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Abstract. In this paper, a new calculation procedure to improve the accuracy of the Jensen wake model for
operating wind farms is proposed. In this procedure, the wake decay constant is updated locally at each wind
turbine based on the turbulence intensity measurement provided by the nacelle anemometer. This procedure was
tested against experimental data at the Sole du Moulin Vieux (SMV) onshore wind farm in France and the Horns
Rev-I offshore wind farm in Denmark. Results indicate that the wake deficit at each wind turbine is described
more accurately than when using the original model, reducing the error from 15 % to 20 % to approximately 5 %.
Furthermore, this new model properly calibrated for the SMV wind farm is then used for coordinated control
purposes. Assuming an axial induction control strategy, and following a model predictive approach, new power
settings leading to an increased overall power production of the farm are derived. Power gains found are on the
order of 2.5 % for a two-wind-turbine case with close spacing and 1 % to 1.5 % for a row of five wind turbines
with a larger spacing. Finally, the uncertainty of the updated Jensen model is quantified considering the model
inputs. When checked against the predicted power gain, the uncertainty of the model estimations is seen to
be excessive, reaching approximately 4 %, which indicates the difficulty of field observations for such a gain.
Nevertheless, the optimized settings are to be implemented during a field test campaign at SMV wind farm in
the scope of the national project SMARTEOLE.

1 Introduction

Wind turbines are aggregated together in wind farms to take
advantage of economies of scale and reduce overall costs
(Pao and Johnson, 2009). However, this creates wake inter-
actions between the turbines which are responsible for an in-
crease in mechanical loads and a decrease in power produc-
tion. It is generally not possible to avoid completely these
interactions due to constraints imposed on the development
of wind farms, and moreover in some cases wake effects are
still persistent at significant distances downstream, up to 10
to 15 diameters (Sanderse, 2009).

To reduce these effects and improve wind farm efficiency
and sustainability, wind farm coordinated control strategies
are currently investigated. Contrary to the state-of-the-art

control, in which all turbines maximize their own power pro-
duction, coordinated control aims at controlling turbines at a
wind farm scale to optimize its overall output. Two different
strategies are mainly considered to achieve this goal: either
the upwind turbines are curtailed to leave more kinetic en-
ergy downstream or they are yawed to deflect the wake away
from the downwind turbines.

Results from simulations show that small gains in power
production are indeed possible (Bossanyi and Jorge, 2016;
Gebraad et al., 2017; Santhanagopalan et al., 2018); however,
they also underline their high variability with incoming wind
conditions (Knudsen et al., 2015). It is therefore not known
to what extent these gains can be reproduced in an operating
wind farm where wind conditions are fluctuating constantly
and significantly. Very few full-scale field tests have been re-
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alized to investigate this question. The concepts of “heat and
flux” (Machielse et al., 2007) and “controlling wind” (Wa-
genaar et al., 2012) were studied some years ago at the En-
ergy research Centre of the Netherlands (ECN) and more re-
cently the National Renewable Energy Laboratory (NREL)
provided in Fleming et al. (2017) a field test of their “yaw-
based wake steering” method in an Envision offshore wind
farm. They tend to confirm that gains can be achieved in prac-
tice; however, in all cases, uncertainties remain high, and it
is therefore difficult to give a definite conclusion.

Other full-scale field tests are currently being held in
France in the scope of the French national project SMARTE-
OLE. They are organized in an operating wind farm owned
by ENGIE Green, Sole du Moulin Vieux (SMV), in which
different curtailment and yaw offset strategies are studied.
The main objective of these tests is to investigate the rele-
vance of these strategies on wind turbine power production
and loads, and determine whether they could prove benefi-
cial when applied on commercial wind farms. A first exper-
iment campaign was realized between December 2015 and
April 2016 and was dedicated to axial induction control strat-
egy. An intentionally high level of curtailment was applied
on a wind turbine of the farm so that changes in its emit-
ted wake could be observed from the analysis of downstream
active power data. Even though no increase in aggregated
power production was expected, a first analysis of wind tur-
bine power production in the farm showed that part of the lost
power at the upstream turbine could be retrieved downstream
(Ahmad et al., 2017; Duc, 2017).

The goal of this paper is to use the knowledge gained dur-
ing the first campaign to provide new optimized control com-
mands that could be implemented in a second field campaign
and hopefully lead to an increase in the aggregated power
production of the farm. As SMV is a commercial wind farm,
these commands must be easily applicable without modify-
ing the wind turbine control system; thus, a model predictive
approach is followed to determine the optimal de-rating to be
applied as a function of wind speed and direction. To limit
computational costs and the complexity of the optimization
process, fast and simple models are considered. Hence, sim-
plified engineering models are to be applied and the main
issue when following this kind of approach is making sure
that they are accurately capturing the wake deficit at each
wind turbine. Consequently, the data recorded during the first
field test campaign are analysed further and used to propose
a new tuning of the widely used Jensen model (Jensen, 1983;
Katic et al., 1986). In this new method, the wake decay con-
stant is expressed at each wind turbine based on the local
measurement of turbulence intensity provided by the nacelle
anemometer. The resulting wake deficit appears to be more
consistent with the observed data at SMV wind farm than
when using a constant value, and this calculation procedure is
also validated considering experimental data from the Horns
Rev-I offshore wind farm.

The rest of this paper is organized as follows. In Sect. 2,
the wind farm and the experimental setup used during the
first field test campaign are shortly detailed. Section 3 de-
scribes the principle of the tuned Jensen model, and its
performance compared to the original model is assessed in
Sect. 4. This tuned model is then used in Sect. 5 alongside a
simple cT estimation procedure to predict in two study cases
at SMV wind farm the optimized settings leading to an in-
crease in overall wind farm production. Uncertainty of the
model estimation is also quantified in this section and con-
straints related to field implementation are briefly discussed.
Finally, Sect. 6 provides a summary of the paper and conclu-
sions.

2 Experimental setup

Sole du Moulin Vieux is a commercial wind farm owned by
ENGIE Green and located at Ablaincourt-Pressoir in the re-
gion Hauts-de-France, approximately midway between Paris
and Lille. Figure 1 shows the layout of the farm with the in-
terdistances between the turbines and the main direction an-
gles used in this paper. It consists of seven Senvion REpower
MM82 2050 kW wind turbines of 80 m hub height that were
commissioned in two steps: the first five turbines (SMV1 to
SMV5) were put in service in 2009, while the two last ones
(SMV6 and SMV7) were installed 4 years later in 2013. The
site is not complex, with a very flat terrain composed mainly
of grasslands, with the exception of a small forest located
south of the farm.

It can be seen that wind turbines are more or less aligned
on a north–south axis, while the prevailing wind direction is
south-west, as seen on the long-term wind rose of Fig. 2a.
This particular wind farm was chosen for the field test cam-
paigns of the SMARTEOLE project because of the proximity
with ENGIE Green maintenance centre (located 5 km away
from the farm) and the wake events SMV6–SMV5. Indeed,
due to development constraints, these two turbines were in-
stalled very close from each other (only 305 m, i.e. 3.7 D) and
aligned with prevailing wind directions. In this paper, super-
visory control and data acquisition (SCADA) data from the
seven turbines are analysed along with data from a 80 m met
mast and a ground-based lidar (Windcube V1). The location
of these sensors is indicated in Fig. 1.

3 Modification of the Jensen model

3.1 Original model

The Jensen model as it was originally developed by Jensen
(1983) and Katic et al. (1986) is introduced briefly here. In
this model, the wake grows linearly at a rate driven by a co-
efficient kw called wake decay constant (WDC) or wake ex-
pansion coefficient. The wind speed deficit δw in the wake
is assumed to be uniform, axis-symmetric and depends only
on the downstream distance x and the upstream wind turbine
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Figure 1. Layout of the SMV wind farm and location of wind measurement devices. Interdistances between the wind turbines are expressed
in rotor diameters (with D = 82 m), while red arrows indicate the main wind direction angles used in this paper.

Figure 2. Long-term wind rose observed at the site of the SMV wind farm (a) and Senvion MM82 guaranteed power and thrust coefficient
(cT) curves (b).
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thrust coefficient cT. It can be computed using mass conser-
vation and can be expressed as

Uw

U0
= 1− δw = 1−

1−
√

1− cT

(1+ kwx/R)2 , (1)

where U0 is the incoming wind speed at the upstream wind
turbine, Uw the velocity in the wake and R the radius of the
upstream rotor.

When summing the wakes from two or more upwind ro-
tors, wind speed deficits are aggregated via quadratic sum.
Therefore, the wake deficit δn at the nth wind turbine of a
row is simply given by

δn =

√√√√n−1∑
i=1

δ2
i , (2)

where δi is the wind speed deficit due to wind turbine i.
As indicated earlier, the Jensen model is probably the most

widely used wake model for wind energy engineering appli-
cations, and that is mainly due to its simplicity and robust-
ness. In particular, its very low computational cost makes it
very suitable for optimization purposes, as a high number
of simulations can be run in a very short time. However, al-
though this model gives a fairly good estimation of the av-
eraged power deficit in a wind farm (Göçmen et al., 2016),
some studies underline its inaccuracy when it comes to look-
ing at the individual power production of the wind turbines
(Barthelmie et al., 2009; Gaumond et al., 2014). This is a cru-
cial issue for power optimization using coordinated control,
given that the production at the downstream turbines must
be predicted as accurately as possible in order to choose the
optimal settings of the upstream turbine.

There is therefore a need for improvement to be able to
use this model for such purposes. Over the past years, some
new models have been derived from the main equation of the
Jensen model. They aim at offering a better representation of
the individual wake deficits by introducing new parameters
and equations, while keeping a low computational cost. For
example, in Bastankhah and Porté-Agel (2014), the equation
of momentum conservation is included to the model and a
Gaussian distribution is assumed for the velocity deficit pro-
file. The multizone model developed by Gebraad et al. (2014)
is also Jensen based and considers three different areas in the
wake, each with its own wake decay constant. Description of
wind turbine wakes is indeed very much improved with these
models; however, they can be relatively difficult to calibrate,
as they consider up to 10 parameters that need to be tuned
properly (Annoni et al., 2018).

In this paper, a very simple tuning of the original Jensen
model is proposed based on the measure of local turbulence
intensity (TI). The idea is to keep the simplicity of calibra-
tion and robustness of the model while improving its accu-
racy. As it will be discussed in the next section, and shown
later in Sect. 4, taking turbulence intensity into account when

tuning the model already significantly improves the perfor-
mance of the model and offers a fairly good representation
of the velocity deficit along a row of turbines, both onshore
and offshore.

3.2 Tuning of the model

As can be seen in Eq. (1), there is only one parameter to
be tuned in the Jensen model: the wake decay constant. This
empirical constant is supposed to vary from one wind farm to
another but generally the two recommended values of 0.075
and 0.05 are used for onshore and offshore wind farms, re-
spectively (Mortensen et al., 2011). In some studies, it is
also expressed more specifically as a function of the par-
ticular conditions at the wind farm, using, for example, the
roughness length and the atmospheric stability (Peña and
Rathmann, 2014) or the ambient turbulence intensity (Peña
et al., 2015; Thorgersen et al., 2011). The link between wake
growth and TI was pointed out by Lissaman (1976), but more
recent studies, based on wind tunnel, large eddy simulations
(LESs), Reynolds-averaged Navier–Stokes (RANS) simula-
tions and full-scale turbine data, clearly identify TI as one
of the most influencing parameters on the wake growth and
magnitude of the wake deficits (Bastankhah and Porté-Agel,
2014; Mittelmeier et al., 2017; Santhanagopalan et al., 2018;
Annoni et al., 2018).

It is known that TI varies significantly inside a wind farm,
as the wake-added TI from upstream wind turbines is added
to the ambient TI (Crespo et al., 1999; Vermeer et al., 2003;
Göçmen and Giebel, 2016). Keeping the same wake decay
constant for all wind turbines in the farm can therefore lead
to errors in prediction of individual power production. The
wake deficit is underestimated at the first few downstream
turbines and overestimated further down the row (Gaumond
et al., 2014), or vice versa (Göçmen et al., 2016). Conse-
quently, it appears more accurate to assign a new wake decay
constant for each wind turbine that would be directly linked
to the local value of TI rather than considering an averaged
value for the complete wind farm.

This strategy was followed in Niayifar and Porté-Agel
(2016) and an expression between the wake decay constant
and the local TI was proposed on the basis of LES data:

kw = 0.3837 (TI)mod+ 0.003678, (3)

where (TI)mod is the modelled local TI obtained through the
combination of ambient and wake-added TI, the latter be-
ing estimated thanks to the empirical equation developed by
Crespo et al. (1996). As in this present paper SCADA data
are available, it was rather decided to use the direct measure-
ment of turbulence intensity provided at each wind turbine
rather than relying on such a generic expression. In the next
section, several methods are presented that can be used to
estimate TI from SCADA. A direct proportionality is con-
sidered between kw and the measured TI, (TI)meas. This was
done in order to keep the same simplicity as in the original
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Jensen model, i.e. to have only one parameter to calibrate,
the constant c:

kw = c (TI)meas. (4)

It should be noted that the tuning of the wake decay con-
stant is based on TI only. Although TI is probably the most
critical parameter, some studies underline the link between
the variation of cT and kw (Bastankhah and Porté-Agel, 2014;
Annoni et al., 2016). Accordingly, in Sect. 4, the tuning of
the Jensen model is evaluated in the constant cT region (see
Fig. 2) in order to isolate the local turbulence effects on the
wake expansion. However, this is no longer true in Sect. 5,
where the model is used in an optimization process involving
axial induction control, whose purpose is precisely to change
the cT of upstream turbines.

3.3 Estimating TI from SCADA

There are several ways to assess the incoming wind speed
from ordinary SCADA signals, all with their advantages and
drawbacks. These different methods are presented in this sec-
tion and they can all be used to derive a local estimation of
TI which is a required input for the wake model presented
above. Alternative methods using sensors that are usually not
installed on wind turbines (e.g. lidars or spinner anemome-
ters) are not developed here but could also fulfill the same
purpose.

The first and most obvious way to obtain a wind speed
measurement from SCADA is to consider the nacelle wind
speed signal (NWS) emitted by the nacelle anemometers in-
stalled on the wind turbine. However, these sensors are lo-
cated behind the rotor and are therefore exposed to a highly
distorted flow (Zahle and Sørensen, 2011). They cannot be
relied on to provide an accurate and instantaneous wind
speed measurement, but when it comes to considering local
TI they might be good enough as only 10 min average and
standard deviation values will be involved.

Another wind speed measurement can easily be obtained
from the active power production signal and the guaranteed
power curve of the wind turbine (or a measured power curve).
This new signal, labelled here as power curve wind speed
(PWS), is generally more reliable than the NWS since the
sensor is the wind turbine itself. Also, due to rotor inertia
and the fact that the wind speed derived using this method is
averaged over the whole rotor area, small fluctuations of the
wind flow will be filtered out, resulting in a much smoother
signal. The main issue regarding this method is its limited
applicability: it cannot be used above rated wind speed or
during down-regulation and therefore is unsuitable for wind
farm coordinated control purposes.

In order to solve this problem, a third way was devel-
oped in the scope of the PossPOW project by Göçmen et al.
(2014) to calculate the rotor effective wind speed (REWS) of
a wind turbine in these particular situations. In this method,
the REWS is calculated from three SCADA signals (active

power, rotor speed and pitch angle) and a cP model. It must
be ensured that the chosen cP model is fitting as best as possi-
ble to the real cP curve. Alternatively, a cP look-up table can
also be used, when available. In this paper, the cP model and
the value of its parameters are the same as those presented in
Göçmen (2016), as they proved to offer a good performance
for wind turbines in the same range (rated power of 2 MW
with a diameter of about 80 m) as the ones studied here.

Overall, 4 months of 1 Hz SCADA data were processed
(1 December 2015–31 March 2016) for the wind turbine
SMV5 to compute 10 min average wind speed and turbulence
intensity using these three different methods. Figure 3 com-
pares these wind speed values with measurements from ref-
erence sensors (met mast and Windcube). No sector filtering
was applied to the data; consequently, a significant scatter
can be found when comparing two sensors at different loca-
tions due to wake effects. It can be observed that these re-
sults are very similar to the ones that were obtained at the
Lillgrund offshore wind farm and were presented in Göçmen
and Giebel (2016), showing a very nice correlation between
the PWS and the REWS and more scatter when considering
the NWS. This is because the wind speeds calculated through
the REWS or PWS methods contain a geometrical averaging
of the wind flow over the whole surface of the rotor which
smooths out wind speed fluctuations (Göçmen and Giebel,
2016). On the other hand, NWS and met mast are point-wise
measurements and therefore are affected by every single vari-
ation of the wind speed.

In Fig. 4, the turbulence intensity calculated from all these
signals is represented against wind direction (5◦ bins). It can
be seen that outside any wake events, the TI obtained through
the NWS signal is of same order of magnitude than the one
measured by external sensors. On the contrary, TI obtained
with either the PWS or the REWS signals is approximately
twice as low. As previously mentioned, this is explained by
the geometrical averaging provided by these two methods.

All wake events are clearly captured by any of the TI sig-
nals. At a particular location of a wake, the TI measured is
about twice as high compared to the free-stream conditions,
indicating that wake-added TI is significant and can be mea-
sured reliably with a SCADA signal. Consequently, any of
these TI signals could be used as input for the tuned wake
model; it is simply needed to adjust accordingly the value of
the constant c in Eq. (4). However, for the rest of this paper,
only the NWS TI could be considered in practice, given that
the PWS signal cannot be used for down-regulation purposes,
while the REWS method requires acquisition and processing
of second-wise data, which were not available for some of
the turbines in the wind farm.
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Figure 3. Comparison of wind speed measurements at SMV5 (for nacelle wind speed, power wind speed and rotor effective wind speed)
and at external sensors (met mast and Windcube). No sector filtering was applied to the data, explaining the scatter when comparing sensors
at different locations.

Figure 4. Comparison of TI measurements at SMV5 (for nacelle
wind speed, power wind speed and rotor effective wind speed) and
at external sensors (met mast and Windcube), represented against
wind direction. Error bars shows the 68 % normalized confidence
interval (represented for NWS but a same order of magnitude can be
expected for other sensors in the same wind direction bin). Vertical
lines indicate position of wakes for SMV5 sensors and Windcube.

4 Validation of the tuning strategy

4.1 Data filtering and processing

The performance of the tuned Jensen model is now assessed
in this section and compared to the results obtained for the
original model. Production data from two wind farms are
considered: the onshore SMV wind farm and the offshore
wind farm of Horns Rev-I (layout of the farm and power and
cT curves for the Vestas V80-2MW wind turbines are shown
in Fig. 5). In both cases, the normalized power production
along a row of turbines is analysed. The data are filtered to
keep only the 10 min periods when all wind turbines are in
operation and the incoming wind direction is within a ±5◦

interval around the main orientation of the row. Another fil-
tering is done based on the power production of the most up-
stream turbine in order to consider only the 10 min periods
when wind turbines are all in the constant cT region (region
II of the power curve).

For each valid 10 min period, the power production deficit
at each wind turbine is simulated for both the original and the
tuned models. When considering the original Jensen model,
the value of kw is calibrated using the first wake event of the
row. In the case of the tuned wake decay constant, the value
of the constant c in Eq. (4) is adjusted roughly to limit the in-
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Figure 5. Layout of Horns Rev-I offshore wind farm with turbine spacing and wind direction angle used in this study (a) and Vestas
V80-2MW guaranteed power and thrust coefficient (cT) curves (b).

dividual error of the model along the row. The value used for
(TI)meas is the 10 min TI measurement from the NWS signal.
The normalized simulated deficits are then averaged over all
valid 10 min periods and compared with the normalized mea-
sured deficits. The averaged value of the NWS TI signal at
each wind turbine is also drawn to show the variation of the
measured TI along the row of turbine. Error bars in Figs. 6
and 7 indicate the 68 % normalized confidence interval.

At SMV wind farm, the power production deficit is studied
along row SMV1 to SMV5. The wind direction sector con-
sidered is 5 ± 5◦, and the valid power range for the most up-
wind wind turbine (SMV1) is fixed to 600–1100 kW to fulfill
the constant cT condition. The filtered data set finally consists
of 156 valid 10 min periods recorded between 15 June 2015
and 1 August 2016 (due to small occurrence of northerly
winds, it was needed to consider a longer period than the
actual field tests to gather enough valid data). The wake de-
cay constant for the original Jensen model was kept as 0.075,
the traditional value for onshore wind farm as it proved to
show good performance for the first wake event of the row
SMV1–SMV2.

At Horns Rev-I wind farm, the power production deficit is
studied along row number 5, from HR5 to HR95 (see layout
of the farm in Fig. 5a). The wind direction sector considered
is 270 ± 5◦, and the valid power range for the most upwind
wind turbine (HR5) is fixed to 0–1200 kW to fulfill the con-
stant cT condition. The filtered data set finally consists of
270 10 min periods recorded between 16 February 2005 and
25 January 2006. The value for the wake decay constant of
the original Jensen was fixed to 0.09, which is much bigger
than the value of 0.05 traditionally used for offshore wind
farms but much more consistent with the measured deficits.
It was already found in other studies (e.g. Niayifar and Porté-
Agel, 2016) that using a wake decay constant of 0.05 was
clearly overestimating the power deficit for the wind farm

of Horns Rev-I, as it gives narrower wake growth within the
wind farm.

4.2 Results

The evaluation of the original and the tuned Jensen models
on SMV and Horns Rev-I wind farms is presented in Figs. 6
and 7, respectively. In both cases, the normalized deficit is
shown as a function of distance to the most upstream tur-
bine, as well as the difference between the modelled and the
observed deficits at each wind turbine for different values of
wake decay coefficient.

It can be seen that the graphs for the two wind farms have a
very similar behavior, with the tuned Jensen model perform-
ing better than the original model. Except for the first wind
turbine, the wake deficit calculated with the original model
is always overestimated and the error becomes more signifi-
cant towards the downstream direction: from approximately
10 % at the third turbine of the row, it goes around 15 % to
20 % further downstream. On the contrary, with the tuned
Jensen model, the deficit is captured more accurately, espe-
cially at the wind turbines located in the middle of the row
for which the error is kept at ±5 %. These changes are con-
sistent with the augmentation of turbulence intensity from
the second wind turbine in the row. Increased TI provides
a better mixing between the disturbed flow in the wake and
the undisturbed free flow, which allows a earlier recovery,
both in terms of time and space. This particularity is taken
into account in the tuned Jensen model since the WDC is in-
creased linearly with TI, while the original Jensen keeping
the same WDC all along the row leads to an overestimation
of the deficit.

When analysing the impact of the choice of the constant
c linking TI with the kw in the tuned Jensen model, two ob-
servations can be made. First, it can be seen that the optimal
c obtained for each wind farm is different: 0.75 for SMV

www.wind-energ-sci.net/4/287/2019/ Wind Energ. Sci., 4, 287–302, 2019
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Figure 6. Comparison of the model performance at SMV wind farm. Variation of experimental and modelled normalized power and tur-
bulence intensity (measured by the nacelle anemometer) along the row (a) and variation of the error of the model at each wind turbine for
various values of wake decay constants kw (b). Error bars indicates the 68 % normalized confidence interval.

Figure 7. Comparison of the model performance at Horns Rev-I wind farm. Variation of experimental and modelled normalized power and
turbulence intensity (measured by the nacelle anemometer) along the row (a) and variation of the error of the model at each wind turbine for
various values of wake decay constants kw (b). Error bars indicates the 68 % normalized confidence interval.

wind farm and 0.9 in the case of Horns Rev-I. This shows
the sensitivity of the model to the local conditions and tends
to indicate that a small calibration of the constant will still be
needed for each wind farm to make sure that the wake deficit
is correctly modelled. This site dependency of the Jensen
model was already present in its original form; indeed, in
this example, it can be seen that the best WDC obtained for
the offshore wind farm (0.09) is much higher than the recom-
mended values (0.04–0.05) and the one of the onshore wind
farm (0.075).

The second observation is that the modelled wake deficit
is varying regularly when c changes. This ensures that the
calibration is as easy and robust as before, since it is simply
needed to tune the value of c until the wake deficit is de-
scribed as best as possible. Contrary to the original model,

the accuracy is improved as taking into account the local TI
allows a better representation of the individual wake deficit
at each wind turbine.

Consequently, it can be concluded that this tuned Jensen
model is providing an improvement compared with the orig-
inal model, while keeping the simplicity of calibration and
robustness of the original model. It can thus be used to de-
fine control instructions, as developed in the next section.

5 Optimization of wind farm power production

After having validated the performance of the tuned Jensen
model, it is used in an optimization process to find the wind
turbine settings maximizing their power performance. Only
the axial induction strategy is developed here, due to its ease
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Figure 8. Correlation between cP and cT for a Senvion MM82
wind turbine, deduced from the analysis of guaranteed power curve
modes for sound management.

of application on a commercial wind turbine. Indeed, it sim-
ply requires to trigger a pre-implemented down-regulated
power curve as a function of incoming wind conditions with-
out modifying the control settings of the turbine. In practice,
only wind speed and direction can be used as input for trig-
gering a curtailment mode; therefore, power production is
optimized for various wind speed and direction bins.

The hypotheses used during the optimization process are
first presented, and then two study cases at SMV wind farm
are analysed. Finally, a study of the uncertainty of the model
outputs is realized based on the data from Horns-Rev I, and
the values obtained are compared with the predicted gains.

5.1 cT estimation procedure

The principle of wind farm power optimization using an ax-
ial induction control strategy is to curtail the upstream wind
turbines to gain more energy on downstream wind turbines.
It is hoped that the decrease in the upstream cT will be high
enough to reduce sufficiently the wake deficit so that the in-
crease in production downstream can compensate for the up-
stream cP diminution. Consequently, it is a crucial issue to
assess as accurately as possible how both cP and cT are being
affected by the upstream down-regulation, in order to cor-
rectly estimate the overall production for various curtailment
modes.

It is sometimes possible to use look-up tables to link cP
and cT with operational parameters of the wind turbine, such
as rotor speed and pitch angle. However, for this work, no
look-up tables were available, and therefore another method
had to be developed. A workaround was finally found by the
analysis of MM82 guaranteed curtailed power curves used
for noise emission reductions. Indeed, when representing cT
against cP, as in Fig. 8, two different behaviours are being ob-
served: one below rated wind speed (parabolic relationship)
and another above rated wind speed (linear dependency).

Figure 9. TI distribution at each wind turbine used during the opti-
mization process. This rose is obtained for a wind speed of 8 m s−1

only, but similar roses were calculated for each wind speed bin. Am-
bient TI measured at the met mast is also plotted for comparison.

Thus, an empirical relationship could be derived from this
analysis, by fitting a second-order polynomial to the first set
of data points and a first-order polynomial for the second
one. The final relationship between cP and cT used for the
optimization process and valid for an MM82 wind turbine is
represented in Eq. (5) below.
cT = 6.1c2

P− 2.4cP+ 0.6 if 6< V < 12.5 m s−1

and cP > 0.2
cT = 1.3cP if V > 12.5 m s−1

(5)

5.2 Turbulence intensity distribution

As developed in Sect. 3, knowing the turbulence intensity
is of primary interest to properly assess the wake deficit. In
Sect. 4, the TI was calculated in 10 min timescale resolution
to compare the performance of the tuned wake model with
the original one. Here, due to practical constraints, it is not
possible to consider the real-time TI as an input parameter
for triggering a curtailment mode. Instead, it was decided to
express the local TI as a function of wind speed and direction
by calculating a TI distribution in the farm. Consequently,
a different WDC is chosen for each wind turbine and each
wind speed and direction bin, so that local TI still has some
influence in the optimization process.

This TI distribution was obtained by averaging the NWS
signal of all wind turbines in the farm in 10◦ direction bins
and 1 m s−1 wind speed bins. The dependency of incoming
TI for each wind turbine is represented for a wind speed of
8 m s−1 on a turbulence intensity rose in Fig. 9, alongside
with TI measured by the met mast that can be used for com-
parison.

It can be seen that the TI measured by the wind turbines
outside any wake events is around 9 %–10 %, which is con-
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sistent with the met mast measurements. Some particular ter-
rain effects can nonetheless be observed. Between 160 and
220◦, the TI measured by SMV7 is increasing up to 12 % to
13 %: this was attributed to the presence of a wood south of
the farm and very close to SMV7 (please refer to the map of
the wind farm in Fig. 1). Likewise, an increase of 1 % to 2 %
in the SMV1 TI is observed for wind direction between 340
and 20◦. The reason for this increase was related the pres-
ence of the motorway at the north of the farm; indeed, the
met mast curve shows also a similar increase in the sector
[320◦; 0◦], corresponding to the direction of the motorway
as seen by the met mast location.

5.3 Reduction of wake-added TI

In order to describe as accurately as possible the variation
of TI in the farm when optimizing the power production, the
influence of the upstream curtailment on downstream wake-
added TI must be taken into account. Indeed, as the upstream
wind turbine is down-regulated, the wake-added TI emitted
by this turbine is reduced. It is expected that this decrease
will be more and more significant as the upwind curtailment
increases. Therefore, the TI distribution presented in the pre-
vious section, and calculated for normal operation condi-
tions, is no longer valid: it must be reduced accordingly with
the percentage of down-regulation applied on the upwind tur-
bine. This is important especially when considering a row of
three turbines (or more), since the deficit at the third turbine
is calculated based on TI at the second turbine, which is itself
dependent on the first turbine curtailment.

To study the impact of upstream down-regulation on
downstream wake-added TI, data from the first field test
campaign are considered. Between December 2015 and
April 2016, SMV6 was occasionally curtailed of approxi-
mately 20 % for south-western winds (in the direction of
alignment SMV6–SMV5). Analysing TI data provided by
the nacelle anemometers, the wake-added TI, TIwa, can be
computed with the following equation:

TIwa =

√
TI2

tot−TI2
amb, (6)

where TItot is the total TI in the wake measured at SMV5 and
TIamb the ambient TI measured at SMV6.

Ambient and total TI were binned against wind direction
(5◦ bin width) and wake-added TI was deduced for each bin.
Results are shown in Fig. 10, while numeric values are sum-
marized in Table 1. Unfortunately, for the 20 % curtailment
case, only data on the right side of the wake could be ex-
ploited. However, it still provides a very interesting insight
of TI reduction with down-regulation as it covers full wake
situation (at 210◦) to partial wake situations (220–225◦).

It can be observed that the upstream wind turbine cur-
tailment provides a relatively significant decrease in down-
stream wake-added TI, as it is reduced from 14.84 % to
12.50 % for a wind direction of 210◦. As expected, as wind

Figure 10. Variation of wake-added TI as a function of wind direc-
tion, in normal operation and during SMV6 curtailment. Error bars
indicate the 68 % normalized confidence interval.

direction increases and we go from full wake situation to
partial wake situation, reduction of wake-added TI becomes
smaller, from 2.34 % to 1.46 %. In this paper, to model the
relationship between percentage reduction of wake-added TI
with percentage of upstream down-regulation, a linear de-
pendency was assumed for a given wake condition:

(%1TIwa)=
1TIwa

TIwa
= pwake(%DR). (7)

The value of the parameter pwake linking 1TIwa with %DR
is expected to be dependent on the relative wind direction be-
tween the turbines. Consequently, the parameter for full wake
conditions, pfw, will differ from the one for partial wake con-
ditions, ppw. In this example, where a 20 % down-regulation
was applied, values of pfw ≈−0.788 (from the bin 210◦) and
ppw ≈−1.001 (from the bin 215◦) could be computed.

In Sect. 5.4.2, dealing with power optimization in a mul-
tiple wake case, reduction of wake-added TI with upstream
curtailment is modelled with the following steps:

1. First, wake-added TI at each wind turbine in normal op-
eration is calculated based on the TI distribution pre-
sented in Sect. 5.2 and ambient TI deduced from the
most upstream wind turbine.

2. Second, as upstream wind turbines are being gradually
curtailed in the optimization process, wake-added TI is
adjusted based on Eq. (7) above. To simplify the pro-
cess, only down-regulation of the closest upstream tur-
bine is considered for the reduction of wake-added TI.
A similar procedure was followed in Niayifar and Porté-
Agel (2016) when modelling wake-added TI.

3. Finally, total expected TI at the wind turbine is calcu-
lated by inverting Eq. (6). This calculated TI can then
be given as input into the local TI-based wake model to
compute the wake deficit at downstream turbines.
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Table 1. Comparison of measured wake-added TI at SMV5 wind turbine between no curtailment and 20 % curtailment on SMV6, with their
68 % normalized confidence interval. N/A (not applicable) indicates missing data for some wind direction bins.

Wind direction No curtailment 20 % curtailment on SMV6 Difference

(◦) TIamb (%) TItot (%) TIwa (%) TIamb (%) TItot (%) TIcurt
wa (%) 1 TIwa (%)

195 15.31± 0.54 16.76± 0.37 6.83± 0.65 N/A N/A N/A N/A
200 13.20± 1.43 17.05± 0.85 10.79± 1.66 N/A N/A N/A N/A
205 12.20± 0.30 18.24± 0.28 13.55± 0.41 N/A N/A N/A N/A
210 11.80± 0.16 18.96± 0.18 14.84± 0.24 12.73± 0.28 17.84± 0.44 12.50± 0.52 −2.34
215 11.90± 0.26 16.61± 0.29 11.59± 0.39 12.99± 0.30 15.96± 0.53 9.27± 0.61 −2.32
220 11.51± 0.23 14.74± 0.30 9.21± 0.38 12.78± 0.30 14.60± 0.27 7.06± 0.40 −2.15
225 9.56± 0.18 10.42± 0.28 4.15± 0.33 11.47± 0.85 11.78± 1.07 2.69± 1.07 −1.46

Figure 11. Optimization of power production of SMV6 and SMV5. Power curves in the base and optimized cases (a) and variation of power
gain and optimal SMV6 cP as a function of wind speed for the optimized case (b).

5.4 Study cases

5.4.1 Wind turbines SMV5 and SMV6 (single wake
case)

The first case to be studied is the SMV6–SMV5 wake event.
It is of particular interest because of the very short spacing
between the two wind turbines and their alignment close to
prevailing wind directions. For this study case, a very simple
optimization procedure is used: for each wind speed and rel-
ative wind direction, the cP of SMV6 is gradually decreased
up to 20 % of its actual value (and the cT adjusted conse-
quently based on Eq. 5) and the power production of both
wind turbines is computed using the tuned Jensen model. The
optimized power curve for SMV6 is then deduced from all
the cP values giving the best combined production at each
wind speed.

Results are presented in Fig. 11 for full wake conditions.
In Fig. 11a, power curves for both wind turbines are plotted,
while Fig. 11b shows the relative increase in combined power
production which is obtained at each wind speed with the as-
sociated amount of curtailment which is applied to SMV6. It
is observed that the maximum gain represents an increase of

about 2.5 % and is found at 7 m s−1 when SMV6 is curtailed
by 12 % (cP decreases from 0.46 to 0.405, while at the same
time cT is reduced from 0.79 to 0.63 according to Eq. 5).
More generally, it can be seen that the interest of coordinated
control is limited to the wind speed range 5–11 m s−1, i.e.
when both cP and cT of the upstream turbine are high. In this
range, a small decrease in cP causes a high reduction of cT,
as illustrated on the parabolic cP–cT relationship of Fig. 8.
As wind speed increases further, the upstream wind turbine
naturally starts to pitch to limit power production to its nom-
inal value, and therefore axial induction control is no longer
beneficial.

In Fig. 12, the impact of a changing relative wind direction
on the relevance of applying a coordinated control is stud-
ied, showing the optimal gain that can be expected (Fig. 12a)
and the optimal amount of curtailment required on SMV6
(Fig. 12b) as a function of the wind speed. It is seen that
the wind direction sector on which gains can be observed is
particularly narrow. As soon as the full wake condition is no
longer respected, i.e. for relative wind direction above ±5◦,
the benefit of axial induction control drops almost instantly:
when wind direction shifts from 4 to 6◦ at 7 m s−1, gains are
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Figure 12. Influence of changing relative wind direction. Variation of power gain (a) and optimal SMV6 cP (b) as a function of wind speed.

reduced from 2.25 % to approximately 0.6 %. This sensitiv-
ity confirms the very limited applicability of a curtailment
strategy for power production optimization and the difficulty
to implement it in a real case situation. As it is only bene-
ficial on a 10◦ width wind direction sector centred around
full wake conditions, very steady incoming wind conditions
are required to make sure that gains in power production will
actually be observed.

5.4.2 Rows SMV1 to SMV5 (multiple wake case)

The second case to be studied is the row SMV1 to SMV5.
The power production along the row is now studied for full
wake conditions and a wind speed of 8 m s−1, for which the
coordinated control is expected to give the highest possible
gain. Two different control strategies are being investigated:
in the first one, only the most upstream turbine (SMV1) is
being curtailed, while in the second one each wind turbine
is optimally curtailed so that total power along the row is
maximized. In the first case, the optimum is reached thanks to
the same method as in previous section, while for the second
case the following procedure (adapted from Heer et al., 2014)
is used:

1. Start with no down-regulation applied on the wind tur-
bines: %DRi = 0% for i ∈ {1− 5}.

2. For wind turbine i, from upstream to downstream, find
the value %DRi maximizing power production along
the row and considering that all other %DRj 6=i remain
constant.

3. Repeat step 2 until all %DRi values stay constant.

Reduction of wake-added TI was considered as developed
in Sect. 5.3. A value pfw ≈−0.788 was used for all wake
events in the row except for SMV2→SMV3, which corre-
sponds to a partial wake event (the alignment of these two

turbines is found for a wind direction of −2◦). A value of
ppw ≈−1.001 (deduced from wind direction bin 215◦ in Ta-
ble 1) was used instead.

Figure 13 shows the result of the process, with the normal-
ized power production along the row (Fig. 13a) and the cu-
mulative relative gain and the percentage of down-regulation
at each wind turbine for the second strategy (Fig. 13b) (for
the first strategy, the same amount of curtailment is applied
to SMV1, while all other wind turbines are not curtailed).
The cumulative relative gain allows following the change of
power provided by the optimization as we move downstream,
it is defined at wind turbine i as

%RGi = 100

∑i
j=1P

opti
j −

∑i
j=1P

base
j∑i

j=1P
base
j

. (8)

Consequently, the cumulative relative gain at wind turbine
SMV5 represents the total gain obtained thanks to the opti-
mization process.

It can be seen from the figures that both strategies lead
to an overall increase in power production, with the same
amount of curtailment imposed on the most upstream tur-
bine (10 % down-regulation). As seen on the cumulative rel-
ative gain which is positive at the second turbine, the in-
crease in power at SMV2 is enough to compensate for SMV1
down-regulation. However, for the first strategy, as down-
stream wind turbines are not curtailed, most of the energy
released by SMV1 is captured by SMV2 and SMV3 only.
The most downstream turbines (SMV4 and SMV5) are only
very slightly benefiting from the down-regulation and total
relative increase is limited to approximately 1 %.

On the contrary, when following the second strategy, the
energy made available by SMV1 down-regulation is more
equitably shared between all downstream turbines. Indeed,
SMV3 and SMV4 are also being curtailed so that high gains
can be obtained for SMV5 (as SMV2 is not perfectly aligned
with the rest of the row, it is not beneficial to curtail this
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Figure 13. Variation of normalized power at each wind turbine (a), cumulative relative gain and optimized down-regulation settings (b)
along the row, for full wake conditions (wind direction of 5◦ at 8 m s−1).

turbine). As a consequence, the cumulative relative gain is
decreased at SMV3 and SMV4, but when considering also
SMV5 the total relative increase in power production is
higher than in the first case, reaching almost 1.5 %. This con-
firms the idea that the best gains are obtained when each
wind turbine is controlled individually to maximize the over-
all wind farm output and not their own power production.

5.5 Uncertainty quantification of the calibrated Jensen
model

In order to put the optimized wind farm performance into
perspective, it is essential to estimate the uncertainty of the
model outputs. Since the calibration of the model is based
on the operational turbine data, the uncertainty quantification
(UQ) is established through the input uncertainty assessment
and its propagation. The uncertainty is defined as the half
width of the 68 % confidence interval, which corresponds to
a distance of a single standard deviation.

In general terms, the uncertainties attached to the SCADA
signals are indicated in the International Electrotechnical
Commission (IEC) standards (IEC, 2013), where the main
focus is the annual energy production estimates. With the
same focus, Gaumond et al. (2012) investigated the wind di-
rection uncertainty in particular, which is the most ambiva-
lent input signal to the tuned Jensen model. Within 10 min in-
tervals, the study showed the uncertainty to be at the levels of
5◦ for Horns Rev-I wind farm. However, since in this study
the analysis is based on high-frequency data (second-wise
data), the documented value of 3◦ uniform uncertainty in the
yaw position signal (IEC, 2013) is considered for now. For
the wind speed input, the dependency of the uncertainty to
the operational range, i.e. regions II and III, is shown in Göç-
men and Giebel (2018) for effective wind speed and in IEC
(2013) for nacelle wind speed. Here, we consider the con-
servative estimate of 0.3 m s−1 with a Gaussian distribution,

where the expected error is less with 90 % likelihood below
the rated region. The uncertainty in wind speed is propagated
through the estimation of TI (see Sect. 3.3), estimation of kw
(see Eq. 4), estimation of cT and finally the estimation of
wake deficit through Eq. 1. The resulting uncertainty distri-
butions of the calibrated Jensen model are shown in Fig. 14.
The uncertainty is propagated in a continuous time series of
18 h from Horns Rev-I wind farm, using a Monte Carlo anal-
ysis with 1000 realizations per second. The indicators in the
boxplots follow Tukey’s descriptive statistics (Tukey, 1962)
where the boundaries of the whiskers are the lowest and the
highest datum within the 1.5 interquartile range, IQR, corre-
sponds to ±2.7σ from the mean.

Figure 14 shows that the uncertainty of the calibrated
model output is not normally distributed. This is mainly
due to the fact that along the propagation process, different
sources and distributions of uncertainties are convoluted. It
is also seen that there are many outliers in the distribution,
which occur near the rated wind speed, i.e. around the op-
erational transition between regions II and III as underlined
in Göçmen and Giebel (2018). Along that transition region,
the assessment of the cT is highly sensitive to the wind speed
(see Fig. 5b), causing the propagation of the uncertainty to di-
verge. Since for the optimization scenarios discussed above
the considered wind speed are lower, it is concluded that the
conservative estimate of the model uncertainty can be stated
as 0.3 m s−1 or, more generally, 4 %.

5.6 Towards field implementation

As already mentioned in the introduction of this paper, the
optimized control strategies developed in these case studies
are to be tested in a new field test campaign of the SMARTE-
OLE project. Through the comparison of the gains expected
via these strategies in Sect. 5.4 and the uncertainty quantifi-
cation of the previous section, it is very important to note
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Figure 14. Distribution of the uncertainty in the estimated wake velocity by calibrated Jensen model, (a) the histogram and the boxplot
of the distribution in units (m s−1), (b) the boxplot of the percentage uncertainty distribution. The median, the boxes, the whiskers and the
outliers are according to Tukey’s descriptive statistics (Tukey, 1962). The red triangles indicate the mean.

that the tuned Jensen model risks not to provide the reported
power increase in the field tests. In other words, the uncer-
tainty of the model outputs and control inputs needs to be
fully analysed in order to assess the true performance of the
wind farm control approaches. Additionally, in order to see
the full benefit of wind farm control schemes, more “accu-
rate” sensors/data, more intelligent methods to analyse the
data and different perspectives on how to include the physi-
cal complexity of the wind farm flow into the wake models
are also needed.

Furthermore, the tuning of the model in the optimization
process was focused to wind speed and direction only, as in
practice these are the only two input variables that can eas-
ily be used for triggering the axial induction control for a
wind farm operator having a limited access to the turbine
control parameters. In reality, because of the highly fluctuat-
ing wind conditions (changes in wind speed, wind direction,
turbulence intensity and atmospheric stability), a more com-
plicated tuning would be required in order to decrease the
risk of implementing innovative control strategies. Ideally, it
would be more suitable to tune the WDC every 10 min (or
at even shorter time periods) based on the latest measure-
ment of wind speed, direction and local TI and then calcu-
late in real time the optimized settings to be applied at each
wind turbine. Since it would enable to include more dynam-
ics and complexity of the local flow (both in terms of time
and space), model adequacy would further improve and the
resulting uncertainty would be reduced. However, this kind
of scenario would also require much larger access to the wind
turbine control parameters and goes beyond the scope of this
present study.

Finally, it must also be mentioned that while the axial in-
duction strategy seems to propose a limited benefit in terms
of increased combined production compared to other strate-
gies such as wake steering, its impact on wind turbine loads

should be much more profitable. Indeed, thanks to the appli-
cation of a curtailment on the upstream wind turbine, reduc-
tion in thrust and in the tower loads can be expected. Down-
stream, a decrease in the fatigue loading of the turbines can
be predicted due to the reduction in the wake-added TI, as
illustrated in Fig. 10 above. These results are interesting and
highly relevant since load reduction can be related to an in-
creased lifetime and therefore a decrease in overall cost of
energy.

6 Conclusions

Field tests are currently being held on a commercial wind
farm in France, Sole du Moulin Vieux, in the scope of a
national project. The objectives of these tests are to study
the potential of wind farm coordinated control strategies for
power optimization and load reduction. In this paper, data
from the first campaign were analysed in detail to propose a
new tuning of the widely used Jensen model. This modifica-
tion, based on the local measurement of turbulence intensity
given by the nacelle anemometer, proved to be enough to im-
prove the accuracy of the model and describe more precisely
the individual wake deficit at each wind turbine. The sim-
plicity of calibration and robustness of the original model is
kept since there is still only one parameter to calibrate. This
new tuning strategy was validated with data from SMV wind
farm but also with data from a row of turbines at Horns Rev-I
offshore wind farm.

Using this methodology, power production was optimized
in two study cases at SMV wind farm. An axial induction
strategy was considered with a model predictive approach,
and a cT estimation procedure was developed in order to
assess as accurately as possible the combined evolution of
cP and cT during down-regulation of the wind turbines. Re-
sults from the optimization process show that a gain of 1 %
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to 2 % in aggregated power production can be expected for
full wake conditions and wind speed between 7 and 9 m s−1.
As wind direction changes or wind speed increases further,
gains in power production obtained through the upstream
wind turbine down-regulation quickly drop to zero, underlin-
ing the limited applicability of an axial induction strategy for
power production optimization. Moreover, these gains have
to be taken cautiously since some studies have already un-
derlined discrepancies between model predictions and actual
power productions of wind turbines, especially when varia-
tion of the wake decay constant due to changes in cT was
not taken into account (Annoni et al., 2016). These results
are in line with the performed uncertainty assessment of the
tuned Jensen model, where the uncertainty is shown to be
more than the predicted power increase. This also indicates
the importance of an extensive uncertainty quantification on
the simplified flow models to correctly evaluate the resulting
wind farm control strategies.

However, even if the model is not as accurate as it could
be, it is hoped that it is still good enough to give indica-
tions about optimal settings where gains would possibly be
found. Based on the results derived in this paper, a new field
campaign was realized between December 2017 and Febru-
ary 2018, during which a curtailment mode was applied to
wind turbine SMV6. Data are currently being processed to
determine whether augmentation in combined power produc-
tion could be achieved. Furthermore, data from strain gauges
installed in the blades still have to be analysed to study the
impact of axial induction control on wind turbine fatigue
loads. Given the quantified uncertainty, even though no gains
in power production are obtained, a reduction in loads can be
expected.

Future work about wind farm coordinated control realized
in the scope of the SMARTEOLE project will also include
the analysis of the potential of the wake steering strategy and
the study of the dynamics involved when a wind turbine is
curtailed or yawed.
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