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Abstract: Femtosecond laser direct writing (FLDW) enables precise three-dimensional struc-
turing of transparent host materials such as fused silica. With this technique, reliable integrated
optical circuits can be written, which are also a possible candidate for future quantum technologies.
We demonstrate the manufacturing of integrated waveplates with arbitrary orientations and
various phase delays by combining embedded birefringent nanograting structures and FLDW
waveguides in fused silica glass. These waveplates can be used both for classical applications
and for quantum gates.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Integrated optics is a key approach for realizing small and reliable optical circuits that can make
use of various light properties. One of the fabrication methods for these integrated circuits is the
so-called femtosecond laser direct writing method (FLDW) [1–3], known for its potential for
rapid prototyping of three-dimensional small scale circuits [4]. To exploit the various degrees of
freedom that light can offer, polarization control inside integrated optical circuits is crucial. There
are various approaches for achieving this control in FLDW waveguides, including stress-induced
birefringence [5–7], Bragg grating waveguides [8], birefringent directional couplers [9–14] and
rotated waveguides [15]. Here, we propose a more compact while still integrated and reliable
alternative to these polarization control approaches, based on the inscription of birefringent
nanogratings.
There are typically three types of FLDW modifications that can be observed in silica glasses

[16]: Firstly, at low energies isotropic refractive index changes used for creating waveguides
are induced. Secondly, at high energies micro voids and defects are formed. Thirdly, at an
intermediate energy range, structures with modulated oxygen concentration form [17]. If the
fabrication laser polarization is linear and several hundred laser pulses per spot irradiate the
material, strongly birefringent self-assembled nanogratings develop out of these structures
[17–24]. The nanogratings are known to align perpendicular to the writing laser polarization with
a period pnano ≈ λw/(2n). Here, λw denotes the wavelength of the inscription laser and n refers
to the refractive index of the modified material. When light of a suitable wavelength λ � pnano
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passes through the nanograting, the latter acts as as an effective birefringent medium, because of
the subwavelength periodic refractive index modulation. This property has been successfully used
for creating bulk waveplates, attenuators and for optical data storage [21,25–29]. We investigated
whether we can integrate waveplates made of nanogratings with femtosecond laser direct written
waveguides as a compact approach for single photon polarization manipulation.

2. Manufacturing process

We used the FLDW method to write waveguides and nanogratings into polished fused silica
samples. The writing laser system was a fiber laser (Satsuma, Amplitude Systemes), emitting
pulses at 1030 nm, then undergoing a frequency doubling to a wavelength of 515 nm. A cylindrical
telescope with lenses of −50mm and 150mm focal lengths was used for astigmatic beam shaping,
which is a well-known technique for creating cylindrically symmetric waveguides [30–32]. The
astigmatic beam was also used for writing nanogratings. The 300 fs long laser pulses were
focused using a 20x-objective (NA = 0.4) whilst the sample was translated through the beam
focus using a nanopositioning system (Aerotech ANT130-XY ), as shown in Fig. 1.

Fig. 1. Sketch of the sample. The nanograting depiction is not to scale; typical nanograting
layers had a thickness of 50 µm to 110 µm, depending on the fabrication parameters. The
nanogratings started 0.8mm to 0.9mm from the sample’s rear end. The waveguides were
inscribed 0.3mm below the surface.

The sample sizes were 0.15 cm × 1 cm × 4 cm (Fig. 1). The nanogratings were inscribed
using fs-pulses propagating along x into the y-z-plane 0.8mm to 0.9mm below the end facet.
Afterwards, the waveguides were inscribed in the x-y-plane 0.3mm below the surface. In
consequence the waveguide and the nanograting planes crossed perpendicularly, as can be seen
in Fig. 1. All together, the structure consists of a 3.1 cm long waveguide section, a 0.25mm
long gap, into which the nanograting is inscribed, followed by another 0.65mm long waveguide
section. The nanograting on the transverse y-z-plane is much wider than the waveguide, so it
can be assumed infinitely extended. Between the waveguide sections and the nanogratings is
unmodified fused silica. This unmodified region acts as a buffer to avoid waveguides being
inscribed into previously written nanogratings. This method of leaving gaps in waveguides has
been successfully applied before for manipulating the phase accumulated inside the waveguide
[33].
The intrinsic form birefringence of the nanogratings changes the polarization state of light

transmitted through this combination. By doing so, the nanograting acts as a waveplate. The
strength of the nanograting birefringence was set by changing the pulse energy. The orientation
of the optical axis was set by rotating the laser polarization for nanograting inscription.
The writing parameters of the waveguides were set to 600mm/min writing speed, 100 kHz

repetition rate and 0.12 µJ pulse energy. The waveguides themselves exhibited a birefringent
phase delay ∆φ between the horizontal and vertical polarization of around 0.037 π cm−1 for light
of wavelength λ = 808 nm, corresponding to an intrinsic birefringence of ∆n = ∆φλ/(2π) =
1.5 × 10−6. The overall losses of the waveguides were measured to be 12.9±0.4 dB, of which
0.3 dB can be attributed to the Fresnel losses, 4.9 dB to coupling losses at the waveguide entry
and 1.9 dB losses from the objective after the sample, leaving 1.5±0.1 dB/cm for the propagation
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losses. However, the focus of our work was not to minimize losses. Previous publications
have shown that average propagation losses of 0.1 dB/cm at 777 nm wavelength can be achieved
in fused silica FLDW waveguides [34]. Furthermore, other publications have demonstrated
approaches of minimizing insertion losses [35].
In addition, the waveguides exhibited polarization dependent losses. The transmission of

horizontally polarized light through a 4 cm long waveguide is 6% lower than the transmission of
vertically polarized light; in other words the normalized linear dichroism is 6%. An exemplary
profile of mode fields is given in Fig. 2 and the corresponding refractive index profile in Fig. 3.

Fig. 2. Normalized near field images of mode fields when vertically or horizontally
polarized light at λ = 808 nm is launched into the waveguide. The image was filtered using
a Butterworth filter. The setup for measuring this mode field corresponds to the setup in
Fig. 4, whereby the power meter is replaced by a CCD camera.

Fig. 3. Refractive index profile calculated from mode field images shown in Fig. 2, based
on the technique presented in [36].

It is known in linear optical quantum computing that waveplates as phase shifters can be used
to create single qubit quantum gates [37–39]. For suitable writing parameters, the birefringence
of the nanograting-waveguide combination matches the required birefringence for linear optical
quantum gates, as will be demonstrated below.

3. Characterization method

The birefringence induced phase delay of light transmitted through the FLDW structures was
measured using two different methods: For the nanogratings alone, a commercial polarimeter
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(ilis StrainMatic) was used. For the nanograting-waveguide-combinations, a crossed polarizer
setup was used (Fig. 4), similar to the one described in [20]. In the crossed polarizer setup,
the sample is positioned between a rotatable λ/2 plate and a rotatable analyzer. A subsequent
power meter measures the power transmitted through the polarizer. The λ/2 plate sets the input
polarization. The analyzer orientation is kept at 90° to the input polarization (crossed orientation).
Both the analyzer and the λ/2 plate are rotated. If there is no anisotropic sample in the setup, no
power is transmitted through to the power meter. If an anisotropic sample is placed between the
analyzer and the λ/2-plate however, the birefringence of that sample changes the polarization
state of light transmitted through the sample. This can be measured as a change of output power
through the crossed polarizer configuration. If the sample is a linear retarder, the formula for the
transmitted power normalized to the overall output power Tnorm depends on the input polarization
orientation φ as follows:

Tnorm = A sin2[2(φ − φ0)]. (1)

Here, the amplitude A is a measure of the existing birefringence. The angle φ0 accounts for the
orientation of the optical axis of the sample studied [40]. By measuring the transmitted output
power versus the input polarization and fitting the acquired data to a sine curve, we can retrieve
the birefringence of our structures, modeling them as linear retarders without any polarization
dependent loss. The birefringence induced phase delay δ relates to the measured amplitude A of
Eq. (1) via

|δ | = |arccos(1 − 2A)|. (2)

The measurements were performed using laser light of 808 nm wavelength, to suit the wavelength
of the single photon measurements described below. We are aware that nanogratings do exhibit
asymmetric losses, which are not covered by this model [19,41,42]. A simple simulation based
on asymmetric loss measurements yielded a deviation of the derived birefringence due to this
effect of 0.05π.

Fig. 4. Sketch of the characterization setup.

4. Results

4.1. Influence of writing parameters on the structure properties

It has been experimentally verified that, with rising pulse energy over a range of 0.4 µJ to 0.9 µJ,
the phase delay induced by the nanogratings increases together with their thickness (Fig. 5). The
structures were fabricated by single height scans, so the thicknesses and the phase delays are
linked. The writing velocity was kept constant at 15mm/min and the line separation was set
to 1 µm. The pulse energy dependence can be used to find a suitable nanograting strength for
fabricating quantum gates.
As a first step to creating quantum gates, the dependence of the nanograting-waveguide-

combination on the pulse energy used for inscription of the nanogratings was investigated. The
writing parameters of the waveguides were kept fixed. It was found that the overall phase delay in
the nanograting-waveguide-combination was mainly determined by the nanograting phase delay
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Fig. 5. Measured phase delay induced by nanogratings for light of 808 nm wavelength
and thickness of nanograting layers for various writing laser pulse energies. The gratings
were written at 100 kHz repetition rate and 15mm/min scanning speed. Error bars of the
phase delay induced by the nanogratings refer to the standard deviation of the birefringence
measured over a nanograting area of 0.26mm × 0.26mm. Error bars of the layer thickness
refer to the measurement tolerances.

(Fig. 6). Nevertheless, a slight offset of about 0.01π to 0.05π was visible. This might be due to
the remaining intrinsic birefringence of the 4 cm long waveguide (as described in section 2), as
well as due to additional stress birefringence caused around these waveguides by the additional
nanograting. Losses induced by single layers of nanogratings are on the order of 1.2 dB to 1.4 dB.
In a next step, the polarization of the writing laser was rotated by a few degrees for a set of

nanogratings fabricated with otherwise constant writing parameters. Waveguides were added
to the nanogratings and the overall birefringence was measured. It is observed that the optical
axis of the system rotated with the polarization of the writing laser (Fig. 7). The rotation of the
optical axis is a crucial element in having full freedom for creating the required phase retardations
for quantum gates. At the same time, the strength of the phase retardation changed, showing
a preferred development of nanogratings for certain polarizations (Fig. 7). The variation in
birefringence strength for different polarizations was also visible for the nanogratings alone. The
change of the total birefringence is stronger than the change of only the nanogratings. The reasons
for this will have to be clarified in future work. Possible explanations could be symmetry breaking
due to the scanning direction while writing, an orientation dependent coupling of waveguide and
nanograting, or parasitic stress induced birefringence effects around the nanograting structure
(the orientation of the nanogratings have significant effect on the stress distribution in the material
[43,44]). The orientation dependence of the induced birefringence has to be accounted for when
selecting suitable writing parameters.

Summarizing, we have shown the control over two degrees of freedom: The orientation of the
optical axis and the amount of phase delay induced by the structures. This has applications both
in the classical regime as arbitrary waveplates, and in the quantum regime, since any phase and
polarization transformation can be represented by Jones matrices [45], and some Jones matrices
correspond to single qubit quantum gates [38].
FLDW chips are a popular platform for quantum operations [7,15,46]. The functionalization

of our structures is only a few hundred micrometers wide, surpassing some former approaches
for fabricating waveplates in compactness (compare e.g. [7,15], where the required defect line
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Fig. 6. Measured phase delay of the combination of nanogratings with waveguides compared
to the measured phase delay for the nanogratings, for various writing laser pulse energies, at
a wavelength of 808 nm. Only the writing laser pulse energy for the nanograting was altered,
while the writing parameters of the waveguides were kept the same for all measurement
points. The gratings were written at 100 kHz repetition rate and 15mm/min scanning speed.
Error bars refer to the standard deviation of the birefringence measured over a nanograting
area of 0.26mm × 0.26mm. Error bars of the combination measurements refer to the fit
accuracies.

Fig. 7. Influence of writing laser polarization angle on the optical axis and induced
phase delay of nanograting-waveguide-combinations. Error bars are based on the standard
deviation of the polarimeter measurement and on fit accuracies. The dotted line is a guide
for the eye to distinguish the data sets. An orientation of 0° corresponds to horizontally
polarized light. The nanogratings were written at 100 kHz, 15mm/min scannning speed and
0.8 µJ pulse energy.
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or waveguide segments were in the range of centimeters), while allowing a full rotation of the
optical axis. As an application example, we will demonstrate the fabrication of specific quantum
gates. Several gates are of special interest, among them the quantum gates Pauli-x (σx), Pauli-y
(σy) and Pauli-z (σz) with a transmission matrix corresponding to the Pauli matrices:

σx =


0 1

1 0

 ; σy =


0 −i

i 0

 ; σz =


1 0

0 −1

 . (3)

They are interesting, because in absence of losses any 2x2 matrix can be written as a superposition
of Pauli matrices and the identity matrix. However, the Pauli-y gate can also be created by a
combination of Pauli-x, Pauli-z gates and a very specific overall phase shift [38], therefore we
will limit our investigations to Pauli-x and Pauli-z gates.

At the same time, the so-called Pi/8th gate Π8th and Hadamard gate H are of special interest,
because they form a universal set for one-qubit quantum computation [47]. Note that the name of
the Pi/8th gate is historical and does not refer to the required phase delay. Their matrices are as
follows [38]:

H =
1
√
2


1 1

1 −1

 ; Π8th =


1 0

0 eiπ/4

 . (4)

4.2. Classical characterization of quantum gates

For the two cases when the optical axis of the nanograting and the waveguide are oriented parallel
or perpendicular to each other, we were able to reach birefringence induced phase delays close to
π and π/4, corresponding to the phase delay requirements for Pauli-z and Pi/8th quantum gates,
respectively [38] (Fig. 8). Additionally, we were able to fabricate a Pauli-x gate, whose optical
axis was rotated by 45° and whose induced phase delay was close to π. Finally, a Hadamard
gate was created (Fig. 8). Hereby, we have demonstrated the possibility of creating quantum
gates, which can be realized with different phase delays as well as different orientations. The
nanogratings for the Pi/8th and the Pauli-z gate were inscribed using horizontally polarized light,
at a writing velocity of 15mm/min and a repetition rate of 100 kHz. In case of the Pi/8th gate, a
single layer of nanogratings created with a pulse energy of 0.4 µJ was used. The thickness of this
nanograting layer was 0.05mm. For the Pauli-z gate, two nanograting layers with a thickness
of 0.07mm and a gap along the waveguide direction of 0.03mm were used. The writing pulse
energy was 0.8 µJ. For the Pauli-x gate, the same writing velocity and repetition rate was used, but
the writing polarization was diagonally polarized and the pulse energy was 0.7 µJ. Like before,
two layers of nanogratings with a thickness of 0.06mm and a gap of 0.04mm were used. The
second layer was required to reach sufficient phase delays. The nanograting for the Hadamard
gate was created using pulses of 0.8 µJ and a polarization rotated to 112.5°, to reach a suitable
orientation of the optical axis. Again, this was a two layer gate, with each nanograting layer
having a thickness of 0.06mm and a gap of 0.04mm in between.
In these plots the measurement points as well as the corresponding sine square fit to the

measurement points are displayed. For the Pi/8th gate the fit yielded an amplitude of A = 0.133,
corresponding to a birefringent phase delay of 0.24π, the Pauli-z gate fit yielded an amplitude
of A = 0.992, corresponding to a birefringence of 0.94π and the Pauli-x gate fit yielded an
amplitude of A = 0.987, corresponding to a birefringence of 0.93π, whilst the Hadamard gate
gave an amplitude of A = 0.978, equaling a birefringence of 0.91π. The losses of these gates
were determined in the setup of Fig. 8, but replacing the single photon source with a crystal.
Overall losses were on the order of 13.2 dB to 14.8 dB, of which around 7.1 dB are due to in- and
out-coupling and Fresnel reflection losses, 5.4 dB to 6.2 dB are losses in the waveguide structures,
leaving up to 2.3 dB losses caused from the nanograting structures. However, we would like to
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Fig. 8. Normalized transmission through crossed polarizers of Eq. (1) for the Pauli-x,
Pauli-z, Pi/8th and Hadamard gates with according sine square fit function. Error bars are
based on the standard deviation of at least 18 measurements at each point.

stress that no efforts were made to reduce the losses. Other publications have shown that losses
induced by nanogratings can be limited to below 0.5 dB [48].

4.3. Single photon characterization of quantum gates

In a next step the quantum matrices of these gates were determined using single photon
measurements. The corresponding setup is depicted in Fig. 9. To produce these single photon
pairs, spontaneous parametric down conversion of a BiBo crystal was used. The photons were
coupled into single mode fibers. The first photon was butt-coupled into the sample, whilst the
second photon served as a triggering signal for the first. Hereby, it was ensured that single
photons were used and dark counts were omitted. To make sure that indistinguishable photons
were measured, the Hong-Ou-Mandel Dip was measured in advance [49]. The polarization state
of the first photon was set using fiber polarization controllers. Degrees of polarization of >99%
were achieved. The polarization state after the sample was measured in the horizontal/vertical
|H〉/|V〉 basis using a polarizing beam splitter, as well as in the left circular/right circular |L〉/|R〉
basis by adding a λ/4 oriented at ±45° in front of the beam splitter. The absolute values of the
matrix entries were directly determined from the |H〉/|V〉-measurements after horizontally or
vertically polarized photons were sent into the sample. To determine the phases, all four options
of input states (|H〉/|V〉/|L〉/|R〉), were measured both in the |H〉/|V〉 and in the |L〉/|R〉 basis.
These values were used in a residual sum of squares minimization, to retrieve the remaining
phases. The phase of the first matrix entry was set to zero in all cases, omitting any overall
phases.

The retrieved matrices are listed in Table 1 and displayed in Fig. 10. The error bars result from
the statistics of multiple measurements and from poissonian statistics of each measurement.

The corresponding fidelities (F |ψ〉 = |〈ψ |M∗idealMexp |ψ〉|
2 [50], with M∗ideal being the conjugate

transpose of the theoretical matrix and Mexp being the experimentally retrieved matrix) were
calculated for the measurement matrices with the smallest residual sum of squares. They are
listed in Table 2.
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Fig. 9. Single photon measurement setup. The wavelength of the single photon source is
λ = 815 nm, close to the characterization wavelength of Fig. 4. (PBS = Polarizing Beam
Splitter, MM =Multi-Mode, SM = Single Mode)

Fig. 10. Retrieved matrices for the Pi/8th, Pauli-z, Pauli-x and Hadamard gates.
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Table 1. Reconstructed matrices of quantum gates.

Gate Matrix

Pi/8th


(0.981 ± 0.001) (0.243 ± 0.005) · e−i·(0.4±0.05)π

(0.194 ± 0.006) · ei·(0.2±0.1)π (0.970 ± 0.001) · ei·(0.23±0.04)π


Pauli-z


0.993 (0.168 ± 0.003) · e−i·(0.09±0.03)π

(0.119 ± 0.003) · e−i·(0.05±0.08) (0.986 ± 0.001) · ei·(0.85±0.03)π


Pauli-x


(0.201 ± 0.005) (0.965 ± 0.002) · ei·(0.06±0.06)π

(0.980 ± 0.001) · ei·(0.01±0.12)π (0.262 ± 0.007) · e−i·(0.04±0.05)π


Hadamard


(0.738 ± 0.002) (0.579 ± 0.003) · e−i·(0.01±0.04)π

(0.674 ± 0.003) · e−i·(0.09±0.06)π (0.816 ± 0.002) · e−i·(0.92±0.05)π


Table 2. Calculated fidelities.

Gate Fidelity F |H〉,|V〉

Pi/8th 0.952 ± 0.011

Pauli-z 0.979 ± 0.007

Pauli-x 0.930 ± 0.031

Hadamard 0.966 ± 0.008

As can be seen, some deviation from the ideal matrices are still present. The cause of this
is not quite clear, possibly some inhomogeneities in the nanograting structures could be the
reason. Further reducing the writing speed during fabrication and therefore homogenizing
the nanograting structure might be suitable to improve this. For the matrices corresponding
to waveplates with tilted axes two additional error sources come into play. Firstly, there is
the remaining waveguide birefringence (as described in section 2) that changes the light’s
polarization state in an unfavorable manner. Secondly, there is also the unpreferred development
of nanogratings which are neither in writing direction nor at 90° orientation to it. Therefore,
finding ways to further lower the waveguide birefringence (e.g. by annealing) and writing the
nanogratings in the direction of the optical axis might further improve the performance of future
gates fabricated with the here proposed method.

5. Conclusion

We investigated the possibility of polarization control inside FLDW waveguides by adding
embedded nanograting planes across the waveguide. We demonstrated dependencies of the
nanograting birefringence on the inscription parameters, and the feasibility of creating quantum
gates using this approach. Therefore we demonstrated the usability of this approach for creating
integrated waveplates of arbitrary phase delays and arbitrary orientations. Four quantum gates
were investigated: The Pi/8th gate, the Pauli-x gate, Pauli-z gate and the Hadamard gate.
The corresponding quantum gate matrices were retrieved using single photon measurements,
yielding fidelities of F |H〉, |V 〉 = (0.930 ± 0.031) and higher. However, some matrix values still
deviated noticeably from the theoretically desired values. Further optimization of the fabrication
parameters could help relieve this problem. Apart from further improving the performance of
these structures, it would be of great interest to combine them with other integrated structures,
showing their applicability in more complex integrated optical circuits.
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