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*ere is significant current interest in decoding mental states from electroencephalography (EEG) recordings. EEG signals are
subject-specific, are sensitive to disturbances, and have a low signal-to-noise ratio, which has been mitigated by the use of
laboratory-grade EEG acquisition equipment under highly controlled conditions. In the present study, we investigate single-trial
decoding of natural, complex stimuli based on scalp EEG acquired with a portable, 32 dry-electrode sensor system in a typical
office setting. We probe generalizability by a leave-one-subject-out cross-validation approach. We demonstrate that support
vector machine (SVM) classifiers trained on a relatively small set of denoised (averaged) pseudotrials perform on par with
classifiers trained on a large set of noisy single-trial samples. We propose a novel method for computing sensitivity maps of EEG-
based SVM classifiers for visualization of EEG signatures exploited by the SVM classifiers. Moreover, we apply an NPAIRS
resampling framework for estimation of map uncertainty, and thus show that effect sizes of sensitivity maps for classifiers trained
on small samples of denoised data and large samples of noisy data are similar. Finally, we demonstrate that the average pseudotrial
classifier can successfully predict the class of single trials fromwithheld subjects, which allows for fast classifier training, parameter
optimization, and unbiased performance evaluation in machine learning approaches for brain decoding.

1. Introduction

Decoding of brain activity aims to predict the perceptual and
semantic content of neural processing based on activity
measured in one or more brain imaging modalities, such as
electroencephalography (EEG), magnetoencephalography
(MEG), and functional magnetic resonance imaging (fMRI).
Decoding studies based on fMRI have matured significantly
during the last 15 years [1, 2], and human brain activity has
been successfully decoded from natural images and movies
[3–8].

In case of decoding of scalp EEG, the research area is still
progressing, and relatively few studies document detection
of brain states in regard to semantic categories (often dis-
crimination between two high-level categories) [9–15]. EEG-
based decoding of human brain activity has significant
potential due to excellent time resolution and the possibility
of real-life acquisition; however, the signal is extremely
diverse, subject-specific, sensitive to disturbances, and has a

low signal-to-noise ratio; hence, posing amajor challenge for
both signal processing and machine learning [16].

Due to aforementioned challenges, previous studies have
been performed in controlled laboratory settings with high-
grade EEG acquisition equipment [9–12, 14, 15]. Visual
stimuli paradigms can often not be described as naturalistic,
due to (1) repeated presentation of identical experimental
trials and (2) iconic views of objects and lack of complexity
of semantic context [9–14]. Generalizability of decoding
classifier models to novel participants is rare, due to subject-
specific modelling approaches [9, 11–15]. Moreover, a
number of participants are occasionally excluded from
analysis due to artifacts and low classification accuracy
[13, 15].

*e motivation for the present study is to overcome the
highlighted limitations in EEG-based decoding. *e cur-
rent experimental paradigm and decoding work is centered
around (1) ecological validity and portability and (2)
generalizability. *erefore, we acquired scalp EEG signals
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in a typical office setting using a portable, user-friendly, and
wireless EEG Enobio system with 32 dry electrodes. Ex-
perimental image stimuli consisted of noniconic views of
objects embedded in complex everyday scenes (Figure 1(a))
of 23 different semantic categories from an open image
database [17]. All images presented were unique and not
repeated for the same participant throughout the experi-
ment (Figure 1(b)), akin to how visual stimuli are expe-
rienced in real life. We created classifiers based on single-
trial responses as well as generalized category represen-
tations by averaging responses of images from the same
semantic category.

We acquired data from 15 healthy participants (5 fe-
males). We are interested in exploring the limitations of
intersubject generalization, i.e., population models; hence,
no participants are excluded from analysis. Decoding ability
is evaluated in an intersubject design, i.e., in a leave-one-
subject-out approach (as opposed to within-subject classi-
fication) to probe generalizability across participants [18].

*e work in the present study is focused on the binary
classification problem between two classes: brain processing
of animate and inanimate image stimuli. Kernel methods,
e.g., support vector machines (SVMs) are frequently applied
for learning of statistical relations between patterns of brain
activation and experimental conditions. In classification of
EEG data, SVMs have shown good performance in many
contexts [10, 12, 13, 19] (see [20] for review).

We adopt a novel methodological approach for com-
puting and evaluating SVM classifiers based on two ap-
proaches: (1) single-trial training and single-trial test
classification and (2) training on an averaged response of
each of the 23 image categories for each subject (corre-
sponding to 23 pseudotrials per subject) and single-trial test
classification. Furthermore, we open the black box and vi-
sualize which parts of the EEG signature are exploited by the
SVM classifiers. In particular, we propose a method for
computing sensitivity maps of EEG-based SVM classifiers
based on a methodology originally proposed for fMRI [21].
To evaluate effect sizes of sensitivity maps and event-related
potential (ERP) difference maps, we use a modified version
of an NPAIRS resampling scheme [22]. Lastly, we investigate
how the pseudotrial classifier based on averaged category
responses compares to the single-trial classifier in terms of
prediction accuracy of novel subjects.

2. Materials and Methods

2.1. Participants. A total of 15 healthy adults with normal or
corrected-to-normal vision (10 males, 5 females, mean age:
25, and age range: 21–30), who gave written informed
consent prior to the experiment, were recruited for the
study. Participants reported no neurological or mental
disorders. Noninvasive experiments on healthy subjects are
exempt from ethical committee processing by the Danish
law [23].

2.2. Stimuli. Stimuli consisted of 690 images from the
Microsoft Common Objects in Context (MS COCO) dataset

[17]. Images were selected from 23 semantic categories, with
each category containing 30 images. Of the 23 categories, 10
categories contained animals and the remaining 13 cate-
gories contained inanimate items, such as food orman-made
objects. *us, each participant was exposed to 300 animate
trials and 390 inanimate trials, resulting in a chance level of
56.5% for prediction of the larger, inanimate class. For
categories and image labels used in the experiment, see
Supplementary File 1. All images presented were unique and
not repeated for the same participant throughout the ex-
periment. *e initial selection criteria were (1) image aspect
ratio of 4 : 3, (2) only a single super- and subcategory per
image, and (3) minimum 30 images within the category.
Furthermore, we ensured that all 690 images had a relatively
similar luminance and contrast to avoid the influence of low-
level image features in the EEG signals. *us, images within
77% of the brightness distribution and 87% of the contrast
distribution were selected. Images that were highly distinct
from standard MS COCO images were manually excluded
(see Appendix A for exclusion criteria). Stimuli were pre-
sented using custom Python scripts built on PsychoPy2
software [24].

2.3. ExperimentalDesign. Participants were shown 23 blocks
of trials composed of 30 images each.*e order of categories
and images within the categories was random for each
participant. At the beginning of each category, a probe word
denoting the category name was displayed for 5 s followed by
the 30 images from the corresponding category. Each image
was displayed for 1 s, set against a midgrey background.
Interstimulus intervals (ISIs) of variable length were dis-
played between each image. *e ISI length was randomly
sampled according to a uniform distribution from a fixed list
of ISI values between 1.85 s and 2.15 s in 50ms intervals,
ensuring an average ISI duration of 2 s. To minimize eye
movements between trials, the ISI consisted of a white
fixation cross superimposed on a midgrey background in the
center of the screen (Figure 1(b)).

Subjects viewed images on a computer monitor with a
viewing distance of 57 cm. *e size of stimuli was 4× 3
degrees of visual angle. Duration of the experiment was
39.3min, which included five 35 s breaks interspersed be-
tween the 23 blocks. Before the experimental start, partic-
ipants underwent a familiarization phase with two blocks of
reduced length (103 s).

2.4. EEG Data Collection. User-friendly, portable EEG
equipment, Enobio (Neuroelectrics) with 32 dry-electrode
channels, was used for data acquisition. *e EEG was
electrically referenced using a CMS/DRL ear clip.*e system
recorded 24 bit EEG data with a sampling rate of 500Hz,
which was transmitted wirelessly using Wi-Fi. LabRecorder
was used for recording EEG signals. *e lab streaming layer
(LSL) was used to connect PsychoPy2 and LabRecorder for
unified measurement of time series. *e system was
implemented on a Lenovo Legion Y520, and all recordings
were performed in a normal office setting.
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2.5. EEG Preprocessing. Among the 15 recordings, no par-
ticipants were excluded during data preprocessing, as we
would like to generalize our results to a broad range of
experimental recordings. Preprocessing of the EEG was
done using EEGLAB (sccn.ucsd.edu/eeglab). *e EEG signal
was bandpass filtered to 1–25Hz using finite impulse re-
sponse filters and downsampled to 100Hz. Artifact subspace
reconstruction (ASR) [25] was applied to reduce non-
stationary high-variance noise signals. Temporal trends in
the EEG signals were investigated before and after ASR for
each subject (Figures S2 and S3). Generally, the time de-
pendencies of the EEG signal were reduced by ASR.
Channels that were removed by artifact rejection were in-
terpolated from the remaining channels, and the data were
subsequently re-referenced to an average reference. Epochs
of 600ms, 100ms before and 500ms after stimulus onset,
similar to [9], were extracted for each trial.

A sampling drift of 100ms throughout the entire ex-
periment was observed for all subjects and was corrected for
offline.

Since the signal-to-noise ratio varied across trials and
participants, all signals were normalized to z-score values
(i.e., each trial and averaged trials from each participant were
transformed so that it had a mean value of 0 and a standard
deviation of 1 across time samples and channels).

2.6. Support Vector Machines. Support vector machines
(SVMs) were implemented to classify the EEG data into two
classes according to animate and inanimate trials.
yi ∈ −1, 1{ } is the identifier of the category, and an obser-
vation is defined to be the EEG response in one epoch
([−100, 500]ms w.r.t. stimulus onset). SVMs allow adoption
of a nonlinear kernel function to transform input data into a
high-dimensional feature space, where it is possible to
linearly separate data. *e iterative learning process of the
SVM will devise an optimal hyperplane with the maximal

margin between each class in the high-dimensional feature
space. *us, the maximum-margin hyperplane will form the
decision boundary for distinguishing the brain response
associated with animate and inanimate data [26].

*e SVM classifier is implemented by a nonlinear
projection of the observations xn into a high-dimensional
feature space F.

Let ϕ : X⟶ F be a mapping from the input spaceX to
F. *e weight vector w can be expressed as a linear com-
bination of the training points w � 

N
n�1αnϕ(xn), and the

kernel trick is used to express the discriminant function as

y(x; θ) � αTkx + b � 
N

n�1
αnk xn, x(  + b, (1)

with the model now parametrized by the smaller set of
parameter θ � α, b{ } [27]. *e radial basis function (RBF)
kernel allows for implementation of a nonlinear decision
boundary in the input space. *e RBF kernel kx holds the
elements:

k xn, x(  � exp −c xn − x
����

����
2

 , (2)

where c is a tunable parameter.
Often, it is desirable to allow a few misclassifications in

the decision boundary in order to obtain a better general-
ization error. *is trade-off is controlled by a tunable reg-
ularization parameter c.

Two overall types of SVM classifiers were implemented:
(1) single-trial classifier and (2) average category level
classifier, denoted as pseudotrial classifier based on the
terminology used, for example, in [28]. Both classifiers
decode supercategories, animate versus inanimate, and both
classify between subjects. *e single-trial classifier is trained
on 690 trials for each subject included in the training set.*e
pseudotrial classifier averages the 30 trials within each of the
23 categories for each subject, such that the classifier is

(a)

EEG

Probe word
5s

Interstimulus interval
1.85–2.15s

Stimuli
1s

Elephant

+

+

(b)

Figure 1: (a) Example of the experimental visual stimuli. First row contains animate trials from “sheep” and “cat” categories, and second
row contains inanimate trials from “bench” and “boat” categories. (b) Experimental design of the visual stimuli presentation paradigm.*e
time course of the events is shown. Participants were shown a probe word before each category, and jittered interstimulus intervals
consisting of a fixation cross were added between stimulus presentation.*e experiment consisted of 690 unique trials in total, 23 categories
of 30 trials, ordered randomly (both category- and image-wise) for each subject.
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trained on 23 averaged, pseudotrials for each subject in-
cluded in the training set, instead of 690 trials.

*e performance of the single-trial classifier was esti-
mated using 14 participants as the training set, and the
remaining one participant was used as the test set (SVM
parameters visualized in Figure S8). Cross-validation was
performed on 10 parameter values in ranges c � [0.05; 10]

and c � [2.5 × 10−7; 5 × 10−3], thus cross-validating across
100 parameter combinations for each held out subject.

For a debiased estimate of the test accuracy, the single-
trial classifier was trained on 13 subjects, with one participant
held out for validation and another participant held out for
testing, thus leaving out 2 subjects in each iteration. Fifteen
classifiers were trained with different subjects held out in each
iteration. An optimal parameter set of c and c was estimated
using participants 1–7 as validation subjects (mean parameter
value), which was used to estimate the test accuracy for
subjects 8–15 and vice versa. *us, two sets of optimal pa-
rameters were found (Figure S10). Cross-validation was
performed on 10 parameter values in ranges c � [0.25; 15]

and c � [5 × 10−7; 2.5 × 10−2], i.e., 100 combinations.
*e pseudotrial classifier was much faster to train and

was built using a basic nested leave-one-subject-out cross-
validation loop. In the outer loop, one subject was held out
for testing while the remaining 14 subjects entered the inner
loop.*e inner loop was used to estimate the optimum c and
c parameters for the SVM classifier. *e performance of the
model was calculated based on the test set. Each subject
served as a test set once. A permutation test was performed
to check for significance. For each left out test subject, the
animacy labels were permuted and compared to the pre-
dicted labels. *is was repeated 1000 times, and the accuracy
scores of the permuted sets were compared against the
accuracy score of the nonpermuted set. *e upper level of
performance was estimated by choosing the parame-
ters based on the test set. Cross-validation was performed
on 10 parameter values in ranges c � [0.25; 15] and
c � [5 × 10−7; 2.5 × 10−2], i.e., 100 combinations.

2.7. Sensitivity Map. To visualize the SVM RBF kernel, an
approach proposed by Rasmussen et al. [21] was adapted.
*e sensitivity map is computed as the derivative of the RBF
kernel, c.f. equation (2):

zαTkx

zxj

� 
n

αn2c xn,j −xj exp −c xn − x
2����
���� . (3)

Pseudocode for computing the sensitivity map across time
samples and trials is found in Appendix B. A GitHub
toolbox with Python implementation of sensitivity mapping is
available: https://github.com/gretatuckute/DecodingSensitivity
Mapping.

2.8. Effect Size Evaluation. *e NPAIRS (nonparametric
prediction, activation, influence, and reproducibility
resampling) framework [22] was implemented to evaluate
effect sizes of the SVM sensitivity map and animate/
inanimate ERP differences. *e sensitivity map and the

ERP difference map based on all subjects were thus scaled by
the average difference of subsampled partitions.

*e scaling was calculated based on S � 100 splits. In
each split, two partitions of the dataset were randomly se-
lected without replacement. A partition consisted of 7
subjects, thus achieving two partitions of 7 subjects each
(leaving a single, random subject out in each iteration).

For evaluation of the ERP difference map, a difference
map was calculated for each partition (M1 and M2). Simi-
larly, for evaluation of the sensitivity map, an SVM classifier
was trained on each partition, and sensitivity maps were
computed for both SVM classifiers (corresponding to M1
and M2 for the ERP difference map evaluation). *e sen-
sitivity map for the single-trial SVM classifier was computed
based on optimal model parameters, while the sensitivity
map of the pseudotrial classifier was based on the mean
parameters based on validation sets. *e maps from the two
partitions were contrasted and squared.

Across time samples (t � 1, . . . , T) and trials
(n � 1, . . . , N), an average standard deviation of the average
difference between partitions was calculated:

σ2 �
1

STN


S,T,N

i,t,n�1
Mi

1,t,n −M
i
2,t,n 

2
. (4)

*e full map, Mfull (based on 15 subjects), was then
divided by the standard deviation to produce the effect size:

M �
Mfull

σ
. (5)

3. Results

We classify the recorded EEG using SVM RBF models such
that trials are labeled with the high-level category of their
presented stimuli, i.e., either animate or inanimate. We first
report results using a single-trial classifier followed by a
pseudotrial classifier using averaged category responses and
then apply the pseudotrial classifier for prediction of single-
trial EEG responses. Also, we report effect sizes of ERP
difference maps and sensitivity maps for evaluation of both
SVM classifiers.

3.1. Event-Related Potential Analysis. After EEG data pre-
processing and artifact subspace reconstruction (ASR) (Sec-
tion 2.5), we confirmed that our visual stimuli presentation
elicited a visual evoked response. *e ERPs for the trials of
animate content and the trials of inanimate content are
compared in Figure 2.*e grand average ERPs across subjects
(thick lines) are shown along with the average animate and
inanimate ERPs of each subject. *e average scalp map for
these two supercategories as well as the difference between
them at 310ms is displayed in z-scored units.

It Figure 2, it is indicated which time samples were
significant for the averaged selection of channels. A full map
of significant time samples and channels can be seen in
Figure S4. *e significance level was controlled for multiple
comparisons using the conservative Bonferroni correction.
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*e animate and inanimate ERPs were most different
310ms after stimuli onset. *is applied both for the selected
channels in Figure 2 and in general, including frontal
channels (Figure S4).

Inspection of Figure 2 shows that visual stimuli pre-
sentation elicited a negative ERP component at 80–100ms
poststimulus onset followed by a positive deflection at
around 140ms poststimulus onset. A P300 subcomponent,
P3a, was evident around 250ms and a P3b component
around 300ms [29]. It is evident that the P3b component is
more prominent for the animate category. *e observed
temporal ERP dynamics was comparable to prior ERP
studies of the temporal dynamics of visual object processing
[30].

Mean animate/inanimate ERP responses for each subject
separately can be found in Figure S1.

3.2. Support Vector Machines. We sought to determine
whether EEG data in our experiment can be automatically
classified using SVM models. *e Python toolbox scikit-
learn [31] was used to implement RBF SVM models.

Specifically, we trained two different types of SVM
classifiers, a single-trial and a pseudotrial classifier (averaged
category responses), and assessed the classifiers’ accuracy on
labeling EEG data in a leave-one-subject-out approach.

SVMs are regarded efficient tools for high-dimensional
binary as well as nonlinear classification tasks, but their
ultimate classification performance depends heavily upon
the selection of appropriate parameters of c and c [32].
Parameters for the upper level of performance for the single-
trial classifier were found using cross-validation in a leave-
one-subject-out approach, resulting in a penalty parameter

c � 1.5 and c � 5 × 10−5 based on the optimum mean pa-
rameters across test subjects (Figure S9). From Figure S8, it is
evident that the optimum parameters were different for each
subject, underlining intersubject variability in the EEG
responses.

To reduce bias of the performance estimate of the single-
trial classifier, parameters were selected based on two val-
idation partitions, resulting in c � 0.5 and c � 5 × 10−4 for
the first validation set, and c � 1.5 and c � 5 × 10−5 for the
second validation set (Figure S10).

*e pseudotrial classifier also showed intersubject var-
iability with respect to the model parameters (see
Figures S5–S7). *e classifier had an average penalty pa-
rameter of c � 7.2 and an average c � 3.7 × 10−4 when based
on the validation sets. *e average optimum parameters
when based on test sets with averaged categories and single
trials were in the same range, with c � 4.4 and c � 3.0 × 10−4,
and c � 6.7 and c � 2.2 × 10−4, respectively.

Figures 3 and 4 show the SVM classification perfor-
mances using the two types of classifiers. Based on the leave-
one-subject-out classification, we note the large variability of
single-subject performance. While different performances
are obtained using the single-trial and pseudotrial classifiers
on single-trial test sets, the overall accuracies are similar
(p � 0.82, paired t-test), with an average of 0.574 and 0.575,
respectively (Figure 4). *us, the pseudotrial classifier
performs on par with the single-trial classifier in the pre-
diction of single-trial test subjects.

A standard error of the mean of 0.01 was found for both
the debiased performance measures of the single-trial
classifier and for the unbiased single-trial classifier (cor-
rected for the leave-one-subject-out approach [33]).

3.3. Event-Related Potential Difference Map and Sensitivity
Map. We investigated the raw ERP difference map between
animate and inanimate categories, as well as the sensitivity
maps for the single-trial and pseudotrial SVM classifiers.*e
sensitivity map reveals EEG time points and channels that
are of relevance to the SVM decoding classifiers (Figure 5).

Formap effect size evaluation, we implement anNPAIRS
resampling scheme [22]. In this cross-validation framework,
the data were split into two partitions of equal size (7
subjects in each partition randomly selected without re-
placement).*is procedure was repeated 100 times to obtain
standard errors of the maps for computing effect sizes
(Section 2.8).

Figure 5(a) displays the effect sizes of the raw ERP
difference map between the animate and inanimate cate-
gories, while Figures 5(b) and 5(c) displays effect sizes of
sensitivity maps for the single-trial and pseudotrial classi-
fiers, respectively. Scalp maps show the spatial information
exploited by the classifiers at different time points.

From inspection of Figure 5, it is evident that occipital
and parietal channels (O1, O2, P7, and P8) were relevant for
SVM classification at time points comparable to the ERP
difference map. Frontal channels (Fp1 and Fp2) were
exploited by both SVM classifiers, but to a larger extent by
the pseudotrial classifier (Figure 5(c)). Furthermore, the
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pseudotrial classifier exploited a larger proportion of earlier
time points compared to the single-trial classifier. *e
sensitivity maps for the single-trial and pseudotrial classifiers
suggest that despite the difference in number and type of
trials, the classifiers are similar.

4. Discussion

In the current work, we approach the challenges of EEG-
based decoding: nonlaboratory settings, user-friendly
wireless EEG acquisition equipment with dry electrodes,
natural stimuli, no repetition of experimental stimuli trials,

and no exclusion of participants. *us, our work is centered
around (1) ecological validity and portability and (2) gen-
eralizability. *e potential benefits of mitigating these
challenges are to study the brain dynamics in natural settings
and for applications in real-life scenarios.

Ourmotivation for working with a portable, dry-electrode
EEG system is to increase the EEG usability in terms of af-
fordability, mobility, and ease of maintenance. *ese factors
are crucial in applied contexts in everyday settings, such as the
development of real-time EEG neurofeedback systems. It has
recently been demonstrated that commercial-grade EEG
equipment compares to high-grade equipment in laboratory
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Figure 5: Effect sizes for (a) animate/inanimate ERP difference map and (b, c) the sensitivity maps of the single-trial and pseudotrial SVM
classifiers. Effect sizes were computed based on 100 NPAIRS resampling splits.
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settings in terms of neural reliability as quantified by inter-
subject correlation [34]. Furthermore, a systematic compar-
ison between a wireless dry EEG system and a conventional
laboratory-based wet EEG system shows similar performance
in terms of signal quality [35].

We aim to increase the generalization ability of our
decoding models. To do so, we evaluate decoding ability in
an intersubject design, i.e., leave-one-subject-out approach
[18]. Prior studies in EEG-based decoding, in particular for
BCIs, have focused on building classifiers to decode subject-
specific brain patterns (see [36] for review). Intersubject
generalized BCI has the advantage of saving time in BCI
sessions, and several research groups have made effort to
develop intersubject generalized BCI systems for decoding of
motor imagery-related EEG [37, 38]. Successful intersubject
classification requires extraction of globally relevant signal
features from each training subject [18]. In the current work,
we take a step towards increasing generalizability by building
intersubject EEG-based decoding models.

Our ultimate goal is to decode actual semantic differ-
ences between natural categories; thus, we perform low-level
visual feature standardization of experimental trials prior to
the experiment, investigate time dependency of the EEG
response throughout the experiment, and perform ASR to
reduce this dependency (Section 2.5). Moreover, the stimuli
in our experimental paradigm consisted of complex ev-
eryday scenes and noniconic views of objects [17]. Animate
and inanimate images were similar in composition, i.e., an
object or animal in its natural surroundings (Figure 1(a)).

4.1. Data Preprocessing of Temporal Trends. *ere will nat-
urally be continuous variations in EEG recordings over time.
Since our experimental paradigm lasted approximately
40minutes, we investigated temporal trends in the EEG data
(Figures S2 and S3) and perform artifact subspace re-
construction (ASR) [25] to reduce confounding temporal
trends in further analyses. *e unwanted nonstationarity of
the EEG signal arises from electrodes gradually losing or
gaining connection to the scalp, an increasing tension of
facial muscles or other artifactual currents [39, 40]. If the
data are epoched, the drift may misleadingly appear as a
pattern reproducible over trials, a tendency that may be
further reinforced by component analysis techniques that
emphasize repeatable components [41]. Slow linear drifts
can be removed by employing high-pass filters; however,
more complicated temporal effects are harder to remove.
Furthermore, employing high-pass filters may risk in-
troducing new artifacts. As an alternative, recent studies
suggest performing robust detrending, where the trend of
each channel is determined and then regressed out [41, 42].
We observe that by employing ASR, the time dependency
was reduced for most subjects (Figures S2 and S3). However,
it would be interesting to investigate more complex
detrending algorithms to also make sure that high-pass
filtering is not impairing our results.

4.2. Event-Related Potential Analysis. Previous work on
visual stimuli decoding demonstrate semantic category

specificity at both early (∼150ms) and late (∼400ms) in-
tervals of the visually evoked potential [43, 44]. ERP studies
indicate that category-attribute interactions (natural/
nonnatural) emerge as early as 116ms after stimulus on-
set over frontocentral scalp regions and at 150 and 200ms
after stimulus onset over occipitoparietal scalp regions
[45]. Kaneshiro et al. [9] demonstrate that the first 500ms
of single-trial EEG responses contain information for
successful category decoding between human faces and
objects and above chance object classification as early as
48–128ms after stimulus onset [9]. For animate versus
inanimate images, ERP differences have been demonstrated
detectable within 150ms of presentation [46]. However,
there appears to be uncertainty whether these early ERP
differences represent low-level visual stimuli or actual high-
level differences. We observe the major difference between
animate/inanimate ERPs around 210ms and 320ms
(Figures 2 and S4). Akin to our results, Carlson et al. [47]
found that high-level categories (animacy) were maximally
decodable around 240ms from MEG recordings [47].
Lastly, we observe that ERP signatures were highly variable
among subjects (comparable to [11]), which challenges the
intersubject model generalizability with our sample size of
15 subjects.

4.3. Support Vector Machine Classification. In this study, we
adopted RBF kernel SVM classifiers to classify between
animate/inanimate natural visual stimuli in a leave-one-
subject-out approach. SVM classifiers have previously
been implemented for EEG-based decoding. SVM in
combination with independent component analysis data
processing has been used to classify whether a visual object is
present or absent from EEG [12]. Zafar et al. [15] proposed a
hybrid algorithm using convolutional neural networks for
feature extraction and likelihood-ratio-based score fusion
for prediction of brain activity from EEG [15]. Taghizadeh-
Sarabi et al. extracted wavelet features from EEG, and se-
lected features are classified using a “one-against-one” SVM
multiclass classifier with optimum SVM parameters set
separately for each subject [13].

We implemented single-trial and pseudotrial (i.e., averaged
categories) SVM classifiers and found very similar performance
of the single-trial and pseudotrial classifiers for prediction of
single-trial subjects (Figure 4). As the pseudotrial classifier is
significantly faster to train, a full-nested cross-validation
scheme was feasible. *e fact that the two classifiers have
similar performance indicates that the reduced sample size in
the pseudotrial classifier is offset by the better signal-to-noise
ratio of averaged trials. *e fast training of the pseudotrial
classifier allows for parameter optimization and unbiased
performance evaluation.

Based on the leave-one-subject-out classification
performance (Figures 3 and 4), it is evident that there is a
difference in how well the classifier generalizes across
subjects, which partly is due to the diversity of ERP
signatures across subjects (Figure S1). For some subjects,
low accuracy is caused by a parameter mismatch between
trials belonging to that subject and its validation sets. For
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other subjects, the SVM model is not capable of capturing
their data even when parameters are based on that subject,
due to the poor signal-to-noise level. Furthermore, inter-
subject generalizability in EEG is complicated by multiple
factors. *e signal-to-noise ratio at each electrode is af-
fected by the contact to the scalp which is influenced by
local differences in skin condition and hair, the spatial
location of electrodes relative to underlying cortex will vary
according to anatomical head differences, and there may be
individual differences in functional localization across
participants.

Both SVM classifiers utilized a relatively large number of
support vectors. *e single-trial SVM classifier used for
computing the sensitivity map had model coefficients
α � −1.5, . . . , 1.5, where 1204 α values out of 10350 were
equal to 0 (9146 support vectors). *e pseudotrial classifier
had model coefficients in the range α � −7.2, . . . , 7.2, and 46
out of 345 coefficients were zero (299 support vectors). *e
high number of obtained support vectors indicates a poor
EEG signal-to-noise ratio and the complexity of the clas-
sification problem [26].

4.4. Sensitivity Mapping. In the current work, we ask which
parts of the EEG signatures are exploited by the SVM
decoding classifiers. We investigated the probabilistic sensi-
tivity map for single-trial and pseudotrial SVM classifiers
based on a binary classification task. We identified spatial and
temporal regions where discriminative information resides,
and found these EEG features comparable to the difference
map between raw ERP responses for animate and inanimate
trials. We observe the most prominent difference in animate/
inanimate ERPs around 210ms and 320ms (Figures 2 and
S4), and these time points are also exploited by the SVM
classifiers to a large extent (Figure 5).

*e sensitivity maps for both SVM classifiers reveal that
the occipital/parietal channels where visual stimuli are
known to be processed [9, 11] are major channels of interest
in the classification task. Furthermore, we note that Fp1 and
Fp2 channels are important in the constructed classifiers
(Figure 5).*ese two frontal channels also display significant
differences in animate/inanimate ERPs across all subjects
(Figure S4), which might be explained by a difference in eye
movements depending on the semantic category. Some
studies report that frontal cortex activation is involved in
distinguishing between visual stimuli [14], and it has been
proposed that frontal activation during visual processing is a
result of the attentional and anticipatory state of the subject
[48]. However, it is also possible that the frontal channels
explain the noise in the informative channels [49].

Based on the similarity between the sensitivity maps for
single-trial and pseudotrial classifiers (Figure 5), we con-
clude that these classifiers exploit the same EEG features to a
large extent. We therefore investigated whether the pseu-
dotrial classifier is able to predict on single-trial test subjects.
We demonstrate that classifiers trained on averaged pseu-
dotrials perform on par with classifiers trained on a large set
of noisy single-trial samples (Figure 4).

5. Conclusion

We investigate scalp EEG recorded with portable 32 dry-
electrode EEG equipment from healthy subjects under
natural stimuli. We accomplish unbiased decoding of
single-trial EEG using SVM models trained on denoised
(averaged) pseudotrials, thus facilitating fast classifier
training, parameter optimization, and unbiased perfor-
mance evaluation. *e SVM classifiers were evaluated in a
intersubject approach, thus probing generalizability across
participants. We propose a novel methodology for evalu-
ating and computing sensitivity maps for EEG-based SVM
classifiers, allowing for visualization of discriminative SVM
classifier information. We implement an NPAIRS resam-
pling scheme to compute sensitivity map effect sizes and
demonstrate high similarity between sensitivity map effect
sizes of classifiers trained on small samples of denoised,
averaged data (pseudotrial) and large samples of noisy data
(single-trial). Finally, by linking temporal and spatial
features of EEG to training of SVM classifiers, we take an
essential step in understanding how machine learning
techniques exploit neural signals.

Appendix

A. Manual Exclusion Criteria for
Image Selection

Manual exclusion criteria for MS COCO images [17] for the
experimental paradigm:

(i) Object unidentifiable
(ii) Object not correctly categorized
(iii) Different object profoundly more in focus
(iv) Color scale manipulation
(v) Frame or text overlay on image
(vi) Distorted photograph angle
(vii) Inappropriate image

B. Sensitivity Map Python Pseudocode

*e following piece of pseudocode shows how to compute
the sensitivity map for an SVM classifier with an RBF kernel
across all trials using Python and NumPy (np).

map� np.matmul(X, np.matmul(np.diag(alpha), k))−
(np.matmul(X, (np.diag(np.matmul(alpha, k)))))
s� np.sum(np.square(map), axis� 1)/np.size(alpha)

k denotes the (N × N) RBF training kernel matrix from
equation (2), with N as the number of training examples.
Alpha denotes a (1 × N) vector with model coefficients. X
denotes a (P × N) matrix with training examples in col-
umns. s is a (P × 1) vector with estimates of channel sen-
sitivities for each time point, which can be resized into a
matrix of size (number of channels, number of time points)
for EEG-based sensitivity map visualization.
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