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Abstract 20 

The potential importance of sperm cryopreservation for aquaculture and conservation 21 

management seems still undervalued, probably because the available protocols often lead to 22 

reduced fertilization success. We experimentally compared the effectiveness of two different 23 

freezing extenders for cryopreservation of brown trout (Salmo trutta) semen, controlling for 24 

possible male and female effects. The methanol-glucose based extender that we tested was 25 

significantly more effective than a common dimethyl-sulfoxide based extender (a commercial 26 

cryopreservation kit). We then studied the effectiveness of the methanol-glucose based 27 

extender at different sperm-egg ratios and found no significant differences in fertilization 28 

ability of fresh and cryopreserved milt at a sperm-egg ratio of at least 110,000:1. We conclude 29 

that brown trout sperm cryopreserved with this extender can be used even at low sperm-egg 30 

ratios without significant effects on fertilization rates.  31 

 32 

Key words 33 

Sperm, cryopreservation, methanol, glucose, brown trout 34 

 35 

 36 
  37 

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/289736doi: bioRxiv preprint first posted online Mar. 27, 2018; 

http://dx.doi.org/10.1101/289736


1. Introduction 38 

Minimizing damage to sperm in cryopreservation of fish semen has been a target for decades 39 

of research and is important in aquaculture and in conservation biology. Effective 40 

cryopreservation can ensure availability of gametes when there is desynchronization between 41 

male and female breeders, and can play an important role in the conservation of rare breeds or 42 

in the genetic improvement of a cultured population [1]. Moreover, cryopreservation with 43 

minimal damage to sperm would be the basis of sperm banks that preserve the genetic 44 

resources of a threatened population, such as the National Animal Germplasm Program 45 

(NAGP, http://ars.usda.gov/research/projects/projects.htm?accn_no=423549). Sperm can then 46 

be used to support restocking programs while minimizing disturbance at the spawning ground 47 

or to reduce inbreeding depression or hybridization of a population [2,3]. 48 

 49 

Since the first attempts, much progress has been made and effective protocols now exist for a 50 

variety of fishes, mainly freshwater fishes [1]. Salmonids have been a focus of these research 51 

efforts due to their commercial and cultural importance [1]. The first successful 52 

cryopreservation was achieved using glycerol as a cryoprotectant [4], but it was quickly 53 

replaced by dimethyl sulfoxide (DMSO). Most of the current protocols still use DMSO as 54 

permeable cryoprotectant, and DMSO is still considered as a suitable candidate for the 55 

development of new protocols. For instance, DMSO was used lately in the development of a 56 

protocol for the endangered Mediterranean brown trout Salmo trutta macrostigma [5]. 57 

However, methanol was suggested as an alternative to DMSO and tested in three salmonids 58 

including brown trout [6]. Permeable cryoprotectants are most often associated with complex 59 

saline solutions and non-permeable cryoprotectants, such as egg yolk. Recently, a very simple 60 

extender consisting only of 9% methanol and 0.15M glucose was shown to be effective in 61 

rainbow trout (Oncorhynchus mykiss) and in brown trout [7,8].  62 

 63 

Here we compare the effectiveness of this methanol-glucose based extender to a DMSO-64 

based extender on brown trout while controlling for potentially confounding parental or 65 

population effects on fertilization success. The DMSO-based extender we use here is a 66 

commercial product that use DMSO as permeable cryoprotectant, egg yolk derived lipids as 67 

non-permeable cryoprotectant, and a saline solution. We ran two experiments. The first one 68 

aimed to assess which of the two candidate extenders would produce the highest fertilization 69 

success. In the second experiment, we tested the post-thaw fertilizing ability of sperm at 70 

various dilutions.  71 
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 72 

2. Methods 73 

2.1 Collection of gametes 74 

Wild males and female brown trout were caught by electrofishing in different tributaries of 75 

the Aare river and kept in the facilities of the Fischereistützpunkt Reutigen until collection of 76 

the gametes (either on 18.11.2015 or on 2.12.2015). Milt was stripped drop by drop into 77 

145x20mm Petri dishes. Care was taken to avoid drops mixing. Milt from drops that did not 78 

seem to be contaminated by urine or feces was collected with a pipette and stored (< 1h) on 79 

ice in a 2ml micro tube (Sarstedt, Germany) until preparations for cryopreservation started. 80 

Eggs were stripped into plastic containers from which 8 eggs per female were separated in 60 81 

x 15mm Petri dish (Greiner bio-one, Germany) and stored at ambient temperature (4-7°C) for 82 

< 30 min until fertilization. 83 

 84 

2.2 Sperm cryopreservation 85 

Two freezing extenders were used: i) Cryofish (IMV Technologies, France) and ii) methanol 86 

10% + glucose 0.15M. The first was prepared mixing the following kit solutions: 8 volumes 87 

of Freezesol (saline solution) + 1 volume of DMSO + 1 volume of Freezlip (lipids solution 88 

meant to replace egg yolk). The second extender was prepared by adding 20 mL of methanol 89 

(VWR chemicals, Switzerland) and 5.945 g of D-glucose monohydrate (Fisher chemicals, 90 

Switzerland) to 180 mL of ultrapure water [7]. Both extenders were kept on ice before use. 91 

Microtubes were prepared with 300 µL Cryofish (following manufacturer instructions) or 500 92 

µL Methanol extender (following recommendations of [7]). 93 

 94 

For the first experiment, two 100 µL samples of milt per male were added to one of the two 95 

extenders, respectively 300 µL of Cryofish or 500µl of methanol-glucose, and vortexed for 5 96 

seconds. The samples on Cryofish were then immediately processed further (following the 97 

manufacturer’s instructions and because DMSO is toxic to the sperms [9]) while samples in 98 

the methanol-glucose based extender were given a 15-minutes equilibration time on ice before 99 

freezing. In the second experiment, only the latter extender was used at a 1:5 ratio (100 µl 100 

milt in 500 µl extender). 101 

 102 

Two 66.5 mm CTE straws (MTG Technologies, Germany) were used per milt sample and 103 

extender. They were filled with 200 µL of a mix each, sealed at both end with a straw sealer 104 

(MTG Technologies, Germany), and kept on ice until freezing. For freezing, straws were first 105 
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placed for 15 minutes on a floating rack within the liquid nitrogen tank, about 1.5 cm above 106 

the surface of the liquid, before they were plunged into liquid nitrogen. Micro tubes 107 

containing fresh sperm were kept on ice until fertilization (< 45 min).  108 

 109 

2.3 Fertilization 110 

In the first experiment, fresh and cryopreserved milt of five males were used to fertilize eggs 111 

of 2 females each. This breeding design allowed to fertilize 80 eggs per treatment while 112 

controlling for parental effects (Figure 1). Straws were individually removed from the liquid 113 

nitrogen, plunged for 30 seconds in water at 25°C and put on ice for 1 minute. Then, the 114 

content of the straw was dropped into a Petri dish with the respective egg sample, not mixing 115 

milt and eggs yet. In parallel, 33 µL of fresh milt of the same male was similarly placed 116 

around the other egg sample. We used 33 µL as this is corresponds to the absolute volume of 117 

milt contained in one straw filled with the methanol based extender. Fresh sperm and frozen-118 

thawed sperm were then activated and mixed with their respective egg sample by adding 4 ml 119 

of Actifish solution (IMV Technologies, France) to each Petri dish (i.e. 500 µl solution per 120 

egg). The Petri dishes were then gently moved to support the mixing of the gametes. After 5 121 

minutes, 5 mL of standardized water [10] was added to each Petri dish and the eggs were left 122 

undisturbed for 2 hours to allow hardening.  123 

 124 

In the second experiment, the same thawing procedure as described above was followed 125 

before straws were emptied into 2 mL microtubes on ice (2 straws per tube). Three serial 126 

dilutions of 400 µL were then made following a 10-fold decrease (100%, 10% and 1%) in the 127 

extender for the frozen-thawed milt and in Storfish (IMV Technologies, France) for fresh 128 

milt. The 100% dilution referred to milt already diluted at 1:5 in the extender. Therefore, 129 

concentration of the control (fresh milt) was adjusted accordingly. This led to final dilution of 130 

16.5%, 1.65% and 0.165%, implying an absolute volume of milt of 66, 6.6 and 0.6 µL of milt 131 

in extender or Storfish, respectively. We used 200 µL of each dilution to fertilize the eggs 132 

following the same procedure as described above. Thus, every batch of eggs was fertilized 133 

with an absolute volume of 33, 3.3 or 0.33 µL of either fresh or frozen thawed milt. We tested 134 

fresh and cryopreserved milt of in total 4 males with eggs of 2 females each. This breeding 135 

design allowed us to fertilized 192 eggs per treatment and 64 eggs per dilution within 136 

treatment, while controlling for parental effects (Figure 2). Sperm activation was done as in 137 

the first experiment. 138 

 139 
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2.4 Transportation to the laboratory and distribution of the eggs 140 

After hardening, eggs were transferred to 50 ml conical (Greiner Bio-one, Germany) with 141 

approximately 30ml standardized water and transported on ice to the laboratory (2 hours). 142 

There, each tube was emptied in a plastic tea strainer and the eggs were placed in a 145 mm 143 

Petri dish filled with autoclaved standardized water. Eggs were then distributed singly to 144 

wells of 24-well plates filled with 1.8ml autoclaved standardized water per well. Plates were 145 

incubated at 7°C in a climate chamber at a 12-hours light cycle. After 13 days, the 146 

fertilization success was assessed with a light table. Eggs were considered fertilized if the 147 

spinal cord of the embryo was visible. Eggs were called unfertilized if no embryo was visible 148 

at that time point.  149 

 150 

2.5 Sperm concentration 151 

We used the CASA software (Qualisperm®, Biophos SA, Switzerland) to assess sperm 152 

concentration of fresh milt to calculate the actual amount of sperm cells in the different 153 

dilution of the density experiment. Therefore, 20 µL of milt were added to 180 µL of Storfish 154 

in a 2 ml test tube, kept on ice, and transported to the lab. There, milt was diluted again to 155 

1:500 with standardized water. From this, 2 µL were transferred in a 4-well chamber slide 156 

(Leja, Netherlands) on a cooling stage set at 6.5°C. Sperm was observed at 20x magnification 157 

and with phase contrast. Concentration was given by the program in mio/ml. 158 

 159 

2.6 Statistics 160 

Fertilization success was analyzed in generalized linear mixed effect models with the lme4 161 

package [11] in Rstudio [12]. For the first experiment, treatment (type of extender) was 162 

entered as a fixed factor in the model, while male and female identities were entered as 163 

random factors. For the second experiment, treatment (fresh vs. frozen-thawed) and dilution 164 

(16.5, 1.65 and 0.165 %) were entered as fixed factors, while male and female identity were 165 

again entered as random factor as well as their interactions with the fixed effects. To test the 166 

significance of an effect, a model including or lacking the term of interest was compared to 167 

the reference model. The goodness of fit of the different models is given by the logarithm of 168 

the approximated likelihood and by the Akaike’s information criterion. To test if models 169 

differ in their goodness of fit, the models were compared with likelihood ratio tests (LRT). 170 

For treatments that had more than two levels, we also ran a multiple comparison of means on 171 

the reference model using Tukey method with the multcomp package [13] in Rstudio.  172 

 173 

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/289736doi: bioRxiv preprint first posted online Mar. 27, 2018; 

http://dx.doi.org/10.1101/289736


3. Results 174 

3.1 First experiment 175 

We found treatment and female identity to significantly affect the fertilization rates (Table 1). 176 

Sperm cryopreserved with Cryofish led to reduced fertilization rate when compared to fresh 177 

sperm (z = -2.5; p = 0.03) and to sperm cryopreserved with MetOH (z = 2.9; p = 0.009). 178 

However, the latter did not lead to reduced fertilization success when compared to fresh 179 

sperm (z = 0.4; p = 0.89) (Figure 3).  180 

 181 

3.2 Second experiment 182 

Both treatment (cryopreservation) and dilution had a significant effect on fertilization (Table 183 

2). Significant differences were found only between fresh-thawed sperm diluted at 0.165% 184 

and all the other groups: against fresh-thawed 16.5% (z = 5.3; p < 0.001), against fresh-185 

thawed 1.65% (z = 4.5; p < 0.001), against control 16.5% (z = 5.0; p < 0.001), against control 186 

1.65% (z = 4.4; p < 0.001) and against control 0.165% (z = 5.0; p < 0.001) (Figure 4).The 187 

mean sperm-egg ratio for the 3 dilutions treatment were respectively 1.1x107 ± 1.96x105, 188 

1.1x106 ± 1.96x104 and 1.1x105 ± 1965 sperm per egg. The mean sperm concentration in the 189 

activation medium (4 mL) was respectively 2.2x107 ± 3.9x105, 2.2x106 ± 3.9x104 and 2.2x105 190 

± 3,930 sperm per milliliter. The mean (± S.E.) sperm concentration of the males was 2,675 ± 191 

309 Mio/ml. 192 

 193 

4. Discussion 194 

We found that an extender composed of 10% methanol and 0.15M glucose was highly 195 

effective in brown trout, leading to fertilization success similar to that of fresh sperm even at 196 

high dilution. These findings support previous ones [7,8]. We here compared the effectiveness 197 

of this simple extender to a common DMSO-based solution while controlling for parental 198 

effects. In the first experiment, we found significant maternal effects on fertilization success. 199 

Such effects are typically found in salmonids [14–16] and will not be discussed in the present 200 

paper. 201 

As expected from the manufacturer instructions, we reached a fertilization success of 202 

about 80% of what is obtained with fresh semen using the commercial DMSO-based 203 

extender. Sperm frozen in the methanol-glucose extender performed significantly better and 204 

in fact as good as fresh sperm in our first experiment. This confirmed the suitability of 205 

methanol-glucose as an effective extender for the cryopreservation of brown trout semen. In 206 

practice, this extender showed two main other advantages over the DMSO-based extender. 207 
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First, DMSO is toxic and minimizing the time between mixing and freezing is important. 208 

However, there are no such time constraints with the methanol-glucose extender. Second, we 209 

observed that working with DMSO in a cold environment such as a hatchery (range from 2-210 

10°C) is not easy. DMSO has its fusion point at 18.5°C. Therefore, we had to store and 211 

prepare the solutions in a warmer place. None of this problem was encountered with methanol 212 

which has a freezing point at -98°C and which was shown to be the least toxic cryoprotectant 213 

in loach when tested against DMSO, glycerol, and ethylene glycol [17]. 214 

A major problem for cryopreservation in a hatchery is the volume of eggs to be 215 

fertilized. Due to the dilution in the extender and the size of a straw, the absolute volume of 216 

sperm available per straw is low. There are several ways to overcome this problem. One 217 

solution is to increase the size of the straws. The use of 1.2 mL and 5 mL straws was tested 218 

before [6][18], leading to satisfying results although fertilization rate remains higher with 219 

smaller straws. This is mainly due to the inequality of cooling rate within a straw when its 220 

volume increases. Another option is to increase the concentration of the extender in order to 221 

change the dilution ratio and increasing the volume of sperm per straw. This was for instance 222 

tested by Ciereszko et al. [19] with whitefish semen and methanol-glucose extender. They 223 

suggested that a dilution ratio of 3:1 would allow the freezing of more cells per straws 224 

although they observed some changes in the motility parameters.  225 

Our approach is that, although sperm egg ratio is diminished, the volume of the 226 

fertilization fluid can be increased by diluting the semen after thawing. In our case, we diluted 227 

semen after thawing 100-fold, leading to a final concentration of sperm in the fertilization 228 

fluid of 0.165%. Our results demonstrate that it is only at the least concentrated dilution that 229 

frozen-thawed sperm showed diminished fertilization ability. At this dilution, the sperm egg 230 

ratio was of 110,000:1. The lowest sperm egg ratio with frozen-thawed sperm not reducing 231 

fertilization success that we found reported in the literature is of 300,000:1 for brown trout 232 

[8,20]. However, the amount of eggs per clutch (n = 8) used in our study was low compared 233 

to other studies (typically around 200). Although the sperm egg ratio is strictly influenced by 234 

the number of both spermatozoa and eggs, the volume of fluid at the moment of fertilization 235 

may also play a role. For a given amount of eggs and spermatozoa, the larger is the volume of 236 

the fertilizing solution, the lower is the chance for a sperm to encounter an egg although the 237 

sperm egg ratio remains constant. This raises the need of standardization when it comes to the 238 

development of protocol, as suggested by Tiersch et al., (2011) [21].  239 

To conclude, the methanol-glucose based extender is more efficient than a common DMSO-240 

based extender for the cryopreservation of brown trout semen if experimentally tested in 241 
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direct comparison, i.e. controlling for potentially confounding factors. The effectiveness of 242 

methanol-glucose based extender allows working with comparatively high dilutions while still 243 

reaching the fertilization success that can be expected with unfrozen semen. 244 

 245 
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Tables 313 
 314 
Table 1. Likelihood ratio tests on mixed-effects model regressions on fertilization success. 315 

Models including or lacking the term of interest were compared to reference models in bold to 316 

determine the significance of the effect tested. 317 

 318 
Model terms Effect tested AIC d.f. X2 P 

t+b+f  226 5   
b+f t 233 3 10.4 0.005 
t+f m 224 4 0 1 
t+b f 260 4 36 <0.001 

Fixed effects: t, treatment; Random effects: b, male; f, female. P<0.05 are shown in bold 319 
 320 
  321 
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Table 2. Likelihood ratio tests on mixed-effects model regressions on fertilization success. 322 

Models including or lacking the term of interest were compared to reference models in bold to 323 

determine the significance of the effect tested. 324 

 325 
Model terms Effect tested AIC d.f. X2 P 

t+d+b+f  284 5   
d+b+f t 318 4 35.9 <0.001 
t+b+f d 313 4 30.3 <0.001 
t+d+f m 282 4 0.04 0.84 
t+d+b f 283 4 0.92 0.34 

t+d+txd+b+f t x d 285 6 1.81 0.18 
t+d+t|b+f t x m 286 7 2.53 0.28 
t+d+b+t|f t x f 286 7 2.53 0.28 
t+d+d|b+f d x m 288 7 0.02 0.99 
t+d+b+d|f d x f 291 7 0 1 

Fixed effects: t, treatment; d, dilution; Random effects: m, male; f, female. P<0.05 are shown in bold 326 
 327 
  328 
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Figure legends 329 
 330 
Figure 1 Design of one breeding block (n=5) in the first experiment. 331 
 332 

Figure 2 Design of one breeding block (n=4) in the second experiment. 333 
 334 
Figure 3 Mean fertilization success at 13 days post fertilization (dpf) in the first experiment. 335 

Error bars indicate 95% confidence interval. 336 

 337 

Figure 4 Mean fertilization success in the second experiment. The 3 density treatments are 338 

indicated on the x-axis, the white bars indicate fresh sperm and the grey bars frozen-thawed 339 

sperm. Error bars indicate 95% confidence interval. 340 
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Figure 1 343 
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Figure 2 347 
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Figure 3 351 
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