of 953 

an independent plasmid for expression of a cis-NAT. The ratio of Nluc over Fluc activity is plotted 954 

for each combination of sense and cis-NAT plasmids. A, Co-expression of AT3G26240-Nluc fusion 955 

with its cognate cis-NAT. B, Co-expression of 2A6 (AT1G03410)-Nluc with its cognate cis-NAT. 956 

C, Co-expression of WRKY45 (AT3G01970)-Nluc with its cognate cis-NAT. D, Co-expression of 957 

AT3G26240-Nluc with the cis-NAT to 2A6. E, Co-expression of 2A6-Nluc with the cis-NAT to 958 

AT3G26240. Statistically significant differences (Student’s t-test, p-value < 0.05; four biological 959 

replicates) between treatments are indicated by distinct letters above the boxes. 960 

 961 

 962 

 963 

 964 

  965 
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