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ABSTRACT  29 

BACKGROUND: The development of obesity has a large genetic component, and the gene 30 

encoding the transcription factor 2 beta (TFAP2B) has been identified as one of the 31 

responsible factors. We investigated the effect of TFAP2B intron 2 variable number tandem 32 

repeat (VNTR) genotype on obesity, insulin resistance and dietary intake from 15 to 33 years 33 

of age. 34 

METHODS: The sample included both birth cohorts (originally n = 1176) of the longitudinal 35 

Estonian Children Personality Behaviour and Health Study. The association between TFAP2B 36 

genotype, and anthropometric measurements, glucose metabolism and dietary intake at 37 

ages 15, 18 and 25 years was assessed using the linear mixed-effects regression models. 38 

Differences in anthropometric measurements, biochemical measures, blood pressure and 39 

dietary intake between TFAP2B genotypes at different age, including data of the older 40 

cohort at age 33, were assessed by one-way ANOVA. 41 

RESULTS: Male homozygotes for the TFAP2B 5-repeat allele had significantly higher body 42 

weight, body mass index, sum of 5 skinfolds, proportion of body fat, waist circumference, hip 43 

circumference, waist to hip ratio, waist to height ratio, fasting insulin and HOMA index. In 44 

female subjects, homozygotes for the TFAP2B 5-repeat allele had significantly larger increase 45 

in the rate of change per year in body weight, body mass index and hip circumference 46 

between years 15 and 25. By age 33 the findings were similar. A decrease in daily energy 47 

intake from adolescence to young adulthood was observed. In males, heterozygotes had 48 

significantly smaller decrease in the rate of change per year in daily energy intake. 49 

CONCLUSIONS: The association of TFAP2B with the development of obesity and insulin 50 

resistance is present throughout adolescence to young adulthood in males. In females the 51 
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effect of TFAP2B on obesity appears later, in young adulthood. The TFAP2B effect is rather 52 

related to differences in metabolism than energy intake.53 
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INTRODUCTION  54 

Prevalence of overweight, obesity and abdominal obesity has increased worldwide (1–3). 55 

Obesity was previously considered to be only a disorder of energy imbalance, but now we 56 

know that its pathogenesis is more complex involving an interaction between genetic, 57 

environmental, physiological, behavioural, social, and economic factors (4).  58 

The development of obesity has a large genetic component, and heritability estimates of 59 

BMI around 80% have been reported, while a large variety of genes appears to play a role 60 

(5–7). We have previously demonstrated that the intron 2 variable number tandem repeat 61 

(VNTR) polymorphism of the transcription factor AP2B gene (TFAP2B) was associated with 62 

abdominal obesity and insulin resistance among 15-year old subjects. Homozygotes for the 63 

5-repeat allele had higher levels of fasting insulin, Homeostasis Model Assessment (HOMA) 64 

estimates and subscapular skinfold thickness, as compared to the carriers of the 4-repeat 65 

allele (8). These associations were however present only in male subjects. Recent large-scale 66 

studies have reinforced the implication of TFAP2B in BMI and obesity. A meta-analysis of 67 

genome-wide association studies (GWAS) in individuals of European and non-European 68 

descent and Metabochip studies, with a total of 339 224 individuals, identified 97 loci 69 

including TFAP2B as associated with BMI (9). A meta-analysis of GWAS in children (aged 2–70 

10 years) produced similar results: It included 20 studies (n = 35 668) in the discovery phase 71 

and 13 studies (n = 11 873) in the replication phase; 15 loci, including TFAP2B, reached 72 

genome-wide significance and were thus reliably associated with childhood BMI (10). These 73 

data make TFAP2B a highly interesting candidate gene for overall obesity as well as 74 

abdominal obesity and insulin resistance that has its effect already manifested in early 75 

childhood.  76 
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Earlier studies have shown that polymorphisms in the first intron of TFAP2B affect the 77 

transcriptional activity of the gene (11). Overexpression of TFAP2B in 3T3-L1 adipocytes 78 

decreased the expression and secretion of adiponectin, by directly inhibiting adiponectin 79 

gene expression (12). Moreover, overexpression of TFAP2B causes adipocyte cell 80 

enlargement, stimulation of glucose transport activity, triglyceride accumulation and insulin 81 

resistance (13). However, it is not known, how the association of TFAP2B genotype with 82 

obesity and insulin resistance develops over time or which are the mediating factors. In this 83 

study we examined the longitudinal association between TFAP2B intron 2 VNTR genotype 84 

and obesity, abdominal obesity, insulin resistance and dietary intake in a birth cohort study. 85 

 86 

SUBJECTS AND METHODS 87 

Study sample 88 

The sample was originally formed for the European Youth Heart Study in 1998/1999 and was 89 

later incorporated into the Estonian Children Personality Behavior and Health Study 90 

(ECPBHS). The study procedure and the selection of the original sample has been described 91 

in detail elsewhere (14). In brief, ECPBHS is a longitudinal cohort study with a population 92 

representative sample of participants, all of European descent, with school as the sampling 93 

unit. All schools of Tartu County, Estonia, that agreed to participate (54 of the total of 56) 94 

were included into the sampling and 25 schools were selected. All children from grades 3 95 

(aged 9 years; n = 583) and grades 9 (aged 15 years; n = 593) were invited to participate (14). 96 

Follow-up studies for the younger birth cohort have been taken place in ages 15 years (n = 97 

483), 18 years (n = 454) and 25 years (n = 441) and for the older birth cohort in ages 18 years 98 

(n = 417 + additional 62), 25 years (n = 541) and 33 years (n = 504) (ref. 15). 99 
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The sample of this analysis comprises of non-pregnant individuals with available complete 100 

data at age 15 years, 18 years and 25 years on anthropometric measurements, biochemical 101 

measures, dietary intake and TFAP2B intron 2 VNTR genotype (Supplementary Table 1). Data 102 

from the older birth cohort has by now been collected at age 33 years and is analyzed cross-103 

sectionally. The study sample included 18 –21 pairs of siblings at each timepoint. To account 104 

for that, a separate analysis was done were one of the siblings was removed from the 105 

sample. The results did not differ significantly and thus both siblings were included in the 106 

final analysis.  107 

The average age of the subjects was 15.2 (SD = 0.6) years (n = 1022; 54.7% female), 17.8 (SD 108 

= 0.6) years (n = 796; 56.3% female), 24.8 (SD = 0.6) years (n = 832; 54.7% female) and 33.0 109 

(SD = 0.8) years (n = 470; 55.3% female).  Written informed consent was obtained from the 110 

participants and, in case of minors, also from their parents. Permission for the study was 111 

obtained from the Ethics Review Committee on Human Research of the University of Tartu. 112 

The study was conducted in accordance with the Declaration of Helsinki. 113 

 114 

Anthropometric measurements, blood pressure, biochemical measures and assessment of 115 

insulin resistance 116 

Height and weight were measured by standardized procedures. BMI was calculated as 117 

weight / height squared (kg/m2). Skinfold thickness was measured at the biceps, triceps, 118 

subscapular, suprailiac and medial calf areas on the left side of the body using a Harpenden 119 

caliper (Baty, West Sussex, England). Body fat percentage (BF%) was calculated using a 120 

formula by Durnin and Womersley (16,17). Waist circumference (WC) was taken between 121 

the lower rib margin and the iliac crest, at the end of gentle expiration and hip 122 
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circumference (HC) was measured over the buttocks, at the level of the great trochanter. All 123 

anthropometrical measurements were taken twice and a mean value was used.  124 

Resting systolic (SBP) and diastolic blood pressure (DBP) was measured in a laboratory 125 

setting from the left arm with an automatic oscillometric method in a sitting position. Five 126 

consecutive measurements were made at 2 min intervals and the mean value was used in 127 

the analysis. 128 

Venous blood samples were taken after an 8–12 h fast and analyzed in a certified clinical 129 

laboratory. Insulin resistance was estimated, using the HOMA index, which was calculated as 130 

fasting glucose (mmol/l) × fasting insulin (mU/l)/22.5 (ref. 18).  131 

 132 

Assessment of dietary intake 133 

Dietary 24h (year 1998), 48h (years 2001, 2004, 2007) or 72h (years 2008, 2014) recall of 134 

food intake was used. The subjects were asked to complete a diet record at home during the 135 

day(s) before the study day. A face-to-face interview was performed on the study day. Data 136 

on portion size, that was not recorded in the food diary, was estimated using pictures of 137 

portion sizes (19). Where data on two or three days was available the mean consumption 138 

was calculated. Dietary intake was assessed from 1998–2004 using the Finnish Micro-Nutrica 139 

Nutritional Analysis program adapted to include Estonian foods, Estonian version 2.0 (Tallinn 140 

University of Technology, Food Processing Institute, Estonia) and from 2007–2014 using the 141 

NutriData food consumption database, versions 4.0–7.0 (National Institute for Health 142 

Development, Estonia).  NutriData is an evidence-based food composition database, 143 

established by the National Institute for Health Development, and based on the Micronutrica 144 
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software. Over the years, the food list of Micronutrica has been updated with local food 145 

data. 146 

 147 

Genotyping of TFAP2B variable number tandem repeat polymorphism 148 

Genotyping of TFAP2B intron 2 VNTR (a tetranucleotide repeat, 4–5 times) polymorphism 149 

has been described in detail previously (8). Genotype frequencies (4/4 = 89, 4/5 = 407, 5/5 = 150 

619) were in Hardy-Weinberg equilibrium. 151 

 152 

Statistical analysis 153 

All statistical analysis was performed with Stata software, version 13 (StataCorp LP, College 154 

Station, Texas, USA). Significance level was set at 0.05.  155 

The association between TFAP2B genotype and obesity, abdominal obesity, insulin 156 

resistance and dietary intake was estimated from 15 to 25 years of age by using the linear 157 

mixed-effects regression models with both random intercepts and random slopes. Linear 158 

mixed-effects regression models take into account the correlations between repeated 159 

measurements within each subject. Mixed models use all available observations and assume 160 

that the missingness is independent of unobserved measurements, but dependent on the 161 

observed measurements, and thus random (20). Models with 3-way interaction (time × 162 

TFAP2B × sex) were fitted to take into account differences between the sexes. Interaction 163 

with sex was statistically significant and thus model with sex × TFAP2B and sex × time were 164 

fitted. Thereafter, in the purpose of more clear presentation, separate models for male and 165 

female subjects were fitted and presented. The measurements of obesity, abdominal 166 
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obesity, insulin resistance and dietary intake at baseline (at age 15 years) and at two follow-167 

up points (ages 18 years and 25 years) were defined as the dependent variables. TFAP2B 168 

genotype (4/4, 4/5 or 5/5) was defined as the independent variable. Time was treated as a 169 

continuous variable. The goodness of fit of the statistical models was assessed using the 170 

likelihood-ratio test. In females, all the models included time × TFAP2B interactions. In 171 

males, time × TFAP2B interaction was not included in the final models for anthropometrical 172 

measurements and biomarkers, because the interaction was not statistically significant and 173 

the likelihood-ratio test did not show superiority of the more complicated models. 174 

Unstructured covariance structure and restricted maximum likelihood method was used. 175 

Heteroscedasticity was not detected based on graphical examination of standardized 176 

residual versus fitted values plot (not shown).  177 

Continuous variables are presented as means and standard deviations and grouped by 178 

TFAP2B genotype and age. Differences in anthropometric measurements, metabolic 179 

biomarkers, blood pressure and dietary intake between TFAP2B genotypes in ages 15 years, 180 

18 years, 25 years and 33 years were assessed by one-way ANOVA with the corrected 181 

significance level by Sidak method using the following equation p* = 1 - (1 - p)3 where p* is 182 

compared with significance level 0.05. 183 

 184 

RESULTS 185 

Association between obesity and TFAP2B genotype 186 

According to the linear mixed-effects regression model the interaction terms for sex × 187 

TFAP2B were significant (p < 0.05) for BMI and a trend (0.05 ≤ p < 0.10) for body weight and 188 

BF% could be observed. The interaction terms for sex × time were significant for body 189 
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weight, BMI and BF% and a trend was observed for sum of 5 skinfolds (Supplementary Table 190 

2).  191 

Models for male subjects demonstrated that 5-repeat homozygotes of the TFAP2B had 192 

significantly (p < 0.05) higher body weight, BMI, sum of 5 skinfolds and BF% compared to 193 

heterozygotes (Table 1). The rate of change among male subjects in body weight was 1.94 kg 194 

(95% CI 1.85, 2.03), in BMI 0.46 kg/m2 (95% CI 0.43, 0.48), in sum of 5 skinfolds 2.37 mm 195 

(95% CI 2.08, 2.66) and in BF% 0.20 % (95% CI 0.14, 0.25) per year (Figure 1A).  196 

In female subjects, the rate of change per year in body weight and BMI was significantly 197 

larger in 5-repeat homozygotes compared to heterozygotes (p < 0.05 for interaction) and a 198 

trend in sum of 5 skinfolds was observed (Tables 1–2, Figure 1B).  199 

A one-way ANOVA test at ages 15, 18, 25 and 33 years revealed several associations 200 

between weight, BMI, BF%, sum of 5 skinfolds and TFAP2B genotype in male subjects 201 

(Supplementary Tables 3–6). At age 33 years, male 5-repeat homozygotes had greater body 202 

weight compared to heterozygotes (by 6.78 kg; 95% CI 1.98, 11.58; p = 0.002) and 4-203 

repeat homozygotes (by 10.28 kg; 95% CI 1.20, 19.36; p = 0.021). Similar trend was observed 204 

at age 18 years. BMI was higher in male 5-repeat homozygotes at age 15 years (by 0.75 205 

kg/m2; 95% CI 0.12, 1.39; p = 0.014) and 18 years (by 0.95 kg/m2; 95% CI 0.03, 1.86; p = 206 

0.042), compared to heterozygotes and at 33 years compared to heterozygotes (by 2.34 207 

kg/m2; 95% CI 0.97, 3.71; p < 0.001) and 4-repeat homozygotes (by 2.90 kg/m2; 95% CI 0.30, 208 

5.50; p = 0.024). Male homozygotes for the 5-repeat allele had higher BF% at age 15 years 209 

(by 1.25 %; 95% CI 0.14, 2.36; p = 0.022) and 18 years (by 1.94 %; 95% CI 0.27, 3.60; p = 210 

0.017), compared to heterozygotes and at 33 years compared to heterozygotes (by 2.23 %; 211 

95% CI 0.41, 4.04; p = 0.011) and homozygotes for the 4-repeat allele (by 4.40 %; 95% CI 212 
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0.96, 7.83; p = 0.007). Sum of 5 skinfolds was greater in male 5-repeat homozygotes at age 213 

18 years (by 9.72 mm; 95% CI 1.54, 17.89; p = 0.014), compared to heterozygotes and at 33 214 

years compared to heterozygotes (by 13.23 mm; 95% CI 2.56, 23.91; p = 0.010) and 4-repeat 215 

homozygotes (by 27.31 mm; 95% CI 7.13, 47.48; p = 0.004). Similar trend was observed at 216 

age 15 years.  217 

Among female subjects no statistically significant associations between weight, BMI, sum of 218 

5 skinfolds, BF% and TFAP2B genotype were identified by one-way ANOVA test, at any age 219 

(Supplementary Tables 3–6). 220 

 221 

Association between abdominal obesity and TFAP2B genotype 222 

Interaction terms for sex × TFAP2B were significant (p < 0.05) for WC, WHR and WHtR and 223 

interaction terms for sex × time were significant (p < 0.001) for WC, HC, WHR, WHtR and 224 

subscapular skinfold thickness (Supplementary Table 2). 225 

According to the model, male 5-repeat homozygotes of the TFAP2B had significantly (p < 226 

0.05) higher WC, HC, waist to hip ratio (WHR), waist to height ratio (WHtR) and subscapular 227 

skinfold thickness compared to heterozygotes (Table 1). The rate of change among male 228 

subjects in WC was 1.43 cm (95% CI 1.36, 1.51), in HC 1.14 cm (95% CI 1.08, 1.20), in WHR 229 

0.005 units (95% CI 0.005, 0.006), in WHtR 0.007 units (95% CI 0.006, 0.007) and in 230 

subscapular skinfold thickness 0.94 mm (95% CI 0.86, 1.02) per year (Figure 2A).  231 

In HC the rate of change per year was greater (p < 0.05 for interaction) in female 5-repeat 232 

homozygotes compared to heterozygotes (Tables 1–2, Figure 2B). 233 
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In male subjects several associations between WC, HC, WHR, WHtR, subscapular skinfold 234 

thickness and TFAP2B genotype were revealed by one-way ANOVA test at ages 15, 18, 25 235 

and 33 years (Supplementary Tables 3–6). Homozygotes for the 5-repeat allele had higher 236 

WC at age 15 years (by 1.37 cm; 95% CI 0.04, 2.70; p = 0.041) and 18 years (by 2.78 cm; 95% 237 

CI 0.70, 4.87; p = 0.004) compared to heterozygotes and at 33 years compared to 238 

heterozygotes (by 5.82 cm; 95% CI 2.29, 9.36; p < 0.001) and 4-repeat homozygotes (by 6.80 239 

cm; 95% CI 0.11, 13.49; p = 0.045). HC was higher in male 5-repeat homozygotes at age 18 240 

years (by 2.10 cm; 95% CI 0.20, 4.01; p = 0.025) and 33 years (by 2.56 cm; 95% CI 0.05, 5.08; 241 

p = 0.44), compared to heterozygotes. Homozygotes for the 5 repeat allele had higher WHtR 242 

at age 15 years (by 0.009 units; 95% CI 0.001, 0.016; p = 0.012), 18 years (by 0.015 units; 95% 243 

CI 0.004, 0.027; p = 0.006) and 33 years (by 0.035 units; 95% CI 0.015, 0.055; p < 0.001), 244 

compared to heterozygotes. Subscapular skinfold thickness was greater at age 15 years (by 245 

0.89 mm; 95% CI 0.01, 1.76; p = 0.046) and 18 years (by 2.02 mm; 95% CI 0.17, 3.87; p = 246 

0.027) in male 5-repeat homozygotes compared to heterozygotes and at 33 years compared 247 

to heterozygotes (by 4.31 mm; 95% CI 0.81, 7.82; p = 0.010) and 4-repeat homozygotes (by 248 

8.60 mm; 95% CI 1.96, 15.23; 0.006). Male 5-repeat homozygotes had higher WHR at age 18 249 

years (by 0.010 units; 95% CI 0.0003, 0.0202; p = 0.041) and 33 years (by 0.033 units; 95% CI 250 

0.012, 0.055; p = 0.001), compared to heterozygotes. 251 

Female 5-repeat homozygotes had lower WHR at age 18 years (by 0.02 units; 95% CI 0.0004, 252 

0.0407; p = 0.045) compared to 4-repeat homozygotes. In females, no other statistically 253 

significant associations between WC, HC, WHtR, subscapular skinfold thickness and TFAP2B 254 

genotype were identified at any age (Supplementary Tables 3–6). 255 

 256 
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Association between biochemical measures and TFAP2B genotype 257 

In models with sex × time interaction, the interaction terms were significant (p < 0.001) for 258 

fasting insulin, cholesterol, HDL-cholesterol, LDL-cholesterol and triglycerides 259 

(Supplementary Table 2). 260 

Male 5-repeat homozygotes of the TFAP2B had significantly (p < 0.05) higher fasting insulin 261 

levels and HOMA index compared to heterozygotes. Fasting glucose, cholesterol, HDL-262 

cholesterol, LDL-cholesterol and triglyceride levels did not differ between genotypes (Table 263 

1). The rate of change among male subjects in fasting insulin was -0.31 (95% CI -0.39, -0.24) 264 

and in HOMA was -0.07 (95% CI -0.09, -0.05) per year (Figure 3A).  265 

In female subjects, fasting insulin, fasting glucose, HOMA index, cholesterol, HDL-266 

cholesterol, LDL-cholesterol and triglyceride levels did not differ between genotypes (Table 267 

1–2, Figure 3B). 268 

At ages 15 and 33 years several associations were revealed in male subjects by one-way 269 

ANOVA test between fasting insulin, HOMA, HDL-cholesterol and TFAP2B genotype. 270 

Compared to heterozygotes, 5-repeat homozygotes had higher fasting insulin levels (by 2.22 271 

mU/L; 95% CI 0.60, 3.83; p = 0.003) and HOMA (by 0.57 units; 95% CI 0.15, 1.00; p = 0.004) at 272 

age 15 years. At age 33 years HDL-cholesterol levels were lower in male 5-repeat 273 

homozygotes (by 0.16 mmol/L; 95% CI 0.04, 0.29; p = 0.007), compared to heterozygotes.  274 

Among male subjects no other significant associations between cholesterol, LDL-cholesterol, 275 

triglycerides, glucose and TFAP2B genotype were identified by one-way ANOVA at any age 276 

(Supplementary Tables 3–6). 277 
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Female 5-repeat homozygotes had higher triglyceride levels (by 0.16 mmol/L; 95% CI 0.02, 278 

0.293; p = 0.18) at age 33 years, compared to heterozygotes. No other statistically significant 279 

associations between cholesterol, HDL-cholesterol, LDL-cholesterol, glucose, insulin, HOMA 280 

and TFAP2B genotype were identified by one-way ANOVA test among females at any age 281 

(Supplementary Tables 3–6).  282 

 283 

Association between blood pressure and TFAP2B genotype 284 

The linear mixed-effects regression model and one-way ANOVA test failed to demonstrate a 285 

statistically significant difference in blood pressure between TFAP2B genotypes in male or 286 

female subjects at any age (Supplementary Tables 3–6).  287 

 288 

Association between dietary intake and TFAP2B genotype 289 

The linear mixed-effects regression model showed a significant (p = 0.023 for interaction) 290 

difference in the rate of change per year in daily energy intake (DEI) (MJ) (1 kcal = 0.0042 MJ) 291 

between male 5-repeat homozygotes of the TFAP2B and heterozygotes, the former having a 292 

larger decrease in the rate of change per year in DEI (0.15 [95% CI 0.08, 0.21] versus 0.03 293 

[95% CI 0.04, 0.11]) (Figure 4A). In female subjects, DEI did not differ between genotypes 294 

(Figure 4B). 295 

A difference in protein-, lipid- and carbohydrate intake in grams per kilogram of body weight 296 

(g/kg) or protein-, lipid- and carbohydrate intake as a percentage from DEI (E%) was not 297 

observed between TFAP2B genotype in male or female subjects.  298 
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One-way ANOVA test revealed associations between DEI, lipid and carbohydrate intake 299 

(g/kg) with TFAP2B genotype in male subjects at ages 25 and 33 years (Supplementary 300 

Tables 9–10), but not at age 15 and 18 years (Supplementary Tables 7–8). At age 25 years 301 

male heterozygotes had higher DEI compared to 5-repeat homozygotes (by 0.95 MJ/day; 302 

95% CI 0.09, 1.81; p = 0.026) and 4-repeat homozygotes (by 1.68 MJ/day; 95% CI 0.02, 3.33; 303 

p = 0.046). Lipid intake was greater in male heterozygotes at age 25 years (by 0.17 g/kg; 95% 304 

CI 0.04, 0.30; 0.007) and 33 years (by 0.20 g/kg; 95% CI 0.03, 0.37; p = 0.014) compared to 5-305 

repeat homozygotes. At 25 years (by 0.36 g/kg; 95% CI 0.02, 0.70; p = 0.034) and 33 years 306 

(by 0.43 g/kg; 95% CI 0.07, 0.79; p = 0.015) male heterozygotes had higher carbohydrate 307 

intake compared to 5-repeat homozygotes.  308 

Protein intake (g/kg) and protein-, lipid- or carbohydrate intake (E%) did not associate with 309 

TFAP2B genotype in males at any age (Supplementary Tables 7–10). 310 

In female 4-repeat homozygotes protein intake (E%) was greater at age 33 years compared 311 

to heterozygotes (by 2.29 %; 95% CI 0.01, 4.57; p = 0.049) and 5-repeat homozygotes (by 312 

2.30 %; 95% CI 0.08, 4.51; p = 0.39).  313 

Protein-, lipid- or carbohydrate intake (g/kg) and lipid- or carbohydrate intake (E%) did not 314 

associate with TFAP2B genotype in female subjects at any age (Supplementary Tables 7–10).315 
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DISCUSSION  316 

Various GWAS have identified several loci that are associated with measurements of obesity 317 

and abdominal obesity in children (10) and adults (9,21–24) or loci which can predict the 318 

development of obesity in adulthood (25). TFAP2B is among loci frequently associated with 319 

BMI variability (9,10,22,23), WC (9,21) and overweight (24) in GWAS.  320 

A meta-analysis of 16 GWAS (n = 38 580) with data on WC and WHR selected 26 SNPs for 321 

follow-up, for which the evidence of association with WC and WHR was strong. Stage 2 322 

follow-up studies in a maximum of 70 689 individuals identified a strong association 323 

between TFAP2B (p = 1.9 × 10-11) and WC (21). Speliotes et al. (2010) examined associations 324 

between BMI and ~2.8 million SNPs in up to 123 865 individuals, with targeted follow-up of 325 

42 SNPs in up to 125 931 additional individuals. They confirmed 32 loci associated with BMI, 326 

including TFAP2B (22). Guo et al. (2013) identified three novel-, three previously established- 327 

and replicated five previously identified loci, including TFAP2B, associated with BMI in a 328 

meta-analysis of gene-centric association studies (n =  92 903) (ref. 23).   329 

Both genetic and environmental factors have an effect on the variation of BMI. Although 330 

heritability estimates of BMI around 80% have been reported (5–7), it is still debated to 331 

which extent genes and shared environment contribute to food intake, physical activity and 332 

BMI variation. Twin studies have indicated the importance of shared environment in 333 

adolescence and young adulthood to fast food intake, sedentary lifestyle and obesity (26). 334 

The effect of environmental factors on BMI is greater in childhood, but when reaching 335 

adolescence and young adulthood, the effect of genetic factors increase (27,28). It has been 336 

suggested that the effect of TFAP2B on BMI variability may differ across the life course 337 

(29,30), but there is still little evidence on the longitudinal effect of obesity associated 338 
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genetic factors and the magnitude of difference over time. We investigated the effect of 339 

TFAP2B intron 2 VNTR polymorphism on obesity and insulin resistance over a 10 year study 340 

period from adolescence into young adulthood with a population representative sample of 341 

participants, of European descent. 342 

Our results show that TFAP2B intron 2 VNTR polymorphism is associated with 343 

measurements of obesity and abdominal obesity from adolescence to young adulthood. 344 

Furthermore, the TFAP2B genotype effect appeared earlier in males. Male homozygotes for 345 

the TFAP2B 5-repeat allele had higher measures of obesity, abdominal obesity and insulin 346 

resistance from 15 to 25 years of age. In female subjects, the rate of change per year in 347 

measurements of obesity differed between TFAP2B genotypes, being larger in homozygotes 348 

for the 5-repeat allele. We did not observe an association between TFAP2B genotype and 349 

blood pressure. It would be interesting to see if and how TFAP2B genotype affects blood 350 

pressure later in life.  351 

The longitudinal effect of TFAP2B on BMI has only recently been reported by Graff et al. 352 

(2017) in a nationally representative school-based cohort of US adolescents. The mean age 353 

of subjects during Wave I was 15.9 years (11–20 years), and Wave IV 28.9 years (23–32 354 

years). Results showed a positive association between six obesity loci, including TFAP2B, and 355 

change in BMI over time, but only among subjects with European American ancestry. They 356 

also found that two of the loci, TFAP2B and MTCH2, had different magnitudes of effect in 357 

different ages, whereas TFAP2B had a stronger influence on BMI in young adulthood (greater 358 

in those who were aged 21 years at Wave II compared to those who were 13 years), while 359 

MTCH2 had a stronger influence on BMI in young adolescents (greater in those who were 360 

aged 13 years at Wave II versus those who were 21 years) (29). 361 
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The pathways through which TFAP2B influences the development of obesity and insulin 362 

resistance are unclear. TFAP2B encodes a transcription factor expressed in neural crest cells, 363 

regulating cell survival, promoting cell proliferation and suppressing differentiation (31). It is 364 

likely that TFAP2B affects both the CNS and adipocyte function. We have previously shown 365 

that a polymorphic region in the human transcription factor AP-2beta gene is associated 366 

with specific personality traits (32) and furthermore that TFAP2B levels in the raphe where 367 

the serotonergic perikarya are located were strongly correlated with serotonin turnover in 368 

the frontal cortex of rats (33). Central serotonergic neurotransmission is critically important 369 

in the regulation of food intake, thus we next analyzed the differences in dietary intake 370 

between TFAP2B genotypes. Our results demonstrate that in male subjects, heterozygotes 371 

had significantly smaller decrease in the rate of change per year in DEI. Furthermore, DEI 372 

differed significantly between genotypes at age 25 years, where male heterozygotes had 373 

higher DEI and higher lipid- and carbohydrate intake per body weight. Male homozygotes for 374 

the 5-repeat allele had higher body weight already in adolescence and young adulthood 375 

which may lead them to regulate their body weight by reducing DEI. Our results indicate that 376 

the effect of TFAP2B on obesity is not mediated by dietary intake and hence further research 377 

should concentrate on other factors.  378 

Previously, the 8-repeat allele of intron 1 and the 4-repeat allele of intron 2, and also the 9-379 

repeat allele of intron 1 and 5-repeat allele of intron 2 were found to be in significant linkage 380 

disequilibrium, and indeed they were linked to the same phenotype (8). Polymorphisms in 381 

the first intron of TFAP2B affect the transcriptional activity of the gene, whereas individuals 382 

with the 9-repeat allele have higher expression of TFAP2B in adipose tissue (11). 383 

Overexpression of TFAP2B in adipocytes cause decreased expression and secretion of 384 

adiponectin (12), adipocyte cell enlargement, stimulation of glucose transport activity, 385 
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triglyceride accumulation and insulin resistance (13). Furthermore, it is possible that TFAP2B 386 

plays a role in intrauterine growth. We have previously found that the sex of the newborn 387 

influences the association of maternal TFAP2B genotype and maternal leptin with the weight 388 

of the newborn (34). TFAP2B has also been associated with type 2 diabetes (35,36).  389 

The reasons behind sex differences remain unclear. The effects of sex on food intake can be 390 

observed already in childhood, where boys are more prone to eat in the absence of hunger 391 

(p = 0.006) (ref. 37). Women are more likely to make better dietary choices consuming more 392 

fiber, fruits and avoiding high-fat foods (38). Metabolic differences between males and 393 

females are well established, but little is known about the neuroendocrine basis of these 394 

differences (39). Serotonergic neurotransmission, affected by TFAP2B (33), plays a part in 395 

satiation and food reward (40) and a sexual dimorphism can be observed in the serotonergic 396 

system (39,40).   397 

This study has some limitations that should be considered. Our study sample consists of 398 

individuals of European descent, which means the study results cannot be extrapolated to 399 

individuals of other ancestry. Although we demonstrate the effect of TFAP2B intron 2 VNTR 400 

polymorphism on measures of obesity and abdominal obesity is consistent in time, we 401 

cannot determine at what age the effect occurs. The sample size, to assess the prevalence of 402 

the main cardiovascular risk factors, was calculated using estimates of 0.80 for power and 403 

0.05 for variability. Regarding the results where no significant associations were found, 404 

because of the size of our sample and limited statistical power, we cannot be certain 405 

whether the associations are truly zero. 406 

Overall, the results strongly support the notion that TFAP2B plays an important role in the 407 

development of obesity and abdominal obesity. We have also demonstrated that the effect 408 



   
 

21 
 

of TFAP2B intron 2 VNTR polymorphism on anthropometric measures and glucose 409 

metabolism differs between male and female subjects. In males the TFAP2B genotype effect 410 

remains consistent from 15 to 25 years of age, but in females the rate of change differs in 411 

time between genotypes.   412 
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FIGURE LEGENDS 537 

Figure 1. Association between TFAP2B intron 2 VNTR genotype and body weight, body mass 538 

index (BMI) and body fat percentage (BF%) from 15 to 25 years of age in male (graph A) and 539 

female (graph B) subjects.  540 

*P<0.05 significant difference between the mean values of the TFAP2B intron 2 VNTR 4/5 541 

and 5/5 genotypes 542 

 543 

Figure 2. Association between TFAP2B intron 2 VNTR genotype and waist circumference, 544 

waist-hip ratio (WHR) and waist-height ratio (WHtR) from 15 to 25 years of age in male 545 

(graph A) and female (graph B) subjects. 546 

*P<0.05 significant difference between the mean values of the TFAP2B intron 2 VNTR 4/5 547 

and 5/5 genotypes 548 

#P<0.05 significant difference between the mean values of the TFAP2B intron 2 VNTR 4/4 549 

and 5/5 genotypes 550 

 551 

Figure 3. Association between TFAP2B intron 2 VNTR genotype and fasting glucose, fasting 552 

insulin and HOMA index, from 15 to 25 years of age in male (graph A) and female (graph B) 553 

subjects. 554 

*P<0.05 significant difference between the mean values of the TFAP2B intron 2 VNTR 4/5 555 

and 5/5 genotypes 556 

 557 
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Figure 4. Association between TFAP2B intron 2 VNTR genotype and daily energy intake, lipid 558 

intake per body weight and carbohydrate intake per body weight, from 15 to 25 years of age 559 

in male (graph A) and female (graph B) subjects. 560 

¤P<0.05 significant difference between the mean values of the TFAP2B intron 2 VNTR 4/4 561 

and 4/5 genotypes 562 

*P<0.05 significant difference between the mean values of the TFAP2B intron 2 VNTR 4/5 563 

and 5/5 genotypes 564 
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