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An L-band ultrasonic probe using polymer optical fibre 
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2 DTU Fotonik, Denmark Technical University 

ABSTRACT   

In recent years, Polymer optical fibre (POF) has been receiving increasing attention for sensing applications. For 

applications such as endoscopic ultrasound and photo-acoustics, PMMA polymer fibres deliver ever improving 

performance and more types of polymer are being trialled for these applications. The fundamental properties of POF, 

when correctly leveraged, deliver at least an order of magnitude in improvements over silica fibres. POF delivers lower 

acoustic impedance, a reduced Young’s Modulus and a higher acoustic sensitivity within the megahertz region. In 

contrast, existing piezo-electric transducers have an inherent narrow acoustic bandwidth and a proportionality to size that 

causes difficulties for applications such as endoscopy within the biomedical domain. 

With the increasing take-up of POF, improvements have been made in fibre dopant distribution, the range of polymers 

available and connectorisation techniques. While newer polymer fibres are under preliminary study, PMMA has shown 

itself to be the most sensitive fibre to date despite historically higher levels of dopant inconsistency and an 

implementation around 830 nm that has a lower signal-to-noise ratio than possible. The prior approach of edge filtering a 

Bragg grating with a high speed photodiode has been shown to function and is therefore maintained. 

We present a step index PMMA Bragg grating ultrasonic probe in the L-band for the first time. Detection is achieved 

using a Bragg grating less than 1cm in length in a fibre under 10cm long. We examine the temporal and frequency 

response of the sensor over a 1-15 MHz range. 

Keywords: Polymer optical fibre, fibre sensors, biomedical applications, ultrasound detection, fibre Bragg gratings, 

PMMA 

 

1. INTRODUCTION  

 

Ultrasonic detection is widely spread over numerous diagnostic applications in the biomedical domain, especially when 

considering the increasing attention that is illuminating the field of photo-acoustic imaging (PAI). PAI has been reported 

for disciplines including cardiology and neurology [1] using techniques such as microscopy and endoscopy that on 

occasion consider multiple modality systems [2]. The wide range of applications, disciplines, techniques and modalities 

inevitably introduce a wide variety of application constraints that render numerous detectors favourable for some 

applications and unfavourable for others. 

  

While historically, the baseline for comparison are piezo-electric transducers that rely on resonance effects, limiting 

frequency bandwidth and linking sensitivity to the size of the sensing element. Furthermore, they are sensitive to 

electromagnetic interference, a cause for concern for certain applications. For many years, researchers have proposed 

silica optical fibres as a step forward, offering immunity to such interference and providing small sensor sizes unfettered 

by resonance limitations. However, while silica fibre sensors are a common proposal in many fields of industry, their 

low intrinsic sensitivity to mechanical and thermal perturbations tends to lead to complex techniques in the quest for an 

ever more sensitive sensor. 

 

An alternative to silica fibres are their polymer optical fibre (POF) counterparts, which have existed for a similar length 

of time but have been overlooked due to their larger developmental challenges at the time [3]. Nonetheless, in the last 

decade significant research has been invested into their improvement and implementation, leading to developments such 

as readily available effectively single mode POF, a wider variety of fibre materials and lower attenuation [4,5]. Today, 

polymer fibres are being investigated in multiple wavelength regions for a range of ever more complex applications 

seeking to take advantage of their increased sensitivity to mechanical and thermal effects [3].  

 

Photons Plus Ultrasound: Imaging and Sensing 2019, edited by Alexander A. Oraevsky, Lihong V. Wang, 
Proc. of SPIE Vol. 10878, 108780N · © 2019 SPIE · CCC code: 1605-7422/19/$18 · doi: 10.1117/12.2510017

Proc. of SPIE Vol. 10878  108780N-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 29 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

 

 

Research into ultrasound detection using POF began approximately 10 years ago in an interferometric configuration 

using poly(methyl methacrylate) (PMMA) [6]. To be considered for a wider variety of applications, the transition to 

Fibre Bragg Gratings (FBGs) took place to make probe formats possible and reduce the sensor size down to 1 centimetre 

in length. This transition produced results showing its sensing capability in part in the 850 nm wavelength region [7]. 

However, while many improvements have been demonstrated, the wavelength region is uncommon and significant 

sensitivity improvements need demonstrating before POF can be considered competitive against silica fibre sensors of 

the day. 

 

In the last year, the transition to the L-band of the wavelength spectrum has been demonstrated for ultrasound detection 

along with a new polymer (CYTOP) and sensor in the form of a tilted FBG [8]. This wavelength transition enabled a 

more interesting polymer and now allows a serious investigation to show which polymer is best in fundamental terms for 

ultrasonic detection. Additionally, the use of some technology is more economic, such as fibre circulators, allowing 

system improvements at lower costs. While PMMA has extremely high attenuation in the L-Band, the now proven 

process of polymer direction connection into standard FC/APC connectors enables the use of much shorter lengths of 

fibre as the failure rate is uniquely dictated by success or failure of FBG inscription. Shorter lengths of PMMA arguably 

mitigates the higher attenuation, rendering it still attractive for ultrasonic detection. Finally, femtosecond inscription 

techniques have been demonstrated for inscribing FBGs within PMMA in the L-band [9], leading to higher reflected 

spectral profiles. 

 

This paper builds on our initial work in the L-band by presenting a step index PMMA FBG sensor less than 1cm long in 

a fibre shorter than 10cm in length. The FBF is inscribed and connectorised, then exposed to incident ultrasound over a 1 

– 15 MHz range. 

2. METHODOLOGY AND EXPERIMENTAL SETUP 

 

 

To detect ultrasound, we tune a laser to the 3 dB point of the FBG and use it as an edge filter. This technique tracks 

changes in the amplitude of the laser that are caused spectral profile shifts from the applied pressure of the incident 

ultrasonic wave. These changes trace out the incident signal where the form of the output wave is dependent on the 

bandwidth of the FBG relative to the sensitivity of the fibre to pressure. We resume this detection method in Fig. 1. 

 
Figure 1 -  The spectral profile of the FBG (blue) is stabilised and the 3 dB point identified on one of the slopes. The 

tuneable laser (red) is tuned to this point. Incident ultrasonic waves cause a shift in the wavelength and an oscilloscope 

output (green) representing the initial wave. 
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Our sensor is inscribed in step index PMMA created by the Hong Kong Polytechnic University with a core diameter of 

8.2μm and a cladding diameter of 150μm [9,10]. The core and cladding are pure PMMA, with the core doped with 

diphenyl sulfide (5 % mole) and trans-4-stilbenemethanol (1 % w.t.). We inscribe the fibre with a He-cd laser using the 

procedure outlined in [11], delivering a spectral peak power significantly higher than previously used for ultrasonic 

detection. We connect the FBG to silica fibre using the UV gel curing method and examine the reflected spectral profile 

using a micron optics interrogator (NI PXIe-4844), shown in Fig. 2. 

 
Figure 2 – FBG reflected spectral profile. 

The FBG in question is few-mode, reflecting the multi-mode nature of step index PMMA Three primary peaks are 

observed with an approximate 1nm spacing and a maximum signal-to-noise power of approximately 25 dB for the 

strongest peak at 1554nm. This peak is selected for having the highest power and the narrowest shape. To prepare the 

FBG for ultrasonic detection, we mount the fibre on a custom made support and immerse it in water, leaving it for 12 

hours to stabilise, as PMMA is inherently humidity sensitive and has a rapid and considerable water ontake when 

immersed. Once stable, we tune our tuneable laser (Agilent 81940A) to the 3dB point of the reflected spectrum and 

detect the variations in optical power using a photodiode (Menlo FPD 510). Our setup is depicted as Fig. 3. 

 

 

 
Figure 3 – Ultrasonic detection optical setup. Incident planar ultrasound is generated by a piezo-electric transducer with 

water based acoustic coupling and detected by optical means through the use of edge filtering. 
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To generate ultrasound over the specified range, we use 4 Olympus unfocussed immersion transducers emitting 

ultrasound at 1 (V303-SU), 5 (V309-SU), 10 (V311-SU) and 15 MHz (V319-SU) along with the associated base unit 

(EPOCH-650) to provide the excitation voltage.  

 

3. ULTRASONIC RESULTS AND ANALYSIS 

 

Using the aforementioned POF sensor, we detect incident ultrasound at 1, 5, 10 and 15 MHz and analyse the received 

signals. For this experiment, each transducer is placed 25 mm away from our detector in turn. We ensure good alignment 

by optimising rotation, X and Y positioning as a calibration step using the 10 MHz transducer. All detected signals are 

without averaging and using an oscilloscope with a 100 MHz bandwidth. Fig. 4 shows the detected 1 MHz ultrasound.  

 
Figure 4 – 1 MHz ultrasound detected using our POF ultrasonic sensor with a transducer excitation voltage of 400V. 

 

Our detector produces a 30 mV peak-to-peak signal, the first two peaks clearly observable and the following two 

extremely close to the effective noise level of the system. An electrical filter is applied to limit the detected frequency to 

DC – 1 MHz in order to clearly distinguish our signal from a noise level of 4 mV with a base voltage varying over time 

in a 30 mV range. We estimate an effective noise level of 4 mV and define the peak-to-peak SNR as the ratio between 

the peak-to-peak signal and the effective noise level of the system, giving a peak-to peak SNR of 7.5. The detection of 1 

MHz ultrasound is poor given the low SNR. While the acoustic filter was necessary to deliver a good result, the filter 

eliminates 50% of the power at 1 MHz and even more beyond it. Furthermore, it is not yet possible to observe 1 MHz 

ultrasound at lower excitation voltages. 

 

We can observe from the frequency response that the transducer has a significant frequency component in this region and 

as a result, the amplitude of the signal would likely be much higher with a more appropriate acoustic filter, such as DC – 

0.5 kHz. Nonetheless, our frequency response corresponds well with the calibration test of the transducer where the peak 

was 0.87 MHz and the 3 dB points were 0.64 and 1.19 MHz respectively. Our wider 3 dB points of 0.4 and 1.7 MHz 

may simply be down to our sensor being naturally more wideband than the detecting transducer among other potential 

causes. The peak response being at 1.03 MHz is a slight deviation, this may be caused by some angular misalignment 

and merits further investigation. Despite these less than ideal results, the overall performance of our detector is better 

than reported in the 850 nm region at maximum excitation voltages while worse at lower excitation levels. 

 

Fig. 5 shows the detected 5 MHz ultrasound signal, where a significantly improved performance relative to 1 MHz 

detection is apparent. The signal amplitude is now an order of magnitude higher, delivering a 470 mV peak-to-peak 
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amplitude for the same maximum excitation voltage. The effective noise level remains 4 mV, yielding a peak-to-peak 

SNR of 117.5. These signals were obtained without acoustic filters.  The temporal response of the system shows some 

deformation of the signal waveform depending on the excitation voltage. This can be due to a high incident pressure 

combined with non-linearity of the shape of the FBG spectral profile or saturation of the detection system among other 

explanations. Further studies can profitably determine the cause and the correction for these issues, which nonetheless 

preserve the frequency response and the general waveform. When compared to previous work, these results are 

significantly better when considering signal amplitude and SNR. 

 
Figure 5 – 5 MHz ultrasound detected using our POF ultrasonic sensor over a range of excitation voltages. The frequency 

response is taken using the maximum excitation voltage. 

 

The frequency response of our sensor is in general harmony with that of the calibration test of our transducer; a peak 

value of 4.45 MHz and 3 dB cut-off points at 3.16 and 6.45 MHz respectively. Our sensor delivers a peak value of 4.7 

MHz and 3 dB cut-off points at 2.8 and 7.85 MHz. As with the 1 MHz frequency response, we see a general harmony in 

results, with a wider bandwidth than in the calibration test and a slightly higher frequency peak. 

 
Figure 6 – 10 MHz ultrasound detected using our POF ultrasonic sensor over a range of excitation voltages. The frequency 

response is taken using the maximum excitation voltage. 

Fig. 6 shows that the 10 MHz results deliver even better results than those previously analysed, with no acoustic filtering. 

The peak-to-peak voltage now exceeds 0.6 V with the same effective noise level as previously mentioned. This delivers a 

Proc. of SPIE Vol. 10878  108780N-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 29 May 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

 

 

peak-to-peak SNR value of 150. Unlike the 5 MHz results, we observe no waveform alterations as the excitation voltage 

is increased, suggesting that the causes of the saturation effect previously observed are likely frequency limited. We 

observe less difference between the 300V and 400V excitation levels, suggesting some limitation that does not produce a 

linear increase in amplitude for this transition. 

 

The frequency response in this instance is more irregular in terms of shape. The calibration test gives a peak value of 

10.33 MHz with cut-off points at 7.62 and 13.36 MHz respectively. Our frequency response peaks at 10.71 MHz and has 

3 dB points at 7.019 and 14.95 MHz. As before, our bandwidth appears wider and our peak is similar distance away from 

the peak in the calibration test. Further studies will be useful to determine why the frequency response is not a smooth 

peak and why in particular it plateaus briefly in one place. 

 
Figure 7 – 15 MHz ultrasound detected using our POF ultrasonic sensor over a range of excitation voltages. The frequency 

response is taken using the maximum excitation voltage. 

Finally, Fig. 7 shows the 15 MHz frequency response with no acoustic filters. We observe a 1.03 V peak-to-peak 

ultrasonic response giving the peak-to-peak SNR as 257.5. As with the 10 MHz response, the temporal response does not 

distort or change with increasing pressure and the 300–400 V transition exhibits the same smaller amplitude increase 

previously discussed. The frequency response peaks at 13.49 MHz with cut-off points at 10.07 and 17.88 MHz. The 

calibration test for the emitter shows a peak at 15.66 and cut-off points at 11.6 and 19.7 MHz respectively. This shows 

that our sensor has a smaller bandwidth than that of the calibration receiver and suggests an angular misalignment when 

considering the significantly different peak values between our sensor and the calibration test. One possible explanation 

is that the frequency bandwidth of the sensor may decrease depending on the angle of incidence to the sensor. This can 

occur for physical alignment reasons as well as if the FBG is not perfectly centred in the fibre core and will have an 

angular preference as a result. Further studies will be necessary to determine why these bandwidth discrepancies are 

observed. 

 

We have exposed our sensor to a detailed analysis in the temporal and frequency domains. Our sensor shows a clear 

preference for the 5 – 15 MHz region and delivers higher SNRs than previously reported. While some details point to 

unknown factors that would be profitable explored in future studies, we may conclude that the principle of detection over 

a 15 MHz bandwidth has been demonstrated to an acceptable level of performance. 

4. CONCLUSION 

 

This paper has presented a step index PMMA FBG ultrasound sensor operating in the L-band of the optical spectrum. 

Our sensor is 7 cm long with an actual sensing length of less than 1cm and has detected ultrasound over a 1-15 MHz 

range. This configuration presents much higher signal to noise ratios than previous systems and provides a solid base on 

which to work. In particular, the improvements in the peak power of the FBG and the optimisation of the detection 
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system have delivered strong results that can be further improved. In the future, our research will progress to direct 

connectorisation, consider a full characterisation of the sensor and compare polymers in a meaningful way to select a 

definitive polymer best optimised for ultrasonic detection in the present day. 
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