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Abstract 
Switches and crossings (S&Cs) are an integral part of any rail network, allowing for necessary flexibility of directing 

trains from one track to another at junctions. They are also the most vulnerable part of the network due to the complex 

shape and the severity of the loading on them. During service, they undergo rolling contact fatigue, normal and shear 

stresses as well as impact loads leading to damage and severe deterioration of the mechanical properties of the steel. 

Therefore the choice of railway steel is very important to control material degradation and damage for safety and 

reliability. Understanding the damage and deformation mechanisms of the steels used for crossings, including plastic 

deformation, crack formation and propagation, are important in order to prevent failure. The main focus of this thesis is 

to study the mechanical and microstructural properties of manganese steel used in railway crossings. Worn S&C 

components extracted from the track were studied through extensive metallographic examinations, including optical 

microscopy, electron microscopy and micro-hardness profiles. X-ray tomography was used for three-dimensional 

mapping of fatigue crack networks within the S&Cs. The gradient in the residual stress profile from the rail wheel 

contact surface to different depths from the surface was analyzed using synchrotron as well as laboratory X-ray 

diffraction. Uniaxial, pure torsion and biaxial (in phase and out of phase) low cycle fatigue tests were performed to 

study the behavior of manganese steel, as well as head hardened pearlitic steel at different strain amplitudes to do a 

comparative analysis of their properties and deformation mechanisms under well controlled laboratory conditions. The 

deformed microstructures after fatigue tests were studied by transmission electron microscopy (TEM). 

The hardening and the deformation of the manganese steel are quite different from that of commonly used pearlitic rail 

steels, but the crack morphologies were found to be quite similar. The investigations from the worn crossings revealed 

that the crack propagation in manganese steel crossing nose is predominately transgranular with the cracks mostly 

following a path free from twins through relatively soft grains. The residual stress measurements revealed significant 

compressive stresses on the running surface of the nose of a manganese steel crossing, but the presence of cracks 

reduces the residual stress significantly to around one-fifth of the original value. Large residual strains were also 

obtained at depths of 15 mm from the running surface. Mechanical tests of pearlitic and manganese steel showed 

significant differences in the cyclic response of the two materials, where hardening was prominent in case of manganese 

steel, the pearlitic steel showed cyclic softening. The mechanical test data correlate well with the deformation 

micrographs obtained by TEM. For manganese steel, under uniaxial loading dislocation cell structure formation is 

observed but when the shear mode is introduced in the biaxial fatigue test, formation and growth of stacking faults 

along with dislocation controls the mechanical properties. For pearlitic steel, the dislocation morphologies are similar 

under all conditions; the change in mechanical properties is thus due to differences in density of dislocations.  

 

 

 

 



Abstrakt 
Sporskifter er en integreret del af ethvert jernbanenetværk da de giver den nødvendige fleksibilitet så togene kan skifte 

fra et spor til andet ved disse krydsninger. De er også den mest udsatte del af jernbanenetværket på grund af deres 

komplicerede form og de store belastninger som de bliver udsat for. Under brug udsættes sporskifter for rolling contact 

fatigue, normalspændinger og forskydningsspændinger såvel som slagbelastninger der kan lede til skader og forværring 

af de mekaniske egenskaber af stålet. Derfor er valget af stål typen meget vigtigt for sikker og pålidelig drift af 

jernbanenettet. Ligeledes er forståelse af skades og deformations mekanismer i de stål der bliver brugt til sporskifter, 

inklusiv plastisk deformation, revnedannelse og revnevækst, helt nødvendige. Denne afhandling fokuserer på studier af 

de mekaniske og mikrostrukturelle egenskaber af manganstål brugt i sporskifter. Brugte sporskiftekomponenter, skåret 

ud af det Fynske jernbanenet,er karakteriseret ved hjælp afmetallografiske undersøgelser, inklusiv optisk mikroskopi, 

elektron mikroskopi og mikro-hårdhedsmålinger. Røntgen tomografi er blevet brugt til tre-dimensional kortlægning af 

udmattelsesrevnenetværker. Restspændinger, både nær overfladen og i dybden er karakteriseret ved hjælp af laboratorie 

og synkrotron røntgen diffraktion.. Endelig er der lavet kontrollerede laboratorie forsøg til bestemmelse af de 

mekaniske egenskaber af både mangan stål og pearlitisk stål, under betingelser der er typiske for normal jernbanedrift. 

En-aksial, vridning og bi-aksial (i fase og ud af fase) lavcyklus udmattelsestest er blevet foretaget ved forskellige 

tøjningsamplituder for at lave en komparativ analyse af de to materialers egenskaber og deformationsmekanismer. Den 

deformerede mikrostruktur efter udmattelsestestene blev studeret med transmissions elektron mikroskopi (TEM). 

Hærdning og deformation af manganstål er ret forskelligt fra det normalt brugte perlitiske skinnestål, men 

revnemorfologien blev fundet at være ret ens for dem begge. Undersøgelserne af de slidte sporskifter viste at 

revneudbredelsen for manganstålssporskifter hovedsagligt går igennem kornene hvor revnen for det meste følger en 

retning som ikke indeholder tvillinger men går igennem relativt bløde områder i kornene. Restspændingsmålingerne 

viste signifikante kompressive spændinger på køreoverfladen af et manganståls sporskifte, mens dannelsen  af revner 

reducerer restspændingerne signifikant til omkring en femtedel af den originale værdi. Store restspændinger blev også 

fundet ved dybder på 15 mm fra køreoverfladen. Mekaniske test af perlitisk og mangan stål viste signifikante forskelle i 

den cykliske respons af de to materialer, hvor hærdning var prominent for manganstål, mens det perlitiske stålblev 

blødere ved cyklisk deformation. De mekaniske test data er i god overensstemmelse med 

deformationsmikrostrukturenobserveret med TEM. For manganstålet, giveren-aksial belastninger en 

dislokationscellestruktur, men når forskydningsretninger bliver introduceret i bi-aksiale udmattelsestest, er det 

formation og vækst af stabelfejl der sammen med dislokationer kontrollerer de mekaniske egenskaber. For perlitiske 

stål er dislokationsmorfologien den samme i alle de undersøgte tilfælde; ændringen i mekaniske egenskaber er her 

grundet forskellige dislokationstætheder. 

 

Keywords: Switches and crossings (S&Cs), residual stress, synchrotron X-ray diffraction, 3D X-ray tomography, low 

cycle fatigue(LCF), multiaxial fatigue, TEM, EBSD, rolling contact fatigue (RCF), twinning, 2D & 3D crack network, 

stacking faults, dislocations, manganese steel.  
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1. Introduction 

Railways are one of the oldest forms of transport which date back to the 16
th

 century. The rails were made of woods and 

hauled by horses in the early days. The development of steam locomotives in the 19
th

 century marked the beginning of 

modern rail transport. At that time and in the following years, the rails were made of wrought iron. However, the soft 

rails often had slag defects and failed quickly. Upon the advent of steel making processes iron was replaced with steel 

with better mechanical properties, longer lifetime and reduced cost thus becoming the standard for all railways. Modern 

technological advancements have increased the efficiency of the rail network. Steam engines are now replaced by diesel 

driven and electric locomotives. High speed trains have been introduced in many countries worldwide. Railways are 

often considered as faster and one of the safest compared to other modes of transport. According to literature, the 

number of fatalities in railway transport is substantially less compared to those occurring on roads [1-2]. Recent studies 

suggest transportation accounts for 25% of global environmental pollution. According to 2010 International Transport 

Forum on Greenhouse Gas Emissions, railways only account for 2% transport emission compared to 73% from road 

transport, 11% from domestic and international aviation and rest from other means of transport, making railways one of 

the environment conscious forms of transportation [3]. The latest white paper on transport from the European Union 

suggests that railways are the key to obtaining a sustainable multi-modal interoperable transport network [4]. Therefore 

it is important to maintain the reliability, efficiency, and safety of railway systems and a lot of research has been 

undertaken worldwide to improve the environment, safety and economic aspects of the railway system. 

Switches and Crossings(S&Cs) are an integral part of any railway network. They enable trains to be directed from one 

track onto another at railway junctions providing the necessary flexibility during train operations. The complex 

geometry and moving parts of S&Cs, however, makes them quite vulnerable to damage due to high stress and impact 

loading. Poorly maintained S&Cs have a detrimental impact on railway operations. Recent incident of S&C failure in 

the Danish rail network includes derailment of a freight train in Southern Jutland during the winter of 2012 which 

caused disruption of traffic to Germany. A significant portion (estimated 50%) of the maintenance budget of the Danish 

rail network is spent on the repair and renewal of S&Cs [5].  

The work carried out in this thesis is a part of the INTELLISWITCH project which deals with intelligent quality 

assessment of railway S&Cs. The project is in collaboration between the Technical University of Denmark (DTU) and 

the Danish rail infrastructure provider Rail Net Denmark and is funded by INNOVATION FUND, Denmark. The 

INTELLISWITCH project aims to improve the fault prediction techniques used for detecting damages and defects in 

S&Cs by providing sophisticated tools to detect hidden faults before they can cause failure [5]. This will help in 

optimization of maintenance procedures thus avoiding unscheduled repairs and delays in the railway traffic. The main 

objectives of the INTELLISWITCH project include developing a model by which the condition of individual S&Cs can 

be assessed. This will be done by combining the inputs from measuring cars, data from the sensors installed at S&Cs 

selected for this project, metallurgical investigation of damaged components and also from dynamic modeling of wheel 

rail interaction and study of material behavior. The model will produce one or more maintenance performance 

indicator(s) by which appropriate maintenance can be predicted in advance. The project is aiming at having significant 

impact on the maintenance procedures and renewal of railway infrastructure [5].The present PhD thesis deals with the 

metallurgical investigation of the damaged components and study of their materials behavior.  
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S&Cs fail due to many reasons, but the rail components most commonly fail due to impact and rolling contact fatigue. 

Generally, fatigue failure starts with crack initiation and repeated transient loading causing crack propagation and 

finally failure of the component. Repeated loading also causes wear of the surface of the rails leading to material loss. 

Progression of rolling contact fatigue and wear creates degradation of the rail profile and redistribution of contact 

stresses, elevated noise, and vibration levels and further continuation of damage can cause catastrophic failures. 

Identification of possible failure modes will help to identify the most critical components and the likely failure 

mechanisms. Therefore, a better insight into material selection for S&Cs along with understanding their degradation and 

damage behavior through detailed metallurgical investigation may contribute to the development of optimal 

maintenance schemes and have a significant future impact on railway operations. A contribution to this large field is the 

overarching objective of the present thesis work. 

1.1 Research Objective and Scope of Work  

To focus the project, it was decided together with Banedanmark to concentrate the work on the crossing nose since it is 

the most critical component in the S&C from a maintenance point of view. It was further decided to divide the project 

into two fundamentally different parts: Part I- Metallurgical Investigation of crossing noses which have been in 

operation for many years and Part II- Mechanical Testing of steels typically used for crossing noses. The work focuses 

on the fatigue properties and microstructural changes associated with damage in crossing steels with the aim of 

investigating the damage mechanisms for obtaining better failure predictions. Straight railway tracks used in Denmark 

are produced from standard pearlitic grade steels, however, the crossing noses are made from a head hardened pearlitic 

steel variant or the austenitic manganese steel, often called Hadfield steel. Therefore these two materials are 

investigated.  

A crossing component is subject to normal, rolling as well as impact stresses during operation. Since the crossing 

components are subjected to a different load state than normal tracks, and the materials microstructures are different, 

different damage mechanisms are also expected. While there is a large quantity of investigations done on pearlitic steels 

in standard tracks [6-13], the information on S&C and crossing steels is very limited. The literature studies on crossings 

mostly deal with modelling and simulation [14-18].  

Thus the main aim of this thesis is to investigate the microstructure and fatigue properties in head hardened pearlitic and 

austenitic manganese steels using novel experiments and characterization techniques in order to understand the damage 

and degradation mechanism of the most critical S&C component. Using specimens extracted from crossings which have 

been in service as well as laboratory testing of crossing materials, the focus has been on three topics: crack propagation, 

residual stress and fatigue properties. 

Crack propagation: Understanding of the damage and deformation of the steels used for crossings including plastic 

deformation, crack formation and propagation are important in order to develop maintenance performance models. Only 

few studies deal with manganese steel crossings extracted from networks and those studies focus mostly with local 

microstructure changes and crack initiation [19-22]. The objective of this work is to investigate the crack morphology 

for larger volumes in crossing components extracted from the rail network, and to compare it to the damage progression 

in normal pearlitic rails from straight track. Failed crossings extracted from the track have been studied through 
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extensive metallographic examinations, including optical microscopy, electron microscopy and micro-hardness profiles, 

where the damage was correlated to the deformation and associated microstructural changes. To study the complete 

morphology of the developed crack network, 3D X-ray computerized tomography was used for the first time for three-

dimensional mapping of fatigue crack networks as well as other defects in the individual components of the crossings. 

 

Residual stress: Apart from external loads, due to the rail wheel contact, the damage and deformation of any 

engineering component is also dependent on residual stresses present within the material. Residual stresses can be 

present due to manufacturing and may also develop during service. Compressive residual stresses are beneficial to 

counteract crack growth while tensile residual stresses have the opposite effect. The combination of applied stress 

together with the residual stress influences further deformation and cracking. Measurements on residual stresses have 

mostly been carried out on normal track pearlitic rail steels [23-26], while manganese steel crossings have only been 

investigated through simulations [27]. Understanding the residual stress state in a crossing component extracted from 

service is needed when the goal is to understand the failure mechanism. The objective of this part of the work is to 

investigate the magnitude and distribution of the residual stresses within a crossing nose which has been in service. 

Conventional laboratory X-ray diffraction is used to determine the macro stresses and, as something new, this work 

includes differential aperture synchrotron X-ray diffraction to evaluate the potentials of this method to determine local 

micro strain inside the crossing.  

 

Fatigue properties: Cyclic loading induces large strains in the surface layers of rails due to low cycle fatigue, from 

where cracks initiate. The overall resistance to fatigue crack growth depends on the strength, ductility and work 

hardening properties of the material. Previous laboratory scale fatigue tests on manganese steels have mostly focused on 

uniaxial loading [28-29] rather than complex multiaxial loading. The latter is assumed to be a better model for the real 

in-track situation. The objective of this part of the work is to perform a comparative study of the mechanical 

performance for two different crossing steels under different loading conditions (uniaxial and biaxial), as well as to 

investigate the microstructural changes associated with it. Uniaxial and biaxial (in phase and out of phase) low cycle 

fatigue tests were performed at different strain amplitudes to understand the materials behavior. Microstructural analysis 

of the fatigue deformed material involving optical microscopy and transmission electron microscopy is performed and 

related to the mechanical properties to analyze the deformation mechanisms. The present work presents the first results 

of biaxial testing of crossing manganese steels and all together, the results contribute to the understanding of the 

suitability of these two steels as crossing material under different loading conditions as well as to predict fatigue 

damage.  

1.2 Background 

1.2.1 Switches and Crossings(S&Cs) 

In 1832, Sir Charles Fox designed the first S&C which has been modified over the course of time. A railway S&C is 

also referred to as a turnout. The typical parts of a railway S&C are described in Figure 1.1 and Figure 1.2. 
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Figure 1.1: Schematic diagram of an S&C with its components [18]. 

The typical parts of an S&C are: 

(a) Switch panel: The switch panel consists of two fixed fully profiled stock rails and two movable rails called switch 

rails. The movable rails guide the wheels towards either the straight or the diverging track. They are tapered on most 

switches. The switching function is operated by switching machines or actuators that position the switch rails according 

to the desired traffic direction [18]. The switch rails are of the flexible type and are milled from dedicated switch rail 

specimens with a lower height and a thicker and asymmetrical rail foot compared to standard rails. The steel used for 

switch blades and stock rails are mostly pearlitic steel. The position of switch rail decides the direction of traffic as can 

be seen in Figure 1.3 below. In Figure 1.3a it can be observed that the switch rails are positioned to the top, in contact 

with the top stock rail to catch the wheel flange, while the bottom switch rail is positioned away from the bottom stock 

rail to allow wheels to pass through on the stock rail. This causes the train to move through the diverging track. In 

Figure 1.3b the situation is reverse with the bottom switch rail in contact with the bottom stock rail while the top switch 

rail is maintained away from the top stock rail to allow the wheels to keep continuing on the top stock rail. This position 

of the switch blades causes the train to move towards the straight track. The common defects within the switch panel are 

broken stretcher bars, switch anchor losing, broken bolts etc.  

(b) Closure panel: The closure panel is the section between the switch panel and the crossing panel. It consists of the 

closure rails for guiding the wheel sets into the crossing panel. This part is made of ordinary pearlitic steel as used in 

normal tracks. 
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Figure 1.2: Rail network near Copenhagen Central Station showing the components of S&Cs [5].  

  

Figure 1.3: Schematic diagram of a railway S&C showing the position of switch rails when the train moves in the (a) 

diverging track and (b) straight track. 

(c) Crossing panel: A crossing panel consists of through rail, check rail or guard rail, wing rail, and a nose, see Figure 

1.1. It allows trains to travel along both directions. The crossing or the V-shaped portion of the panel is the crossing 

point of two rails. It consists of a nose and two wing rails. The three different parts are either assembled by bolts 

Check Rail 

Wing Rail 

Nose 

Switch Rails 

Stock Rails 

Crossing Panel 

Switch Panel 

(a) (b) 
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(pearlite crossing) or casted together (manganese crossing). Crossings can either be fixed type (the ones investigated in 

this study) or movable typically used when high axle loads or high speed are required. Check rails or guard rails are 

present on either side of the crossings parallel to the stock rails. The check rails constraint the lateral movements of the 

train wheels. S&Cs are very intricate components of the rail network as it contains variations and discontinuities which 

results in increased dynamic loading and thus increased degradation of these components compared to straight track. 

Irrespective of the direction of traffic (diverging or straight track), either the wheel will pass from the nose to the wing 

rail or from the wing rail to the nose in the crossing area. The discontinuity between the wing rail and nose causes 

impact loading and damage to the components. The common failures experienced in the crossing rails are wear, rolling 

contact fatigue, plastic deformation, rail head cracks, rail foot fractures, rail web cracks etc. The investigations in this 

study focus on the nose and wing rails of the crossing.   

1.2.2 Damage due to rail wheel contact 

Tracks are subjected to variable loading depending on the axle load and the speed of the trains passing. In addition to 

this, the geometry of S&Cs causes very different service conditions that are also dependent on the direction of traffic. If 

the direction of traffic is towards the nose, the nose generally undergoes contact friction and impact stresses from the 

wheels while the wing rail mostly experiences rolling contact stresses and wear deformations in this situation [22] and 

vice versa if the direction of traffic is towards the wing. In addition, the horizontal stresses on the crossing further 

increase the adverse effect on it. Numerical calculations suggest stress and strain analyses are key to understanding and 

predicting wear and fatigue behavior of contacting and impacting systems like the crossing and the wheel of trains. The 

contact forces between the wheel and the nose range from two to four times that of the static wheel load [30], and in 

some cases, due to the poor quality of track and wheel, the stresses can be even five times higher than the static load 

[31]. Since crossings are subjected to impact loadings, the vertical contact forces during the impact of the wheel on the 

crossing nose generally increase with higher running velocities of the train, thus it is necessary to control the train speed 

while passing through the crossing. The maximum von Mises stress and maximum equivalent plastic strain in the 

crossing are very sensitive to train speed and axle load and they increase linearly with an increase in speed or load [32-

33]. The von Mises stress calculations also indicate that manganese crossings deform more plastically whereas harder 

steel resists plastic deformation [34]. High loads on the crossings cause damage leading to rolling contact fatigue, wear, 

and cracks.  

Rolling Contact Fatigue (RCF) 

Rolling Contact Fatigue (RCF) is an important concern for today’s railway industry where increased traffic, 

acceleration and loads impose serious safety and economic risks. It occurs due to repeated passage of wheels over the 

rails which lead to application of loads along with rolling contact between the materials. The catastrophic derailment at 

Hatfield on the East Coast Main Line in October 2000 is a classic example of rail failure due to RCF initiated cracks. 

The variation of loading condition results in difference in the contact patch of the rail and wheel and leads to various 

types of defects in the rails as shown in Figure 1.4 [35]. In Figure 1.4a, vertical loading causes the growth of surface 

and subsurface cracks within the contact zone. Figure 1.4b demonstrates surface crack initiation due to both vertical and 

lateral loading. Figure 1.4c shows the formation of subsurface initiated RCF cracks due to vertical loading of a rolling 

object. Plastic deformation of the contact surface leads to crack initiation and growth if the rolling contact is 
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accompanied by interfacial shear and slip (Figure 1.4d). Material defects and inhomogeneities which can cause surface 

irregularities can also lead to surface cracking under such loading (Figure 1.4e) [35].  

 

Figure 1.4: Different types of contact loading and resulting crack formation (a) vertical loading causing growth of 

surface and subsurface cracks, (b) both vertical and lateral loading causing surface initiated cracks, (c) vertical loading 

of a rolling object causing subsurface initiated cracks, (d) rolling contact with interfacial shear and slip causing surface 

cracks and (e) surface irregularities causing cracking [35]. 

Deformation 

The rail wheel contact in the above mentioned loading scenarios causes plastic deformation of the rails. The material 

response to contact loading is strongly influenced by the magnitude of the contact loads, the material hardening, the 

residual stress state and the change in contact conditions due to plastic deformation [36]. Plastic shakedown and 

ratcheting normally occur in the wheel rail contact zone, causing the steel to exceed the elastic limit and deform 

plastically. Plastic deformation of the microstructure causes an increase in hardness of the rail material, which again 

increases the load bearing capacity of the material [37]. Plastic deformation in a crossing is highly influenced by high 

normal loads, tangential or shear load as well as impact from the wheel in the transition zone. 

The depth of plastic deformation and thus hardening is dependent on the loading and also on the material. High normal 

loads cause thicker plastically deformed layers with smaller hardness gradients [38] while shear loads cause thinner 

plastically deformed layers but with a higher strain in the material with a higher hardness gradient [39]. Higher depths 

of hardening is observed for manganese steels compared to pearlitic grade due to the extreme strain hardening ability of 

manganese steels [40, 6], where the increase in hardness can reach three times higher values than that of the base 

material [40]. In pearlitic steel, heavy plastic deformation causes the microstructure to align in the shear strain direction 

whereas for manganese steel no shearing of grains is observed (See Figure 1.5); instead the plastic deformation causes 

the formation of deformation bands in the microstructure [41]. 
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Figure 1.5: Deformation of rail microstructure at the rail wheel contact surface (a) pearlite steel and (b) manganese 

steel [41]. 

Crack formation 

The accumulation of deformation continues until the material’s ductility limit is exceeded. When the deformation 

exceeds the fracture strain of the material, RCF cracks appear [42]. The initiation and early growth of RCF cracks is a 

critical stage in the development of rail damage, and various numerical models are available in the literature to predict 

crack initiation due to RCF [42-43]. The most plausible explanation for crack initiation is brittleness of the material due 

to hardening from plastic deformation, but harder materials produce shallower cracks [44]. Cracks generally initiate at 

different angles to the surface and have different directions of propagations, as the deformation of the microstructure 

causes anisotropy in the material, which in turn leads to decreasing toughness making way for crack growth in certain 

directions with the least resistance [45]. 

When a crack has nucleated, the possibility of its propagation can be assessed by comparing the applied stress intensity 

factor to the fatigue threshold for the proper mode of crack opening. The life of a fatigue crack is normally divided into 

three phases mainly involving crack initiation and growth. The first phase is initiation at the surface due to shear 

stresses also called as Stage I. The second phase (ii) is transient crack growth behavior and the third phase (iii) is 

subsequent tensile and/or shear driven crack growth. Phase ii and phase iii together comprise Stage II crack growth (See 

Figure 1.6) [42]. After its initiation, the crack propagation is dependent on crack length, crack angle, crack face friction, 

and coefficient of surface friction near the contact load [43]. The cracks may grow back to the surface, causing 

spallation, or propagate deeper into the material, causing rail breakage. 

The crack growth can also be promoted by fluid entrapment in the cracks [46] under compressive loading, as in the case 

of a rail under a wheel. Laboratory scale experiments of RCF on rail steels indicate the theory that surface crack growth 

by fluid pressurization is a dominant phenomenon [47-48]. 

(a) (b) 
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Figure 1.6: The three phases of a fatigue crack on a rail head [42]. 

 

Wear 

Wear refers to the loss of material due to rail wheel contact, and is another important aspect in RCF. Wear plays an 

important role in determining the service life of rails [49] and wear-fatigue interaction is important in determining the 

life of components which undergo both processes simultaneously, as is the case for rail-wheel contact. Increasing speed 

or decreasing axle load reduces the wear volume [50], friction modifiers can also be used to counteract the wear [51-

53]. It is further suggested that reversing the direction of rolling would also decrease wear [54], although this is not 

always feasible in the rail network. Wear can also be decreased by using harder rail steel grades [55-56]. Laboratory 

scale experiments on RCF indicate steels with high hardness have better wear resistance [47, 50], with increased 

hardness the plastically deformed layer on the rail surface is reduced. The thickness of the flow layer, or plastically 

deformed layer, indicates the extent of wear degree of material, the thicker the flow layers, the more severe the wear 

[57]. In pure rolling RCF dominates over wear, as the wear rate is negligible with the removal of only a thin surface 

layer and no removal of cracks. Increased slip ratio causes an increase in friction coefficient and higher wear volume 

[58]. In rolling/sliding conditions wear is a dominant mechanism, which produces large thin metallic flakes and 

removes surface micro-cracks [36]. The changes in rail profile due to wear causes change in the contact area between 

the rail and wheel that affects the contact dynamic forces, which sometimes leads to detrimental effects damaging to the 

rail. 

Higher wear rate can reduce materials load bearing capacity leading to increased accumulation of plastic strain. 

However, wear can have beneficial effects in reducing the RCF crack propagation, by reducing crack growth by crack 

truncation or by simply crack being worn out as wear debris before attaining a critical size. If the wear rate is low, the 

surface cracks may not be eliminated which might lead to crack propagation and sudden fracture. Therefore an optimal 

combination of RCF and wear can be beneficial for rail wheel contact conditions. High wear also improves the 

conformity of contact between rail and wheels, thus reducing the contact stresses due to increase in the actual area of 

contact pressure. On the other hand, a high wear rate causes a larger accumulation of plastic deformation and 

subsequently damage in the long run. 
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1.2.3 Failure modes 

As mentioned above, rail wheel contact induces a lot of damage and defects in the rails, due to RCF and wear. Two 

most important defects due to RCF are head checks and squats. Head checks are clustered fine surface cracks appearing 

on the gauge corner of the rail [59]. They initiate at angles around 15-30˚ to the surface, where the cracks are shallow 

and confined within thin surface layers. A combination of wear and grinding removes the thin layer of head checks. 

Squat defects are characterized by the appearance of microcracks below the rail surface and are of major concern due to 

the high occurrence of this type of defects. 

Squats on normal rails are surface or near surface initiated cracks occurring because of local plastic deformation due to 

high dynamic load leading to RCF [60-61]. Squats are visible on the running surface as a widening and a localized 

depression of the surface of the rail, which appears as a dark spot containing cracks with a circular arc or V-shape [62]. 

Figure 1.7 shows typical squat type defects on the rail surface. The cracks generally appear at shallow angles to the 

surface, but might propagate deep within the material causing rail break, or may cause branching moving upward 

leading to spallation. A lot of research has been carried out on the origin of squats [63-64] and their growth mechanisms 

[65-66] but still, their development is not fully understood.  

 

Figure 1.7: Squats formed on a normal grade rail track [62]. 

Studies on squats on normal grade rails from straight tracks indicate there is a leading and trailing branch of the crack. 

The leading branch of the crack is shear induced fatigue crack whereas the trailing branch is driven by the transverse 

shear loading. Squat defects are also strongly influenced by the anisotropy of the microstructure when it grows within 

the material. Leading cracks are initiated by delamination or fracture of white etching surface material and the 

propagation is dictated by the anisotropic microstructure when growing into the railhead [63]. However, other studies 

indicate white etching material is not related to crack initiation on head-hardened rails [64]. Squats on premium grade 

steels are found to occur due to locally increased microslip under redistributing tangential contact stresses in the 

presence of an already initiated crack [64]. Once a leading crack is formed, a transverse failure mechanism is initiated 

under tangential stresses, which cause branching of the leading crack to form a trailing crack. The trailing crack of a 

branched squat breaks through the material texture and is related to transverse, wedge-shaped failure mechanism of the 

surface layer of the rail [63]. In premium grade steels, the trailing crack and the accompanying surface depression 
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precede the leading RCF induced crack and the accompanying larger surface depression in the running direction [64]. 

The leading crack generally can propagate over long lengths and greater depths of millimeters as compared to trailing 

crack planes. Typically, the depth of propagation is around 2-3 mm. When the crack growth reaches the undeformed 

structure, branching and oxidation processes are found to be important metallurgical factors of crack growth. The rail 

wheel contact surface gets modified with redistribution of normal and shear stresses due to the squat formation. This 

may cause high-frequency impact, resulting in progressive internal crack growth and rail fracture [66]. In recent years, 

3D Computerized Tomographic (CT) scanning non-destructive technique for characterizing internal 3D geometry 

defects in rails has been developed and is much superior to ultrasonic or eddy current methods. CT scanning allows for 

a 3D visualization of RCF defects in rails with very high resolution of data on the geometry of the internal cracks [67-

69]. 

1.2.4 Microstructure of rails 

The RCF phenomenon is dependent on the microstructure present in the steels. Several laboratory scale experiments on 

RCF on rail steel have established the importance of microstructure on RCF damage [6, 70]. The difference in 

composition and heat-treatment leads to refinement of the microstructure (varying grain size, pro-eutectoid ferrite, 

cementite content, and pearlite lamellae spacing) and mechanical properties (hardness, tensile strength, yield strength 

etc.). 

 

Figure 1.8: Iron-carbon phase diagram showing the different phases at different compositions of carbon and 

temperatures [71].  

The iron carbon phase diagram is shown in Figure 1.8. The left side of the diagram up to 2% iron is related to steel 

alloys of different compositions.  Up to 0.8% carbon, it is referred to as hypo-eutectoid steel whereas steel with more 

than 0.8% carbon is referred to as hyper-eutectoid steel. The microstructural phases (as can be seen in the phase 

diagram) vary depending on the carbon percentage resulting in steel of different mechanical properties. The eutectoid 
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point for steels is around 0.8% carbon, thus proeutectoid ferrite will be present if the percentage of carbon is lower than 

0.8%, and if the carbon content is greater than 0.8% proeutectoid cementite will be present. With increasing carbon 

content, the proeutectoid ferrite percentage decreases and at 0.8% C, it only contains eutectoid pearlite with no 

proeutectiod ferrite. The difference in the phases and their amount present in the structure cause very significant 

changes in material behavior and deformation.  

Pearlitic steels 

 

Figure 1.9: (a) time temperature transformation (TTT) diagram for an iron-carbon alloy of eutectoid composition: 

where A-austenite, B-bainite, M-martensite, P-pearlite and (b) a continuous cooling transformation (CCT) diagram for a 

eutectoid iron-carbon alloy [71].  

Most rail steels are manufactured with a pearlitic microstructure, with a carbon percentage between 0.6-0.8% depending 

on the exact grade used. Figure 1.9a shows the time temperature transformation diagram for the eutectoid steel.  From 

the austenite phase on cooling, transformation occurs to pearlite, bainite or martensite depending on the cooling rate. 

The pearlite steel microstructure consists of an alternate network of ferrite and cementite. The carbon content alters the 

proportion of ferrite and cementite in the microstructure. Depending on the carbon and alloying element content the 

morphology of the ferrite and cementite changes. Previous studies indicate that the volume of proeutectoid ferrite 

contributes significantly to RCF damage. RCF cracks are predominantly initiated at the rail surface along the edges of 

highly strained, proeutectoid ferrite zones. The ferrite is the softer phase in the matrix and they facilitate early stage 

crack propagation [7]. The ferrite gets more strained than the pearlite as evident from the significant percentage increase 

in the nano hardness measurements of the deformed rail [8]. At lower strains, the softer ferrite deforms plastically while 

the cementite is still in the elastic stage leading to increased internal stresses. Strain partitioning between the 

proeutectoid ferrite and pearlite occurs where the ferrite exhausts its ductility. Cracks can initiate within the 

proeutectoid ferrite or at the ferrite/pearlite interface, and short cracks initiated in the vicinity of major cracks run along 

(a) (b) 
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the strained proeutectoid ferrite. An increase in the amount of proeutectoid ferrite in rail steel, therefore, is detrimental 

to fatigue life [7-8]. Higher carbon percentage causes formation of less proeutectoid ferrite and therefore better resistant 

to stress partitioning. However, internal stress incompatibility can also arise between the soft ferrite and hard cementite 

in pearlite structure leading to crack initiation.  

Head hardened steels 

Since the stress state in a crossing differs to a large extent from normal tracks, several new grades or modification of the 

basic pearlitic grade with superior mechanical properties have been adapted to be used for crossings. Pearlitic steels for 

crossings generally have carbon percentage on the higher side, around 0.7-0.8%, which leads to higher hardness and 

better resistance to RCF [72]. Modifications in the microstructure and mechanical properties of pearlite can also be 

obtained by varying the heat treatment. By using a faster cooling rate, the interlamellar spacing between the ferrite and 

cementite in the pearlitic steel can be reduced, giving a higher hardness which provides better wear resistant properties 

in service [73].  The head hardened pearlitic steel is obtained by heat treating the head of the rail, followed by fast 

cooling which leads to fine interlamellar spacing (See Figure 1.9b).  Finer interlamellar spacing controls the dislocation 

movement within the ferrite channels and thus increases the strength. Head hardened steels have better RCF resistance 

than normal hardened or non-hardened pearlitic steel [47, 74]. The most frequent grade used for the crossings is 

premium grade 350HT steel, which is a low alloy carbon steel with an average hardness of 350-370 in the Brinell scale 

(HBN). The average chemical composition of this steel is 0.72 – 0.80% C, 0.15 – 0.58% Si, 0.70 – 1.20% Mn, ≤ 0.15% 

Cr, max. 0.020% P max, 0.025% and rest Fe. This steel is often referred as to as head hardened pearlitic grade due to 

the rail head being hardened to 370 HBN, and has improved resistance to wear, corrugation and RCF compared to 

standard R260 grade pearlitic steels [75].   

Manganese steels 

Manganese austenitic steel, often referred to as Hadfield steel, is a common material choice for railway crossings due to 

its excellent work hardening ability, large stress intensity factor, suitable strength, high toughness, and good wear 

resistance. The addition of high Mn content stabilizes the austenitic phase in the microstructure. The average chemical 

composition of this steel is 1-1.4% C and 12-13% Mn with the addition of other alloying elements like ~0.18% Cr, 0.4-

0.6% Si, 0.022-0.033% P. The typical heat treatment for most manganese steels consists of a solution anneal followed 

by a water quench. The temperature is raised slowly to the soaking temperature which is generally high (mostly above 

1000˚ C) for dissolution of carbides and also to obtain the austenitic microstructure (see Figure 1.10). Very high-

solution temperatures should be avoided as it causes incipient fusion at the grain boundaries resulting in embrittlement 

[76]. The steel is then rapidly quenched to prevent any precipitation of carbides and also to maintain the austenitic 

microstructure. Manganese steels are used either in rolled, as-cast or explosion hardened condition. Manganese steels 

used in crossings have a single phase austenitic microstructure, where different substructures are formed within the 

grains due to the difference in the degree of deformation in different grains, and also with different regions of the same 

grain. Depending on the stress and orientation, some grains may deform by twinning whereas other grains might only 

have slip bands or stacking faults [20, 77]. The non-uniform distribution of microstructure causes local regions of strain 

concentration due to mismatch of deformation, initiating cracking and damage [20]. Compared to normal pearlitic 

grade, the manganese steel has properties better suited to the handle repeated impacts at crossing [78]. The threshold 

stress intensity factor (ΔKth) of manganese steel is quite large compared to common structural steel; therefore it has a 
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lower crack growth rate [79]. An important property of manganese steel is its excellent work hardening capacity [80] 

which makes is extremely resistant to wear as well. When it comes to maintenance inspection, a disadvantage of using 

manganese steel is that it allows ultrasonic waves to pass through the material, which might lead to cracks being 

undetected during routine ultrasonic testing of rails. Also, welding procedures for manganese steels have to be carefully 

designed because it is very sensitive to reheating especially in the range above 260˚ C which causes carbide 

precipitation and pearlite formation with subsequent embrittlement and loss in toughness [76]. 

Figure 1.10: The phase diagram of manganese steel containing 13% manganese [81]. 

Bainitic steels 

In recent years, bainitic steels have also been used in railway S&Cs. Bainitic steels are harder and have better wear 

resistance than pearlitic grade [82], as well as good RCF resistant properties under similar loadings [83]. The bainitic 

steel is obtained from the isothermal cooling of the steel from the austenitic temperature i.e., by the decomposition of 

austenite at a temperature which is above the martensite formation temperature but below that at which fine pearlite 

forms. Several types of bainite can be obtained during the cooling process, such as granular bainite and lath bainite 

depending on the composition of alloying elements, temperature and time of holding (See Figure 1.9a). The complex 

and inhomogeneous microstructure of the bainitic steel makes it more vulnerable to crack initiation. Bainitic steel 

crossings are in use in several countries including Germany, where manganese steels are not used due to the problem 

with ultrasonic measurements. Research is ongoing on the suitability of bainitic steel as crossing material under 

different loading conditions. 

1.2.5 Deformation mechanisms 

Plastic deformation in metallic materials generally occurs by slip due to dislocation motion or by twinning. In pearlitic 

steel, slip is the only deformation mechanism whereas in manganese steel both slip and twinning can be observed. An 

overview of the mechanisms is given below: 

Slip 

The process of slip involves sliding of one atomic plane over another along definite crystallographic planes called slip 

planes by dislocation movements [84]. When the applied shear stress exceeds the critical shear stress, the atoms move 

an integral number of atomic distances along the slip plane so that the lattice is left unaltered and a step is produced 
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called the slip line. The dislocation is the boundary between the slipped and unslipped part of the plane of the partly 

glided crystal [85]. Slip generally occurs on planes of greatest atomic density and the slip direction is the closest-packed 

direction within the slip plane. The slip plane and the slip direction constitute the slip system [84].  In fcc crystals, the 

{111} planes and <110> directions are the close packed systems. There are four possible individual planes and three

directions which together give a total of 12 slip systems. The bcc crystals have 48 different slip systems, from the 

combination of {110}, {112} and {123} slip planes and <111> direction [85]. Slip lines in bcc crystals have a wavy 

appearance due to slip occurring on several slip planes. 

Figure 1.11: (a-f) Schematic illustration of the slip process on the application of shear stress [86]. 

Twinning 

Another important deformation mechanism is twinning. Twinning is dominant when deformation by dislocation slip is 

limited. However, both slip and twinning can occur simultaneously. Twinning occurs when deformation causes 

reorientation of a portion of the crystal lattice in a symmetric way such that the twinned portion is the mirror image of 

the parent untwinned crystal.  The plane of symmetry between the two orientations is termed as twinning plane [84]. 

Twinning like slip also occurs in definite direction on a specific crystallographic plane. For fcc systems, the twin plane 

and directions are {111} and <112> respectively. For bcc systems the twin plane is {112} and the twin direction is 

<111>. Slip and twinning vary in many aspects. While the slipped region has the same orientation as that of the original 

unslipped grain, the twinned region of a grain is a mirror image of the original lattice, which causes a change in 

orientation across the twin plane. Slip occurs in discrete multiples of atomic spacing whereas in twinning the atom 

movements are much less than an atomic spacing [86]. Twinning can be caused either due to deformation called 

mechanical twins or as a result of annealing following plastic deformation called annealing twins [86].  
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Figure 1.12: Schematic of twinning in FCC metals [86]. 

1.2.6 Residual Stress in rails 

Residual stresses are elastic stresses present within the material without external loading. The presence of residual 

stresses in materials and components are often overlooked, in spite of they could significantly affect the mechanical 

properties both in a positive and negative way. Residual stresses are generated in a rail due to manufacturing processes 

like hot rolling, cooling, roller straightening and head hardening [87]. Due to rail-wheel contact, the material at the top 

surface will harden and when residual stresses exceed the yield cracks will eventually appear [88]. The rate of crack 

growth also in rails is affected by contact stresses due to rail-wheel interaction, thermal stresses due to temperature 

changes as well as residual stresses induced by both manufacturing process and rail wheel contact [89]. Research has 

been carried out to estimate the extent of development of residual stresses in new rails after manufacturing [90-91]. 

It is generally accepted that compressive residual stresses are beneficial to counteract crack growth while tensile 

residual stresses have the opposite effect. A C-shaped longitudinal residual stress pattern has been observed with tensile 

longitudinal residual stresses in the rail head and foot, and compressive stresses in the web of a rail. European 

Committee for Standardization has set limits to the value of residual stress, for example to 250 MPa in the middle of the 

rail foot for new rails [92]. The state of stress changes while the rail is in service. Typically, compressive stress in both 

the longitudinal and transverse directions in the rail develops near the running surface, with balancing tensile stresses 

appearing beneath this region. Therefore the contact stresses are reduced by the superposition of the compressive 

residual stresses [23]. 

The residual stresses in rails are usually determined by a destructive method using strain gauges. Non-destructive 

methods include X-ray and neutron diffraction as well as ultrasonic and magnetic methods. However, ordinary X-rays 

are limited in terms of intensity and penetration depth. Neutrons have a significantly larger penetration depth compared 

to ordinary X-rays, but low intensity. Synchrotron X-Ray diffraction has higher intensity and penetration depth 

compared to neutrons. In recent years, both X-ray diffraction and neutron diffraction has been used to determine 

residual stresses in the rail head [23-26, 93]. The residual stresses developed in new rail depend on the manufacturing 

technique it has been subjected to, and in worn rails, on the load, it has been subjected to. Residual stress measurements 

by various techniques on normal rail heads after several years of service indicate compressive stresses can reach values 

as high as 500 MPa on the rail wheel contact surface depending on the service loading. 
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Variation in stress is obtained depending on the direction of stress measurement, with compressive stresses being higher 

in the transverse direction for rails. The thickness of the compressive layer depends on the tonnage and the wear 

suffered as well as the rail grade. The plastic deformation of 350HT rail differs from normal grade rails, causing 

different residual stress state even under similar loading. Harder steels have better resistance to wear and also plastic 

deformation, forming thinner compressive residual stress layers. The layer of compression is balanced beneath by a 

tensile stress layer. Thinner compressive stress layer is detrimental to crack propagation as it causes early turning down 

of cracks towards the tensile layer in harder 350HT rails. Unfortunately, all studies on residual stresses require rail 

specimens to be sectioned for measurements which cause stress relaxation and redistribution. Studies performed on the 

bulk specimen and sliced rail specimen indicates a difference of residual stress of around three times [93]. However, 

various approaches are available to account for the amount of stress relaxation and measure the exact stress fields. 

Most studies on residual stress measurement of rails have been done on normal pearlitic steel from straight tracks. The 

geometry and the imposed stress on a crossing are totally different from a normal track. The residual stress distribution, 

therefore, is expected to differ from a normal track. There is little experimental data on residual stress measurements on 

crossing components. Numerical simulations of residual stresses on manganese crossings indicate equivalent residual 

stress is complex and irregular after wheel contact loading [27]. According to simulations, the maximum residual stress 

is obtained at certain depth below the surface of the nose rail, rather than at the contact surface of wheel and crossing, 

and is also dependent on the train speed and loading. The combined effects of the maximum contact stress and the 

maximum residual stress is responsible for fatigue crack initiation, which occur at the intermediate position between the 

maximum contact stress and the maximum residual stress in a crossing rail [27]. Residual stresses are therefore an 

important parameter to be considered while studying RCF as it influences the state of stress within the material, which 

in turn will affect the cracks and other defects in the rails.  
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2. Experimental procedure and details

In this section, a detailed description of the experimental techniques and procedures used for the characterization and 

mechanical testing of the rail steel specimens is given. For better understanding, detailed diagrams and descriptions of 

the different types of crossings examined in this study along with their different components are given at first.  

2.1 Crossings investigated in this work 

Three different railway crossings have been investigated in this study. The first one is a pearlite steel crossing labeled as 

AP 104. It was from the year 2004 and was extracted from Vestfyn in Denmark. The individual components of wing 

rail and nose were bolted together. Most of the traffic was in the direction of the nose. The Figures 2.1-2.3 below show 

the different components of the crossings. 

Figure 2.1: AP 104 pearlitic crossing extracted from Vestfyn (a) and (b) the cut out portions of crossing AP 104 with 

wing rail and nose bolted together (a) the first part and (b) the second part of the same crossing.  

Figure 2.2: The head portions of (a) wing rail I and (b) wing rail II after unbolting and separating it from the pearlite 

crossing showing the pieces cut out for metallurgical investigation. The rail wheel contact area is evident from the 

deformation and is marked with black arrows.  

Nose 

Wing rail I 
Wing rail II Nose 

Wing rail I 

Wing rail II 

(a) (b) 

(b) (a) 
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Figure 2.3: The nose of the pearlitic crossing after unbolting and separating it from the crossing showing the pieces cut 

out for metallurgical investigation. 

Two manganese crossings were also investigated. They were extracted from Tommerup in Denmark and labeled as 

ATP 110 and BTP 102 respectively. Unlike pearlite crossings where the individual components are manufactured and 

bolted together, the manganese crossings are cast as a single piece. The ATP 110 crossing is from 2010 and had been in 

service for five years with a traffic density of approximately 14 MGT. The majority of the traffic was towards the nose 

from wing rail and the nose rail was severely damaged with visual cracking and spallation. Figures 2.4-2.5 show the 

ATP 110 crossing with the various components. 

BTP 102 crossing is from 2002 and had been in service for 13 years. The crossing was severely damaged and had been 

repaired by welding. Nearly all traffic goes in the direction from the nose to the wing rail in BTP 102. The majority of 

the traffic is straight through the switches for both the cases. Figures 2.6-2.7 show the BTP 102 manganese crossing 

with its individual components. 

Figure 2.4: (a) ATP 110 manganese crossing in the track before extraction. The blue markings indicate the region that 

was cut out and (b) a cut out portion of the same crossing with the wing and nose rail for detailed investigation. 

(a) (b) 
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Figure 2.5: Individual components of the ATP 110 crossing after separating them (a) the nose of the crossing showing 

distinct visual cracking and spallation, (b) and (c) the two wing rails, the rail wheel contact area is evident from the 

deformation and is marked by arrows. 

Figure 2.6: BTP 102 manganese crossing extracted from Tommerup (a) the initial part, the red mark shows the area 

which was cut out further for detailed investigation, (see Figure 2.7a) and (b) the second part of the crossing; the 

welding is evident in the nose and the second wing rail. 

(a) 

(b) (c) 

(a) (b) 
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Figure 2.7: (a) Part of the BTP 102 crossing before the starting of the nose cut out for metallurgical investigation and 

(b) individual components of the wing rail and nose separated from the crossing for further investigation.

The experimental characterization techniques are mentioned in the following sections. 

2.2 3D X-Ray Computerized Tomography (CT) 

 Absorption contrast X-ray tomography can measure non-destructively the three dimensional (3D) structure of inner 

defects of an object which has absorption difference to the bulk of the specimen with a spatial resolution down to 1 μm.  

In a computerized tomography (CT) system, the specimen is placed on a stage in between the radiation source and an 

imaging system. The specimen is then rotated up to a full angle of 360˚ during the scan, and the digital detector registers 

thousands of individual 2D images from many angles. An algorithm uses these 2D images to reconstruct the structure 

into a complete 3D representation. This helps in the characteristics of the internal structure of the specimen including 

dimensions, shape, defects, and density from the whole volume of the specimen.  The 3D X-Ray tomography scans 

were done on a ZEISS Xradia 510 Versa machine. A polychromatic X-ray beam was used with energies ranging up to 

160 kV from a tungsten target. For all the present experiments, a total of 1601 projections were acquired during a full 

specimen rotation. 3D maps were reconstructed by a Feldkamp algorithm for cone beam reconstruction [94] to 

2k×2k×2k voxel volumes with a voxel size of around 10 μm, depending on exact specimen size. The crack network and 

other defects were segmented and visualized using Avizo 3D software. X-ray tomography reconstructions are 3D 

density maps, which allow detection of cracks due to the difference in density by applying an appropriate intensity 

threshold value.  

For the manganese steel crossing (ATP 110), 5 specimens were cut from the nose from an area showing distinct visual 

spallation and cracking (Figure 2.8a). Each of the specimens was 10x10x40 mm in height, width, and length 

respectively. Each of the specimens was individually scanned and reconstructed, after which they were stitched together 

to give an overview of the crack network in 3D over a large volume. Pieces were also cut from the wing rail of 

manganese steel crossing (BTP 102) having dimensions 50x10x10 mm in length, breadth, and height respectively for 

scanning and crack reconstruction in 3D using the above procedure. For the pearlitic crossing (AP 104), the nose of the 

crossing was welded having welding cracks and defects. A piece was cut from the nose having dimensions 10x5x10 

mm and scanned similarly with 3D Xradia to visualize the defects and porosities in the welding.  

Nose 

Wing rail I 

Wing rail II 

(b) (a) 
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Figure 2.8: The areas where the specimens for the tomographic reconstruction was obtained from the different 

crossings (a) nose of ATP 110 manganese crossing showing the five individual specimens, (b) nose of AP 104 pearlitic 

crossing and (c) BTP 102 manganese crossing. 

2.3 X-Ray diffraction 

Residual stresses were measured on the worn manganese steel crossing (ATP 110) by X-ray diffraction at laboratory 

source and by synchrotron at Advanced Photon Source (APS).  

Residual stresses are stresses present within a material body in absence of external loading. Residual strains are elastic 

in nature. Elastic strains generally cause a shift in peak positions whereas inelastic stresses cause peak broadening in 

diffraction. There is no direct method available to measure stresses, they are calculated or derived from measured elastic 

strain which is then converted to stress by using elastic strain relation (See Equation 8). The strain is defined as: 

𝜀 =
𝑑𝑛−𝑑0

𝑑0
 (1) 

Where dn is the deformed lattice spacing due to the residual stress/strain and d0 is the unstrained lattice spacing. 

X-ray diffraction is a useful method that provides information on the atomic structures of crystalline materials. An

incoming X-ray wave interacts with the crystalline material and diffracts in certain direction depending on the 

symmetry of the unit cell. Strain free crystalline material has a well-defined inter-planar spacing and produces a 

characteristics diffraction pattern when exposed to X-rays. Under strained condition, the inter-planar spacing changes 

Areas from where 

specimens for 

tomographic 

scanning were 

taken 

(b) (c) 

Area in the nose of the 

manganese crossing from where 

five specimens for tomographic 

imaging were taken. 

(a)
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which cause a shift in the diffraction pattern. The inter-planar spacing can be calculated by using the Bragg’s Law 

(Equation 2) which states that the planes of a crystalline material diffract X-rays at certain angles [95].  

𝑛𝜆 = 2𝑑 sinθ  (2) 

where λ is the wavelength of the X-Ray, d is the inter-planar spacing of the reflecting planes, θ is the reflection angle 

and n is the integer. Therefore by measuring the inter-planar spacing of the strained and unstrained specimen, the 

residual strains can be calculated by using Equation 1.  

Strains in a material can either be macro (Type I) or micro (Type II/Type III). Macro strains are homogeneous over 

several grains and can be measured by a shift in peak position (Δ2θ). In this study, we use the conventional laboratory 

X-ray to determine the macro (Type I) strains. Micro strains can be either homogeneous (Type II) or inhomogeneous

(Type III) within the same grains and can be measured by a shift in peak position (Δ2θ) and change in full width half 

maxima (ΔFWHM) of the diffracted peak. We use differential aperture synchrotron X-Ray diffraction to determine the 

local micro (Type II/Type III) strains.  

2.3.1 Laboratory X-ray Stress Measurement 

While measuring stresses on the free surface of the material, a plane stress condition is assumed where the stress 

perpendicular to the surface (normal direction) is supposed to be zero (σ3=0) as shown in Figure 2.9 [96]. However, 

there are non-zero strains present in the normal direction.  The inter-planar spacing of planes oriented at different tilt 

angles of ψ is measured for different directions of φ. The strains for lattice planes of different tilt angles ψ and different 

directions of φ [97] can be expressed as: 

  
𝜀𝜑𝜓

=
𝑑𝜑𝜓−𝑑0

𝑑0
   (3) 

From Hooke’s law, the relationship between elastic stress and strain in an isotropic material is defined as [97] 

𝜀𝜑𝜓 =
𝑑𝜑𝜓−𝑑0

𝑑0
= [

1+𝑣

𝐸
𝜎𝜑𝑠𝑖𝑛2𝜓]-[(

𝑣

𝐸
)(𝜎1 + 𝜎2)]  (4)  

Where v is the Poisson’s ratio, E is the elastic modulus. By rearranging, 

𝑑𝜑𝜓= [(
1+𝑣

𝐸
)𝜎𝜑𝑑0𝑠𝑖𝑛2𝜓]-[(

𝑣

𝐸
)𝑑0(𝜎1 + 𝜎2)]+𝑑0     (5) 

Therefore we find a linear relationship between the lattice spacing dφψ and sin
2
ψ. The stresses for each direction of φ

can be calculated by 

𝜎𝜑=
𝐸

1+𝑣
x 

1

𝑑0
(

𝜕𝑑𝜑𝜓

𝜕𝑠𝑖𝑛2𝜓
)  (6) 

The stress thus can then be calculated by determining the gradient of the sin
2
ψ vs d curve. This assumes a zero stress at 

d intercept on the y-axis when sin
2
ψ = 0.  This assumption is based on the fact that Young’s modulus is greater than the 

summation of the principal stresses (σ1 and σ2) and d0 can be used from the inter-planar spacing measured at ψ=0 with 

less than 1% accuracy [97]. In this way, the stresses are measured at minimum three different directions of φ to obtain 
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the principal stresses σ1 and σ2. This technique of using multiple ψ and φ is often referred to as the sin
2ψ-d method. An

example of such a plot is given in Figure 2.10. 

The laboratory X-ray residual stress measurements were made using a Xstress 3000 G2R diffractometer equipped with 

a Cr-Kα X-ray source.  Measurements were made on the wheel running surface of the nose on a specimen (B) (see 

Figure 2.11a) at two positions, center, and the gauge corner. The specimen was cut out from the nose having dimensions 

40x10x10 mm (See Figure 2.11d). X-ray diffraction measurements for determining the lattice spacing were done with 9 

ψ tilts from -45˚ to +45˚ along three directions of φ=0˚, 45˚ and 90˚. The operating voltage was 30kV and the current 

was 6.7mA with an exposer time of 60 sec. The lattice spacing of the {220} austenitic iron peak around 2θ=128˚ was 

measured. Higher 2θ positions are preferable as at high 2θ angles small changes in the d-spacing due to strain gives 

measurable changes in 2θ. At low angles, the difference will be too small to be measured precisely [96]. A circular 

collimator of 1.5 mm diameter was used to irradiate the specimen with the X-ray.  The diffraction peaks were fitted 

using the Stress Tech Xtronic software, using a cross relation method with a linear background. Strains were measured 

by the method described above and converted into stress by the software assuming a Poisson’s ratio of 0.28 and elastic 

modulus of 196 GPa. 

X-ray diffraction (XRD) measurements were also performed using a Bruker X-ray diffractometer operated in the Bragg-

Brentano configuration applying Cr-Kα radiation (λ = 2.2897 Å). X-ray diffractograms were recorded with a a step size 

of 0.07° in 2θ and an operative voltage of 35 kV and a step time of 10s in the angular range of 2θ in 122°-133° to record 

the austenitic peak around 2θ=128˚. 

Figure 2.9: Schematic showing diffraction planes parallel to the surface and at an angle φψ. Here both σ1and σ2 both lie 

in the plane of the specimen surface whereas according to plane stress condition σ3=0 [96]. 
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Figure 2.10: A typical sin
2ψ vs d plot (own work). 

Measurements were made on two specimens, specimen A and specimen C, see Figure 2.11f. A bulk specimen C from 

the nose having dimensions 95x50x25 mm was selected. The measurements were made on the running surface. Here 

also the standard sin
2
ψ vs d technique was used with 9 positive ψ tilts from 0 to 65 ˚ along the two φ directions of 0˚and 

90˚. Another set of measurements were made on the transverse surface of Specimen A cut from the nose having 

dimensions 40x5x20 mm. Both positive and negative ψ tilts were considered and only the normal direction φ=90˚ 

stresses were calculated. Measurements were made on the transverse surface at 5 locations from the running surface at 3 

mm interval till 15 mm from the surface.  

2.3.2 Synchrotron X-Ray Stress Measurements 

Synchrotron measurements were conducted on the transverse surface of a specimen cut out from the nose of the 

manganese crossing having dimensions 40x5x2 mm, (Specimen A). Measurements were made at depths of 3 mm, 4 

mm, 6.5 mm and 15 mm from the wheel running surface at beam line 34-ID-E at Advanced Photon Source (APS), 

Argonne National Laboratory (see Figure 2.11b). The transverse surface was electropolished to avoid mechanical 

stresses induced due to the cutting procedure. Strains were measured at different depth along the transverse or the 

running direction for each of the four locations. The deformed lattice spacing d at each of the locations at different 

depths were calculated based on differential aperture X-Ray microscopy (DAXM) measurements. To calculate the 

strains, the strain free lattice spacing d0 was obtained from laboratory X-Ray diffraction measurements with Cr-Kα 

radiation (λ = 2.2897 Å) source using a specimen taken from the base of the nose at a depth of 20 mm from the running 

surface. Hardness measurements and optical micrographs suggested that there is no deformation due to rail wheel 

interaction at that depth. The strain free lattice parameter obtained from the diffraction of {220} peak was calculated to 

be 1.2802 Å. For synchrotron measurements, the specimen was mounted with an inclination of 45˚ to the incoming X-

rays. A polychromatic beam was used to determine the orientation of the matrix grains. The resulting microbeam had a 

Lorentzian profile with a full width half maximum of ~0.5 µm.  The Laue diffraction patterns from the scanned volume 

were recorded on a detector which was mounted in 90
0
 reflection geometry at a distance of 510.3 mm above the 

specimen. A Pt-wire of 50 mm diameter was used as a differential aperture to obtain the diffraction patterns at different 

depths. The Laue patterns at each depth were reconstructed by the use of the LaueGo software available at APS 
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beamline. The patterns were indexed, from which the hkl indices of individual spots as well as their corresponding X-

ray energies were determined.  A spot with high intensity and a diffraction vector normal to the specimen surface was 

then selected for monochromatic energy scan to determine the absolute lattice spacing. The strains were calculated 

using equation (1). Only one component of the strain was determined (along the running direction).  

Figure 2.11: Photo and schematic diagrams showing where specimens A, B and C were cut out from the nose for the 

strain measurements (a) photograph showing the nose studied, (b) schematic diagram of specimen A. The positions of 

the synchrotron X-ray diffraction measurements are also shown, (c)  sketch showing the experimental synchrotron X-

ray set up for specimen A and the points of measurement on the specimen, (d) schematic diagram of Specimen B for 

laboratory X-ray diffraction scans showing the positions of measurements at the running surface and at the gauge 

corner, (e) Sketch showing the experimental set-up for the laboratory X-ray measurements and (f) Schematic diagram of 

specimen C used for laboratory X-ray diffraction scans showing the position of the measurement. 
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2.4 Mechanical Testing 

2.4.1 Hardness Measurements: 

Hardness measurements were made on the individual components of the damaged and deformed crossings (AP 104, 

ATP 110 and BTP 102) which were extracted from the network and also on the fatigue deformed specimens. 

Hardness refers to the resistance of a material to localized plastic deformation. It can also be used as a measure to 

quantify the amount of deformation of any component. At higher plastic deformation, the material becomes harder. The 

general method followed is a small indenter is forced into the surface of the specimen under controlled loads. The depth 

or size of the indents is measured and then the hardness number is calculated. There are different methods for hardness 

measurement namely Brinell, Vickers, Knoop, and Rockwell. Vickers hardness measurements were used in this study. 

The formula to calculate the hardness: 

𝐻𝑉 =
2𝑃 𝑠𝑖𝑛(

𝜃

2
)

𝑑2 =
1.8544𝑃

𝑑2  (7) 

Where P is the applied load in kg, θ is the angle between opposite faces of diamond indenter and d is the average of the 

two diagonals in mm. The Vickers indenter is a square based diamond pyramid indent with an included angle between 

opposite faces of 136 ˚. The Vickers Hardness number is defined as the load divided by the surface area of the 

indentation [84]. Since the loads used are small, the indent size is also small. Therefore for accurate measurement of the 

diagonal length, a well polished surface is required. Also, the surface should be free from any defects and the specimen 

should be mounted properly so that the test surface is perpendicular to the axis of the indenter.  

Hardness measurements were made on both the manganese and pearlitic crossings: For the manganese crossing (ATP 

110), measurements were made on both the wing rail and nose. Vickers hardness measurements with a load of 1kg and 

a dwell time of 20 seconds were used to study the hardness distributions in the transverse section of the nose and wing 

rail. A grid of measurements was made at intervals of 2 mm along the transverse direction and 0.3 mm from the rail 

running surface along the normal direction throughout the transverse section, and from these measurements, hardness 

maps were constructed. The same procedure was used to measure the hardness distribution of the wing rail of BTP 102 

manganese crossing at different locations as shown in Figure 2.12 c & d below. Finally, hardness maps were 

constructed from the measurements. For the pearlite crossing (AP 104), hardness measurements were made on the wing 

rail and nose using the same load and dwell time. However, only a few series of measurements were made on the 

transverse section from the wheel running surface at intervals of 0.3 mm.  
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Figure 2.12: The areas where hardness measurements were made on the different components of the crossings (a) ATP 

110 manganese wing rail, (b) ATP 110 manganese nose, (c) and (d) BTP 102 manganese crossing, the numbers in the 

figure indicate the area for hardness profile maps, (e) pearlite wing rail showing the surface of hardness measurements 

and  (f) pearlite nose rail showing the surface of hardness measurement. 

2.4.2 Tensile Testing 

The tensile test is used to obtain the basic mechanical properties of the materials. In the tensile test, a continuously 

increasing tensile load is applied to the specimen until it breaks. Simultaneous measurements of the elongation are also 

done. The tests are performed at a specific strain rate as mechanical properties of some materials have strong strain rate 

dependence. Engineering stress-strain or true stress-strain curves can be constructed from the load elongation data. The 

important parameters obtained from the stress-strain curve of metal are the tensile strength, yield strength, percent 

elongation and reduction of area. The initial portion of the stress-strain curve is fairly linear, the stress is linearly 

proportional to strain. This is the elastic portion of the stress-strain curve which follows the Hooke’s law: 

(a) 

(b) 

(c) (d) 

(e) 

1 

2 

3 4 

5 

(f)
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 𝜎 = 𝐸𝜀  (8) 

where σ is the applied stress, E is the modulus of elasticity, and ε the strain experienced by the material. The modulus of 

elasticity also referred to as Young’s Modulus (E) is calculated from the slope of the elastic portion of the curve: 

E= slope=
 𝛥𝜎

𝛥𝜀
 (9) 

When the stress exceeds a certain value, the material is plastically deformed. This value is called the yield strength of 

the material. The yield strength is the stress required to produce a small specified amount of plastic deformation. The 

usual way of determining the yield strength is by the stress corresponding to the intersection of the stress-strain curve 

for a line parallel to the elastic part of the curve offset by a strain of 0.2%. After the yield point, the material strain 

hardens and the stress to produce further deformation increases with plastic strain. With continued deformation, the 

specimen elongates but the cross section decreases uniformly along the gauge length. Initially, the strain hardening rate 

is more to compensate for the decrease in cross sectional area and the load continues to rise with increasing elongation. 

After the highest point on the load-elongation curve, called the ultimate point the cross sectional area decreases at a 

faster rate than the strain hardening rate. Therefore the load and hence the engineering stress required for deformation 

decreases until fracture occurs [84]. Tensile strength or ultimate tensile strength is the maximum load (Pmax) divided by 

original cross-sectional area (A0): 

Su=
𝑃𝑚𝑎𝑥

𝐴𝑜
 (10) 

The ductility of the material is measured either from the % elongation i.e., the engineering strain, expressed in % at the 

fracture or the % reduction of area at fracture:  

ef=
𝐿𝑓−𝐿𝑜

𝐿𝑜
 %  (11) 

where ef is the engineering strain at fracture also called the % elongation, Lf is the gauge length after fracture and Lo is 

the original gauge length before the test. 

q=
𝐴0−𝐴𝑓

𝐴𝑜
 %          (12) 

where q is the % reduction of area at fracture and Af and A0 are the cross sectional area at fracture and before test 

respectively. 

The engineering stress-strain curve does not give the full description of the deformation characteristics of a material 

because it is based on the original cross sectional area of the specimen which continues to decrease during the test. A 

material strain hardens all the way to fracture so the stress required for deformation also increases. But since the 

engineering stress-strain curve is based upon initial cross sectional area, stress falls after maximum tensile strength. The 

true stress-strain curve is based on the instant cross sectional area of the specimen and continues to increase until 

failure. This curve is also called the flow curve of the material. 

The true stress expressed as: 
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𝜎 =
𝑃

𝐴0
(𝑒 + 1) = 𝑠(𝑒 + 1)          (13) 

where σ and ε are the true stress and strain respectively and s and e are the engineering stress and strain respectively. P 

refers to engineering load and Ao refers to the original cross sectional area. The true strain is expressed as: 

 ε=𝑙𝑛 (𝑒 + 1)         (14) 

Since constancy of volume and a homogeneous distribution of strain along gauge length are assumed, the above 

equations are applicable only up to the onset of necking. 

The flow curve of many metals in the region of uniform plastic deformation can be expressed with a power law relation 

as: 

 𝜎 = 𝐾𝜀n
                                                                                                                                                                       (15) 

where n is the strain hardening exponent and K is the strength coefficient. The values of n and K can be obtained from a 

log-log plot of true stress and true strain up to maximum load. 

Tensile tests until failure at room temperature were performed on the two different materials (pearlite and manganese 

steel) at a strain rate of 10
-2

 s
-1

 on an Instron 8801 100 kN universal testing machine. Cylindrical dog bone shaped 

specimens having gauge length 10 mm and gauge diameter 5 mm were made from the undeformed portion of the 

crossings. For the manganese steel, the specimens were obtained from a depth of 15 mm from the surface, as it is 

assumed that at this depth the area will be free from any service deformation. For pearlite, specimens were taken from 

the head hardened part only leaving a few millimeters from the running surface which was severely deformed during 

service. 

2.4.3 Fatigue Testing 

Metal subjected to repeated cyclic or fluctuating stresses fails at lower stresses than required to cause fracture under 

monotonic application of load. This phenomenon is called fatigue failure. The fatigue tests can be divided into low 

cycle fatigue (LCF) and high cycle fatigue (HCF). The LCF often shows plastic strains and lasts up to 10
5
 cycles. The 

HCF is elastic in nature, at least in the beginning, and by definition HCF is over 10
5
 cycles. Any fluctuating stress cycle 

or strain cycle can be considered to be made up of two components, a mean or steady stress or strain and alternating or 

variable stress or strain. The mean stress or strain is defined as the algebraic mean of the maximum and minimum stress 

or strain in a cycle: 

𝜎 / 𝜀 𝑚𝑒𝑎𝑛 =  
(𝜎/𝜀𝑚𝑎𝑥+𝜎/𝜀𝑚𝑖𝑛)

2
  (16) 

Another important term in this respect is the stress or strain range which is the algebraic difference between the 

maximum and minimum stress or strain in a cycle: 

𝜎 / 𝜀 𝑟𝑎𝑛𝑔𝑒 =  (𝜎/𝜀
𝑚𝑎𝑥

− 𝜎/𝜀
𝑚𝑖𝑛

) (17)
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The alternating stress or strain often expressed as the stress or strain amplitude which is one half of stress or strain 

range: 

𝜎/𝜀 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =  
(𝜎/𝜀𝑚𝑎𝑥−𝜎/𝜀𝑚𝑖𝑛)

2
 (18) 

 Two ratios are used in presenting fatigue data. One is the stress/strain ratio denoted by R which is the ratio of minimum 

stress/strain to maximum stress/strain and another is the amplitude ratio denoted by A which the ratio of stress/strain 

amplitude to mean stress/strain:   

𝑅 =  
𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥
 (19) 

𝐴 =  
𝜎𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝜎𝑚𝑒𝑎𝑛
 (20) 

LCF tests under strain controlled mode where the strain amplitude is fixed are performed in this work. The specimen is 

cycled between a maximum and minimum strain and the stress response is measured. The usual way of presenting low 

cycle fatigue results is by a plot of plastic strain range or amplitude against number of cycles to failure. The Coffin 

Mansion equation describes the relationship between plastic strain amplitude and fatigue life [85]. 

𝛥𝜀𝑝

2
= 𝜀′𝑓(2𝑁)𝑐          (21) 

Where Δεp/2 is plastic strain amplitude, εf
/
 is the fatigue ductility coefficient, 2N is number of strain reversals to failure

and c is the fatigue ductility exponent. εf
/ 
  and c are considered as material specific parameters [85]. The equation holds

true for uniaxial loading. Most components in real life are subjected to multiaxial loading. In rail wheel contact there is 

both normal and shear stresses acting. Various modified theories have been proposed to predict fatigue life under 

multiaxial loading [97]. 

Cyclic stress-strain curves help in assessing the durability of structures and components subjected to repeated loading. 

The material response of any specimen subjected to cyclic inelastic loading is in the form of a hysteresis loop. The total 

height of the loop is the stress range and the width of the loop is the total strain range which includes both elastic and 

plastic strain. The area within the loop is the energy per unit volume which is a measure of the plastic deformation work 

of the material. An example of a hysteresis loop is shown in Figure 2.13. The material is first loaded in tension and then 

to compression range after reaching the maximum strain amplitude. Yielding in compression occurs at lower stress 

upon reversed loading due to the Bauschinger effect [99]. After the initial transient in the stress amplitudes for the first 

few cycles, the material stabilizes in the subsequent cycles with very little variation in stress amplitude (cyclic 

stabilization). In some materials, due to high strain hardening, the stabilization phase does not occur. The peak stress 

amplitude keeps on increasing (cyclic hardening) whereas in some materials the stress amplitude decreases throughout 

the test (cyclic softening). Finally, cracks start to develop in the material which causes a decrease in peak stress 

eventually leading to the failure of the material. 
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Figure 2.13: Typical Hysteresis loops for strain controlled LCF test in uniaxial cyclic loading with a constant strain 

amplitude of 0.6%. (a) Head hardened pearlite steel, where the registered stress amplitude decreased throughout the test 

(b) manganese steel, where the registered stress amplitude increased for the first hundred cycles and then decreases for

the remaining life time [own data]. 

Specimens for the experiments were extracted from actual crossings from the track. For the pearlitic grade, the head 

hardened part was confined to within the first 20 mm from the surface, after which the hardness falls off from 400 HV 

to 330 HV. Specimens for fatigue testing were taken from the head hardened part only leaving a few millimeters from 

the running surface which was severely deformed during service. Thus slight variations in hardness levels in volumes 

from which the test bars were taken are expected. For the manganese steel, the specimens were obtained from a depth of 

15 mm from the surface, as it is assumed that the area will be free from any service deformation. Hardness studies for 

the pearlitic and manganese grade suggested the depth of deformation during service was confined to first 2-3 mm for 

the pearlite and 10 mm for the manganese steel. This means that both types of specimens were essentially free from any 

in-service deformation. A schematic diagram of the fatigue specimens is given in Figure 2.14. The specimens had a 

gauge diameter of 10 mm and a gauge length of 20 mm. The specimens were ground and polished to mirror finish 

before testing. Low cycle strain controlled fatigue tests (strain amplitude was kept constant) were performed using a 

strain rate of 10
-2

 s
-1

 on an MTS 809 axial/torsion testing system. All tests were conducted at room temperature. The 

conditions for the tests were: 

1. Uniaxial (tension-compression) tests at strain amplitudes of 0.6%, 1% and 1.5%.

(a) For 0.6% strain amplitude, tests were done at 0 mean strain (R=-1) and with a compressive mean strain of 0.9% (R=

5). 

(b) For the 1% strain amplitude tests were done at 0 mean strain (R=-1) and with a compressive mean strain of 0.5%

(R=-3). 

(c) For 1.5% strain amplitude tests were done at 0 mean strain (R=-1).

(a) (b) 
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2. Pure torsion tests at shear strain amplitudes of 1.3 % and 2.16% (R=-1).

3. In and out of phase biaxial tests under tension-compression and torsion at strain amplitudes which would give

equivalent strain amplitudes of 0.6% and 1%. Both axial and shear strain maintained R=-1.

A schematic diagram of the strain loading paths under fatigue is shown in Figure 2.7. 

According to von Mises theory [100], the equivalent strain, axial strain, and shear strain can be related as: 

𝜀𝑒𝑞= √𝜀2 +
𝛾2

3
 (22) 

where 𝜀𝑒𝑞 is the equivalent strain, ε is the axial strain and γ is the shear strain.

In the case of uniaxial loading, there is no shear strain and the equivalent strain is the same as axial strain. In the case of 

pure torsion, to obtain an equivalent strain amplitude of 0.6% or 1%, the shear strain should be 1.04% and 1.732% 

respectively. However, in the case of torsion, a strain gradient is obtained with the maximum at the surface and zero at 

the center. For pure torsion tests, surface strain amplitudes were calculated to be 1.3% and 2.16% assuming the strain 

decreases linearly from the surface.  For biaxial tests at equivalent strain amplitude of 0.6% and 1%, both in-phase (0 ˚ 

phase difference) proportional and out of phase (90 ˚ phase difference) nonproportional loadings were conducted. For 

this case, the axial strain was selected to be 0.424% and the shear strain was 0.735% to obtain an equivalent of 0.6% 

strain.  For 1% equivalent strain the axial strain and shear strain were calculated to be 0.707% and 1.225 % respectively. 

A schematic diagram of the different strain amplitude variations under the various loading conditions is shown in Figure 

2.15-2.16. 

Figure 2.14: Specimen geometry of the specimen used for fatigue testing (All dimensions in mm) 
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Figure 2.15: Schematic diagram of the loading strain paths for different conditions of fatigue testing (a) linear axial 

(uniaxial), (b) linear shear (pure torsion), (c) linear with axial and shear in phase loading (biaxial proportional loading) 

and (d) circular with axial and shear strain out of phase loading (biaxial non proportional loading).  

(a) 

(c) 

(b)
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Figure 2.16: Schematic diagram of the load time history for the different conditions of fatigue testing (a) uniaxial 

loading at different strain amplitudes with 0 mean strain (R=-1), (b) uniaxial loading with different strain amplitudes 

and different mean strains but the same minimum strain of -1.5%, (c) pure torsion tests at different shear strain 

amplitudes (R=-1), (d) biaxial in phase tension-compression and torsion at equivalent strain amplitude of 0.6% and 1% 

and (e) biaxial out of phase tension-compression and torsion at equivalent strain amplitude of 0.6%. and 1%. 

Intermittent uniaxial fatigue testing at different intervals of time was also done to study the evolution of microstructure 

during fatigue for the pearlite steel. The material was subjected to 0.4% strain amplitude and the tests were interrupted 

at 0.4 cycle, 100 cycles and finally failure. These fatigue tests were conducted at a strain rate of 10
-2

 s
-1

 on an 8801 100 

kN servo hydraulic universal testing machine at room temperature. The specimens had a gauge length of 10 mm and a 

gauge diameter of 5 mm.  

2.5 Material Characterization 

2.5.1 Optical Microscopy 

Optical microscopes can be used to investigate the microstructure at relatively low magnifications. It consists of a light 

source or illumination system, objective lens, eyepiece, photo micrographic system, and specimen stage. Light rays 

from the object first converge at the objective lens and are then focused to form a magnified inverted image. The light 

path then goes through an eyepiece to form a virtual image on the human eye retina. A modern microscope is 

commonly equipped with a device to switch from eyepiece to projector lens for either recording images on 

photographic film or sending images to a computer screen [101]. The damaged and deformed microstructure of the 

wing and nose of the pearlite and manganese crossings as well as the deformed structure of the fatigued manganese and 

pearlitic steel specimens were studied by optical microscopy. The specimens for optical microscopy were first ground 

with Si-C paper ranging from grain 320 to 4000 followed by polishing by diamond paste to 1 µm. Finally, the 

specimens were etched with 4% Nital. 

2.5.2 Scanning Electron Microscopy (SEM) 

The scanning electron microscope has better spatial image resolving capabilities due to the lower wavelength of 

radiation and better depth of field to explore finer details in the microstructure. In SEM, a beam of electrons emitted 
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from an electron gun is focused down on the specimen surface with the help of condenser and magnetic lenses. This 

results in the formation of a pear-shaped interaction volume within the specimen.  Electron material interaction leads to 

the emission of back scattered electrons, secondary electrons as well characteristics X-rays which are then detected by 

different detectors. The images in the SEM can either be due to electrons which are back scattered from or near to the 

surface of the specimen, the contrast of which strongly depends on the atomic number and crystallographic orientation 

of the specimen, or due to the secondary electrons which helps in external morphology and topographical 

investigations. SEM can also be used to study the microstructures, revealing texture, defects, grain morphology and 

deformation through electron back scattered diffraction mode (EBSD). In EBSD arrangement, the specimen is mounted 

at a 70º tilt to the incident electron beam. The electron beam is diffracted from the specimen and a pattern of Kikuchi 

lines is obtained on the phosphor screen. The positions of the Kikuchi bands can be utilized to determine the orientation 

of the diffracting crystal. The analysis of these Kikuchi lines helps the determination of orientation and texture of 

grains. In this study, the SEM was used in the EBSD mode to study the deformation structure of the nose of the 

manganese steel crossing and also in secondary electron imaging mode to study the fracture surface of the deformed 

fatigue specimens.  

A Zeiss Supra-35 scanning electron microscope, equipped with HKL Channel 5 EBSD system was used in the present 

study. The EBSD measurements were made using an acceleration voltage of 20 kV, aperture size of 60 μm and a 

working distance of 13.3 mm. The focus of this study was to investigate the highly deformed microstructure near the 

surface cracks in the nose of the manganese crossing. A specimen was cut from a damaged nose, as shown in Figure 

2.17, having dimensions 40x5x20 mm. The transverse surface of the specimen was ground with Si-C paper ranging 

from grain 320 to 4000 followed by polishing by diamond paste to 1 µm. The final polishing consisted of colloidal 

silica or OPS for 40 minutes. The specimen was scanned on the transverse surface in a square grid with a step size of 

0.5μm.  

Figure 2.17: Nose of ATP 110 manganese crossing showing the region where specimen for EBSD scanning was 

obtained. 

2.5.3 Transmission Electron Microscopy 

The transmission electron microscope (TEM) has better spatial resolution compared to SEM. The operative voltage 

range from 100-300 kV and the lower wavelength of the electrons allows resolutions below 1 nm. The TEM can also be 

used for different operation modes, but for this study, the TEM has been used for imaging only. The TEM system 

consists of the electron gun, electromagnetic lenses and a viewing screen, all enclosed in a vacuum. The electron from 

the gun passes through the lenses and is focused on a very thin specimen. Thin specimens are required to allow the 

electrons to transmit through the thickness of the specimen.  Two types of interactions occur with the specimens 

namely, either the electrons get diffracted or the electrons remain parallel to their initial path and transmit through the 
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specimen. After passing through the specimen the electrons are focused again by an objective lens and create an 

intermediate image which finally produces a magnified image after passing through a projector lens on a fluorescent 

screen, photographic film or on a CCD camera.  

A Jeol 2000FX electron microscope operating at 200KV was used in this work. The deformed microstructure of the two 

types of steel after fatigue testing under different loading conditions was studied. The dislocation density and also the 

stacking fault width were calculated from the TEM images by using a linear intercept method. Test lines were drawn 

randomly in areas showing dislocations in the micrographs and the dislocation density was calculated as: 

ρd =N/Lxt   (22) 

where N is the number of dislocations intersecting the given drawn line, L is the length of the line and t is the thickness 

of the foil.   

The specimens for TEM studies were obtained from the gauge part of the fatigue deformed specimens. The transverse 

surface was studied and specimens were obtained as close to the surface as possible. Thin TEM foils were prepared by 

electropolishing down to 0.1-0.5 µm thickness so that electrons can pass through it. Thin slices are cut from bulk 

specimens and then electropolished until a small hole appears in the middle of the slice which indicates the area near the 

hole is thin enough for electrons to pass. Typically, large areas transparent for the electrons were obtained. 
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3. Summary

This section contains a summary of results obtained from the experimental and analysis work carried out for this thesis. 

Five papers were written based on the results obtained, focusing mostly on the manganese steel. The main findings of 

the papers are summarized here. Apart from the results reported in the papers, some additional results are also 

presented.  

3.1 Results from the papers 

3.1.1 Crack formation within a Hadfield manganese steel crossing nose (Paper 1) 

This paper focuses on the microstructure and crack network in a damaged Hadfield manganese steel crossing nose. The 

damage and deformation have been studied by hardness measurements, optical microscopy and scanning electron 

microscopy (SEM) including electron back scattering diffraction (EBSD). The complex crack network within the nose 

of the crossing has been investigated using 3D X-ray tomography. Rail wheel contact causes high deformation hardness 

of over 600 HV and the strain hardening extends up to a depth of about 10 mm from the running surface. Microscopy 

indicates that the deformation microstructure is composed of both deformation twins and deformation induced 

dislocation boundaries. Extensive crack networks with both surface and subsurface cracks having crack branching and 

shielding have been observed. Microstructure plays an important role in the crack behavior. The crack propagation is 

predominately transgranular with the cracks mostly following a path free from twins through relatively soft grains 

causing waviness in the crack path. The crack network is confined in top layers of the plastically deformed rail with 

surface cracks at shallow angles to the surface and after reaching a certain depth of 2-3 mm, they run parallel to the 

contact surface. The hardening and the deformation of the manganese steel are quite different from that of commonly 

used pearlitic rail steels but the crack morphologies are found to be quite similar for both of them.  

3.1.2 2D and 3D characterization of rolling contact fatigue cracks in manganese crossing wing rails (Paper 2) 

This paper focuses on the microstructure and crack network in damaged Hadfield manganese steel crossing wing rails. 

Damaged and deformed wing rails of a manganese steel crossing were studied through characterization of the 

microstructure, hardness, and 3D crack network. High deformation induced hardness of over 600 HV which is three 

times that of the base material and also strain hardening up to a depth of about 10 mm from the running surface was 

observed which is similar to what observed in case of the nose of the manganese crossing studied in paper 1. Rail wheel 

interaction causes high deformation and a high density of the deformation induced twins and dislocation boundaries in 

the austenitic grains near the surface with decreasing density away from the surface. Presence of cracks parallel to the 

running surface was observed through 3D X-Ray tomographic reconstruction. While most of the cracks run parallel to 

the running surface, the crack network is extensive and continuous. The damage and deformation in the manganese 

wing rail are found to be quite similar to the manganese nose rail studied previously although the geometry and loading 

of a wing rail are different from the nose. Cracks were mostly observed at regions having relatively less hardness than 

regions which had a higher hardness. The change of rolling planes from wing rail to nose, or vice versa, introduces high 

impact stresses which most likely are the reason for the crack formation beside the plastic deformation.  
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3.1.3 Synchrotron X-Ray measurement of residual strain within the nose of a worn manganese steel railway crossing 

(Paper 3)  

In this work, the residual strains inside the bulk of a damaged nose of a manganese steel crossing have been investigated 

by using differential aperture synchrotron X-ray diffraction. The main purpose of this paper was to describe how this 

method allows non-destructive measurement of local micro residual strains in selected local volumes in the bulk of the 

nose. To the best of my knowledge, this is the first time synchrotron radiation was employed to measure the strains in a 

nose of a manganese railway crossing. Measurements were made at a depth of 6.5 mm from the rail wheel contact 

surface and significant compressive strains were present along the longitudinal direction even at such high depths. 

Residual stresses alter the state of stress in the material which affects further deformation and damage in the material, 

especially the crack propagation. Therefore further work on the residual stress measurements on the nose of the same 

crossing was done and explained in paper 4.  

3.1.4 Synchrotron and laboratory X-ray measurements of residual strains in manganese steel from a railway 

crossing (Paper 4) 

In this work, two X-ray techniques were applied to quantify the residual stresses in the nose of the manganese crossing. 

Conventional laboratory X-ray sin
2
ψ method was used to determine the macro (Type I) stresses along the running 

surface and perpendicular to it while differential aperture synchrotron X-ray diffraction was used to determine the local 

micro (Type II/Type III) strains along the longitudinal direction (i.e. running direction) at four different depths down to 

15 mm from the rail surface. Besides the information on the magnitude of the residual stresses in the worn nose, the 

potentials and limitations of the two X-ray methods for the present component are also discussed. High compressive 

stresses, as large as 615 MPa, have been observed on the hardened rail-wheel interaction surface which is higher than 

the yield strength of the undeformed material. The presence of cracks reduces the residual stress significantly to around 

one-fifth of the original value. Micro X-ray measurements of residual revealed significant residual strains when 

measured on the transverse surface of the nose which could not be detected by macro X-ray measurements due to the 

lower penetration depth of the laboratory X-rays and significant stress relaxation on the cut transverse surface. The 

micro X-Rays shows that the residual strains at a depth of 15 mm it is more than twice as large than at depths of 3, 4 

and 6.5 mm. This increase in residual strain at the large depth is related to an interaction of elastic and plastic 

deformation. The large compressive residual stresses at e.g. 15 mm depth may contribute to explaining why cracks 

generally move parallel to the surface at certain depths instead of continuing perpendicular to the surface deep into the 

material. 

3.1.5 Multi-axial Fatigue Deformation of Head Hardened Pearlitic and Austenitic Hadfield railway steels: A 

comparative study (Paper 5)  

In this paper, a comparative study on the cyclic deformation characteristics and fatigue behavior of a head hardened 

pearlitic and Hadfield manganese steel have been made and explained with respect to low cycle fatigue behavior under 

conditions of uniaxial and biaxial, as well as proportional and non-proportional, loading. Also, the different 

microstructures developed in the two different types of steels are compared and related to mechanical properties. Low 

cycle fatigue tests at 0.6% strain amplitude were performed. Distinct difference in the cyclic response of the two 

materials was obtained. While profound hardening was observed in case of manganese steel, the pearlitic steel showed 

cyclic softening behavior except for biaxial loading where initial hardening for the first one or two cycles was observed. 
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Pearlite steel was insensitive to mean strain application but the manganese steel showed significant hardening due to 

mean strain. The maximum hardening is observed in case of biaxial non-proportional loading due to activation of 

multiple slip systems for both the steels, however, the hardening is more significant in the case of manganese compared 

to pearlite. The optical microscopy reveals no observable changes in the morphology of the phases in the microstructure 

of pearlitic steel under the different loading cases. TEM images also reveal the dislocation morphologies are similar in 

all the samples where threading dislocations and dislocation tangles have been observed in all three samples. The 

variation in mechanical properties can be attributed to the change in dislocation density in the ferrite channels. The 

biaxial out of phase loading leads to maximum dislocation density leading to highest hardening and stress/torque 

amplitudes. Deformation of manganese steel caused the formation of deformation bands in the austenite grains. TEM 

micrographs reveal the microstructures in manganese steel under different conditions are composed of dislocation cells 

with dislocation tangles inside, intersected by straight stacking fault lamellae. Under uniaxial loading, dislocation cell 

structure formation is the prominent mechanism but when the shear mode is introduced in bi-axial low cycle fatigue 

test, formation and growth of stacking faults play an important role together with the dislocations. Higher dislocation 

density with low stacking fault width is observed for biaxial out of phase loading causing maximum hardening.  

3.1 Additional Results 

3.1.1 Characterization of damage within a head hardened pearlitic steel crossing 

The damage and deformation of the wing rail and nose of a pearlitic steel crossing have been studied by optical 

microscopy, hardness measurements, and 3D X-ray tomography. Rail wheel interaction induces normal and shear loads 

which cause shearing of grains towards the rolling direction in the pearlitic structure. The contact area of the wheel with 

the rail influences deformation which is evident from the higher depths of shearing of the gauge corner region than in 

regions near the center of rail head. The hardness of the deformed surface layer was around 500 HV and the hardening 

extended up to a depth of about 2-3 mm from the running surface. The nose of the crossing was repair welded. Multiple 

surface and subsurface cracks, as well as porosities, were found in the weld layer. Improper welding has resulted in the 

formation of defects in particular porosities and cracks growing from them. 3D X-ray tomography of the defects and 

crack network revealed multiple pores of various shapes and dimensions with sizes as large as 1 mm are present. Some 

of the pores are connected to the surface (for example through a crack) whereas many pores are deep inside the 

specimen.  

3.1.2 Mechanical testing of two different rail steels used in crossings 

The main focus of this work was to do a comparative analysis of the mechanical properties and deformation 

characteristics of two different grades of steels used for crossings: head hardened pearlite and austenitic manganese 

steel. Room temperature tensile testing, as well as low cycle fatigue uniaxial (at 1% and 1.5% strain amplitudes), biaxial 

experiments (at 1% equivalent strain amplitude) and pure torsion experiments (at 0.8 and 1.3% equivalent strain 

amplitudes), was performed. The microstructural analysis of the fatigue deformed specimens was made to correlate the 

mechanical behavior with the mechanical properties. The uniaxial tensile test results reveal that pearlitic steel, which is 

harder compared to manganese steel, strain hardens rapidly and saturates due to the low value of strain hardening 

exponent (n=0.2). Manganese steel is soft compared to pearlitic steel but strain hardens steadily, with a constant work 

hardening rate over a large strain range with a higher strain hardening exponent of 0.4. The low cycle fatigue behavior 
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of the two materials was similar to the behavior as described in paper 5 for tests performd at the lower strain amplitude 

of 0.6%. Hardening was observed in case of manganese steel, and softening for pearlitic steel, except for the biaxial 

loading. For uniaxial loading, at lower strain amplitude the plastic strain energy density per cycle is nearly equivalent 

for both the materials but at higher amplitudes the pearlitic steel has higher plastic strain energy density per cycle 

compared to the manganese steel. Higher number of cycles to failure was observed for pearlitic steel under all cases of 

uniaxial loading compared to the manganese steel and thus caused much higher accumulated plastic strain energy. Both 

the Coffin-Manson strain life model and the energy life model gave a good match between the modeled and actual 

number of cycles to failure. Pure torsion loading gave improved fatigue life due to a delay in crack initiation for both 

the materials. In biaxial loading, the maximum hardening was observed in case of non-proportional loading, similar to 

that reported in paper 5. However, the hardening is more significant in the case of manganese steel compared to 

pearlitic steel and at high amplitudes, the stress/torque amplitude for manganese steel is higher compared to pearlitic 

steel. The rate of hardening increases linearly with strain amplitude. For pearlitic steel, the cyclic softening is less 

compared to other conditions of loading because it is compensated by non-proportional hardening. 
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4. Conclusions and Outlook

4.1 Conclusions 

This thesis focuses on the mechanical and microstructural properties of manganese steel railway crossings. The 

combined effect of contact, impact and frictional loading on manganese crossings after several years of service have 

been evaluated in terms of the microstructural changes and crack formation, comparing it to normal track behavior. 

Residual stress in a failed manganese nose was measured and correlated with the crack direction in the nose. In 

addition, low cyclic fatigue testing under different loading conditions has been done for both pearlitic and manganese 

steel used in crossings, where a comparative analysis of the mechanical and microstructural properties has been done. A 

main aspect of this investigative work was to apply non-conventional experiment techniques like 3D X-ray tomography, 

synchrotron X-ray radiation and biaxial fatigue testings on a crossing component for the first time for a detailed 

investigation for S&C components.   

This work has shown: 

1. Investigations of damaged manganese steel crossings extracted from track showed an extensive transgranular

crack network which mostly followed a path free from twins through relatively soft regions within the grains.

Presence of both surface and subsurface cracks was observed with most cracks confined within the first few

millimeters from the running surface. The manganese steel work hardened to a larger degree than standard

pearlitic rail steel, evident from the depth of hardening extending up to 10 mm from the contact surface with a

hardness of 600 HV at the surface. The deformed microstructure contained a high density of deformation

induced dislocation boundaries and twins. Though the deformed microstructure is different from that of

pearlitic steel, the crack morphologies were found to be similar to those in pearlitic steel straight tracks, with

mostly shallow cracks that return to the surface.

2. Residual stress measurements were performed on the damaged nose extracted from the manganese steel

crossing by synchrotron and laboratory X-ray diffraction techniques. It is the first time synchrotron X-ray have

been used to determine the local distribution of micro strains in a railway crossing. The synchrotron X-ray

micro strain measurements could determine strains at depths from the measured surface which was not

possible to access with laboratory X-ray diffraction. Significant macro compressive residual stresses were

observed in the manganese steel crossing on the running surface by standard laboratory X-ray diffraction

measurements. The synchrotron measurements reveal that residual stresses were also present at distances

below the running surface. The residual stresses at distances of 3, 4 and 6.5 mm from the running surface are

nearly comparable but those at greater depths were significantly higher. The effect of crack on residual stress is

evident as the presence of cracks near the surface of the nose released the residual stresses significantly to very

small values.

3. Mechanical testing on head hardened pearlite and manganese steel from railway crossings revealed differences

in both the static and cyclic response. The pearlite steel was found to have high yield strength but limited work

hardening capability over small plastic strain, thus pearlite is a good candidate for fatigue loading where the
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plastic deformation is limited. The manganese steel was capable of accommodating large plastic deformation 

and having extensive work hardening over a large plastic strain range, retaining its capability to absorb plastic 

energy. Therefore, it might be a good candidate material for impact loading which occurs at the crossing. 

Manganese steel also has less ductility exhaustion in fatigue compared to pearlite steel and can accommodate 

larger plastic deformation in non-proportional loading as well as in mean strain applications, which is a typical 

case for railway crossing. Microstructural analysis of the fatigue specimens revealed that the deformed 

microstructure of the pearlitic steel is dominated by slip only, while the microstructures in manganese steel are 

composed of dislocations, stacking faults and a few twins. Therefore additional hardening in manganese steel 

is imparted to stacking faults and twinning along with dislocation slip.  

 

Seen in the bigger perspective it can be concluded that:  

The crack network in the failed crossing nose can be correlated to the state of stress in the material. Crack propagation 

in preferred directions are sometimes related to connecting high strain energy zones formed due to the residual/external 

stress distribution and thereby forming a crack network which releases the residual stress. The stresses developed in a 

crossing nose component are mostly compressive in nature and maybe highest at higher depths from the surface. This 

could be one of the explanations why cracks are mostly confined to the top few millimeters from the surface of the nose 

rather than moving down into the material.  

Although the biaxial tests were performed to replicate the rail wheel contact situation in a crossing, the microstructure 

characterization indicated this was not entirely successful. Hardness measurements on the failed fatigue deformed 

manganese steel specimens indicated the maximum hardness at the surface reached up to 350Hv in biaxial 0.6% strain 

tests, which is far below the 600Hv found in the extracted crossing components at the running surface. The 

microstructure obtained from the failed crossing nose also showed extensive twinning along with dislocation induced 

boundaries, however only a few twins were observed in 0.6% strain amplitude fatigue specimens. Therefore, this 

indicates the biaxial fatigue tests done, could not correlate exactly to the real in service conditions in tracks. One reason 

could be the impact loading existent in the tracks, which was not replicated in these tests, could lead to higher 

deformation and work hardening. It should also be considered that the loading during testing was displacement 

controlled rather than force controlled as in real crossings, which could cause a difference in behavior. 

This work has significantly advanced the understanding on the topic of microstructure and mechanical properties of 

railway crossing steel. For the first time, cracks in crossing components have been mapped in 3D, providing 

information on damage mechanism and crack propagation that could be used in the maintenance of manganese steel 

crossings. Mapping the length and depth of the crack network will be helpful for scheduling grinding or welding 

procedures. The residual stress developed during service in a crossing nose was measured for the first time. This helps 

explain the crack propagation and will be useful for designing future crossing components. For the first time, a 

comparative study has been carried out on the cyclic response of two different crossing steels under biaxial loading 

conditions. Although the tests could not replicate the exact rail wheel situation in crossing, the difference in mechanical 

properties between the two steels could be understood based on the microstructural differences, and the suitability of the 
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two materials under different conditions of loading could be explained. Finally, the extensive experimental data 

obtained during this work could be used for future modelling and simulations works on crossings under complex 

loading situations.  

4.2 Outlook 

While this work has provided useful insight into the microstructure and fatigue properties of railway crossings, a more 

in depth investigation on certain topics could be carried out, which time limitations did not allow for during this work.   

Further low cycle fatigue studies of the strengthening mechanisms and microstructural changes in manganese steel 

crossings are needed. An important concern here is that, only a few twins were found in 0.6% tests compared to the 

extracted crossing. There was not enough time to do TEM studies of the 1% strain amplitude fatigue tests. Studies of 

the evolution of microstructure with number of cycles using intermittent fatigue testing should also be done at different 

fractions of the life cycle for different types of loading.  

Other types of tests conducted under controlled conditions would also be relevant for mechanical behavior in crossings. 

Since the loading is force controlled rather than displacement controlled in crossings, stress controlled fatigue tests can 

also be relevant for comparative studies. The development and evolution of cracks could be studied in rolling contact 

fatigue tests in order to investigate the crack initiation, direction and branching in manganese steel with respect to the 

microstructure. Also impact toughness tests (Charpy V notch tests) would be highly relevant for crossings, as well as 

fracture toughness tests together with fatigue crack growth tests. 

The residual stress in the nose of the manganese crossing has been studied in this work to some extent, but a more 

detailed stress mapping on a bulk component of the nose through synchrotron X-ray diffraction with all the three 

components and its relation with cracks should be studied. Residual stresses alter the state of stress in the material 

effecting crack propagation mechanism and hence needs to be included when interpreting failure mechanisms, and 

should be considered both in design and lifetime predictions of crossings. 

In the larger perspective, it would be of great value for rail infrastructure providers, if metallurgical investigations, 

methods and results as those presented in this thesis, could be incorporated into their maintenance scheme. Here it 

would be beneficial to relate the presence and extend of cracks and other faults to signals recorded by the measuring 

car, various sensor systems mounted on S&Cs, noise measurements and alike, which are tools the infrastructure 

providers already use or possibly will use in the future. 
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Abstract: 

Switches and crossings in rail networks suffer from complex loading which may induce severe damage and defects, 

including formation of cracks that can result in rail breakage. This paper focuses on the microstructure and crack 

network in a damaged Hadfield manganese steel crossing nose. The extent of deformation has been quantified by 

hardness measurements, optical microscopy and scanning electron microscopy (SEM) including electron back 

scattering diffraction (EBSD). It is found that the wheel contact causes high deformation hardness of over 600 HV, 

around three times that of the base material, and the strain hardening extends up to a depth of about 10 mm from the 

running surface. Microscopy indicates the deformation microstructure is composed of bands of both deformation twins 

and deformation induced dislocation boundaries. The complex crack network within the nose of the crossing has been 

investigated using 3D X-ray tomography, where both surface and subsurface cracks are detected with the majority of 

the cracks originating from the surface. The crack network has been related to the observed deformation microstructure 

and it has been found that although the hardening and the deformation of the Hadfield manganese steel is quite different 

from that of commonly used pearlitic rail steels, the crack morphologies are found to be quite similar for the two 

materials.  

Keywords: Rail, rolling contact fatigue (RCF), Hadfield manganese steel, twinning, 3D X-ray tomography, EBSD.  

1. Introduction: 

Switches and crossings (S&Cs) are an essential part of any railway network, enabling trains to be directed from one 

track onto another at railway junctions, allowing for the necessary flexibility during train operations. At the same time 

they are also the most vulnerable part of the railway network, suffering from peak stresses due to their greater geometric 

complexity compared to normal tracks. When a train passes, from the wing rail to the nose or vice versa depending on 

the direction of the traffic, either the nose or the wing will suffer from impact stresses due to the discontinuities in the 

rail as well the normal rolling contact stresses, often causing fatigue cracks and spallation [1]. In this work a Hadfield 

manganese steel crossing nose is investigated and the crack formation is characterized. 

Various numeric studies [2-6] have been conducted in the past to assess the severity of loading and damage on railway 

crossings. It has been calculated that the stresses and the equivalent plastic strain in the crossing are very sensitive to 

train speeds as well as track conditions. Large contact and impact forces can lead to plastic deformation as well as 

severe defects such as squashing and lipping or crack formation and spallation, which may ultimately lead to 

catastrophic failures. 

Hadfield manganese steel has an austenitic fcc structure and is a common material choice for railway crossings due to 

its excellent work hardening ability, large stress intensity factor, suitable strength, high toughness and good wear 

resistance. Repeated transient impact and contact stresses will harden the top surface of a Hadfield manganese crossing. 

However eventually fatigue cracks may develop both at the surface and beneath it. There are only few studies of the 

relations between the deformation microstructure and the crack propagation within the nose of Hadfield manganese 

steel crossings published in the open literature [7-8]. These studies indicate that the deformation in this steel is not 

uniform and several deformation mechanisms have been reported. A discontinuous dynamic recrystallized layer was 

observed on the worn surface of a manganese crossing in one study, whereas the aggregation of vacancy clusters due to 

deformation leading to cracking has been reported in another study. 

Previous works [9-12] on crack formation in rail steels have almost exclusively been done on normal pearlitic steel 

grades. Here it is found that the microstructure changes during service due to plastic deformation, which is important 

for crack propagation as it influences the crack path. Cracks tend to follow the direction of least resistance (minimum 

energy), which depends on the properties and the microstructure in front of the crack tip [13]. With service surface 

cracks on the rails are unavoidable, and they generally appear at an angle to the surface due to rolling contact fatigue, 

where they may continue to propagate downwards into the rail causing rail break or reverse the path returning to the 

surface causing spallation. Brouzoulis et al [14] demonstrated that cracks with shallow angles to the surface are 

expected to propagate back to the surface while deeper cracks propagate downwards, however inhomogeneity in the 

microstructure may influence the crack path [9]. 
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Mapping of rail cracks has traditionally been done by serial sectioning which is a destructive test with repeated 

grinding, polishing and imaging of the cross section in order to acquire data of the crack network in three dimensions. 

Examples include Garnham et al [12] making schematic representations of the crack geometries in pearlitic rails and 

Schilke et al [9] studying the crack growth on normal pearlitic grade R350HT rail steel. A non-destructive 3D X-ray 

computerized tomography technique was used by Jessop et al [10] and Zhou et al [11] for visualizing crack networks, 

where the crack and its side branches could be visualized with high resolution in 3D in pearlitic grade rail steels.  

Naeimi et al [15] also reconstructed squat defects at different growth stages using this technique. However, all of 

these studies on 3D crack networks were done on normal grade pearlitic steel used in straight tracks. Crack propagation 

for crossing noses in Hadfield manganese steel has not been investigated to the best of the authors’ knowledge. The 

load cases in the nose of crossings are quite different from straight tracks, with the material and microstructure behavior 

also being quite different in case of the Hadfield manganese steel; thus there may be significant differences in the 

damage mechanisms and nature of crack propagation.  

This paper characterizes the deformation and damage induced by rolling contact fatigue and impact on a Hadfield 

manganese steel crossing nose, which has been in service in the rail network for five years. An extensive crack network 

had developed in the nose, which is analyzed in detail using X-ray tomography measurements, providing 3-D mapping 

of the crack network within a fairly large volume. The deformed microstructure and its correlation to the crack network 

are studied by optical and scanning microscopy. The results are compared to pearlitic grade steel-similarities and 

differences are discussed. 

 

2. Experimental Procedure: 

The Hadfield manganese steel crossing investigated in this study was obtained from the Danish rail network and had 

been in service for five years with a traffic density of approximately 14 MGT. While some Hadfield manganese steel 

crossings are explosion hardened, this one was not. Most of the traffic was in the direction towards the nose from the 

wing rail; hence the nose was the most severely damaged component. Hadfield manganese steel include 1-1.4% C, 12-

13% Mn and addition of other alloying elements like ~0.18% Cr, 0.4-0.6% Si, 0.022-0.033% P.  

The mechanical properties of the steel were obtained from tensile tests done at room temperature and 10
-3

 s
-1

 strain rate. 

The specimen for tensile testing was obtained at a depth of 20 mm from the wheel running surface (i.e at a position 

assumed to be free from any deformation due to wheel contact) along the longitudinal direction from a wing rail. The 

specimen was cylindrical dog bone shaped with a gauge length of 10 mm and gauge diameter of 5mm.  The tensile test 

results are given in Table 1. 

        

       Table 1: Mechanical properties of undeformed Hadfield manganese steel. 

Tensile Strength Yield Strength Young’s Modulus Elongation Hardness 

~750 MPa ~365 MPa ~203 GPa  20% ~220 HV 

 

For investigations of the crack network and the deformation layers, specimens were cut from the damaged nose, as 

shown in figure 1. Vickers hardness measurements with a load of 1kg and a dwell time of 20 seconds were used to 

study the microhardness distributions in the transverse section (i.e the TD/ND section) of the nose. A grid of 

measurements were made at intervals of 2 mm along the transverse direction and 0.3 mm from the rail running surface 

along the normal direction throughout the transverse section, and from these measurements a hardness map was 

constructed.  

The microstructures were investigated using optical microscopy (OM) and scanning electron microscopy (SEM). 

Specimens for microstructural observations in OM were ground with Si-C paper ranging from grain 320 to 4000 

followed by polishing by diamond paste to 1 µm and etched with 4% Nital.  

For EBSD in the SEM, the specimen was ground and polished similarly down to1 µm and then polished with colloidal 

silica or OP-S for 40 minutes. The EBDS measurements were made using an acceleration voltage of 20 kV, aperture 

size of 60 µm and working distance of 13.3 mm. The specimen was scanned on the transverse surface in a square grid 

with a step size of 0.5µm.  
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Figure 1:  Sketches and photos showing where the specimens are taken. (a) A Hadfield manganese railway crossing 

with nose and wing rail on the track. (b) Part of Hadfield manganese steel crossing cut out from the track for the 

investigation. (c) Image with indications of the selected areas in the nose extracted for metallurgical characterization. 

ND, TD, LD represents normal direction, transverse direction and longitudinal direction respectively. 

 

For X-ray computerized tomography, 5 specimens were cut from an area of the nose which had visual fatigue spallation 

(see figure 1c), each of them having a cross section of ≈10 mm by 40 mm by 10 mm. Each of the specimens was 

scanned individually using a Zeiss Xradia Versa 520. A polychromatic X-ray beam was used with energies ranging up 

to 160 kV from a tungsten target. A total of 1601 projections were acquired during a full specimen rotation. 3D maps 

were reconstructed by a Feldkamp algorithm for cone beam reconstruction [16] to 2k×2k×2k voxel volumes with a 

voxel size of 10 µm. The crack network was segmented and visualized using Avizo 3D software. The crack networks 

from different specimens were then stitched together to provide a 3D map of the crack morphology within a 50 mm by 

40 mm by 10 mm volume of the nose. 

 

 

3. Results: 

3.1 Hardness Measurements  

Figure 2 shows the hardness map of the nose. The wheel contact surface of the rail receives the maximum deformation 

where the deformation induced hardness is very high, nearly 600 HV, whereas the undeformed material hardness is only 

220 HV. The black area at the top of the hardness map in figure 2 is caused by the lack of data due to the presence of 

cracks. Moving down from the running surface in to the material the hardness decreases as the extent of deformation 

decreases. The deformation gradient however extends quite deep into the rail, hardness values above 220 HV are 

observed as deep as 10 mm from the running surface. This is visualized in figure 3, which shows the hardness profile 

along the normal direction at three positions in the hardness map. For all three positions, a similar exponential decrease 

in hardness is observed. Compared to pearlitic grade steel, the depth of hardening is significantly higher for a Hadfield 

manganese steel nose. In normal 260 grades pearlitic steel the hardness is reported to fall off to base hardness within the 

first 3-4 mm from the running surface [9].  

 

 EBSD scanning  

Nose 

X-Ray tomography  

Optical microscopy and 

hardness measurements  

Wing Rail  

ND 

TD 

LD 

(a) (b) 

(c) 

Wing Rail  
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3.2 Optical Microscopy 

Figure 4 (a-d) shows the microstructure of the nose at different depths from the running surface. The microstructure of 

undeformed Hadfield manganese steel (figure 4d) is composed of very large equiaxed grains with an average grain size 

of 500 µm and some inclusions in the microstructure. At the rolling contact surface, deformation bands can be seen in 

the grains (figure 4a). In normal pearlitic grade steel deformation causes the grains to become elongated in the direction 

of shear. However shearing of grains is not observed in the present Hadfield manganese steel, instead deformation 

bands form inside the grains. As the contact surface receives the maximum deformation, the density of these bands is 

highest at the surface. At increasing depth from the running surface (figure 4b-4c) the density of the deformation bands 

decreases in agreement with the deformation hardening decreasing as seen in figure 3. At the contact surface the 

deformation bands cross each other within the grains whereas at deeper locations the grains mostly have deformation 

bands in a single direction. The deformation bands are inhomogeneously distributed and have a wavy appearance, with 

the orientation and direction of the bands differing from grain to grain. These deformation bands can either be 

deformation induced mechanical twins or dislocation boundaries, which the optical microscopy is not capable of 

differentiating between. In some austenitic steels, martensitic transformation also imparts additional hardening, but in 

this investigation no martensite was found.   
 

 

Figure 2: Hardness contour map of the transverse section of the nose of the Hadfield manganese crossing showing the 

gradient of deformation. The black area at the top running surface is due to lack of data points because of the presence 

of cracks. The black arrows at the top show where the hardness decrease profiles shown in figure 3 are taken.  

 

Figure 3: Decrease in hardness as a function of distance from the surface at the positions 6mm, 17 mm and 34 mm 

along the transverse direction (see arrows in figure 2). 

 

In figure 5, an optical micrograph of the crack network on the transverse surface is shown. Most of the cracks seem to 

originate from the wheel contact surface. The bigger cracks are at angles of nearly 35 degrees from the surface, 

extending around 2-3 mm into the rail and then change direction parallel to the running surface, which may lead to 

spallation. This is similar in nature to what is found in pearlitic grade steel subjected to rolling contact fatigue. There are 

some shallow angled small surface cracks as well, which also run parallel to the surface. The smaller cracks have angles 
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ranging from 15 degrees to 30 degrees to the surface. Plastic deformation plays an important role in the propagation of 

the crack. Sometimes cracks can penetrate beneath, exceed the plastically deformed layer, however in this case the 

crack is confined within the first 2-3 mm from the running surface, well within the 10 mm thick plastically deformed 

layer. Indication of crack shielding can be observed, where two cracks initiate close to each other and only one of them 

grows and shields the propagation of the other due to stress relief. In figure 5, the propagation of crack 1 might have 

shielded the growth of crack 2. Crack shielding can also be observed in case of branched cracks as we see for crack 3, 

where the main crack propagation may have been interrupted by the growth of the branched crack.  

  

  
 

Figure 4: Optical microscope images of the transverse surface of the deformed Hadfield manganese steel crossing nose 

(a) at the rolling contact surface (b) 2 mm from the surface (c) 8 mm from the surface (d) 15 mm from the surface 

(largely without deformation). 

 

Figure 5: Optical microscope image of a crack network in the transverse surface showing a wavy crack propagation 

path along with crack branching.  

(a) 

(d) (c) 

(b) 
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 3.3 X-ray Computerized Tomography 

3D X-ray computerized tomography was used to get a 3D representation of the crack morphology. X-ray tomography 

reconstructions are 3D density maps, which allow detection of cracks due to the difference in density by applying an 

intensity threshold value. Each of the specimens were individually scanned and reconstructed, after which they were 

stitched together to give an overview of the crack network in a large volume. Figure 6(a) shows the 3D tomography 

image of the volume within the crack shown in figure 5 and a 2D section from the 3D data set is shown in figure 6(b). 

The surface morphology of the crack is much more evident in the 3D image although it is hard to show in a non-3D 

media. A comparison between the optical microscopy imaging of the crack (figure 5) and the 2D tomography section of 

the same cracks in figure 6(b) illustrates that with tomography it is possible to reconstruct the crack network with good 

spatial resolution and sufficient detail even though the voxel size in the reconstructions are 10 µm. 

 

                
 

Figure 6: X-ray tomography of a volume containing the crack network shown in figure 5. (a) crack network in 3D 

revealing the complete morphology of the crack network. (It is chosen to show the steel and air as transparent and the 

interface between them in yellow which makes the cracks as well as the rail surface visible) (b) A 2D section taken 

from the data in figure (a) at a location close to shown in figure 5. 
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Figure 7: X-ray tomography of the crack network from one of the specimens visualized by 2D slices at different 

locations within 10 mm along the running direction.  

Five adjacent specimens were cut out from the area shown in figure 1, which contained some spallation. Figure 7(a-e) 

shows 2D slices from the tomographic reconstruction for one of the five specimens. The different images are from 

different positions along the longitudinal direction within a length of 10 mm. From these images we can identify a big 

crack originating from the surface and running throughout the entire cross section of the specimen. The crack network is 

extensive and continuous through all the five scanned specimens, with different cracks and branches interacting with 

each other. These 2D images clearly show the need for a large overview in order to comprehend the crack network. For 

example, in figure 7(b–d) we see a sub-surface crack present, which is not evident in figure 7a or 7e. The crack shape 

changes continuously with location and may have connections to the surface at other locations, which are not evident 

from 2D slices. 

Figure 8 shows the stitched 3-D tomography images of the crack network obtained from the five adjacent specimens. 

The samples are aligned next to each other separated by the width of the cutting blade. The steel and air are represented 

as being transparent and the colored area is the interface between them, making the crack network as well as the 

crossing nose surface visible. The figure shows the extent and severity of cracks beneath the surface of the crossing 

nose, also giving an overview of the spallation and the cracking related to it. At higher magnification the cracks are 

rough with ridges which are typical for rolling contact fatigue. Apart from the larger surface crack, the 3D scans shows 

that some smaller subsurface cracks are located at various depths. Within the nose, many of the surface and subsurface 

cracks are interconnected, whereas some are propagating individually. Most of the cracks have a definite direction of 

propagation. The main crack network seen here continues throughout the 50 mm of the running direction, it is over 10 

mm in length in the transverse direction and extends up to a depth of 3 mm from the running surface.  
 

1 cm 

(e) 
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Figure 8: 3-D tomographic representation of the crack network in a volume of size 50 mm by 40 mm by 10 mm. The 

surface of the rail including crack openings is made visible by performing a global segmentation thresholding. The steel 

and air are transparent and the interface between them is yellow which makes the cracks as well as the rail surface 

visible. (a) Top view of the nose showing the running surface with evident surface cracks and spallation. (b) The crack 

network as seen from within the crossing nose. (c) Transverse view of the crack network.  

 

3.4 EBSD 

Figure 9 shows maps of the microstructure near two of the cracks, close to the crack tips, obtained by EBSD. The maps 

show high density of mechanical twins (colored in white) and also deformation induced dislocation boundaries (colored 

in black). The density of these bands is not uniform through the grains and the direction of these bands also varies for 

different grains. Some orientations are more favorable for twin formation and have multiple twins whereas other grains 

are totally free from any deformation twins, consisting only of dislocation boundaries. All the deformation induced 

dislocation boundaries have only low (< 15 ˚) misorientation even at the severe deformation near the surface. 
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Figure 9: Maps obtained by EBSD showing the distribution of crystallographic orientations near two of the cracks 

within the nose. The colors correspond to the crystallographic orientation along the specimen surface normal direction, 

the white bands are deformation twins and the black bands are dislocation boundaries. (a) & (b) the matrix around the 

two cracks, (c) & (d) the area near the cracks selected for detailed analysis. 
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Figure 10: The frequency distribution of misorientation angles across boundaries within the area near cracks (see figure 

9 c and d) and the matrix away from the crack.  

 

A comparison of misorientations in areas near the cracks and in the matrix away from them reveal that the matrix has a 

significantly higher twinning density compared to the areas near the cracks, see figure 10. Thus the cracks tend to 

propagate through regions, which are free from twinning resulting into a wavy crack path. The crack network is mostly 

transgranular with only about 35% of the crack length along the grain boundaries (see Table 2) and it passes through 

grains of many different crystallographic orientations. There appears to be no preference for the crack to pass through 

any specific orientation, other than grains with twins are less likely to be cracked. 

Table 2: Analysis of crack path, the percentage of crack length passing through grain interiors or along grain boundaries 

is given. Crack 1 is from figure 9c and crack 2 is from figure 9d.  

Crack Grain interior Grain boundary 

1 65.33 % 34.66 % 

2 62.31 % 37.68 %  

 

4. Discussion 

Rail-wheel contact causes both normal and shear strains in the rails due to rolling and sliding at the contact surface, 

which induces hardening at the surface. When the hardening reaches saturation, the surface becomes brittle and fatigue 

cracks start appearing leading to failure. The work hardening behavior is generally characterized by the strain hardening 

exponent (n); the greater the value of n, the greater is the work hardening. A hardening exponent of n~0.4 was obtained 

from tensile testing of this Hadfield manganese steel whereas the exponent is ~0.2 for pearlitic grade steel also used for 

crossings. In pearlitic steels the microstructure becomes aligned in the shear strain direction at high plastic deformation. 

The two phase microstructure of ferrite and cementite in the pearlitic steel plays a role in the deformation mechanism 

and eventually crack initiation and propagation. The ferrite generally gets strained in the direction of the plastic 

deformation and cracks generally form along the proeutectoid ferrite grain boundaries as they are the soft part of the 

microstructure and strain harden the most [17-18]. Cracks tend to follow the weakest link in the microstructure, which 

causes waviness in the crack path. Beside the soft ferrite, inclusions, slags and other defects are weak links in the 

microstructure, which can lead to a change in direction of the crack or in many cases the formation of branches.  

The deformation mechanism of Hadfield manganese steel is quite different from pearlitic grade rail steel. Although 

containing inclusions, the microstructure of the Hadfield manganese steels is more homogenous, being single phase 

austenite. In Hadfield manganese steel, deformation occurs by both dislocation and twinning mechanisms while for 

pearlitic grades it is only by dislocations. Apart from dislocation movements, generally the extra work hardening is 

associated with the low stacking fault energy of Hadfield manganese steels, which is favorable for twinning 

deformation [19-20]. Another reason contributing to the extra hardening in Hadfield manganese steel may be 

rearrangement of the carbon atoms from octahedral to tetrahedral sites [19]. Therefore, the deformation mechanism of 
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Hadfield manganese steel can be attributed to interactions between different slip systems, dislocations and twins [21], 

interstitial carbon atoms and dislocations [22-23], and between twinning systems [24]. 

Optical and EBSD imaging in this work show the deformation of the austenite grains in Hadfield manganese steel is not 

uniform. Depending on the stress direction and orientation of the grains, some grains are more favorable for twinning 

whereas other grains only have deformation induced dislocation substructures. Even within the same grain different 

substructures can be present. This non-uniform deformation of the grains can lead to local stress concentrations and 

crack formation in Hadfield manganese steel. Once a crack forms it seems to be confined within the plastically 

deformed layer and follows the direction of plastic flow. The crack has a shallow angle to the surface, and after a certain 

distance of propagation within the material, it changes direction and runs parallel to the surface. Crack branching is also 

evident, as well as indications of crack shielding. The crack network is found to preferentially propagate through 

regions free from twinning as that is relatively softer compared to twinned regions. 

The crack propagation morphology found in a Hadfield manganese steel crossing in this work is similar to what can be 

found in pearlitic grade steel used in normal tracks. Plastic deformation occurs leading to crack formation in both cases. 

The crack originates mostly at the surface where the loads are highest. After initiation, most of the cracks are confined 

within the plastically deformed layer, following the weakest links in the microstructures, ferrite grain boundaries in case 

of pearlite and softer non-twinned grains in Hadfield manganese steel. Although the mechanism of plastic deformation 

is different in the two types of material, the crack network developed in both of them seems to be more or less 

comparable. The observed crack network passes through several grains and most cracks have a shallow angle of origin 

propagating back to the surface, which is generally the same behavior seen in pearlite. 

5. Conclusion: 

The deformation and damage induced during service on the nose of a non-explosion hardened Hadfield manganese steel 

crossing has been investigated in this paper. The direction of traffic from the wing rail to the crossing nose had caused 

high impact stresses from the train wheels, leading to high deformation and severe crack formation of the crossing nose. 

The running surface has a very high deformation induced hardness of around 600 HV, with a hardness profile extending 

to a depth of 10 mm. A high density of the deformation induced twins and dislocation boundaries in the austenitic 

grains was observed near the surface with decreasing density away from the surface related to the decrease in hardness. 

The deformed microstructure of the Hadfield manganese steel contains a high density of deformation twins and 

dislocation boundaries but no shearing of grains are observed. EBSD imaging of the microstructure near the cracks 

indicate the crack propagation is predominately transgranular. The cracks mostly follow a path free from the twins 

through relatively soft grains causing the waviness in the crack path.  

An extensive crack network was mapped in the damaged crossing nose using 3D X-ray tomography, capable of non-

destructive scans accurately detecting the cracks in large sized specimens. Both surface and subsurface cracks were 

detected, some of them interconnecting. While Hadfield manganese steel has very different deformation mechanisms 

compared to normal pearilitic rail steels, the crack morphology is similar to cracks observed in the pearlitic grades. The 

crack network is confined in top layers of the plastically deformed rail with surface cracks originating at shallow angles 

to the surface and after reaching a certain depth of 2-3 mm running parallel to the contact surface.  
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Abstract: Rail wheel contact at switches and crossings (S&Cs) induces impact stresses along with normal and shear 

contact stresses, resulting in plastic deformation and eventually crack formation. Damaged and deformed wing rails of a 

manganese steel crossing are studied. This includes a characterization of the microstructure, hardness and 3D crack 

network. The surface of the rail receives the maximum deformation resulting in a hardened top layer. The deformation 

is manifested in a high density of twins and dislocation boundaries in the microstructure. A complex crack network is 

revealed in high resolution by X-ray tomography. 

 

Keywords: Switches and crossings (S&Cs); deformation; 3D X-Ray tomography; 2D & 3D crack network; rolling 
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1. Introduction 

Switches and crossings (S&Cs) are more susceptible to damage compared to normal tracks because of their moving 

parts and complex geometry. Therefore, poorly maintained S&Cs encounter frequent failures and large maintenance 

cost. The direction of traffic plays an important role in the damage evolving in the crossing. When a wheel passes from 

nose to wing rail or vice versa, the component suffers from high impact stresses as well as normal and rolling contact 

stresses causing severe damage like fatigue cracks and spallation if not maintained in time [1].  

Pearlitic steels are most commonly used in normal tracks as well as crossings. However in recent years manganese steel 

has been the preferred choice for crossings because of superior mechanical properties. Most studies on deformation and 

cracks in rail steels are done for pearlitic steel taken from normal tracks [2-8]. Not much work has been published in the 

literature on the damage and degradation behaviour of manganese steels used in crossings. In a previous work [9] we 

investigated the nose of a manganese steel crossing which was in service in the Danish rail network for five years. The 

direction of traffic was mostly towards the nose and hence the nose was severely damaged with cracking and visual 

spallation. A complex crack network had developed in the nose, which is similar to crack networks developed in 

pearlitic steels from straight track although the microstructural characteristics and deformation mode in the two steels 

are very different. It was obvious that the nose was heavily deformed due to rolling contact stresses, normal stresses as 

well as impact loadings. Deformation causes formation of twins and dislocation boundaries in the austenitic grains near 

the surface but no shearing of grains were observed.  

The wing rails can also be heavily damaged when the direction of traffic is from the nose to the wing rail. In this case, 

the wing rail will suffer from impact loadings due to discontinuity in rail wheel contact at the transition zone. It is thus 

of interest to compare the damage and deformation of a wing rail to the nose rail. This is the main aim of the present 

work in which the damage and deformation of a manganese steel crossing has been investigated, focusing on the wing 

rails. The crossing investigated in this work was in service in the Danish rail network for 13 years with a yearly traffic 

density of 14 MGT (million tons) where more than 90 %  of the traffic was from the nose to the wing rail in straight 

track; hence one of the wing rails was severely damaged by impacts and contained cracks. The experimental techniques 

used for the present investigation are the same as those used in the previous study for the crossing nose, namely 

characterization with optical microscopy and hardness measurements, as well as X-ray tomography for 3D mapping of 

the crack network. With X-ray tomography cracks can be mapped non-destructively and with good resolution compared 

to the traditional method of repeated grinding, polishing and imaging of the crack cross section by optical microscopy 

[9]. 

 

2. Experimental Procedure  

The two wing rails of a manganese steel crossing were studied. Although nowadays most of the manganese steel 

crossings are explosion hardened for better mechanical properties, this one was not explosion hardened. Visual 

inspection showed the wing rails were heavily deformed and damaged, and the presence of repair welds was evident on 
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one of the wing rails. A schematic diagram of a switch and crossing (S&C) assembly is given in Figure 1a and 1b, 

which shows the position of the switch blades when the train is moving on to the diverging track or straight track 

respectively. Depending on the direction of the traffic, one of the wing rails or the nose will receive heavy impact. 

Figure 1c shows a schematic diagram of the crossing panel indicating the regions from where the parts of the crossing 

in Figure 1d and 1e are cut from.  

Small samples for investigation were cut from the wing rails. Wing rail 2 (as well as the nose) had received extensive 

repair welding, no samples were taken from the welded sections. The micro hardness measurements on the transverse 

surface (TD, ND) of the wing rails at five different locations (as shown by roman numbers in Figure 1d and 1e) were 

conducted using a Vickers hardness measurement tester with a load of 1 kg and dwell time of 20 seconds. The hardness 

map was constructed from a series of measurements, which were done from the rail wheel contact surface down to a 

depth of 10 mm with a step size of 0.3 mm and 1 mm along the normal and the transverse direction, respectively. 

The deformed microstructure of the transverse section was studied using optical microscopy (OM). The samples were 

ground with Si-C paper ranging from grain 220 to 4000 then polished by diamond paste down to 1 µm and etched with 

Nital.  

The crack network developed in the wing rail was studied by X-ray computerized tomography. For these measurements, 

samples having a cross section of 10 mm by 10 mm and 40 mm in length were cut out from the wing rail. A Zeiss 

Xradia Versa 520 was used for the measurements. A polychromatic X-ray beam with energies ranging up to 160 kV 

from a tungsten target was used. A total of 1601 projections were acquired during a full sample rotation. 3D maps were 

reconstructed by a standard filtered back-projection method to 2k×2k×2k voxel volumes with each voxel of 10 µm
3
 

size. The crack network was segmented and visualized by using the Avizo 3D software. 

 

3. Results  

3.1 Hardness 

Figure 2 shows the hardness maps of the two wing rails at different locations. The positions (i), (iii) and (iv) belong to 

wing rail 1 and (ii) and (v) to wing rail 2, which had been repair welded. As shown, the hardness measurements were 

made on wing rail 2 at locations away from the weld. The figures show that the hardness gradient is different at 

different locations, due to the difference in rail wheel contact at those places. In positions (ii), (iv) and (v), the 

deformation hardening is most severe at the top layer showing a high hardness of more than 600 Hv. The hardness maps 

from locations (i) and (iii) show that these locations are comparatively less deformed. The extent of deformation varies 

due to difference in direction of traffic (diverging track or straight track). Below the wheel running surface the hardness 

values decrease, indicating less deformation at larger depths, with the undeformed region having a base hardness of 

around 220 Hv. Cracks were found at region (ii), although the hardness as well as depth of hardening are higher at 

region (iv) and (v). No cracks are found in these very hard regions; (iv) and (v).  

Region (i) has the least deformation and maintains the original rail profile shape, whereas in the other cases, the rail 

profile changes with deformation. With increased deformation, the depression of the surface profile (as in Figure 2b, 2d 

and 2e) compared to the original profile gets more severe. The work hardened layer is observed to extend to 10 mm 

below the surface. This depth of deformation in the investigated wing rails is found to be nearly the same as found in 

case of the manganese nose rail studied previously [9]. Although the previously studied crossing was fairly a new one 

(5 years in service) compared to the crossing in the present study (13 years in service), the yearly traffic density through 

both the switches was the same around 14MGT. The depth of hardening was the same in both cases. Similar depth of 

hardening is reported for manganese crossing experiencing 130 MGT loads during service in another study [10]. Depth 

of hardening by other deformation mechanisms like explosion hardening can be much higher up to 25 mm from the 

surface [11]. The depth of hardening from wheel/rail contact is significantly higher in manganese grade crossings as 

compared to normal pearlite grade. In literature it has been reported that in pearlitic grade the depth of hardening 

extends to only 3-5 mm from the wheel running surface [12-13].  
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Figure 1: Schematic diagram of a railway switch and crossing showing the position of switch rails when the train 

moves on to the (a) diverging track and (b) straight track. (c) Schematic diagram of only the crossing panel showing the 

different components, with (d) and (e) showing the parts of the manganese steel crossing cut out for investigations. The 

roman numbers within the figure (in black) indicate the locations of hardness measurements. ND, TD, LD represents 

normal direction, transverse direction and longitudinal direction respectively. 

3.2 Microstructure 

The microstructure is austenitic in manganese steel. The grain size is coarse, ranging up to 500 µm, and the grains do 

not deform by shearing as in pearlitic rails. Figure 3(a-d) shows optical micrographs of the deformed wing rail at 

different depths from the wheel running surface. At the rolling contact surface, Figure 3a, a large number of bands can 

be seen crossing each other within the grains. The deformation in manganese steels is manifested in the form of these 

bands and not by the usual elongation of grains as seen in pearlite. The surface receives the maximum deformation and 

hence the density of the bands is higher here and decreases with depth from the surface (Figures 3a-d). At around 12 

mm in depth (Figure 3d) the microstructure is almost free from deformation bands. The deformation bands are 

inhomogeneously distributed with a wavy appearance and the direction of the bands varies from one grain to another. 

From optical microcopy it is not possible to reveal whether the deformation bands are mechanical twins or dislocation 

boundaries. The deformed microstructure in the wing rail was found to be similar to the manganese nose rail 

investigated previously [9]. 
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Figure 2: Hardness contour maps of the wing rails at different locations: (a) Wing rail 1 position i, (b) Wing rail 2 

position ii, (c) Wing rail 1 position iii, (d) Wing rail 1 position iv and (e) Wing rail 2 position v.  

  

  
 

Figure 3: Optical microscopy images of the transverse section (a) at the rolling contact surface, (b) at 6 mm depth from 

the surface, (c) at 10 mm from the surface, and (d) at 12 mm from the surface, where the base hardness has been 

reached. 

3.3 X-ray Computerized Tomography 

Two samples with size 10 mm by 10 mm by 40 mm from wing rail 2 (see Figure 1e) were characterized by X-ray 

tomography. Figure 4(a-d) shows 2D slices from one of the 3D tomographic reconstructions. Tomographical 

reconstructions are 3D density maps, which allow detection of even small cracks due. Figure 4 shows a very long 

subsurface crack parallel to the running surface across the entire cross section of the specimen. However, the full 3D 

reconstruction also reveals the presence of cracks in contact with the surface. While most of the cracks run parallel to 

the running surface, the crack network is extensive and continuous. 

Figure 5 shows the 3D reconstructions of another crack network in sample 2. In this figure, the steel is represented as 

(e) 

(a) 

(d) 

(b) 

(c) 
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transparent and the blue colored areas represent air, including air inside the cracks, thereby making the crack network 

and running surface visible. The white box represents the volume of the wing rail which has been scanned. The interior 

crack surface has a rough and wavy appearance with ridges which are quite similar to the failure surfaces often seen in 

rolling contact fatigue. Figure 5 also reveals that the crack network is spreading quite deep into the rail, with seemingly 

random crack propagation. Most of the cracks move parallel to the running surface, as apparent from Figure 4, but there 

is also some diverging downward branching cracks which could cause rail break in the long run. The wing rail contains 

both surface and sub surface cracks, where some are interconnected and some propagate individually.  

 

  

  
 

Figure 4: 2D slices showing the crack network within the wing rail at different locations along the longitudinal 

direction (a) at the trasverse cut (0 mm), (b) 10 mm from the transverse cut, (c) 18 mm from the transverse cut and (d) 

29 mm from transverse cut. 
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Figure 5: (a and b) 3-D tomographic representations of the crack network within the wing rail of a manganese crossing 

seen from different directions. The steel is represented as transparent and the blue coloured area represent air, making 

the crack network and running surface visible.  

4. Discussion 

The damage and deformation in the manganese wing rail is found to be quite similar to that in the manganese nose rail 

studied previously [9]. Although the geometry of a wing rail is different from the nose, the microstructural 

characteristics are similar. The deformation is manifested in the formation of a high density of deformation bands. The 

depth of hardening in both cases reached as high as 10 mm from the rail running surface. In case of the nose rail, cracks 

were found in the highly deformed top surface layers having high hardness of 600 Hv. In this study it was found that 

locations on the wing rail having very high hardness, position iv and v, were crack free whereas cracks were mostly 

found in regions of comparatively less hardness, position ii. Therefore high deformation cannot be the only reason for 

crack formation in switches and crossings. Rail wheel interaction induces both normal and shear contact stresses when a 

train moves over a crossing, however the change of rolling planes from wing rail to nose, or vice versa, introduces high 

impact stresses as well. Most likely it is the impact from the wheel that is the reason for crack formation. 

The two-phase microstructure in a pearlite grade material, consisting of ferrite and cementite, affects the deformation 

mechanism and eventually the crack initiation and propagation [18], where cracks tend to propagate through the softer 

ferrite phase, resulting in a wavy appearance. Figure 6 shows a rolling contact fatigue crack in pearlite grade steel from 

a straight track with a wavy crack propagation that passes through several grains. Figure 7 shows an optical micrograph 

of a subsurface crack in the wing rail of the manganese steel crossing investigated in this work having the same wavy 

appearance intersecting several grains with several crack branches and a seemingly random crack propagation. This is 

in correspondence to the cracks found in a manganese steel crossing nose studied previously in [9], where a more 

detailed study showed the cracks avoided the twinned regions (harder areas of the matrix) and were mostly 

transgranular giving the wavy appearance by following the weakest link in the microstructure. Therefore, although the 

plastic deformation is caused by slip in pearlitic grade without twinning, and for manganese steel deformation is from 

both dislocation motion as well as twinning, the crack networks have a similar appearance for pearlitic steel straight 

tracks and manganese steel crossings.  

 

5. Conclusions  

The deformation and degradation of the wing rails of a damaged non explosion hardened manganese steel crossing, 

which has been in service in the Danish rail network, was studied. More than 90% of the traffic through this crossing 

was in straight track, from the nose to the wing rails and hence one of the wing rails is severely damaged from impacts 

and cracks are present. Heavy deformation is evident with the formation of a high density of deformation bands at the 

running surface. The hardening reaches to a depth around 10 mm from the running surface, with the surface having a 

very high hardness of above 600 Hv which gradually drops to a base hardness of 220 Hv. Cracks were not found at the 

locations with highest hardness, thus it is likely that the wheel impact causes the cracks and not the deformation. The 

nondestructive 3D mapping of the crack network using X-ray tomography reveals the crack network and its minute 

branches with high resolution. The presence of both surface and sub surface cracks is evident in the wing rail. Though 

the material and the deformation mechanism of the manganese steel is quite different from that of normal pearlitic grade 

steel, the crack network seems to be similar to rolling contact fatigue cracks found in pearlitic grade steel used in 

(a) (b) 
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normal straight tracks. The cracks tend to be concentrated mostly within the plastically deformed layer and have a wavy 

surface appearance which is common for rolling contact fatigue cracks. 

 

  
 

Figure 6: Optical micrograph of a rolling contact fatigue 

crack in a rail from straight track of pearlitic steel [19]. 

 

Figure 7: Optical micrograph of a rolling contact fatigue 

crack in the wing rail of manganese steel crossing. 
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Abstract. Switches and crossings are an integral part of any railway network. Wear plastic 

deformation and rolling contact fatigue due to repeated passage of trains cause severe damage 

leading to the formation of surface and sub-surface cracks which finally may result in rail 

failure. Knowledge of the internal stress distribution adds to the understanding of crack 

propagation and may thus help to prevent catastrophic rail failures. In this work, the residual 

strains inside the bulk of a damaged nose of a manganese railway crossing which was in 

service for five years has been investigated by using differential aperture synchrotron X-ray 

diffraction. The main purpose of this paper is to describe how this method allows non-

destructive measurement of residual strains in selected local volumes in the bulk of the rail. 

Measurements were conducted on the transverse surface at a position about 6.5 mm from the 

rail running surface of the crossing nose. It was observed that significant compressive residual 

strains along the train running direction exist in the tested sample. 

1.  Introduction 

Switches and crossings (S&Cs) are of great importance for any railway network as they allow trains to 

be directed from one track to another. The geometry, as well as the loading situations, in the nose of a 

crossing (see figure 1) differs from that of normal rails. It has been observed that the majority of the 

track problems are associated with switches and crossings which lead to higher maintenance costs than 

for any other part of the track. There have been studies performed on the deformation behavior of the 

crossing nose [1-5], which clearly indicate that very high contact stress occurs at the rail/wheel contact 

surface due to repeated passage of wheels. The stress levels are higher than the yield strength of the 

material causing plastic deformation of the material. The nose rail undergoes contact, friction, and 

impact stresses, which leads to wear and rolling contact fatigue. Many defects appear including 

surface and subsurface cracks. The stress distribution (of both contact and residual stresses) plays an 

important role in generation of cracks in the material which may lead to failure. Residual stresses are 

generated in a rail during manufacturing as well as while in service. There are quite a few studies on 

measurement of residual stresses in normal rail heads in literatures, including both modelling and 

experimental work [6-15]. Mostly tensile residual stresses are present in the rail head after the 
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straightening process during manufacturing, however in service the state of stress changes due to 

variable loading situations and generate a complex stress field.  

There are different experimental techniques to measure the residual stress in any material. The non-

destructive methods include use of X-rays or neutrons. However, ordinary X-rays are limited by 

intensity and penetration depth. This means they typically give a mean stress averaged over the 

penetration depth within a small area. In recent years, neutron diffraction has been used to determine 

residual stresses in the rail head [8-11]. Neutrons have significantly more penetration depth than 

ordinary X-rays, but due to relative low intensity only stresses averaged over fairly large volumes in 

the mm
3
-cm

3
 range can be determined. Alternatively, with the advent of high energy synchrotron 

radiation, local residual stresses can be determined in the bulk of the samples. Measurements of 

residual stresses on worn rails [12-14] as well as roller-straightened new rail heads [15] using 

synchrotron X-Ray diffraction method have been published.  

The novelty of the present work is that we focus on stresses in the heavily loaded nose of an S&C 

and that the selected S&C is made of manganese steel optimized to improve wear and fatigue 

resistance compared to conventional pearlitic steel. Moreover the manufacturing process of manganese 

steel railway crossings is different from normal rails. It is cast as a single piece and then explosion 

hardened.  

The purpose of this work is to apply synchrotron X-ray measurements to the nose of a rail crossing, 

and to determine the depth profiles of residual strains. The crossing rail sample used in the experiment 

was taken from the rail network which was in service for five years on a major railway line in 

Denmark with both freight and passenger trains. 

2.  Experimental Procedure 

The residual strains in the nose of manganese steel crossing were investigated in this study. Visual 

inspection of the nose revealed severe damage with cracks and spallation. The chemical composition 

and mechanical properties of the steel are given in table 1 and table 2, respectively. The sampling area 

of the nose for synchrotron measurements is described in figure 1. The slice for the measurement was 

5mm thick and strain measurements were made on the transverse surface at various depths along the 

longitudinal direction. To avoid mechanical strains induced during grinding and cutting of the slice, 

the free surface was electropolished before measurements.  

Table 1. Chemical composition of the manganese steel (wt%). 

C Mn Si Cr P S Fe 

1.14 12.81 0.26 0.12 0.05 0.05 balance 

     

Table 2. Mechanical properties of the manganese steel. 

Tensile strength Yield Strength Elongation Hardness 

~750 MPa ~365 MPa ~20% ~220 HV 
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Figure 1. Nose specimen used for the synchrotron strain measurement: (a) A crossing (with 

nose and wingrail) (b) Part of a manganese steel crossing cut out from the track for 

investigation, (c) Final sampling slice for strain measurements showing the normal direction 

(ND), transverse direction (TD) and longitudinal direction (LD). The black cross marks the 

position for synchrotron measurement. (d) Sketch showing the experimental set-up for 

synchrotron measurement. 

  

Synchrotron measurements were conducted on the transverse section at a position about 6.5 mm 

from the rail running surface of the crossing nose (see figure 1d) at beam line 34-ID-E at the 

Advanced Photon Source (APS), Argonne National Laboratory [16].  

A focused polychromatic beam was first used to determine the orientations of the matrix grains. 

The use of non-dispersive Kirkpatrick-Baez (K-B) focusing mirrors helps in focusing of the beam on 

to the specimen. The resulting microbeam had a full-width half maximum of ~0.5 µm. The X-ray 

microbeam scanned the specimen which was mounted on a holder at an inclination of 45º to the 

incoming beam (see figure 1d). The Laue diffraction patterns from the polychromatic scans were 

recorded on an area detector mounted in 90º reflection geometry 510.3 mm above the specimen. The 

diffraction patterns from different depths were obtained by the use of a Pt-wire of 100 µm diameter as 

a differential aperture. The Laue patterns at each depth were reconstructed by the use of the LaueGo 

software [17] available at APS beamline 34-ID-E. The patterns were indexed, from which the (hkl) 

indices of individual spots as well as their corresponding X-ray energies were determined. From these 

data, a spot with high intensity and its corresponding plane parallel to the specimen surface was 

selected for monochromatic energy scan to determine the absolute lattice spacing. Thereby the strain 

(in one direction) was measured as: 

𝜀 =
𝑑−𝑑0

𝑑0
                                                                       (1) 

where d is the lattice spacing of the sample and d0 is the lattice spacing of the sample in the stress-free 

state. For the present study, d0 was calculated based on the lattice parameter determined at the base of 

the nose (at a depth of 20 mm from the running surface) using  laboratory X-ray measurements 

Nose 

Wingrail  
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assuming that, apart from manufacturing stresses, this place is free  from stresses induced due to wheel 

rail interaction. These measurements were done at Department of Materials and Manufacturing 

Technology at Chalmers University of Technology, Sweden.  Chromium source (X- Ray wavelength λ 

= 2.2897 Å) was used. The lattice parameter determined from the (220) peak at a diffraction angle of 

126.85º is a = 3.621 Å which is used as reference d0. 

3.  Results and Discussion 

The crystallographic orientations measured using polychromatic beam differential aperture X-ray 

diffraction (DAXM) at four locations, 0.5 mm apart, are shown in figure 2. The grain orientations 

within depth of 0-50 µm from the measurement surface are shown. The result shows that the grain at 

position of 6.5 mm from the running surface has the least orientation spread (see figure 2b) and the 

highest indexed percentage. This grain is therefore chosen for the monochromatic energy scan. 

 

 

Figure 2. Grain orientation at different depths and different locations on the transverse surface 

(a) and their corresponding (001) pole figure (b). The grain selected for monochromatic energy 

scan for determination of lattice absolute spacing is marked. The black line in (a) marks roughly 

the measurement surface. The colors in (a) and (b) are corresponding to the crystallographic 

orientations.  

 

 

Figure 3. (a) Indexing of a polychromatic beam Laue diffraction patterns, (b) Intensity 

distributions as a function of diffraction vector Q at each depth. 

Figure 3a shows an indexed Laue pattern with the (hkl) indices obtained at one of the depths from 

polychromatic beam diffraction for the selected grain. Based on this diffraction pattern the spot (517) 

was selected for the monochromatic energy scan as the intensity of this spot is relatively high and the 
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corresponding X-Ray energy is high about 21 keV. The normal of the chosen (517) plane is about 2º 

away from sample normal direction, which is marked by the dashed cross in figure 3a. 

 From the monochromatic energy scan, the diffraction images around the (517) spot at each energy 

step for each depth are reconstructed. As each energy corresponds to a specific diffraction vector Q (Q 

= 2π/d), the integrated intensity of each diffraction image as a function of the diffraction vector can be 

determined at all X-ray penetrated depths (see figure 3b). A few examples of the Q distribution at 

different depths are given in figure 4a, which clearly shows that the strain distribution varies within 

the sample from tensile to compressive strains. The dashed line marks the Q value for d0 of the (517) 

crystallographic plane. A shift to the right relative to the dashed line indicates compressive strains and 

vice versa for tensile strains. At each depth, the Q distribution was fitted using a Gaussian function 

and the center of the distribution, Qc was used to determine the crystallographic plane spacing, d.  

   

Figure 4. (a) Intensity variation as a function of Q at different depths within the sample (The 

dashed line marks the Q value for d0 of the (517) crystallographic plane). (b) The residual strain 

along LD as a function of depth along the incoming X-ray. 

  

Figure 4b shows the elastic strain (component which is normal to the transverse surface of the 

sample) developed in the nose crossing at different depths from the measuring surface. It can be seen 

that in the bulk of the material there are residual compressive strains in the range of 2×10
-4

 up to 

4.11×10
-4

.  

Whereas theoretically the out of plane normal strain at a free surface is zero, tensile strains are seen 

within the first 3 µm from the free surface in figure 4b. Two possible explanations for this tensile 

strain are: i) the reference d0 is not strain free. It is very likely that the grains even at depth of 20 mm 

below the running surface are also under compression, thus the dashed line in figure 4a should be 

shifted to the left, and the curve in figure 4b should move down towards more compressive strain. ii) 

Due to a small experimental error, the free surface may be wrongly identified by about 2-3 µm from 

the currently assumed position. If the measurement surface in figure 4b (i.e. 0 point) changes about 2-

3 µm to the right, the tensile strain at the measurement surface is reduced. Irrespective of this, we can 

conclude the bulk volume is under compressive residual strains.  

The problem of railway damage and failure can be caused by multiple mechanisms but it is evident 

that interaction between residual stresses and the defects (cracks etc.) can lead to severe problems. 

Generally compressive stresses are beneficial because they are supposed to inhibit crack propagation 

whereas tensile stresses are conducive for crack propagation. Although we find the longitudinal 

stresses are compressive, the normal or the transverse component of the stress may have a tensile 

component which could lead to crack evolution and failure. Also, generally the presence of a 

significant compressive stress is counterbalanced by a tension zone underneath. A complete map of all 

the components of the stresses in the three directions at different depths from the running surface 

would be helpful to understand the interaction of residual stress with damage mechanisms. This will 

(a) (b) 
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be investigated in future work. Also the synchrotron data will be compared with those measured using 

standard laboratory X-rays. 

4.  Conclusion 

The residual strain distribution within a 5 mm thick slice of the nose of a manganese railway crossing 

was analyzed in the longitudinal direction at a distance of 6.5 mm from the rail surface. To our 

knowledge this is the first time synchrotron radiation was employed to measure the strains in a nose of 

of a manganese railway crossing. It was found that compressive strains exist along the longitudinal 

direction (with some small oscillations in the values) even at a depth of 6.5 mm from the wheel 

contact surface. Rail wheel interaction at the nose of the crossing induces severe plastic deformation of 

the nose, the effect of which is thus evident even at a depth of 6.5 mm from the contact surface.     
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Abstract: 

Several X-ray methods exist for determination of residual strains in metallic components. In this work we have used 

differential aperture synchrotron X-ray diffraction to map the local distribution of residual strains and the standard sin
2
ψ 

vs d laboratory X-ray method to determine macroscopic residual strains. The nose of a worn manganese steel railway 

crossing was investigated. The laboratory X-ray measurements revealed significant residual strains are induced in the 

longitudinal and transverse directions on the rail running surface due rail wheel contact, while the synchrotron X-ray 

measurements documented that high local compressive residual strains exist at depths as deep as 15 mm from the 

running surface. 

 

Introduction: 

The presence of residual stresses in materials and components are often overlooked in spite of they may be significant 

and affect the mechanical properties both in a positive and negative way. As an example shot peening may be used to 

introduce compressive residual stresses in the surface layers to improve crack resistance [1]. While on the contrary 

tensile stresses of half or more of the yield stresses may upset engineering design and contribute to the need for 

significant safety factors in the design in many components [2]. 

A main reason why residual stresses are often ignored is that it is not so straight forward to measure them 

experimentally. The available techniques may be classified into two groups: destructive and nondestructive ones. The 

destructive ones include hole drilling, sectioning and the more recently developed contour method [3].  The destructive 

nature of these methods is problematic, making them prohibited for testing critical components in operation and for 

following the evolution in residual stresses over time. The non-destructive methods include X-ray and neutron 

diffraction as well as ultrasonic and magnetic methods [4]. The ordinary X-ray methods have limited penetration depth 

while the neutrons can penetrate significantly deeper but suffer from poor spatial resolution [5].  X-rays from high 

energy synchrotron sources allow both high penetration power and good spatial resolution [6-7]. Drawbacks here are 

the limited access to relevant synchrotron sources and the restrictions on specimen/component size that can be 

investigated here. The non-destructive ultrasonic and magnetic methods suffer from being less direct in nature and the 

results thus need interpretations based on assumptions. For an excellent overview of various methods see [4].  

The present work deals with residual stresses in a rail component; namely the nose of a manganese steel railway 

crossing which has been in service for five years in the Danish rail network and is heavily damaged. For rail 

components, in particular the fatigue life and the dimensional stability are affected by the presence of residual stresses. 

Both these properties are critical for safe operation of the railway. Whereas many experimental and theoretical studies 

have been published on residual stresses on conventional pearlitic rail steel of straight rails [8-13], to the authors’ best 

knowledge residual stresses in used noses made of the more complex manganese steel have not been reported before. 

The nose is in particular interesting as it is exposed to both contact friction and impact stresses which lead to more 

severe wear and rolling contact fatigue than straight rail [14-15]. Furthermore preliminary measurements indicate that 

significant stresses are present even deep in the nose [16]. 

In the present work, we apply two X-ray techniques to quantify the residual stresses in the selected nose. We use the 

conventional laboratory X-ray sin
2
ψ vs d method to determine the macro (Type I) stresses along the running surface and 

perpendicular to it while we use differential aperture synchrotron X-ray diffraction to determine the local micro (Type 

II/Type III) strains along the longitudinal direction (running direction) at four different depths down to 15 mm from the 

rail surface. Besides the information on the magnitude of the residual stresses in the worn nose, the potentials and 

limitations of the two X-ray methods for the present component will be discussed. 
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Experimental procedure: 

The residual strain within a damaged and deformed nose from a manganese steel crossing is investigated in this study.  

The crossing was in service in the Danish railway network for five years and had both freight and passenger traffic 

through it. The approximate traffic density through it was around 14 MGT. Visual inspection of the crossing reveals 

severe spallation and cracks. The Hadfield steel has a chemical composition of 1-1.4% C, 12-13% Mn and addition of 

other alloying elements including ~0.18% Cr, 0.4-0.6% Si, and 0.022-0.033% P.  The undeformed manganese steel has 

a hardness of 220 Hv, yield strength of 363 MPa and elastic modulus of 203 GPa [15]. The undeformed microstructure 

is composed of large equiaxed austenitic grains with an average grain size of 500 µm. The surface of the nose receives 

the maximum deformation and the microstructure here contains a large number of deformation induced bands. The 

direction of these bands varies from grain to grain and in some grains they intersect each other (see Figure 1). The 

density of these bands is maximum at the surface and decreases through the depth.  

 

    

Figure 1:Optical micrographs of the microstructure of the manganese steel nose.  (a) Specimen taken at the running 

surface showing a deformed microstructure with deformation induced bands.  (b) Specimen taken from 20 mm below 

the running surface showing large equiaxed grains (the few bands here originate from the casting process).  

 

Synchrotron Measurements: 

Synchrotron measurements were conducted on the transverse (TD, ND) surface of a specimen cut out from the nose 

(Specimen A, see Figure 2a) at beam line 34-ID-E at the Advanced Photon Source (APS), Argonne National 

Laboratory. The sampling positions are shown in Figure 2b and 2c. The specimen was 5mm in thickness (see Figure 2b) 

and measurements were made at various depths along the longitudinal direction (running direction) for each of the four 

sampling position. The transverse surface was electro polished to avoid mechanical stresses induced due to cutting and 

polishing.  

The strain was calculated as 

  

 𝜀 =
𝑑−𝑑𝑜

𝑑𝑜
   ……………………………………………….. (1) 

 

where d is the lattice spacing at the measured position and d0 is the lattice spacing of the specimen in stress-free state. 

This spacing (d0) was obtained from laboratory X-ray diffraction measurements with a chromium source (X-ray 

wavelength = 2.2897 Å) using a specimen taken from the base of the nose at a depth of 20 mm from the running 

surface. Optical microscopy suggests that at this depth there is no effect of deformation due to wheel rail interaction 

(see Figure 1b). The undeformed lattice parameter was determined from the {220} peak to be 1.2802 Å. 

The lattice spacings d of the selected strained volumes were determined based on differential aperture X-ray 

microscopy (DAXM) using synchrotron radiation [17].  
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Figure 2: Photo and schematic diagrams showing where specimens A, B and C were cut out from the nose for the strain 

measurements. (a) Photograph showing the nose studied. (b) Schematic diagram of specimen A. The positions of the 

synchrotron X-ray diffraction measurements are also shown. (c) Sketch showing the experimental synchrotron X-ray set 

up for specimen A and the points of measurement on the specimen. (d) Schematic diagram of Specimen B for 

laboratory X-ray diffraction scans showing the positions of measurements at the running surface and at the gauge 

corner. (e) Sketch showing the experimental set-up for the laboratory X-ray measurements. (f) Schematic diagram of 

specimen C used for laboratory X-ray diffraction scans showing the position of the measurement. 

Specimen B 

Specimen A 

Specimen C 

(a) 

(b) (c) 

(d) 
(e) 

(f) 
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The specimen was mounted on a holder with an inclination of 45 ˚ to the incoming X-ray beam.  A polychromatic beam 

was used first to determine the orientations of the matrix grains. The focusing of the beam was done with the help of 

non-dispersive Kirkpatrick-Baez (K-B) focusing mirrors. The resulting microbeam has a Lorentzian profile and a full-

width half maximum of ~0.5 µm. The Laue diffraction patterns from the scanned volume were recorded on a detector 

which was mounted in 90 ˚ reflection geometry at a distance of 510.3 mm from the specimen. A Pt-wire of 50 mm 

diameter was used as a differential aperture to obtain the diffraction patterns at different depths. The Laue patterns at 

each depth were reconstructed by the use of the LaueGo software available at APS beamline 34-ID-E [18]. The patterns 

were indexed, from which the hkl indices of the individual spots as well as their corresponding X-ray energies were 

determined. A spot with high intensity and the diffraction vector normal to the specimen surface was then selected for 

monochromatic energy scans to determine the lattice spacings, d, at the selected positions, within the specimen A. 

 

Laboratory X-ray Diffraction measurements: 

The laboratory X-ray measurements of Type I macro stresses were done at two different diffractometers. This was 

simply due to our possibility of getting access. 

One set of measurements were made using a Xstress 3000 G2R diffractometer equipped with a Cr Kα X-ray source.  

Measurements were made on the wheel running surface of specimen B at two positions as shown in Figure 2d. The 

standard sin
2
ψ vs d technique [19-20] with 9 tilts from -45˚ to +45˚ along three directions of 0˚, 45˚ and 90˚ was used 

for determining the stress values. The operating conditions were: voltage 30 kV, current 6.7 mA and exposure time 60 

secs. The {220} austenitic peak around 2θ=128˚ was measured. The incident X-ray beam was collimated to a diameter 

of 1.5 mm.  The diffraction peaks were fitted using the Stress Tech Xtronic software, using a cross relation method with 

a linear background [21]. XRD measurements are made at different psi (ψ) tilts of the specimen to measure the peaks 

and the inter-planar spacing, d from them. The inter-planar spacings, d are then plotted as a function of sin
2
ψ. The stress 

is determined from the slope of the curve. This assumes a zero stress (d = do) at sin
2
ψ = 0.  The stress is calculated as 

 𝜎 = (
𝐸

1+𝑣
) 𝑚 where m is the slope of the curve, E is the Young’s Modulus and v is the Poison’s ratio [19]. For the 

present material ν=0.28 and E= 203 GPa. This procedure was followed for all the three directions (0˚, 45˚ and 90˚).   

 

X-ray diffraction (XRD) measurements were also performed using a Bruker X-ray diffractometer operated in the 

Bragg–Brentano configuration still applying Cr-Kα radiation. X-ray diffractograms were recorded with a step size of 

0.07° in 2θ, a voltage of 35 kV and exposure time of 10s in the angular range of 2θ in 122°–133° to record the austenitic 

{220} peak. The measurements were made on two specimens. (i) The specimen used for synchrotron measurements 

(Specimen A). For this specimen measurements were made on the transverse section at 5 locations from the running 

surface at 3, 6, 9, 12 and 15 mm from the surface. (ii) A larger specimen with dimensions 95x50x25 mm (specimen C 

:see Figure 2f). For this large specimen, the measurements were made on the running surface. The standard sin
2
ψ vs d 

technique was used for both specimens with 9 tilts from 0 to 65 ˚ along the two directions of 0˚and 90˚ for specimen C 

whereas both positive and negative psi tilts were performed for specimen A. The stresses were measured along the 

running direction and also perpendicular to the running direction for the large specimen C.   

 

Results: 

Synchrotron Measurements: 

The Laue diffraction pattern obtained from the polychromatic diffraction scan of specimen A at one of the four 

locations (6.5 mm depth) is shown in Figure 3. The (hkl) indices of the individual spots are also given. Based on this, 

the spot (517) was selected for the monochromatic energy scan as the intensity of this spot is relatively high and the 

corresponding X-ray energy is high; about 21 keV. This high energy is necessary to achieve a good penetration depth. 

With this X-ray energy, it is found that good a diffraction signal is obtained for penetration depths up to 70µm from the 

specimen surface. Monochromatic X-ray scans were performed for all the four selected positions (see Figure 1b) at 

different depths from the running surface. 
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Figure 3: Indexing of the polychromatic Laue diffraction pattern for specimen A measured at a depth of 6.5 mm from 

the running surface [16]. 

 
Figure 4: Intensity variation as a function of Q at different penetration depths within specimen A measured at a depth 

of 6.5 mm from the running surface. The dashed line marks the Q value for do of the (517) peak [16]. 
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Figure 5: The residual strain measured nondestructively along the longitudinal direction to a penetration depth within 

the specimen of upto 75µm at different distances from the running surface.  

 

For the location of 6.5 mm from the running surface, the intensity and the Q distribution are plotted at different 

penetration depths. At each depth, the Q distribution is fitted using a Gaussian function and the center of the 

distribution, Qc is determined from which d is calculated. The dashed line marks the Q value for d0 of the (517) peak.  

As can be seen from Figure 4 the peaks of the Q distribution shift from the left to the right side of the dashed line with 

increasing penetration depth. This means that the residual strain near the specimen surface is observed to be tensile 

whilst it is compressive at higher penetration depths at this distance from the running surface. 

Figure 5 gives an overview of all the measured strains at the four selected depths from the running surface. The figure 

reveals that there are significant residual micro strains at all depths which are mostly compressive, and that the strains 

are fairly constant as a function of penetration depth from the specimen surface down to 70 µm below this free surface. 

It is remarkable that the compressive residual strain at 15 mm from the running surface is twice as large as the strains at 

3, 4 and 6.5 mm. 

 

Laboratory Measurements: 

For the large specimen C, measurements were made in two directions (the transverse and the longitudinal direction). 

The sin
2
ψ vs d plots for the two directions are given in Figure 6. Nice straight lines are observed in both cases indicating 

absence of shear stresses. Based on the slopes and the standard software, the stress values calculated are -460 MPa and -

615 MPa respectively. This means that very large compressive residual stresses are present in both directions. 

  
Figure 6: The sin

2
ψ vs d plot measured on the running surface of Specimen C for the two directions. (a) Transverse. (b) 

Longitudinal.  

(a) (b) 

Penetration Depth (µm) 

Distance from 

running surface 
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Whereas these measurements were done on specimen C taken at some distance from the tip of the nose (see Figure 2a) 

and at a position away from any visual cracks and spallation, we performed similar measurements on specimen B which 

is much nearer the nose tip. It should however be noted that a large crack is present in this specimen B running from the 

center to a depth of 2-3 mm from the surface. Measurements were taken in an area away from but still near the crack 

network. For Specimen B, examples of sin
2
ψ vs d plots for two locations at the center of the running surface and at the 

gauge corner are given in Figure 7. Since both positive and negative psi tilts were used, the average of the slopes of the 

positive and negative curves was used to calculate the stress values using standard software. The stress values thus 

measured at 3 different directions (i.e. φ=0˚, 45˚ and 90 ˚) and are given in Table 1. 

 

         
  

Figure 7: The sin
2
ψ vs d plot for the laboratory X-ray measurements on running surface of specimen B at φ=0˚. (a) 

Center of the specimen. (b) At the gauge corner. 

 

 

Table 1: Stress values obtained at different directions on two locations of specimen B. 

 Location Stress at φ=0˚ (MPa) Stress at φ=45 ˚ (MPa) Stress at φ=90˚(MPa) 

Centre -59.78 -180.25 -121.99 

Gauge corner -113.34 -103.79 -82.48 

 

The difference in stress values in different directions at different locations may be due to difference in wheel rail contact 

when a train passes over the nose. The area of contact of the wheel on the nose will affect the stresses developed. The 

results are however also affected by the presence of the crack which has released part of the stresses  

 

Laboratory X-ray measurements were also performed for specimen A, at five different depths from the running surface 

(3, 6, 9, 12 and 15 mm) to supplement the synchrotron X-ray measurements on the same specimen. At all these depths 

the resulting sin
2ψ vs d plots show only points which are too scattered for the standard software to determine any stress 

values from. An example is shown in Figure 8. The likely reason for this is stress relaxation occurring at the cut out free 

surface. So the laboratory X-rays (λ=2.2897 Å) which only penetrates roughly 10 µm into the specimen will record no 

macro stresses.  

(a) (b) 



8 
 

 
Figure 8: The sin

2
ψ vs d plot for the laboratory X-ray measurements on the transverse surface of specimen A at a depth 

of 15 mm from the running surface. The black and red dots are from negative and positive ψ tilts respectively. 

 

Discussion: 

Residual stresses are present in essentially all engineering components originating from the manufacturing processes 

itself and evolving during in-service operations. For freshly manufactured straight rails, residual stresses up to 250 MPa 

is generally accepted [22] and studies published in the open literature reports compressive values in the range 300-500 

MPa for rails which have been in operation in the open track [23-24].  

In the present work we have characterized the residual stresses present in the nose of a crossing made of manganese 

steel which has been in operation for five years and experienced 14 MGT traffic density from both passenger and 

freight trains. 

By laboratory X-ray measurements we found that very large compressive macro stresses of values up to -615 MPa were 

present at the running surface. A first point to notice here is that the reported macro stress are calculated using standard 

software and procedures, assuming a biaxial stress state at the free surface, i.e. σ33 = 0. This assumption implies also 

that the normal strain, ε33 should be close to 0. However, as can be seen in Fig. 6 and 7, the d values at sin
2
Ψ =0 are in 

the range 1.2765-1.290Å, values which are significantly different from the d0 of 1.2802Å we measured from the 

undeformed base of the nose. There could be two reasons for the differences: i) The stress state at the investigated 

positions are not simple biaxial and the assumption underlying the macro stress calculation is not fulfilled. More 

experimental measurement and a more comprehensive data analysis could clarify how large or how small an effect the 

non-biaxial stress state has on the macro stress reported here. ii) The different d0 measured from the two laboratory X-

ray instruments implies a difference in 2Ɵ of 0.45°, which may be a result of a misalignment between the X-ray 

instruments. Another notable aspect is that a macro stress of -615 MPa largely exceeds the yield stress of the material. It 

however has to be noted that 363 MPa is the yield stress for the undeformed manganese steel. As the present steel is 

significantly plastically deformed (See Figure 1a); its yield point will be much higher. For Hadfield steel deformed by 

explosion hardening, yield values as high as 660 MPa has been reported in literature [25]. It is therefore realistic that a 

residual stress of 615 MPa can be present in a severely deformed crossing near the nose where the largest impact forces 

and rolling contact fatigue occurs. 

Residual stresses can be relaxed by several mechanisms; by crack formation and growth, which is critical for the 

railway switches and crossings, and by plastic deformation occurring when the residual stresses exceeds the actual yield 

point and which hardens the material. The latter in general has a positive effect increasing wear resistance.  

Effects of cracks on residual stress relaxation were investigated in the present study by measuring the residual stresses 

present in a specimen taken at a location where a large crack has evolved (Specimen B). For this specimen we found 

that the macro residual stresses are significantly reduced to values in the range -50 to -180 MPa at the running surface 

and that the stress state is converted to include shear components. The latter is not surprising due to the presence of the 

crack. At the gauge corner, residual stress values of -80 to -113 MPa are observed. It is therefore clear that cracks can 

fully relax the residual stresses build up during operation however of course with the negative effect that the nose is 

damaged. 

Another important parameter to investigate is how deep into the rail away from the running surface the residual stresses 

extend to. We tried to determine that by laboratory X-ray macro stress measurements. We cut a specimen out 

(Specimen A) and performed the measurements on the cut-out transverse section. However as can be seen in Figure 8, 
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the attempt was unsuccessful. A reason could be that the grain size of the steel is too large compared to the size of the 

X-ray beam. The grain size of the present steel is around 500 µm and the X-ray beam is 1.5 mm. This may explain why 

measurements are unsuccessful deep below the running surface where grains may be undeformed. However the 

measurements are also unsuccessful nearer to the running surface, 2, 4, 6 mm below the surface, where optical 

microscopy documents that the grains are heavily subdivided by twins and high angle deformation induced dislocation 

boundaries with a distance of around 3-4 µm [15]. The large grain size can therefore not explain why these 

measurements fail. This conclusion is substantiated by the fact that the measurements directly on the running surface 

are successful (Figure 6). Stress relaxation occurring near the surface when the transverse surface becomes free during 

the cutting out of the specimen is a much more likely explanation 

We thus used synchrotron X-ray of 21 keV which readily penetrates 75 µm in iron to measure the residual stresses 

below the cut out free transverse surface as a function of depth from the running surface. Figure 5 reveals that micro 

compressive residual strains are present at all measured depths and is actually the highest at the largest depth measured 

at 15 mm below the running surface. The micro residual stresses, of which we only measured one component, cannot be 

directly compared to the more conventional macro stresses determined by the sin
2ψ-d method using laboratory X-rays. 

The present micro strain results however document that the residual stresses are not only at the running surface but on 

the contrary extends to significant depths. For the present data (Figure 5), it is of interest to note that the largest micro 

strain exists at a distance of 15 mm from the running surface and the micro strains at 4mm are about half of that. Stress 

relaxation by cracks cannot be the explanation for this. It is however observed that the microstructure near the running 

surface are heavily deformed while at 15mm only few deformation induced boundaries are observed [15]. It is therefore 

suggested that residual stresses build up to the yield point at the near to the running surface layers after which they are 

at least partly relaxed by introducing plastic deformation into the material. At 15mm the residual strain values are 

around 0.001. Using a simple conversion, from strain to stress with Poison’s ratio of 0.28 and E=203 GPa, the stress 

values 158 MPa are obtained. Therefore the residual stress at this depth has not yet reached the yield point of the 

material. 

Large strains given by the wheel rail interaction deform the top surface layers plastically as the stresses here exceed the 

yield point. Deeper in the nose the external load is below the yield point and is therefore manifested as residual stresses 

as in the present specimen. A similar phenomenon was observed in ductile cast iron where volumes near the graphite 

nodules were plastically deformed and large residual stresses were seen further away [7].  

The present depth profiles of residual stresses are of importance when interpreting crack propagation. The measured 

stresses are compressive except very near (the artificially) free transverse section surface. This means they are actually 

beneficial and contribute to crack closure within the measured layers. That the compressive strains are largest at 

significant depth may contribute to explaining why cracks formed near the surface of the nose typically evolve to a 

certain depth and then move parallel to the running surface instead of moving deeper into the material.  

 

Conclusions: 

The residual stresses in the nose of Hadfield manganese steel crossing extracted from the Danish rail network after five 

years in operation were studied. Both standard sin
2ψ-d laboratory X-ray measurements of macro stresses and 

synchrotron X-ray measurements of micro strains were performed. It was found that. 

 Macro residual stress measurements on the running surface of the crossing nose revealed compressive stresses 

as large as -615 MPa determined by standard procedure. This is higher than the yield stress of the undeformed 

material. High deformation by rail wheel contact has hardened the top layers increasing the yield strength in 

the running surface layers, and it is suggested that very large residual stresses thus can exist here. 

 The presence of cracks extending to the surface of the nose can reduce the residual stresses significantly as 

observed in this study where the residual stresses on the running surface near the vicinity of the crack are 

reduced to values below -200 MPa. 

 Micro residual stresses are not only present at the running surface but are observed to extend to a depth of at 

least 15 mm. For the present nose, the micro residual stresses are about twice as large at the depth of 15 mm 

from the running surface than at depths nearer to the surface (depths of 3, 4 and 6.5 mm). It is suggested that 

this difference is related to the fact that the load at the near surface layers exceeds the yield and thus plastically 

deform the material. The large compressive residual stresses at. 15 mm depth may contribute to explaining 

why cracks generally move parallel to the surface at certain depths instead of continuing perpendicular to the 

surface deeper into the material.  

As the present work has demonstrated significant and complex residual stress profiles existing the nose of a railway 

crossing, it is suggested that the residual stresses have to be included both in the design of crossings, while interpreting 

failure mechanisms, and in lifetime predictions. 
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Abstract:  

Switches and Crossings in a rail network suffer from damage and deformation due to severe loading and complex 

geometric shape. Therefore a thorough knowledge of the mechanical behavior and microstructure changes associated 

with materials used in crossings is needed. A comparative study on the cyclic deformation characteristics and fatigue 

behavior of head hardened pearlitic and Hadfield manganese steel, which are used as crossing material, have been made 

and explained with respect to low cycle fatigue behavior under conditions of uniaxial and biaxial, as well as 

proportional and non-proportional loading. Also, the different microstructures developed in the two different types of 

steels after deformation are analyzed by optical and transmission electron microscopy. The pearlitic steel endured 

higher life cycles compared to manganese steel under all conditions. The cyclic response of manganese steel was 

significant hardening whereas softening was present for pearlitic steel except for biaxial non proportional loading. TEM 

micrographs reveal that the deformed microstructure of the pearlitic steel consisted of threading dislocations and 

dislocation tangles. The microstructures in manganese steel under different conditions are composed of dislocation cells 

with dislocation tangles inside, intersected by straight stacking fault lamellae. 

Introduction: 

Rail wheel contact induces very high contact stresses due to rolling and sliding. Different parts of the rail network are 

subjected to different types of stress conditions. Switches and crossings are of very much importance in this respect. 

They are more susceptible to damage and deformation due to their complex geometric shape as compared to other parts 

of the rail, experiencing high contact and impact stresses. This leads to more frequent failures and large maintenance 

cost. The two most common types of steels used in railway crossings are head hardened pearlitic steels and austenitic 

manganese steel, also known as “Hadfield steel”. Pearlitic steels possess properties like good strength, toughness and 

wear resistance whereas Hadfield steel possesses excellent work hardening ability as well as good toughness and wear 

resistance. The stresses encountered by the rail surface are transient, multiaxial, non-proportional and in different 

directions [1]. The rolling contact cyclic loading induces large strains in the surface layers of the rail from where cracks 

initiate by Rolling Contact Fatigue (RCF) mechanisms. Rail wheel interaction induces cyclic elastic stresses in the 

entire rail, which can lead to High Cycle Fatigue (HCF). But the surface layer, close to the rail/wheel contact, plastic 

deformation and ratcheting strains accumulate which are often evaluated using Low Cycle Fatigue (LCF) experiments 

[2]. The aim of this work is to improve the understanding of how the material behavior of the surface layers of rails 
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develops under RCF loading. To investigate well-defined conditions, different laboratory scale low cycle fatigue 

experiments have been performed on the two different grades of steel which are used as crossing material and an 

attempt has been made to correlate the mechanical properties with the microstructure developed in the materials.  

Several studies have been conducted on cyclic plasticity over the last decades. It has been demonstrated that damage is 

dependent on many factors including the type of loading, the presence of stress raisers and residual stresses in the 

material [1]. Under the conditions of strain controlled loading, the material can exhibit cyclic hardening, cyclic 

softening or cyclic saturation. This is strongly dependent on the material microstructure including dislocation density 

and arrangement, as well as sub-structure formation [3].  

Fatigue properties of manganese steels have been examined in some previous studies. Rittel et al. [4] studied the cyclic 

properties of coarse grained cast manganese steel and found pronounced hardening effect. Studies by Schilke et al. [5] 

and Kang et al. [6] on LCF of manganese steel found initial cyclic hardening followed by cyclic softening until failure. 

Chen [7] studied the effect of pre hardening on the LCF behavior of manganese steel. Pronounced hardening followed 

by cyclic stability with no softening was observed. Pre deformation induced twins in the structure which influenced 

fatigue life. Fatigue behavior of manganese steel is affected by both dislocation and twinning mechanisms. It has been 

generally accepted that the high strain hardening in manganese steel is due to the deformation twinning [8-10]. The 

interaction of twins with dislocations provides additional hardening to the material. Another theory suggests a 

reorientation of C-atoms in C-Mn cluster in the core of the dislocations imparts additional hardening [11-12]. Fatigue 

studies by Kang et al. suggested that the LCF process and failure of manganese steel at low strains are mainly controlled 

by dislocation dominated cyclic deformation structures. The role of twinning or stacking faults and their interaction 

with dislocations in LCF is not quite understood. Also, most of the previous studies were performed under uniaxial 

loading. It is expected that a change in the mode of loading for example pure torsion or biaxial will generate differences 

in structure as well as the mode of fracture.  

Diverse softening-hardening behavior of pearlitic steels has been reported in the literature by different authors. Previous 

studies of uniaxial LCF on rail steels [13-15] have indicated initial softening for the first 10% of fatigue life followed by 

cyclic stabilization. Asitha et al. [16] showed that the microstructural features like the pearlite inter-lamellar spacing 

have strong correspondence with the cyclic plasticity behavior of the material. Also, the ferrite cementite content can 

affect the cyclic behavior. Sunwoo et al. [17] studied the effect of interlamellar spacing on the cyclic deformation 

behavior of pearlitic steels. In recent years few experimental studies on multiaxial fatigue of rail steels have been 

attempted [18-20]. However, the correlation between the mechanical properties and the microstructure under uniaxial or 

multiaxial fatigue is not clear.  

In this paper, a comparative study on the cyclic deformation characteristics and fatigue behavior of a head hardened 

pearlitic and manganese steel has been made and explained with respect to low cycle fatigue behavior under conditions 

of uniaxial and biaxial loading including proportional and non-proportional loading. Also, the different microstructures 

developed in the two different types of steels are compared and related to mechanical properties.  
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Experimental Procedure: 

Materials 

The two types of materials examined are a head hardened pearlitic steel (0.8 wt.% C) and an austenitic manganese steel 

(13 wt.% Mn).  The nominal chemical composition of the pearlite steel is 0.72 – 0.80% C, 0.15 – 0.58% Si, 0.70 – 

1.20% Mn, ≤ 0.15% Cr, ≤ 0.020% P, ≤ 0.025% S and rest Fe. The average chemical composition of manganese steel is 

1-1.4% C and 12-13% Mn with addition of other alloying elements like ~0.18% Cr, 0.4-0.6% Si and 0.022-0.033% P. 

The microstructure of the pearlitic steel consists of two phases: ferrite and cementite, whereas the manganese steel has 

single phase austenitic grains with very large grain size in the order of 500 µm. Figure 1 shows the microstructures of 

the two steels. The average hardness of the manganese steel in the bulk is 220 HV. The pearlitic steel was head 

hardened and thus has a gradient of hardness which would cause the properties of the rail to vary over the cross-section. 

Head hardening is done in production and encompasses forced cooling of the head of the rail, giving higher cooling 

rates resulting in a finer pearlitic structure in the rail head surface. The average hardness is 400 HV near the surface 

decreasing gradually with increasing depth down to 330 HV at 20 mm from the surface.  

Samples for the experiments were extracted from actual crossings taken from the track. Hardness studies for the 

pearlitic and manganese grade suggested the depth of deformation during service was confined to first 2-3 mm for the 

pearlite and 10 mm for the manganese steel. Samples for fatigue testing of the pearlitic rail grade were thus taken from 

the rail head a few millimeters beneath the running surface. Because of the head hardening, slight variations in hardness 

levels in the volumes from which the test bars are taken is expected. For the manganese steel, the samples were 

obtained from a depth of 15 mm from the surface, as it is found that the volumes here will be free from any service 

induced deformation [21]. This means that both types of samples were essentially free from any in-service deformation.  

     

Figure 1:  Optical Microstructure of (a) pearlite and (b) manganese steel. 

Mechanical Testing 

A schematic drawing of the fatigue test bars is given in Figure 2. The test bars had a gauge diameter of 10 mm and a 

gauge length of 20 mm. Outside the gauge length, a large radius (100 mm) was adopted to minimize the stress 

80 µm 

(a) (b) 
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concentration without compromising buckling stability. The samples were extracted so that the axis of the test bars was 

parallel to the rolling direction. The test bars were ground and polished to mirror finish before testing. Low cycle strain 

controlled fatigue tests (strain amplitude was kept constant) were performed using a strain rate of 10
-2

 s
-1

 on an MTS 

809 axial/torsion testing system. Throughout testing, peak tensile and compressive stresses were recorded for each 

cycle. In addition, complete strain–stress loops were obtained at defined intervals to acquire the hysteresis loop 

development. All tests were conducted at room temperature. The conditions for the tests were: 

1. Uniaxial (tension-compression) tests at strain amplitude of 0.6%. 

2. Biaxial tests under tension-compression and torsion at strain amplitudes, which would give an equivalent strain 

amplitude of 0.6% in the gauge surface. 

According to von Mises theory, the equivalent strain, axial strain, and shear strain can be related as  

𝜀𝑒𝑞=√𝜀2 +
ϓ2

3
 

where 𝜀𝑒𝑞 is the equivalent strain, ε is the axial strain and ϓ is the shear strain.  

In case of uniaxial loading, there is no shear strain and the equivalent strain is the same as the axial strain. Two sets of 

uniaxial tests were done at the strain amplitude of 0.6%: strain controlled equal tension compression giving Rε = -1 and 

strain controlled axial fatigue with a mean compressive strain of 0.9% giving Rε = 5. For biaxial loading both in phase 

proportional (0˚ phase difference) and out of phase non-proportional loading (90˚ phase difference) were conducted. For 

both these cases, the axial strain was selected to be 0.4243% and the shear strain was 0.7348% to obtain an equivalent 

of 0.6% nominal strain amplitude, even if the non-proportional loading in each moment yields an equivalent strain 

below 0.6%. 

 

Figure 2:  Schematic drawing of fatigue specimens (all dimensions in mm). 
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Figure 3: The loading paths for different conditions (a) linear strain path (uniaxial strains with no shear strain), (b) 

oblique strain path (uniaxial with in-phase shear strains) and (c) circular path (uniaxial with out of phase shear strains). 

Microstructure study 

The microstructures of the deformed specimens were studied using optical microscopy (OM). For optical microscopy, 

the samples were ground and polished and finally etched with Nital. The detailed features of the cyclic deformation 

microstructure under different cyclic loading conditions after the failure of the two different steels were analyzed using 

a Transmission Electron Microscope (TEM). The specimens for TEM studies were obtained from the gauge part of the 

fatigue deformed specimens. The transverse surface was studied and specimens were obtained as close to the surface as 

possible. A Jeol 2000FX electron microscope operating at 200KV was used in this work. The dislocation density and 

also the stacking fault width were calculated from the TEM images by the linear intercept method. 

Results:  

Cyclic plasticity and fatigue behavior 

        

Figure 4: Uniaxial LCF (a) axial stress amplitude vs number of cycles and (b) plastic strain amplitude vs number of 

cycles. 

(a) (b) 
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Figure 5: Biaxial LCF (axial + torsion) (a) in-phase proportional and (b) out of phase non proportional loading showing 

axial stress and torque amplitude vs number of cycles.  

 

Figure 6: Comparison of uniaxial stress amplitude with number of cycles for both steels for biaxial loading. 

Figures 4-6 shows the axial stress and torque amplitude development for the two materials under different conditions 

along with the plastic strain amplitude development for uniaxial loading.  

For the manganese steel in all the three cases, there is strong initial hardening followed by softening and then failure. 

Hardening was observed only for the initial few percents of the fatigue life, whereas softening prevailed for most of the 

fatigue life. No saturation stage was observed. In strain controlled fatigue testing plastic strain amplitude is a major 

governing factor. The plastic strain amplitude decreased initially due to hardening in all cases. The cyclic hardening 

ratio (CHR) and the cyclic softening ratio (CSR) are two important parameters in characterizing cyclic deformation 

behaviors of metallic materials. CHR and CSR were determined using CHR=(σmax− σ1)/σ1 and CSR=(σmax− σhalf)/σmax, 

where σ1, σmax and σhalf are represented the stress amplitude at the first cycle, the maximum stress amplitude and the 

stress amplitude at the half life, respectively. The CHR and CSR are reported in Table 1. The manganese steel under 

uniaxial loading had a very high hardening ratio of nearly 0.3 compared to the softening ratio of 0.1 Under similar 

(a) (b) 
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conditions of strains, at 0.6% strain amplitude, the highest life is obtained for uniaxial loading and the lowest for non-

proportional loading. 

For pearlitic steel in uniaxial and biaxial in-phase loading, there are three stages present. First, there is a decrease in 

stress amplitude due to softening, followed by cyclic saturation and a slight increase in stress amplitude due to 

hardening until the final fracture. For biaxial non-proportional loading, there is an initial hardening within the first two 

cycles followed by softening, cyclic saturation and failure. The fatigue life is highest for the biaxial in-phase 

proportional loading followed by uniaxial loading and the lowest life is seen for biaxial non-proportional loading. It 

should be noted that this is valid in strain or displacement controlled load situations; if the loading is better 

characterized with a stress amplitude, the increased hardening caused by non-proportional loading will likely lead to 

lower plastic strains and thus less fatigue damage [22]. 

A comparison between uniaxial and biaxial low cycle fatigue cannot be made unless the equivalent stress values are 

obtained. However, use of solid specimens, as we use here, instead of tubular specimen restricts direct calculation of 

equivalent stress values. The normal stress is uniformly distributed whereas the general shear stress formula is 

dependent on the radius, shear stress being maximum at the surface and zero at the center. Due to plasticity, and non-

linear response on plastic straining, the shear stress in each location is not readily computed. However, the strain is 

always well defined, and the uniaxial stress can be used as a comparison tool also on biaxial loading whether 

proportional or non-proportional. In case of pearlitic steel, in-phase proportional biaxial loading shows softening 

behavior like uniaxial loading.  The softening ratios for the two conditions are nearly identical. This is expected as 

biaxial proportional loading does not cause any change in strain path and just adds on to the shear component. Out of 

phase non proprtional biaxial loading of pearlitic steel shows higher initial hardening due to strain path change after 

quarter cycle and activation of latent slip systems. Whereas the hardening ratio was zero for uniaxial and in-phase 

proportional loading, a hardening ratio of 0.024 was obtained for out of phase non proportional loading based on axial 

stress calculations. For manganese steel, the in-phase biaxial curve is similar to the uniaxial curve. Non-proportional 

loading gives a much increased hardening rate in out of phase loading. The cyclic hardening ratio was found to be 

around 0.7 based on normal stress calculations.  In non-proportional out of phase loading the maximum shear stress 

plane rotates with time in every cycle causing activation of multiple slip systems and their mutual interactions [23]. The 

lowest hardening was observed in case of biaxial in-phase loading. For in-phase and uniaxial loading in manganese 

steel the amplitude developed is lower than pearlite but biaxial out of phase loading generates high hardening causing 

stress levels in line with the pearlitic steel. 

The effect of mean strain on the two materials has been studied. The pearlitic steel is insensitive to mean strain 

hardening whereas for manganese steel, there is an increase in stress amplitude for the cases with negative mean strain 

as compared to those without mean strain for same strain amplitudes. This shows that manganese steel is sensitive to 

hardening due to mean strain. This additional hardening reduces the fatigue ductility and causes earlier occurrence of 

micro cracks and thereby reduces the fatigue life. This reasoning is valid in a displacement or strain controlled loading 

situation. The presence of mean strain did not seem to affect the life of pearlitic steel for similar strain amplitudes. For 

pearlitic steel, the strain hardening saturates within the initial cycle and thereafter softens till failure with the cyclic 

softening rates being identical to loading without mean strain for same strain amplitudes.  
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A comparison between the pearlite and manganese steels reveals the maximum stress amplitudes and torque amplitudes 

reached at all the strain amplitudes are higher for the pearlitic grade. This is due to the higher hardness of pearlitic grade 

steel. Also in all cases, the manganese steel has very high plastic strain amplitudes compared to pearlitic grade under 

similar conditions. This is due to lower yield strength of manganese steel. The fatigue life of the pearlitic steel is higher 

compared to the manganese steel under similar conditions. Higher hardness and strength leads to lower plastic strains in 

the material and thus increase in fatigue life. It is generally observed work hardened materials demonstrate cyclic 

softening whereas sofer material exhibit cyclic hardening in fatigue tests.  

Table 1: The cycles to failure, CHR, and CSR of the different steels under different conditions of loading: 

Loading 

Condition 

Strain 

amplitude 

Material  Nf CHR CSR 

Uniaxial 0.6% Head Hardened 

Pearlite Steel 

3660 0 0.0522 

Manganese Steel 2278 0.2983 0.1066 

0.6% (0.9% 

compressive 

mean strain) 

Head Hardened 

Pearlite Steel 

2490 0 0.0453  

Manganese Steel 1480 0.2593 0.0714 

Biaxial 

(proportional 

loading) 

0.6% 

equivalent 

Head Hardened 

Pearlite Steel 

5471 

Manganese Steel 1924 

Biaxial (non 

proportional 

loading) 

 Head Hardened 

Pearlite Steel 

2556 

Manganese Steel 1485 

 

  

Figure 7: Hysteresis loops developed for 0.6% axial strain amplitude (a) pearlitic steel and (b) manganese steel. 

(a) (b) 
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Figure 8: Hysteresis loops developed for 0.6% strain amplitude with -0.9% mean strain (a) pearlitic steel and (b) 

manganese steel. 

 

 Figure 9: Hysteresis loop developed for 0.6% equivalent biaxial strains in proportional loading for pearlitic steel (a) 

axial stress-strain response and (b) shear stress-strain response.  

  

Figure 10: Hysteresis loop developed for 0.6% equivalent biaxial strains in proportional loading for manganese steel (a) 

axial stress-strain response and (b) shear stress-strain response. 

(a) (b) 

(b) 

(b) 

(a) 

(a) 
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Figure 11: Hysteresis loop developed for 0.6% equivalent biaxial strains in non-proportional loading for pearlitic steel 

(a) axial stress-strain response and (b) shear stress-strain response. 

  

Figure 12: Hysteresis loop developed for 0.6% equivalent biaxial strains in non-proportional loading for manganese 

steel (a) axial stress-strain response and (b) shear stress-strain response. 

Figures 7-12 show the hysteresis loops developed for the two different materials under different loading conditions. For 

the manganese steel under all conditions, there is a shift of the tip of the hysteresis loop upwards towards higher stress 

indicating cyclic hardening whereas the trend is reverse for pearlitic grade indicating cyclic softening for all cases 

except biaxial non-proportional loading. The shape of the loop is different for the two materials under similar 

conditions. For the pearlitic grade, the loops are generally narrower as compared to the manganese steel which has a 

broadened loop due to lower cyclic flow stress. In uniaxial and biaxial proportional loading, the hysteresis loops show a 

sharp tip at the maximum and minimum strains; however, under biaxial out of phase loading the tips of the hysteresis 

loop get rounded. In non-proportional loading, the maximum values of axial and shear strains do not occur 

simultaneously.  

The hysteresis loops for the compressive mean strain conditions showed ratcheting behavior. In case of manganese 

steel, the loops were stabilized basically after the first compressive loading. Due to the low monotonic hardening rate, 

(b) 

(b) 

(a) 

(a) 
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no large mean stress was introduced by the mean strain imposed. Thus, the ratcheting could be easily described by 

monotonic plastic flow, and the continued cycling is little affected. However, the pearlite required more cycles to adjust 

to the mean strain and stabilize at low mean stress. Also, the stress range over which the stabilization occurred was 

higher in case of pearlite than manganese steel. 

The area within the hysteresis loop correlates to the plastic strain energy density of the different materials under low 

cycle fatigue loading. Fatigue damage is characterized by absorption of irreversible plastic energy which influences 

fatigue life. In LCF the accumulated plastic deformation is the primary reason for the fatigue. Morrow [24] suggested 

that the plastic strain energy per cycle is a useful criterion to measure the fatigue damage per cycle since the cyclic 

plastic strain is related to the movement of dislocations and the cyclic stress is associated with the resistance against 

their motion. Hence, the fatigue resistance of a metal can be characterized in terms of its capacity to absorb and 

dissipate plastic strain energy. Due to use of solid specimens for the biaxial tests, it was not possible to calculate the 

exact values of the plastic strain energy density of the materials (as exact stress values could not be obtained) except for 

the uniaxial loading. However, a comparative analysis of the area under the loop from the above hysteresis curves 

indicates the manganese steel has higher plastic strain energy density compared to the pearlite at Nf/2. In the case of 

uniaxial loading, the plastic strain energies were comparable in both the materials. In the case of biaxial proportional 

loading both axial and shear plastic strain energy was higher for manganese steel than for pearlite. In the case of biaxial 

out of phase loading the axial plastic strain energy was higher but the shear plastic strain energy was lower for 

manganese than pearlite. A comparison between proportional and out of phase loading indicates out of phase loading 

has higher plastic strain energy density for both the materials.  

Microstructure 

Optical microscopy 

 

  

Figure 13: Optical micrographs of fatigue deformed specimens at 0.6% uniaxial strain amplitude (a) pearlitic steel and 

(b) manganese steel. 

100 µm 100 µm 

(a) (b) 
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Figure 14 : Optical micrographs of fatigue deformed specimens at 0.6% strain amplitude biaxial proportional loading 

(a) pearlitic steel and (b) manganese steel. 

          

Figure 15: Optical micrographs of fatigue deformed specimens at 0.6% strain amplitude biaxial nonproportional loading 

(a) pearlitic steel and (b) manganese steel. 

The optical micrographs of the fatigue deformed head hardened pearlitic steel do not show significant observable 

changes in the microstructure under the different conditions. The difference in the mechanical properties can, therefore, 

be attributed to dislocation density changes in the structure which will be evident from the TEM studies. The deformed 

microstructure of the manganese steel exhibits a banded structure. These bands can be deformation twins or stacking 

faults or dislocation boundaries which is not evident from the optical micrographs. The density and morphology of the 

bands differ under the different conditions of loading with increasing density and decreasing spacing of the bands for 

biaxial nonproportional loading. The bands are in different directions and in some grains, the bands are intersecting with 

each other. Inclusions are also evident in the micrographs.  

TEM Analysis: Pearlitic steel 

Figure 16 shows the pearlitic microstructures with alternating ferrite and cementite lamellae in the three different LCF 

samples. As 0.6% equivalent strain will not introduce observable changes in the main microstructural parameter, i.e. the 

interlamellar spacing, the present investigation focuses on the dislocation morphology and density in the ferrite 

lamellae. The dislocation morphologies in the three samples are similar, as shown in Fig. 16, and threading dislocations 

and dislocation tangles have been observed in all three samples, representing the typical low-strain pearlitic deformation 

100 µm 

100 µm 100 µm 

50 µm 

(a) 

(a) 

(b) 

(b) 
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microstructure [25-26]. These dislocations are believed to nucleate at interfaces caused by elastic incompatibility 

stresses between the ferrite and cementite phases [27-29], and glide in the ferrite lamellae to form dislocation tangles. 

However, it is interesting to note that the dislocation density is significantly different in the 3 samples; it increases from 

4.9 × 10
14

 m
-2

 in the uniaxial sample, to 8.5 × 10
14

 m
-2

 in the in-phase biaxial sample, to 1.0 × 10
15

 m
-2

 in the out of 

phase biaxial sample. In biaxial LCF loading, slip systems in other directions are activated as compared to uniaxial 

loading. In biaxial out of phase loading, the change of strain path is suggested to be the main reason for the higher 

dislocation density. 

 

Figure 16: TEM micrographs showing the deformation microstructure in the low cycle fatigued (LCF) pearlitic 

samples: (a) 0.6 % uni-axial LCF, (b) 0.6 % in-phase biaxial LCF and (c) 0.6 % out-of-phase biaxial LCF.  

TEM Analysis: Manganese steel 

Figure 17 shows the different dislocation and stacking fault structures in the three samples of austenitic manganese steel 

deformed to the equivalent strain of 0.6%. The microstructures are composed of dislocation cells with dislocation 

tangles inside, intersected with straight stacking fault lamellae. In the uniaxial LCF sample, the dislocation cell size is ~ 

500 nm, the dislocation density inside the cells is 3.4 × 10
14

 m
-2

 and the spacing between stacking fault lamellae is ~ 1.2 

m. Intersecting stacking fault lamellae with dislocation tangles between them are observed in the in-phase biaxial LCF 

sample where the average spacing between neighboring stacking fault lamellae is 330 nm and the dislocation density in 

the cells formed by intersecting stacking fault lamellae is 1.1 × 10
14

 m
-2

. Dense parallel stacking fault lamellae with 
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dislocations and dislocation tangles between them are seen in the out-of-phase biaxial LCF sample where the average 

spacing between neighboring stacking fault lamellae is ~ 60 nm and the dislocation density between the parallel 

stacking fault lamellae is ~ 5 × 10
14

 m
-2

.  

 

Figure 17: TEM micrographs showing the dislocation structures and stacking faults in the LCF samples (a) dislocation 

cells with dislocation tangles inside and (b) straight stacking fault lamellae across dislocation cells in 0.6 % uniaxial 

LCF sample, (c) intersecting stacking fault lamellae with dislocation tangles between them in 0.6 % in-phase biaxial 

LCF sample and (d) dense parallel stacking fault lamellae with dislocation tangles between them in 0.6 % out-of-phase 

biaxial LCF sample. The electron beam axis is close to the [213] direction of fcc austenite. The white arrows point out 

the stacking fault lamellae.  

For the manganese steel, the microstructure is thus quite different for the 3 deformation modes deformed to the same 

equivalent strain. In the uniaxial LCF mode, multiple dislocation slip together with the increased friction stress against 

dislocation glide due to the high concentration of solute atoms are responsible for the formation of the observed 

dislocation cell structure. However, when the shear mode is introduced in the in-phase and out of phase biaxial LCF 

test, formation and growth of stacking faults play an important role together with dislocation nucleation, gliding and 

dislocation tangle formation. For the formation and growth of a stacking fault, any perfect dislocation with a Burgers 

vector can be dissociated into two partials, for example, two Shockley partials. The local applied stress generally exerts 

two different forces on the partials which determine the displacement of each dislocation and consequently the nature of 
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the stacking fault ribbons. Moreover, the low stacking fault energy of the manganese steel allows the width of the 

ribbons to increase enough to reach values giving an extended fault bounded by independent partial dislocations, where 

the density of independent partial dislocations, and therefore the density of extended stacking faults, increases with the 

strain [30]. For the present small strain, abundant stacking faults are observed for both in-phase and out of phase biaxial 

LCF samples, as previously reported in single-crystal manganese steel deformed to < 1% in tension [10]. However, the 

in-phase biaxial LCF results in parallel stacking faults in different directions while the out of phase biaxial LCF 

introduce a high density of parallel stacking faults with much smaller stacking fault spacing. 

Table 2: the dislocation density of pearlite and manganese steel and stacking fault lamellae width for the manganese 

steel: 

Condition Dislocation Density Stacking Fault 

lamellae 

Pearlite Steel  Manganese Steel Manganese Steel 

Uniaxial 4.9 × 10
14

 m
-2

  

 

3.4 × 10
14

 m
-2

  

 

~ 1.2 µm 

Biaxial (Proportional)  8.5 × 10
14

 m
-2

  

 

1.1 × 10
14

 m
-2

 330 nm 

Biaxial (Non proportional) 1.0 × 10
15

 m
-2

  

 

5.0 × 10
14

 m
-2

 

 

~ 60 nm 

 

Hardness measurement on fatigue deformed samples: 

       

Figure 18: Hardness as a function for radial distance for a) pearlitic steel and b) manganese steel. 

The hardness measurements across the radius of the deformed fatigue samples under the different conditions of loading 

are shown in Figure 18. For the pearlitic steel, there is no significant change in hardness after deformation under 

different conditions. It maintains a uniform average hardness of about 400 HV. For the manganese steel, a variation of 

hardness can be observed. The hardness is uniform for the uniaxial case across the radius due to uniform distribution of 

(b) (a) 
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strain. For the biaxial cases, the maximum shear strains are at the surface and zero at the center. Similarly, the 

maximum hardness is obtained at the surfaces of around 340 HV for out of phase loading and 310 HV for in phase 

loading which gradually falls to 260 HV at the center. The extent of hardening is significantly higher in manganese 

steels compared to pearlitic steel. The out of phase loading causes significant non-proportional hardening which is 

evident from the figure. 

Discussion: 

Pronounced hardening was observed in manganese steel under all conditions of loading. The cyclic hardening was more 

pronounced during the first 100 cycles and then softening follows. The evolution of total stress amplitudes of 

manganese steel is due to the combined contribution from both the internal and effective stress. The resistance to 

dislocation motion cause hardening in the manganese steel. TEM micrographs of uniaxially deformed manganese steel 

reveal that the microstructures are composed of dislocation cells with dislocation tangles inside, intersected with 

straight stacking fault lamellae. Fatigue straining causes dislocation generation in the material. The dislocations are 

obstructed at the stacking faults or are pinned down by obstacles causing pile-up which cause hardening and finally 

formation of dislocation tangles. The softening part in the life cycle is due to crack initiation and propagation. In-phase 

biaxial TEM micrographs reveal that the dislocation density of manganese steel for in-phase biaxial loading is lower 

compared to uniaxial loading but there are interactions of stacking faults with dislocations as well as a decrease in 

stacking fault lamellae width. Hence, the hardening cannot be explained with dislocation entanglement. The presence of 

intersecting stacking faults and their interaction with dislocations contribute to additional hardening behavior.  For non 

proportional biaxial low cycle fatigue, the effect of strain path change is predominant with cyclic hardening. Higher 

non-proportional hardening clearly shows that the latent slip systems are active in this case [31]. The dislocation density 

is high and the width of the stacking fault lamellae decreases for non proportional biaxial low cycle fatigue loading in 

manganese steel. 

The deformation mechanism of pearlitic steel is significantly different from manganese steel. The pearlitic steel has 

been hardened before and has already generated a high density of dislocation within the material. Further straining 

during fatigue testing causes very little hardening but rearrangement of the dislocations into a cell structure causing 

softening during the fatigue test.  Out of phase biaxial loading of pearlitic steel shows higher initial hardening due to the 

strain path change and activation of latent slip systems (non-proportional hardening) [31]. For pearlitic steel, the 

sensitivity of activation of latent slip systems is not high. Thereafter, the cyclic softening is less compared to in-phase 

loading because it is compensated by non-proportional hardening. 

The strain hardening capacity of manganese steels makes them a suitable choice for crossing material. The mode of 

deformation in pearlitic steels is limited only to slip whereas twinning, slip, and formation of stacking fault occur in 

manganese steel. These contribute to the additional hardening. In this study, the effects of mean strain and non-

proportional loading were studied separately. The mean strain, which essentially leads to a monotonic pre-deformation 

(cf Figure 8b), caused a hardening effect of some 75 MPa that survived the following cyclic deformation (seen in Figure 

4). The non-proportional loading gave a hardening that made manganese steel reach close to (some 25 MPa difference) 
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the cyclic strength of the pearlitic material deformed in an identical manner (seen in Figure 6). Thus, if those 

contributions are additive, the stress amplitude response would actually be higher for the manganese steel than for the 

pearlitic steel. This could be the reason why manganese steels do well in the application where monotonic pre-straining, 

as well as non-proportional straining, is generated by the rolling contact fatigue loading.  

This study encompassed only one strain amplitude and pure biaxial loading, and can thus not fully explain why 

manganese steels perform well in the railway crossings. But since the loading in the crossings is even more complex, 

the manganese steel is likely to develop dislocation structures which increase the deformation resistance under such 

loads or cyclic strength. Since the loading is force controlled rather than displacement controlled, the plastic strain 

amplitude gets smaller for the developing very high strength manganese steel, thereby accumulating less plastic strain 

energy which typically correlates to fatigue damage. The reason for the shorter fatigue life of the manganese steel 

specimens in this study could be the presence of rather high tensile stresses and sensitivity of the microstructure due to 

very large grains and weak/brittle grain boundaries, whereas in the crossings, compressive stresses dominate to a larger 

degree. 

Conclusion: 

The low cycle fatigue behavior of the two different rail steels under different conditions of loading (uniaxial and 

biaxial) has been studied. The deformed microstructure after fatigue has been analyzed using TEM and relations 

between microstructural changes and mechanical properties are analyzed. The softer manganese steel exhibited cyclic 

hardening behavior under all conditions where fatigue straining caused dislocation and stacking fault generation and 

interaction between them. The highest hardening was obtained for biaxial non proportional loading due to activation of 

multiple slip systems due to a change in strain path. The harder pearlitic steel showed softening behavior. It was heat 

treated and had generated dislocations during the thermal treatment. Further straining caused reorganizing of the 

dislocations into cell structure and hence leads to softening. However biaxial non proportional loading showed some 

hardening in the initial cycles due to multiple slip systems being activated and also increased dislocation density. The 

pearlite steel had better fatigue life under all conditions.  Whereas pearlite steel was insensitive to the mean strain, 

manganese steel showed mean strain hardening with a decrease in fatigue life. The dislocation morphology was found 

to be similar for pearlite under all conditions; the difference in mechanical behavior is due to a change in dislocation 

density with the biaxial non proportional loading having the highest dislocation density. For manganese steel, the in-

phase loading results in parallel stacking faults in different directions while the out of phase loading introduces a high 

density of parallel stacking faults with much smaller stacking fault spacing and high dislocation density.  
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Characterization of failed crossings 

The detailed characterization of deformation and cracks on the nose of the manganese crossing ATP 110 and the wing 

rails of BTP 102 has been presented in Paper 1 and Paper 2 respectively. Further studies on deformation and 

degradation on the nose and wing rail of pearlitic (AP 104) and the wing rails of the manganese crossing (ATP 110) has 

been presented in this section.  

1. Hardness measurements 

The hardened pearlitic grade 350HT is often used as crossing material. Figure 1(a) shows the hardness profile of the 

undeformed 350HT hardened steel used in the crossing. The rail wheel contact surface has a hardness of around 400 Hv 

and the hardness drops off to a value of 300 Hv at the base of the rail head. The rail head does not have a uniform 

hardness but there is a gradual decline from the contact surface to the base. The head hardened part is confined within 

the first 20 mm from the contact surface. Figure 1(b) shows the hardness profile of the normal R260 grade pearlitic rail 

steel having a uniform hardness of around 300 Hv throughout the rail head. 

  

Figure 1:  The hardness decrease as a function of distance from the rail wheel contact surface of (a) the undeformed 

350HT head hardened pearlitic grade rail steel and (b) the non-head hardened pearlitic grade rail steel used in stock rail. 

The different colors refer to different measurements. 

Figure 2 shows the variation of the hardness of the deformed part of the two wing rails and the damaged welded nose of 

the crossing (AP 104). Rail wheel contact induces deformation causing hardening of the surface of the running band. 

The hardness values on the contact surface of the wing rails reached as high as 500 Hv (See Figure 2a). The depth of 

hardening due to deformation caused by rail wheel contact was limited within the first 2-2.5 mm from the surface. A 

non-uniform hardness distribution is obtained for the nose of the crossing due to repair welding. The contact surface 

contained weld material with a hardness of around 500 Hv. Deformation hardening causes a gradient in hardness which 

falls off from the contact surface. After the weld material, a combination of microstructures is found consisting of 

bainite to fine pearlite which causes the variation in the hardness values in the middle region (HAZ). Finally, at 10 mm 

from the surface, the base material is found having hardness 400 Hv which is in agreement with Figure 1a. 

(a) (b) 
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Figure 2: Hardness decrease trend as a function of distance from the rail wheel contact surface of the head hardened 

pearlitic crossing (AP 104) (a) deformed part of the two wing rails and (b) damaged welded nose. The different colors 

refer to different measurements. 

The hardness profile in pearlite crossings is quite different from the ones in the manganese crossings. Figure 3 shows 

the hardness contour map of the transverse section of the wing rail of the manganese (ATP 110) crossing showing the 

gradient of deformation. The undeformed manganese crossing has a hardness of 220 Hv. The passage of wheels over 

the crossing causes hardening due to severe plastic deformation with the hardening being the most severe at the top 

layer showing hardness of around 600 Hv. Moving down from the contact surface into depths, the hardness values 

decrease indicating less deformation. The work hardened layer is observed to extend up to at least 10 mm below the 

surface. The depth of hardening is significantly higher in manganese grade crossings as compared to normal pearlite 

grade. The contact region of the wheel with the rail which causes this gradient of deformation hardening is on the left in 

Figure 3. On the right, the deformation hardening is limited to a few millimeters from the surface which could be due to 

other causes, such as profile grinding. 

 

Figure 3: Hardness contour map of the transverse section of the wing rail of the manganese crossing (ATP 110) 

showing the gradient of deformation due to rail wheel contact. 

Hv 

Rail wheel contact surface 

(a) (b) 

Weld metal HAZ Base metal 
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2. Optical Microscopy 

The microstructure of pearlite steel consists of ferrite and cementite. Figure 4 shows the deformed microstructure of the 

wing rail of the pearlitic crossing. Rolling contact fatigue causes deformation of the microstructure. The contact area of 

the wheel with the rail influences deformation. The normal and shear loads from the rail wheel contact had deformed 

the surface layers with material flow occurring in the shearing direction. As the plastic deformation diminishes with 

depth from the surface, the non-deformed microstructure becomes visible. The depth of plastic deformation varies 

depending on the contact zone. Figure 4(b) shows the deformed structure near the gauge corner which clearly shows 

higher depths of shearing than in regions near the center of rail head in Figure 4(a). 

    

Figure 4:  Deformed microstructure of the wing rail of pearlitic crossing (a) near the center of rail head and (b) near the 

gauge corner. 

As mentioned above the nose of the pearlite crossing has been repair welded. Figure 5 shows the distinct layers formed 

due to etching due to the difference in microstructure formed due to welding on the nose of the pearlitic steel crossing. 

The microstructure of the welded nose at various depths from the surface is shown in Figure 6. The bright zone at the 

contact surface is the weld material (Figure 6d), followed by the heat affected zone (HAZ) having a combination of 

microstructures (Figure 6e-g), and finally the base metal (Figure 6i). Three distinct transition zones are visible in Figure 

6a-c. The first transition zone is between the weld metal and the HAZ in Figure 6a. The weld appears bright with needle 

like structures bainite. The heat affected zone after the weld consists of needles of coarse bainite. The second transition 

zone is between the coarse bainite and the fine grained pearlite within the HAZ as evident in Figure 6b. The third 

transition zone is between the fine grained pearlite and large grained pearlite of the base metal (Figure 6c). The 

difference in the rate of cooling during welding has resulted in different types of structure in the HAZ within the nose of 

the crossing.  

(a) (b) 
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Figure 5: A small piece cut out from the nose of the pearlitic crossing for metallurgical investigation showing the 

various layers due to the presence of difference microstructures formed as a result of welding. 
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Figure 6: Optical microscopy images of the nose of the pearlitic crossing at different locations from the running surface 

(a-c) the three transitions formed due to welding, (d) the microstructure present in the weld metal at the contact surface 

consisting of a bainitic needle structure, (e) the microstructure present in the upper part of the HAZ near the welding 

consisting of coarse bainite, (f) the microstructure of the HAZ near the second transition zone consisting of coarse 

bainite, (g) the microstructure near the end of the HAZ consisting of a fine pearlite structure, (h) the fine pearlitic 

microstructure near the third transition zone and (i) the base material having coarse pearlite microstructure. 

      

 

Figure 7: Defects present in the weld layer of the nose of the pearlitic crossing (a) and (b) multiple cracks present in the 

weld layer, and (c) porosity present in the weld layer. 

HAZ 

Transition Zone III 

Fine 

Pearlite

e 

Coarse 

Pearlite

e Base Metal 

Porosity 

(c) (h) 

(i) 

(a) 

(c) 

(b) 



6 
 

Figure 7 shows the optical micrographs of the damages and defects present within the weld layer of the nose of the 

crossing. The contact surface gets strained in the direction of shear as seen in Figure 7a. Multiple surface and subsurface 

cracks were found in the weld layer (Figure 7a-b). Most of the cracks were confined within the weld layer. Crack 

branching and interaction between the cracks were also visible in the microstructure. Apart from cracks, presence of 

multiple pores of various dimensions was also evident from the optical microstructure. Some of the pores were more 

than 1 mm in size (Figure 7c) and had cracks originating from them. Improper welding has resulted in the formation of 

defects like porosities and cracks growing from them. These defects should be considered detrimental and could lead to 

rail failure in the future. 

3. 3D X-ray tomography 

  

Figure 8: (a&b) 3-D tomographic representation of the defects and porosities in a small volume of the nose of the 

pearlitic crossing. The steel is represented as transparent and the blue colored area is the air which makes the porosities 

as well as the rail surface distinctly visible when performing global segmentation thresholding. 

Multiple cracks and porosities were evident from the optical microcopy images of the nose of the pearlitic crossing. 

Figure 8 (a-b) shows the 3-D tomography images of defects in the nose of the pearlitic crossing. In this figure, the steel 

is represented as transparent and the blue colored area is the air which makes the porosities visible.  Multiple pores of 

various shapes and dimensions with pores as long as 1 mm are present. Some of the pores are connected to the surface 

(for example through a crack) whereas many pores are deep inside the specimen. The pores run quite deep inside the 

material. Some of the pores have a smooth surface whereas some have rough surface due to oxidation as the crack is 

connected to the surface. The pores are sites of crack nucleation which might lead to failure of the material. 

 

Porosities 

5 mm 
(a) (b) 
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Mechanical Testing  

The material behavior in service is strongly dependent on its mechanical properties. The following sections have a 

detailed description of the mechanical behavior of the two different grades of steel used in crossings. An attempt has 

been made to do a comparative analysis of the mechanical properties and deformation characteristics of two different 

steels.  

1. Tensile test  

Tensile tests were performed on the pearlitic and manganese steel at room temperature at 10
-2 

s
-1

 strain rate. Figure 1a 

shows the engineering stress-strain curve for the two materials. The pearlite grade steel has yield stress (0.2% offset) of 

770 MPa and UTS of 1350 MPa. The tensile ductility measured in terms of percentage elongation is 12%. The necking 

behavior after UTS has a gradual drop in stress. The manganese steel has much lower yield stress and UTS compared to 

pearlitic steel. The yield stress is 203 MPa and the UTS is 750 MPa. The percentage elongation of manganese steel 

(22%) is much higher than the pearlitic steel. It is observed that there is very little necking with no significant drop in 

peak stress as the material fractures just after UTS. The true stress versus true strain curves are shown in Figure 1b. The 

strain hardening exponent and strain hardening coefficient for the pearlitic steel are 0.2 and 2208 respectively. The 

manganese steel has a higher strain hardening exponent (0.4) than pearlite. The strain hardening coefficient for 

manganese steel is 1636. Figure 1c gives the corresponding work hardening rate versus true strain curves. The work 

hardening rate of pearlitic steel was higher than manganese up to 0.05 strains, after which the manganese had much 

higher work hardening rate. The work hardening rate decreased throughout the test for the pearlite steel. For the 

manganese, initially there is a decrease, followed by a steady rate and then the rate decays somewhat towards the end of 

the test. The strain hardening in manganese steel is quite evident. The strain range over which the manganese steel 

hardens is large compared to pearlitic steel. This strain hardening ability of manganese steel makes it a suitable material 

to be used in crossings.  

 

(a) 
(b) 
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Figure 1: Tensile properties of pearlitic and manganese steel: (a) engineering stress-strain curves, (b) true stress-strain 

curves and (c) work-hardening rate versus true-strain curves.  

The uniaxial tensile test results along with the hardness test results reveal that pearlitic steel which is harder compared 

to manganese steel strain hardens rapidly and saturates. This is also reflected in the low value of strain hardening 

exponent (n=0.2). Manganese steel is soft compared to pearlitic steel but strain hardens steadily, with constant work 

hardening rate over a higher strain range with a higher strain hardening exponent of 0.4.  

2. Fatigue Results 

The fatigue tests performed at 0.6% strain amplitude have been described in detail in Paper 5. The remaining test results 

are discussed in the following sections along with a comparison with the 0.6% strain amplitude low cycle fatigue data 

for a better comparative analysis of the low cycle fatigue behavior under different strains. 

2.1 Uniaxial Low Cycle Fatigue 

A material’s response, when subjected to strain cycling, may range from hardening, softening, stabilization or a 

combination of all depending on its microstructural characteristics. The cyclic deformation behavior of the investigated 

rail steels corresponding to the development of stress amplitude σa with cycles N at various applied strain amplitudes is 

shown in Figure 2. Cyclic hardening/softening behavior of a material can be clearly seen from the variation of stress 

amplitude with elapsed loading cycles. For the pearlitic steel at all strain amplitudes, the cyclic behavior consists of 

three prominent stages. First, there is a decrease in stress amplitude leading to softening, followed by a stage of cyclic 

saturation and finally an increase in stress amplitude leading to hardening before the final fracture. For the 0.6% strain 

amplitude, the softening occurred for the first few cycles but the steel stabilized quickly in the next few cycles. With the 

increase in strain amplitude, the softening effect became almost negligible, and the stabilization occurred within fewer 

cycles. For the manganese steel at lower strain amplitudes, there is initial hardening followed by softening and then 

failure. Hardening was observed only for the initial few percent of the fatigue life (first 100 cycles), whereas softening 

prevailed for most of the fatigue life. No saturation stage was observed. At higher strain amplitudes, rapid hardening 

mostly predominates with little softening before failure. In strain controlled fatigue testing, the plastic strain amplitude 

is a major governing factor. The plastic strain amplitude development with the number of cycles is shown in Figure 3. 

(c) 
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The plastic strain amplitude decreased initially due to hardening in all cases for manganese steel. At lower strain 

amplitudes, after an initial decrease, there was an increase in plastic strain amplitude due to softening. However, for 

higher strain amplitudes, the plastic strain amplitudes decreased throughout the fatigue life. For the pearlitic steel, the 

plastic strain amplitude increased initially due to softening, followed by stabilization before failure. The fatigue life 

decreased with increase in strain amplitude whereas the maximum stress amplitude increased with increase in strain 

amplitude for both the steels.  

Application of compressive mean strain did not cause much change in the cyclic response of pearlitic steel as compared 

to without mean strain application as long as the strain amplitude remains the same. A compressive mean strain of 0.9% 

with a strain amplitude of 0.6% and a compressive mean strain of 0.5% with a strain amplitude of 1% were used 

respectively. The stress amplitude against number of cycles as well as the plastic strain amplitude developed curves for 

pearlitic steel is nearly coincident for the two cases of with and without compressive mean strain. Although the 

maximum and minimum strains in the fatigue tests with compressive mean strain were different, the stress response was 

found to be identical to the 0.6% strain amplitude without mean strain. The material adopted itself to the same cyclic 

response. In the case of 1% strain amplitude, however, little hardening was observed for the 1
st
 cycle but then the 

material adapted to the same cyclic response as without mean strain.  

The material response for manganese steel towards mean strain application is different to one without mean strain. For 

both the strain amplitudes, the mean strain caused an increase (parallel shift) in the stress amplitude development. 

Higher stress amplitudes for each cycle was obtained compared to without mean strain. The cyclic response is identical 

in terms of hardening/softening. In the case of pearlite, the plastic strain amplitude was same for with and without mean 

strain. However, in the case of manganese steel, lower plastic strain amplitudes were obtained with mean strain 

application.   

Mean strain in strain controlled loading causes mean stress relaxation. Initially, for negative mean strain, the positive 

stress peak is less and the negative peak is more showing negative mean stress. Gradually, the mean stress relaxed to 

zero showing symmetric loop as without mean strain, only shifted in negative strain axis. This is called mean stress 

relaxation. This happens with positive mean strain also where the shift is on the positive side of strain axis. Although 

the loops are symmetric, there may be an increase in stress amplitude due to extra hardening for the mean plastic strain. 

In this study, pearlitic steel is insensitive to mean strain hardening. However, manganese steel shows that there is an 

increase in cyclic yield stress due to extra hardening for the mean strain. Therefore, manganese steel is sensitive to 

hardening due to the mean strain, which causes a decrease in fatigue life.  

A comparison between the pearlitic and manganese steel reveals the maximum stress amplitudes reached at all the strain 

amplitudes are higher for the pearlitic grade. This is due to the higher hardness of pearlitic grade steel. Also, in all cases, 

the manganese steel has higher plastic strain amplitudes compared to pearlitic grade under similar conditions. This is 

due to the lower yield strength of manganese Steel. The fatigue life of the pearlitic steel is higher compared to the 

manganese steel under similar conditions. The fatigue lives under different conditions of strain amplitude are given in 

Table 1. Higher hardness and strength leads to lower plastic strains in the material and thus increase in fatigue life. It is 

generally observed that work hardened materials demonstrate cyclic softening whereas softer material exhibit cyclic 
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hardening in fatigue tests [1]. For the present materials, the cyclic softening is higher in pearlite as compared to 

manganese steel. 

 

Figure 2: Stress amplitude development with number of cycles during uniaxial fatigue testing at different conditions of 

strain amplitude for pearlitic and manganese steels. 

 

Figure 3: Plastic strain amplitude development as a function of number of cycles during uniaxial fatigue testing at 

different conditions of strain amplitude for pearlitic and manganese steels.  
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Table 1: Failure cycles for pearlitic and manganese steels for different strain amplitudes of uniaxial loading 

Strain amplitude Material  Number of Cycles to failure 

0.6% Pearlite 3660 

Manganese  2278 

0.6% (-0.9% mean strain) Pearlite 2490 

Manganese 1480 

1% Pearlite 1178 

Manganese  240 

1% (-0.5% mean strain) Pearlite 1028 

Manganese  107 

1.5% Pearlite 390 

Manganese  55 

 

Cyclic hardening ratio (CHR) and cyclic softening ratio (CSR) are two important parameters in characterizing cyclic 

deformation behaviors of materials. CHR and CSR were determined using CHR=(σmax− σ1)/σ1 and CSR=(σmax− 

σhalf)/σmax, where σ1, σmax and σhalf  represented the stress amplitude at the first cycle, the maximum stress amplitude, and 

the stress amplitude at the half lifetime, respectively. The degree of hardening and softening for both the steels is 

presented in Table 2. No hardening was observed for pearlitic steel except for 1% strain amplitude with 0.5% 

compressive strain, where very little hardening could be found in the first cycle due to mean strain hardening. Profound 

hardening was observed in case of manganese steel which was found to increase linearly with increase in strain 

amplitude. The softening was high at lower strain amplitudes compared to higher strain amplitudes for both the 

materials. The application of mean strain didn’t cause a significant change in the hardening/softening behavior for the 

two steels. 

Table 2: The cyclic hardening and softening ratios of the pearlitic and manganese steel for different conditions of strain 

amplitudes 

Strain amplitude  Material CHR CSR 

0.6%  Pearlite 0 0.0522 

Manganese 0.2983 0.1066 

0.6% (-0.9% 

mean strain) 

Pearlite 0 0.0453  

Manganese 0.2593 0.0714 

 1.0% Pearlite 0 0.0432 

Manganese 0.6762 0.0051 

 1.0% (-0.5% 

mean strain) 

Pearlite 0.0109 0.0195 

Manganese 0.7453 0.0311 

1.5%  Pearlite 0 0.0389 

Manganese 0.9145 0.0759 
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Figure 4: A graph showing the strain amplitudes (with zero mean strain) at half lifetime vs. the number of cycles to 

failure (a) pearlitic and (b) manganese steel. 

The relationships among total, elastic and plastic strain amplitudes, as well as the number of reversals to failure of the 

pearlite and the manganese steels,  are presented in Figure 4. As the number of cycles to failure increased, with 

decreasing the total strain amplitude, both the elastic and plastic strain amplitude decreased. In case of manganese steel, 

the elastic strain was less than the plastic strain in all conditions; however, for the pearlitic steel at lower strain 

amplitude of 0.6% the elastic strains were higher than the plastic strain. The decrease of plastic strain amplitude is 

higher compared to elastic strain amplitude. The transition life corresponds to the intersection of the elastic and plastic 

curve as we see in case of pearlitic steel. No transition life could be obtained for manganese steel. The difference of 

plastic strain amplitude between the two steels under cyclic loading might be the cause of different low cycle fatigue 

behaviors. The plastic strain amplitudes were always higher for the manganese steel compared to pearlitic steel. The 

relationship between plastic strain amplitude and fatigue life is given by the Coffin–Manson relationship [2],  

                                                          
    𝛥𝜀𝑝𝑙

2
= 𝜀𝑓

′ (2𝑁𝑓 )
𝑐                                                                                                  (1) 

Where ε’f is the fatigue ductility coefficient and c the fatigue ductility exponent. The plastic strain amplitude (Δεpl) used 

in the analysis is obtained at Nf/2. The relation between the total stress amplitude and life time is given by the Basquin 

equation [3]:  

                                                              
𝛥𝜎𝑡𝑜𝑡𝑎𝑙

2
= 𝜎𝑓

′(2𝑁𝑓 )
𝑏                                                                                              (2) 

where σ’f is the fatigue strength coefficient and b the fatigue strength exponent. The total stress amplitude (Δσtotal/2) 

used in the analysis is obtained at Nf/2.  

(a) (b) 
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Figure 5: Stabilized hysteresis loop developed at half lifetime under different strain amplitudes of loading (a) pearlite 

and (b) manganese steel. 

Figure 5 shows the hysteresis loops developed at stabilization for the two different materials under different strain 

amplitudes of loading. The shape of the loop is different for the two materials under similar conditions. The cyclic 

stress-strain curve is usually determined by connecting the tips of the stable hysteresis loop from the constant strain 

amplitude fatigue tests of the materials cycled at different strain amplitudes. The cyclic stress-strain curve is given by 

the equation [4]:     

                                                                  𝛥𝜎 = 𝐾′(𝛥𝜀𝑝)
 n’                                                                                                                                              

(3) 

Where Δσ is the stress range, Δεp is the plastic strain range at stabilization, and K’ and n’ are the cyclic strain hardening 

coefficient and cyclic strain hardening exponent respectively. The cyclic properties of the investigated rail steels are 

given in Table 3 below: 

Table 3: Cyclic properties of the pearlitic and manganese rail steel used in this study 

Material/Parameter Pearlite Manganese 

Fatigue ductility coefficient, εf (%) 1.868 0.619 

Fatigue ductility exponent, c -0.636 -0.282 

Cyclic strain hardening coefficient (K’) 3.229 2.994 

Cyclic strain hardening exponent (n) 0.2142 0.5976 

Fatigue strength coefficient, σ′f (MPa) 3.4 3.26 

Fatigue strength exponent (b) -0.1385 -0.1737 

 

The area under the hysteresis loops gives an idea about the plastic strain energy density of the different materials under 

fatigue. Fatigue is characterized by absorption of irreversible plastic energy which influences fatigue life. In low cycle 

fatigue, the accumulated plastic deformation is the primary reason for the fatigue. Morrow [5] suggested that the plastic 

(a) (b) 
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strain energy per cycle is a useful criterion to measure the fatigue damage per cycle since the cyclic plastic strain is 

related to the movement of dislocations and the cyclic stress is associated with the resistance against their motion.  

Table 4: Plastic strain energy density per cycle at half lifetime and accumulated plastic strain energy density at different 

strain amplitudes for pearlite and manganese rail steels 

Strain amplitudes 

 

Wp @ Nf/2 (MJ/m
3
) Wp total (x10

6
) 

Pearlite Manganese  Pearlite Manganese 

Δεt/2 = 0.6% 425 448 1.555 1.02 

Δεt/2 = 1% 1301 1186 1.533 0.312 

Δεt/2 = 1.5% 2720 2665 1.063 0.1599 

Δεt/2 = 0.6% (εm= -0.9) 401 533 1 0.788 

Δεt/2 = 1% (εm= -0.5) 1265 1370 1.3 0.15 

 

The plastic strain energy density per cycle at Nf/2, as well as the accumulated plastic strains energy density for the two 

rail steels under different conditions, is reported in Table 4. At 0.6% strain amplitude the plastic strain energy density 

per cycle is nearly equivalent for both the materials. At higher strain amplitudes of 1% and 1.5%, the pearlite has higher 

plastic strain energy density per cycle compared to manganese. Higher number of cycles to failure in case of pearlitic 

steel caused much higher accumulated plastic strain energy for all cases. Presence of mean strain didn’t cause an 

appreciable change in the plastic strain energy density per cycle of pearlitic steel compared to without mean strain 

application. However, in case of manganese steel, the presence of mean strain caused higher plastic strain energy 

density per cycle in both the strain amplitudes but the total accumulated strain energy density is less due to a lower 

number of cycles to failure. Comparing with pearlitic steel the plastic strain energy density was more in manganese 

steel in both strain amplitudes but the total energy was less. Energy dissipated in cyclic loading is related to the number 

of cycles (Nf) by a Coffin-Manson type power-law relationship: 𝑊𝑝 = 𝑊𝑓
′(2𝑁𝑓)𝜔 where, where W′f is the plastic strain 

energy coefficient or fatigue toughness co-efficient signifying the material's energy absorption capacity and ω is the 

plastic strain energy exponent. ω is correlated to b and c as ω = b + c. The log-log plot using experimentally obtained 

plastic strain energy density per cycle at about half-life and the number of reversals to failure (2Nf) is shown in Figure 

6. The linear fit shows a correlation coefficient better than 0.99. The energy intercepts and slope (ω) of the curve is 

listed in Table 5.  

Table 5: Hysteresis plastic work parameters of the rail steels 

Material parameter Pearlite Manganese  

Log (W
’
f) 5.86 4.41 

ω -0.83 -0.4847 

b+c -0.774 -0.4557 
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It can be seen that for pearlitic steel the value of ω (−0.83) derived and as per the relation ω = b + c (−0.774) matched 

roughly, whereas for manganese steel it matched quite well. Therefore, the energy-life and strain-life relationships 

followed the same trend regarding their responses to the applied strain amplitude.  

 

Figure 6: Plastic strain energy density per cycle at about half-life vs number of reversals to failure. 

The accumulated plastic strain energy density is obtained by summing up the areas of all the hysteresis loops until 

failure. This total energy can be used to quantify the resistance to fatigue damage or fatigue toughness (Wp total).  

𝑊𝑝𝑡𝑜𝑡𝑎𝑙= 𝑊𝑝 .𝑁𝑓. 

With the increase in strain amplitude i.e. decrease in the number of cycles, the plastic strain energy density per cycle 

increased. But the total plastic strain energy density increased with increasing fatigue life. This phenomenon suggests 

that a higher amount of cumulative plastic strain energy was required for the process of crack initiation and propagation 

to occur at the lower level of strain amplitudes. At higher amplitudes local damage processes prevalent cause energy 

absorption leading to decrease in accumulated plastic strain energy density.    

                                                                                      

2.2 Pure Torsion Low Cycle Fatigue Testing  

The torque amplitude developed with the number of cycles for the two steels at two different equivalent strain 

amplitudes of 0.8% and 1.3% is given in Figure 7. The load response indicates three stages are present in both the strain 

amplitude, as seen in the case of uniaxial straining for pearlitic steel. First there is a decrease of torque amplitude 

leading to softening, followed by a linear stage of cyclic saturation, and finally an increase in amplitude leading to 

hardening before the final fracture. Hardening followed by softening is observed in case of manganese steel for both the 

strain amplitudes. The hardening is present only for the initial few percents of the fatigue life whereas softening 

prevailed for most of the fatigue life with no saturation as was observed for uniaxial loading. The torque amplitudes 

developed are higher for pearlitic steel than for manganese steel. The cycles to failure at lower strain amplitudes are 

higher for manganese steel but at higher strain amplitudes pearlite and has a higher life time. Compared to uniaxial 
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testing, application of shear loading causes an increase in fatigue life time in both the steels. Shear loading causes delay 

in crack formation and increases fatigue life.  

 

Figure 7: Evolution of torque amplitude with number of cycles in pure torsion loading under different strain amplitudes 

for pearlite and manganese steels. 

  

Figure 8: Hysteresis loop development for manganese steel at different cycles under pure torsion loading at (a) 0.8% 

equivalent strain amplitude and (b) 1.3% equivalent strain amplitude. 

(a) (b) 
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Figure 9: Hysteresis loop development for pearlite steel at different cycles under pure torsion loading at (a) 0.8% 

equivalent strain amplitude and (b) 1.3% equivalent strain amplitude. 

Figures 8-9 show the hysteresis loops developed for the two different materials under different loading conditions. For 

the manganese steel initially under all conditions, there is a shift of the tip of the hysteresis loop upwards towards higher 

stress indicating cyclic hardening whereas the trend is reversed for pearlitic grade indicating cyclic softening. At half 

number of cycles, cyclic softening was observed for manganese steel. For pearlitic steel stabilized hysteresis loops are 

obtained at half cycles to failure. The area under the hysteresis loops gives the plastic strain energy density of materials 

under fatigue as mentioned before. The exact values of plastic strain energy density could not be calculated due to lack 

of stress data due to use of solid specimen. But a comparative analysis indicates the manganese steel and pearlitic steel 

have similar plastic energy density per cycle at lower strain amplitudes. But since the cycles to failure are higher for 

manganese steel, the accumulated plastic strain energy density is higher for manganese steel. At higher strain 

amplitudes, the pearlite has higher plastic strain energy density per cycle as well as higher cycles to failure leading to 

nearly double accumulated plastic strain energy density than manganese steel.  

The torsion fatigue results show a similar trend as the uniaxial fatigue. The torque vs cycles results shows cyclic 

softening through the life for pearlitic steel whereas manganese steel shows cyclic hardening for almost 100 cycles, 

thereafter there is cyclic softening and failure. Cyclic hardening rate increases with strain amplitude leading to early 

microcrack initiations and reduction in failure life. 

2.3 Biaxial Loading 

A comparison between uniaxial and biaxial low cycle fatigue cannot be made unless the equivalent stress values are 

obtained. However, the present use of solid specimens instead of tubular specimen restricts direct calculation of 

equivalent stress values. The normal stress is uniformly distributed whereas the general shear stress formula is 

dependent on the radius, shear stress being maximum at the surface and zero at the center. Due to plasticity, and non-

linear response on plastic straining, the shear stress in each location is not readily computed. However, the strain is 

always well defined, and the uniaxial stress can be used as a comparison tool also on biaxial loading whether 

proportional or non-proportional.  

(a) (b) 



12 
 

 

Figure 10: Evolution of axial stress amplitude with number of cycles in biaxial in-phase loading for the two rail steels 

under different equivalent strain amplitudes. 

 

Figure 11: Evolution of axial stress amplitude with number of cycles in biaxial out of phase loading for the two rail 

steels under different equivalent strain amplitudes. 
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Figure 12: Evolution of torque amplitude with number of cycles in biaxial in-phase loading for the two rail steels under 

different equivalent strain amplitudes 

 

Figure 13: Evolution of torque amplitude with number of cycles in biaxial out of phase loading for the two rail steels 

under different equivalent strain amplitudes. 
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The material response in terms of stress and torque with number of cycles for biaxial loading for different equivalent 

strain amplitude is shown in the Figures (10-13) above. Similar trends as discussed in the case of uniaxial loading can 

be observed. With the increase in equivalent strain amplitude, the normal stress amplitude, as well as the torque 

amplitudes, increase for both the materials. The two materials behave very differently under in-phase and out of phase 

loading. Higher hardening and thus higher stress and torque amplitudes are observed for biaxial out of phase loading for 

both the materials. Due to rotation of maximum shear planes in biaxial out of phase loading additional slip systems get 

activated causing nonproportional hardening in addition to cyclic hardening. Nonproportional cyclic hardening depends 

on the strain path as well as the degree of straining. 90° out of phase loading causes the maximum degree of non-

proportionality. Therefore higher strain amplitudes together with 90° phase difference cause the highest hardening 

compared to in-phase loading. The in-phase biaxial behavior is similar to uniaxial behavior. 

During in-phase loading, the stress and torque amplitudes development for the manganese steel is less than the pearlite 

under all conditions of strain amplitudes. However, the non-proportional hardening in manganese steel at high 

equivalent strain amplitudes of 1% surpasses that in pearlite. The maximum stress and torque amplitudes developed are 

higher in manganese than pearlite in biaxial out of phase loading at 1% equivalent strain amplitude. At lower equivalent 

strain amplitude of 0.6%, the maximum torque amplitude for manganese steel is higher than pearlite whereas the normal 

stress amplitude is lower.  

At lower strain amplitude during in-phase loading, both hardening and softening can be observed for manganese steel. 

But at higher strain amplitudes, hardening was more prominent with very little softening towards failure. As observed in 

the case of uniaxial loading, the hardening occurred within the first 100 cycles. For pearlitic steel, in biaxial in-phase 

loading, the behavior was similar as observed in case of uniaxial loading where there are three stages of cyclic 

softening, stabilization followed by little softening before fracture. Biaxial out of phase loading caused significant 

hardening in manganese steel even at lower strain amplitudes with very little softening. At higher strain amplitudes, the 

material strain hardened all the way to failure with no softening. For pearlite, there is little hardening in the first cycle, 

followed by softening and cyclic stabilization, softening and then failure.  

Table 6: Failure cycles for pearlitic and manganese steel under different strain amplitudes of uniaxial loading 

Condition Equivalent Strain amplitude Material  Number of Cycles to failure 

Biaxial in-phase 0.6% Pearlite 5471 

Manganese  1924 

1% Pearlite 1368 

Manganese 594 

1.5% Pearlite 456 

Biaxial out of phase 0.6%  Pearlite 2556 

Manganese  1485 

1% Pearlite 619 

Manganese 107 

1.5% Pearlite 321 

 

The biaxial out of phase loading causes a decrease in number of cycles to failure compared to biaxial in phase loading 

for both the materials. Like uniaxial loading, in biaxial loading also the pearlite can sustain higher cycles to failure.  



15 
 

  

Figure 14: Hysteresis loop development for manganese steel at different cycles under biaxial in phase loading at 1% 

equivalent strain amplitude (a) axial stress-strain response and (b) shear stress-strain response. 

  

Figure 15: Hysteresis loop development for manganese steel at different cycles under biaxial out of phase loading at 

1% equivalent strain amplitude (a) axial stress-strain response and (b) shear stress-strain response. 

  

Figure 16: Hysteresis loop development for pearlite steel at different cycles under biaxial in phase loading at 1% 

equivalent strain amplitude (a) axial stress-strain response and (b) shear stress-strain response. 

(a) 

(a) 

(b) 

(b) 

(b) (a) 
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Figure 17: Hysteresis loop development for pearlite steel at different cycles under biaxial out of phase loading at 1% 

equivalent strain amplitude (a) axial stress-strain response and (b) shear stress-strain response.  

 

Figure 18: Hysteresis loop development for pearlite steel at different cycles under biaxial in phase loading at 1.5% 

equivalent strain amplitude (a) axial stress-strain response and (b) shear stress-strain response. 

 

Figure 19: Hysteresis loop development for pearlitic steel at different cycles under biaxial out of phase loading at 1.5% 

equivalent strain amplitude (a) axial stress-strain response and (b) shear stress-strain response. 

(a) (b) 

(b) (a) 

(a) (b) 
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The hysteresis loops developed for the two materials at different equivalent strain amplitudes for biaxial loading are 

shown in Figures 14-19 above. The detailed description of hysteresis loops for 0.6% strain is described in paper 5. 

Similar to uniaxial loading, in biaxial in phase loading at 1% equivalent strain amplitude for the manganese steel under 

all conditions initially there is a shift of the tip of the hysteresis loop upwards towards higher stress indicating cyclic 

hardening, whereas the trend is reversed for pearlitic grade indicating cyclic softening for all cases except biaxial non 

proportional loading, where hardening can be observed in the first cycle. As discussed in the paper 5 in biaxial 

proportional loading, the hysteresis loops show a sharp tip at the maximum and minimum strains: however, under 

biaxial out of phase loading the tips of the hysteresis loop are rounded. Similar to tests done in pure torsion, the exact 

values of plastic strain energy density could not be calculated due to the use of solid specimens.  

A comparative analysis of all the conditions of loading indicates, for manganese steel, there is prominent hardening for 

all conditions with the maximum hardening being observed in case of biaxial nonproportional loading for both the strain 

amplitudes with higher hardening and at the higher strain amplitudes. This is due to the combined effect of cyclic 

hardening and non-proportional hardening. The pearlitic steel exhibited softening for most of the cases except for 

biaxial loading with initial hardening in first 1-2 cycles. When comparing manganese and pearlitic steel, the pearlite has 

higher failure cycles under similar conditions of loading and strain amplitude. The softer manganese steel had lower 

stress or torque amplitudes than pearlitic steel for all conditions except for biaxial nonproportional loading at higher 

strain amplitudes where it surpasses the pearlitic steel. 

2.4 Optical Microscopy: 

     

Figure 20: Optical micrographs of fatigue deformed samples for pure torsion at 0.8% strain amplitude for (a) pearlitic 

and (b) manganese steel. 

(a) (b) 
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Figure 21: Optical micrographs of fatigue deformed samples for pure torsion at 1.3% strain amplitude for (a) pearlitic 

and (b) manganese steel. 

        

Figure 22: Optical micrographs of fatigue deformed samples for uniaxial loading at 1% strain amplitude for (a) pearlitic 

and (b) manganese steel. 

    

Figure 23: Optical micrographs of fatigue deformed samples for biaxial in-phase loading at 1% strain amplitude for (a) 

pearlitic and (b) manganese steel. 

(b) (a) 

(a) (b) 

(a) (b) 
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Figure 24: Optical micrographs of fatigue deformed samples for biaxial out of phase loading at 1% strain amplitude for 

(a) pearlitic and (b) manganese steel. 

The optical micrographs of the fatigue deformed steels at 0.6% strain amplitude are discussed in paper 5. The optical 

micrographs of uniaxial and biaxially deformed fatigue specimens at 1% strain amplitude and pure torsion at 0.8% and 

1.3% shear strain amplitude are shown in Figures 20-24. The pearlite microstructure does not show a much observable 

change in the microstructure under different conditions, similar to what is observed for 0.6% strain. The difference in 

the mechanical properties is therefore attributed to dislocation density changes in the structure which are not revealed 

by optical microscopy. The deformed microstructure of the manganese steel consists of banded structure. These bands 

can be deformation twins or stacking faults or dislocation boundaries which is not evident from the optical micrographs. 

The density and morphology of these bands differ under the different conditions of loading with increasing density and 

decreasing spacing of the bands at higher strains. The spacing between the bands is lowest for biaxial nonproportional 

loading. At higher strains in biaxial loading the bands appear finer, and under when viewed under higher magnification 

it can be seen they are as clusters of bands together. The bands are in different directions and in some grains, the bands 

are intersecting each other. This is similar to what is observed at 0.6% strain. 

2.5 TEM Microstructure 

Intermittent uniaxial fatigue testing at 0.4% strain amplitude with equal tension and compression was performed on the 

head hardened pearlite steel to study the evolution of damage and correlate it with microstructural changes at different 

time intervals. The change in mechanical response was analyzed in terms of dislocation density variation in the 

microstructure. 

(b) (a) 
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Figure 25: TEM micrographs of fatigue deformed pearlitic steel at 0.4% strain amplitude under uniaxial loading at (a) 

initial structure (b) 0.25 cycles (c) 100 cycles (d) at failure. 

The TEM microstructure of the undeformed pearlitic steel specimen is shown in Figure 25a.  The spacing between the 

ferrite and cementite indicates that it is a medium interlamellar spacing pearlitic structure with few scattered 

dislocations in the ferrite. The pearlite was given hardening treatment during processing which generated dislocations in 

the structure. The interface between the ferrite and cementite appears quite distinct and sharp. At 0.25 cycles, an 

increase in dislocation density in the ferrite channels randomly distributed is observed. The interface is still sharp and 

clear, free from dislocations. The ferrite and cementite microstructure is intact. No dislocation cells were found at this 

number of cycle. Dislocation structures with much higher dislocation densities were observed at 100 cycles and in the 

failed specimens. The dislocation densities are reported in Table 7 below. The significant increase in dislocation density 

after just one-quarter cycle indicates rapid strain hardening in early cycles. Thereafter, the rate of dislocation generation 

is slower and may reach saturation. Cell formation was observed after 100 cycles. The restructuring and formation of 

dislocation cells indicate the cyclic softening behavior in low cycle fatigue of pearlitic steel. After many cycles, 

dislocations are present within the ferrite channels as well as along the interfaces. Dislocations generally nucleate at 

ferrite cementite interfaces due to elastic incompatibility stresses between the ferrite and cementite phases and glide in 

the ferrite lamellae to form dislocation tangles.  

 

(a) 

(d) (c) 

(b) 
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Table 7: Dislocation densities observed in fatigue deformed pearlitic steel under uniaxial loading at 0.4% strain 

amplitude. 

Cycles Dislocation Density 

0 5.06E+14 

0.25 6.39E+14 

100 6.73E+14 

17000 7.55E+14 

 

Discussion:  

The tensile tests established high work hardening capacity of the manganese steel compared to the pearlitic steel with a 

strain hardening exponent of 0.4. Pearlite steel is a high strength steel. The work hardening is less (25% of the yield 

stress value) and saturates quickly (within 4% of the strain value, 3.4% of plastic strain value). It cannot accommodate 

large plastic deformation. For, high strength steel the deformation is mainly governed by elastic deformation due to 

higher yield strength, whereas, manganese steel is comparatively low strength steel with high work hardening capacity. 

The work hardening rate is constant for a large value of plastic strain (17.5% of plastic strain). Although, having a low 

yield stress value, manganese steel gains strength from work hardening with good ductility property.  

Pearlite steel is designed to have a good strength with limited plastic deformation and work hardening confined to the 

top layers of rail wheel contact. This steel serves to prevent elastic damage like brittle cracking. The cracks will be 

confined to work harden top surface only. But it has less resistance to plastic strain induced damage. On the other hand, 

the manganese steel gains moderate strength from high work hardening property without sacrificing much of ductility. 

Thus, it can accommodate large plastic deformation. Although, manganese steel is less effective for elastic damage it is 

highly effective for plastic strain induced damage like exhaustion of ductility in low cycle fatigue.  

From uniaxial low cycle fatigue test, apparently, it appears that pearlite steel is better choice compared to manganese 

steel because it can endure higher life cycles. However, laboratory scale fatigue testes were done under strain controlled 

mode. But, for stress controlled fatigue loading, which is the real life case in service, pearlite steel will suffer larger 

plastic deformation because the work hardening saturates quickly and will allow plastic deformation without any 

increase in stress.  Moreover, in-service loading will result in mean stress above fluctuating load. This loading condition 

may result in ratcheting phenomenon. For cyclic softening material like pearlite steel, the ratcheting strain is higher and 

this may lead to failure due to ratcheting strain. The work hardening of manganese steel is also evident during the 

fatigue tests where it shows hardening behavior for all the test conditions. The cyclic hardening coefficient of 

manganese steel is found to be much higher compared to pearlite steel. For manganese steel, due to high work 

hardening capability, the plastic deformation is restricted for stress controlled fatigue loading. Moreover, due to cyclic 

hardening property, the ratcheting strain is also restricted. 
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The mean strain effect in strain controlled LCF test shows mean stress relaxation. For pearlite steel the mean stress 

relaxed within a few initial cycles and there is negligible effect as compared to LCF response without mean strain. But, 

for manganese steel mean stress relation occurs over a considerable number of initial cycles and mean strain hardening 

effect is noticeable.  

Regarding fatigue life computation, fatigue ductility coefficient (εf) and fatigue ductility exponent (c) are derived from 

plastic strain life curve based on Coffin Manson equation. The fatigue ductility coefficient shifts the curve parallel to 

the plastic strain amplitude axis whereas the fatigue ductility exponent ‘c’ gives the negative slope of the curve of 

plastic strain amplitude vs number of failure cycles in a log-log plot. Therefore, the fatigue strength deterioration rate 

with elapsed cycle (damage rate) is governed by fatigue ductility exponent ‘c’. In this analysis the fatigue ductility 

exponent ‘c’ is coming out as -0.636 and -0.282 for pearlite steel and manganese steel respectively. The higher negative 

value of fatigue ductility exponent for pearlite steel shows the higher plastic strain induced damage rate for pearlite steel 

compared to manganese steel. 

However, from stress life curve (Basquin equation) the fatigue strength coefficient and fatigue strength exponent ‘b’ are 

calculated. The result shows that the fatigue strength exponents ‘b’ are -0.1385 and – 0.1737 for pearlite steel and 

manganese steel respectively.  The lower negative value of fatigue strength exponent ‘b’ for pearlite steel shows that 

elastic stress induced damage rate is less for perlite steel compared to manganese steel. 

Regarding, plastic energy absorbing capability, it is observed from the test results that , the deterioration of plastic 

energy absorbing capacity ( exhaustion of ductility) in low cycle fatigue is more for pearlite steel ( ω= -0.83 ) compared 

to manganese steel (ω= -0.485).  

From these observations it can be concluded that if the fatigue process is dominated by elastic deformation, pearlite 

steel is preferable whereas the manganese steel gives benefit if the fatigue process is dominated by plastic deformation. 

In fact, the use of high strength steel is to keep the deformation dominated by the elastic strain.  

Strain controlled uniaxial low cycle fatigue tests show that the fatigue life is more for pearlite steel compared to 

manganese steel for the same strain amplitude. Pure torsion LCF tests show that the difference in fatigue life for both 

the steels are not so prominent for the same strain amplitude. For 0.8% equivalent strain amplitude, the fatigue life of 

manganese steel is slightly higher compared to pearlite steel. This is due to the fact that for pure shear the deformation 

is due to the slip activity which is mainly plastic strain dominated.  However it is to mention that the fatigue lives of 

both the steels are considerable higher in pure shear loading compared to uniaxial loading. Pure shear causes delay in 

crack initiation and thus improves fatigue life. In biaxial fatigue testing for low equivalent strain amplitude (0.6%) 

pearlite steel shows higher fatigue life for in-phase biaxial loading compared to uniaxial loading. This may be due to the 

contribution of shear deformation in biaxial loading which enhances the fatigue life compared to pure axial 

deformation. For manganese steel there is not much change in fatigue lives for uniaxial and biaxial in-phase loading. 

For out of phase loading for pearlite steel non proportional hardening is 12% whereas for manganese steel it is 37%. 

Higher non proportional hardening of manganese steel is due to its capability to accommodate large plastic deformation 

by activating more number of slip systems or other deformation mechanisms.  
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The difference in mechanical response can be correlated with the microstructure obtained. TEM studies of fatigue 

deformed pearlitic steel reveal threading dislocations and dislocation tangles which nucleate at the ferrite cementite 

interface due to strain incompatibility. The different loading causes difference in the dislocation density which affects 

the fatigue strength and fatigue life. Slip is the only deformation mode for pearlitic steel. The softening behavior of the 

pearlitic steel can be explained in terms of the hardening treatment during processing which generated dislocation 

density already in the material. Further straining only increased little dislocation density in the initial few cycles and 

finally, the material gets stabilized causing softening. Cyclic softening takes place through a dynamic recovery process 

owing to the rearrangement of dislocations into a stable lower energy configuration [6]. At higher strain amplitudes, the 

stress amplitudes are also sufficiently high and thus the rearrangement occurs earlier in less number of cycles. The 

softening rate decreased as the strain range was increased. 

For manganese steels, a combination of dislocation cells with dislocation cells as well as intersecting straight stacking 

fault lamellae governs the microstructure. Uniaxial loading is dislocation density dominant but when the shear mode is 

introduced in the in-phase and out-of-phase biaxial LCF test, formation and growth of stacking faults play an important 

role together with dislocation nucleation, gliding and dislocation tangle formation. Cyclic hardening is believed to occur 

due to increase in dislocation density by multiplication and intense interaction among themselves during cyclic straining 

[6]. FCC materials like manganese steels have lower stacking fault energies (SFE). Lower SFE results in easy 

dislocation splitting and facilitates increase in stacking fault density. Therefore the excellent hardening in manganese 

steel is due to both dislocations as well as stacking faults which imparts additional hardening. 
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