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Abstract. Knowledge Tracing (KT) is the assessment of student’s
knowledge state and predicting whether that student may or may not
answer the next problem correctly based on a number of previous prac-
tices and outcomes in their learning process. KT leverages machine learn-
ing and data mining techniques to provide better assessment, supportive
learning feedback and adaptive instructions. In this paper, we propose a
novel model called Dynamic Student Classification on Memory Networks
(DSCMN) for knowledge tracing that enhances existing KT approaches
by capturing temporal learning ability at each time interval in student’s
long-term learning process. Experimental results confirm that the pro-
posed model is significantly better at predicting student performance
than well known state-of-the-art KT modelling techniques.

Keywords: Massive open online courses · Knowledge tracing ·
Key-value memory networks · Student clustering · LSTMs

1 Introduction

Guiding human for solving problems efficiently and effectively is a recurring
topic in educational research. Knowledge tracing (KT) gained credibility in this
research community to provide appropriate and adaptive guidance in the learn-
ing process. KT aims to assess skills that are mastered or not, and use this
information to tailor learning experience, whether in MOOCs, in a tutoring sys-
tem or in web, results to name a few example for applications. For example,
when a problem such as “1+2×3.5 =?” is given to a student, she has to master
the skills of addition and multiplication for solving that problem. The probabil-
ity of getting a correct answer mainly depends on the mastery level of these two
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skills behind that problem. Mastering a skill can be achieved by doing practices
on that skill. The goal of knowledge tracing is to track the knowledge state of
students based on observed outcomes on their previous practices [5]. This task is
also known as student modelling. Research on KT can be traced back to the late
1970s and a wide array of Artificial Intelligence and Knowledge Representation
techniques have been explored [3,14]. In environments where the student learns
as she interacts with the system, which is specifically the case for learning envi-
ronments such as MOOCs, modeling student skill mastery involves a temporal
dimension. For instance, a sequence problems involving the same skills set may
be failed at first, but succeeded later on because the student’s skill mastery has
increased. Yet, other factors can influence the success outcome, such as the two
problem’s difficulty level, forgetting, guessing and slipping, and an array of other
factors that induce noise if they are not accounted for [11,12].

The dynamic nature of KT in learning environments leads to approaches
that have the capacity to model temporal or sequential data. In this paper we
propose a novel model for knowledge tracing, Dynamic Student Classified Mem-
ory Networks (DSCMN). The model can capture temporal learning ability in
student’s long-term memory and assess mastery of knowledge state simultane-
ously. Temporal learning ability refers to the rate of learning of specific skills.
It can be tied to phenomena like wheel spinning, where a student fails to learn
a skill even after numerous attempts [17]. It relies on an RNN architecture to
improve performance prediction. The hypothesis we make is that learning ability
can change in time and tracing this factor can help predict future performance.

The rest of this paper is organized as follow. Section 2 reviews the related
work on the student modelling techniques for predicting student’s performance
from data. Section 3 presents the proposed DSCMN model. Section 4 mentioned
experimental datasets used. Experimental results are described in Sect. 5 and
finally Sect. 6 concludes this work and discusses future avenues of research.

2 Knowledge Tracing

Successful learning environments such as the Cognitive tutors series and the
ASSISTments platform rely on some form of KT [6]. In these systems, each
problem is labeled with underlying skills required to correctly answer that prob-
lem. KT can be seen as the task of supervised sequential learning problem where
the model is given student past interactions with the system that includes: skills
S = {s1, s2, . . . , st} along with response outcomes R = {r1, r2, . . . , rt}. KT pre-
dict the probability of getting a correct answer to the next problem, which
mainly depends on mastery of corresponding skill s associated with problems
P = {p1, p2, . . . , pt}. So we can define the probability of getting correct answer
as p(rt = 1|st,X) where X = {x1, x2, . . . , xt−1} and xt−1 = (st−1, rt−1) is a
tuple containing response outcomes r to skill s at time t − 1. Then, we review
here four of the best known state-of-the-art KT modelling methods for estimat-
ing student’s performance.
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2.1 Bayesian Knowledge Tracing (BKT)

BKT is arguably the first model to relax the assumption on static knowledge
states. Earlier approaches such as IRT would assume the student does not learn
between answers, which is a reasonable assumption for testing, but not for learn-
ing environments. BKT was introduced for knowledge tracing within a learning
environment [5]. In its original form, it also assumes a single skill is tested per
item, but this assumption is relaxed in later work. The data are partitioned by
skill and learning a model on each dataset leads to a specific model for each skill
s. The standard BKT model is comprised of 4 parameters which are typically
learned from the data while building a model for each skill. The model’s inferred
probability mainly depends on those parameters which are used to predict how
a student masters a skill given that student’s chronological sequence of incorrect
and correct attempts to questions of that skill thus far [1]. To estimate the prob-
ability that a student knows the skill given his performance history, BKT needs
to have four probabilities: P (L0), initial probability of mastery of skill L0; P (T ),
transition probability from a state of non mastery to mastery; and P (S), slip-
ping, the probability of a wrong answer in spite of mastery, and P (G), guessing,
the probability of a correct answer in spite of non mastery.

P (Ln|Correct) =
P (Ln−1)(1 − P (S))

P (Ln−1)(1 − P (S)) + (1 − P (Ln−1))P (G)
(1)

P (Ln|Incorrect) =
P (Ln−1)P (S)

P (Ln−1)P (S) + (1 − P (Ln−1))(1 − P (G))
(2)

P (Ln) = P (Ln−1|Outcome) + (1 − P (Ln−1|Outcome))P (T ) (3)

2.2 Deep Knowledge Tracing (DKT)

Similar to BKT, Deep Knowledge Tracing (DKT) [13] works on the skill sequence
of attempts but the author leveraged the advantages of neural networks and
break the restriction of skill separation and binary state assumption. It takes the
previous history of attempts by students and transforms each attempt into one-
hot encoded feature vector. Then, those features are fed into a neural network as
input and pass information through the hidden layers of the network and onto
the output layer. The output layer provides the predicted probability that the
student would answer that particular problem correctly in the system.

DKT uses Long Short-Term Memory (LSTM) [8] to represent the latent
knowledge space of students along with the number of practices dynamically.
The increase in student’s knowledge through an assignment can be inferred by
utilizing the history of student’s previous performance. DKT summarizes a stu-
dent’s knowledge state of all skills in one hidden state in hidden layer. A student’s
skill mastery state at certain time stamp is defined by the following equations:

ht = tanh(Whxxt−1 + Whhht−1 + bh), (4)

p(st) ∈ yt = σ(Wyhht + by), (5)
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In DKT, both tanh and the sigmoid function are applied element wise and
parameterized by an input weight matrix Whx, recurrent weight matrix Whh,
initial state h0, and readout weight matrix Wyh. Biases for latent and readout
units are represented by bh and by.

2.3 Dynamic Key-Value Memory Network (DKVMN)

DKVMN was proposed an enhancement to DKT that utilizes a neural network
module called external memory slots to encode the knowledge state of students
and use as key and value components to encode the knowledge state of stu-
dents [19]. Learning or forgetting of a particular skill are stored in those two
components and controlled by read and write operations through additional
attention mechanisms. Learning or forgetting of a particular skill is stored in
those two components and controlled by read and write operations through addi-
tional attention mechanisms.

Unlike DKT, DKVMN performs reading and writing operations to perform
local state transitions by avoiding global and unstructured state-to-state trans-
formation in hidden layer. Knowledge state of a student is traced by reading and
writing to the value memory slots using correlation weight computed from input
skills and the key memory slots. It is comprised of three main steps:

Correlation: The correlation weight of input skill st is computed by utilizing
the softmax activation of the inner product between kt and key memory slot
Mk(i):

wt = Softmax(kT
t Mk(i)) (6)

where kt is the continuous embedding vector of st and Softmax(zi) =
ezi/

∑
j ezj id differentiable. Correlation weight wt is used in both reading and

writing process in later.

Reading: The mastery mt of st is retrieved by weighted sum of values in value
memory slots by using wt:

mt =
N∑

i=1

(wt(i)Mv
t (i)) (7)

Prediction: The probability of answering the problem with underlying skill
p(st) is calculated by using mastery level mt:

ft = tanh(WT
1 [mt, kt] + b1) (8)

p(st) = σ(WT
2 ft + b2) (9)

Where tanh(zi) = (ezi − e−zi)/(ezi + e−zi) and σ(zi) = 1/1 + e−zi .
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Writing: After the student answers the problem, the model will update the
value memory according to response (rt) of student. A joint embedding of xt =
(st, rt) is converted into embedding values vt and written to the value memory
with same correlation weight wt used in read process. Erasing is performed before
adding new information by using:

et = σ(ET vt + be), (10)

M̃v
t (i) = Mv

t−1(i)[1 − wt(i)et], (11)

where 1 is a row-vector of all 1-s. If both the weight at the location and the
erase element are 1, the elements of a memory location are reset to zero. No
changes are performed in the case of either erase signal or the weight is zero.
After erasing previous memory, at is used to update each memory slots in value
memory.

at = tanh(DT vt + ba)T , (12)

Mv
t (i) = Mv

t−1(i) + wt(i)at, (13)

where E and D are the transformation matrix with shape of dv × dv. This erase-
followed-by-add mechanism allows forgetting and strengthening knowledge states
of student learning process [19] which is not able in other RNN based models.

2.4 Deep Knowledge Tracing with Dynamic Student Classification
(DKT-DSC)

DKT-DSC was introduced to overcome the problem of short-term learning ability
of student when applied to the KT task [10]. During the evaluation of student
learning ability, DKT-DSC encodes student’s past performance by using the
following equation:

Correct(sj)1:z =
Z∑

z=1

(sj = 1)
|Nj | , (14)

Incorrect(sj)1:z =
Z∑

z=1

(sj = 0)
|Nj | , (15)

R(sj)1:z = Correct(sj)1:z − Incorrect(sj)1:z, (16)

di1:z = (R(s1)1:z, R(s2)1:z, . . . , R(sn)1:z). (17)

in which Correct(sj)1:z represents the ratio of skill sj being correctly answered
and Incorrect(sj)1:z for the ratio of incorrectly answered. di1:z is the vector of
skills mastery for student i on n skills and for time interval 1 to z. |Nj | is the
total number of attempts that student i has done on each skill sj . Evaluating
temporal learning ability by assigning students into a group with similar ability
cz at each time interval z by using k-means clustering on encoded data di1:z−1

[2,9,10] and then the model invokes an RNN to trace her knowledge according
to her learning ability cz at each time interval.

ht = tanh(Whx[xt−1, st, vt] + Whhht−1 + bh), (18)



168 S. Minn et al.

p(sczt ) ∈ yt = σ(Wyhht + by), (19)

where vt contains success and failure levels of skill st until time t − 1 thus
far.The probability of p(sczt ) ∈ yt represents the probability of getting correctness
of problem with associated skill st for the student with her temporal learning
ability cz in that time interval z while other models ignore the long-term learning
ability in student learning process. DKT-DSC applies temporal value of student’s
learning ability at each time interval to improve the individualization in long-
term knowledge tracing process.

3 Dynamic Student Classification on Memory Networks
(DSCMN)

Despite a better accuracy to assess the mastery of skills than DKT, each of the
above models has deficiencies for dealing with the KT task. In both DKT and
DKVMN, temporal student’s long-term learning ability is ignored. So the model
cannot evaluate which level of learning ability the student achieved for a given
time interval in a long term learning process. In DKT and DKT-DSC, LSTM
uses single state vector to encode the temporal information of student knowledge
state with corresponding learning ability in a single hidden layer.

To model learning ability, we propose a novel model called Dynamic Student
Classification on Memory Networks (DSCMN) that builds upon the advantages
of DKVMN and DKT-DSC. DSCMN predicts student performance based on
both of evaluated temporal student’s long-term ability and assessed mastery of
skills simultaneously at each time interval.

Evaluating Temporal Student’s Learning Ability: Learning is a process
that involves practice: students become proficient through practice. Besides,
learning is also affected by the individual’s ability to learn, or to become profi-
cient with more or less practice [10].

To detect the regularities and changes of temporal learning ability of a stu-
dent over series of time intervals in long-term learning process, we need to encode
student past performance for predicting her learning ability in the current time
interval with DKT-DSC’s Eq. 17. The encoded vector of student’s past perfor-
mance is updated after each time interval. The K-means algorithm [9] is used to
evaluate the temporal long-term learning ability of students in both training and
testing at each time interval z by measuring the Euclidean distance between cen-
troids achieved after training the DKT-DSC process [10] and assigning a nearest
cluster label cz as the long-term learning ability of a student at time z. Evalu-
ation is started after the first 20 attempts and updated after each 20 attempts
have been made by a student. For first time interval, every student is assigned
with initial learning ability 1 as described in Fig. 1.
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Fig. 1. Evaluation process of student’s learning ability (Left) and Evolution of temporal
learning ability in long-term learning process of random 56 students in ASSISTments
2009 dataset (Right)

Calculating Problem Difficulty: We measure problem difficulty as one of 10
levels [11,12]. Note that, in this study, the difficulty is associated with problems,
not with skills themselves. The difficulty of a problem, pj ∈ D, is determined as:

pd(pj) =

{
δ(pj , pd), if |Nj |≥ 4
pd, else

(20)

where:

δ(pj , pd) =
∑|Nj |

i |{pij == 0}|
|Nj | · pd (21)

and where Nj is the set of students who attempted problem pj , and pij is the
outcome of the first attempt from student i, to problem pj . An outcome of 0 is
a failure. Constant pd is the problem difficulty (levels) that we wish to retain.
It is described in function δ(pj , pd) as shown in Eq. (20). Essentially, δ(pj , pd)
is a function that maps the average success rate of problem pj onto (10) levels.
For problems those do not have responses from at least 4 different students,
problems with |Nj |< 4 in the dataset, we apply pdt = 5 corresponding to 0.5
difficulty for those problems.

3.1 Assessing Student’s Mastery of Skill

To assess the mastery of skill according to temporal learning ability, we use
read and write process into two key and value memory slots as like in DKVMN.
DSCMN also assess the mastery of skills using the correlation weight computed
from the input skill and the key memory. In DSCMN, instead of using embedding
values, one-hot encoded inputs are directly fed into memory networks by using
Eqs. (6) and (7). Mastery mt of skill st is obtained from reading process before
writing xt to value memory. Then the model writes xt into value memory by using
Eqs. (10) and (12) after the student answered the problem at time t (Fig. 2).
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Fig. 2. Architecture of DSCMN

Prediction: The probability of answering the problem with underlying skill
p(st) of student in temporal learning ability c at time interval z is estimated
by feeding previous response and mastery of skill in temporal learning ability of
student into additional hidden layer and prediction is performed as follows:

ht = tanh(Wh[xt−1,mt, pdt] + Whhht−1 + bh), (22)

p(sczt ) ∈ yt = σ(Wyhht + by), (23)

Where cz is the temporal learning ability of that student at time interval t ∈ z
and [xt−1,mt, pdt] encoded xt−1 previous response of skill st−1 and mastery of
skill st with skill id st and associated problem difficulty pdt in temporal learning
ability of student i at time interval z. DSCMN possess the ability to assess
the mastery of skill based on temporal ong-term learning ability. Prediction is
performed by using these factors and stored it in hidden state ht.

Optimization: To improve the predictive performance of RNN based models,
we trained with the cross-entropy loss l between pt and actual response rt for
all RNN based models as follows:

l =
∑

t

(rt log pt + (1 − rt) log(1 − pt)), (24)

4 Datasets

In order to validate the proposed model, we tested it on four public datasets
from two distinct tutoring scenarios in which students interact with a computer-
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based learning system in the educational settings: (1) ASSISTments1: an online
tutoring system that was first created in 2004 which engages middle and high-
school students with scaffolded hints in their math problem. If students working
on ASSISTments answer a problem correctly, they are given a new problem.
If they answer it incorrectly, they are provided with a small tutoring session
where they must answer a few questions that break the problem down into
steps. Datasets are as follows: ASSISTments 2009–2010 (skill builder), ASSIST-
ments 2012–2013, ASSISTments 2014–2015. (2) Cognitive Tutor. Algebra 2005–
2006 [4]2: is a development dataset released in KDD Cup 2010 competition
from Carnegie Learning of PSLC DataShop. For all datasets, only first correct
attempts to original problems are considered in our experiment. We remove
data with missing values for skills and problems with duplicate records. To the
best of our knowledge, these are the largest publicly available knowledge tracing
datasets (Table 1).

Table 1. Overview of datasets

Dataset Number of Description

Skills Problems Students Records

Cognitive Tutor 437 15663 574 808,775 KDD Cup 2010 [4]

ASSISTments 123 13002 4,163 278,607 2009–2010 [15]

198 41918 28,834 2,506,769 2012–2013 [7]

100 NA 19,840 683,801 2014–2015 [18]

5 Experimental Study

In this experiment, we assume every 20 attempts made by a student is a time
interval. The total number of temporal values for student’s learning ability used
in our experiment is 8 (7 clusters and 1 for initial ability before evaluation
in initial time interval for all students) for DKT-DSC and DSCMN. Five fold
cross-validations are used to make predictions on all datasets. Each fold involves
randomly splitting each dataset into 80% training students and 20% test students
of the each datasets. For the input of DKVMN, initial values in both key and
value memory are learned in training process. For other models, one hot encoding
is applied. Initial values in value memory represents the initial knowledge state
as prior difficulty for each skill and is fixed in the testing process.

We implement the all models with Tensorflow and DKT, DKT-DSC and
DSCMN share same structure of fully-connected hidden nodes for LSTM hidden
layer with the size of 200 for DKT, 200 for DKT-DSC and output size of memory

1 https://sites.google.com/site/assistmentsdata/.
2 https://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp.
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networks for DSCMN. For speeding up the training process, mini-batch stochas-
tic gradient descent is used to minimize the loss function. The batch size for our
implementation is 32, corresponding 32 to split sequences from each student. We
train the model with a learning rate 0.01 and dropout is also applied to avoid
over-fitting [16]. We set the number of epochs to 100. All models are trained and
tested on the same sets of training and testing students.

For BKT, we use the Expectation Maximization (EM) algorithm and limit
the number of iterations to 200. We learn models for each skill and make pre-
dictions separately. The results for each skill are averaged.

Table 2. AUC result for all tested datasets. Note that the results of DKT-DSC are
slightly different than [10] after fixing bugs in the original code.

Datasets Model

BKT DKT DKVMN DKT-DSC DSCMN

Cognitive Tutor 64.2± 1.0 78.4± 0.6 78.0± 0.0 79.2± 0.5 86.0± 0.5

ASSISTments09 65.1± 1.0 72.1± 0.5 71.0± 0.5 73.5± 0.6 81.2± 0.4

ASSISTments12 62.3± 0.0 71.3± 0.0 70.7± 0.1 72.1± 0.1 78.5± 0.1

ASSISTments14 61.1± 1.0 70.7± 0.4 70.0± 0.1 71.6± 0.2 71.0± 0.01

In Table 2, DSCMN performs significantly better than state-of-the-art models
in three datasets. On the Cognitive Tutor dataset, compared with the standard
DKT which has an maximum test AUC of 78.4, 79.2 in DKT-DSC and only
78.0 in DKVMN. The DSCMN model can achieve AUC = 86.0, with a notable
gain of 10% over the original DKT and DKVMN, and 8% over DKT-DSC.
For the ASSISTments09 dataset, DSCMN also achieves about a 10% gain with
AUC = 81.2, above DKT-DSC= 78.5, and well above the original DKT, with
AUC = 71.3, and DKVMN with AUC = 70.7. On the ASSISTments12 dataset,
DSCMN only achieved AUC = 0.71. In the latest ASSISTments14 dataset (which
contains more students and less data compared to other three datasets and lacks
problem information) DSCNM has AUC slightly lower than DKT-DSC.

Table 3. RMSE result for all tested datasets

Datasets Model

BKT DKT DKVMN DKT-DSC DSCMN

Cognitive Tutor 0.44± 0.00 0.38± 0.01 0.38± 0.00 0.37± 0.03 0.35± 0.00

ASSISTments09 0.47± 0.01 0.45± 0.00 0.45± 0.01 0.43± 0.00 0.40± 0.00

ASSISTments12 0.51± 0.00 0.43± 0.00 0.43± 0.00 0.43± 0.00 0.40± 0.00

ASSISTments14 0.51± 0.00 0.42± 0.00 0.42± 0.00 0.42± 0.00 0.42± 0.00
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In Table 3, when we compare the models in term of RMSE, BKT is lowest
at 0.46 for ASSISTments09, 0.51 for ASSISTments12 and ASSISTments14, and
0.44 for Cognitive Tutor. RMSE results in all dataset is lowest for DSCMN, with
0.40, while all other models are no over 0.43 (except DKT in the Cognitive Tutor
dataset and DSCMN in ASSISTments14). According to these results, DSCMN
shows better performance than DKT-DSC and significantly better than other
models in Cognitive Tutor, ASSISTments09, ASSISTments12 but a little lower
than DKT-DSC in ASSISTments14.

6 Conclusion and Future Work

In this paper, we propose a new model, DSCMN, which can predict the student
performance by gathering information from skills, problems and student: mastery
level of skills of student on various problems at each time step, along with student
learning ability at each time interval.

Experiments with four datasets show that the proposed model performs bet-
ter in predictive performance than state-of-the-art KT models. Dynamic evalu-
ation of student’s temporal learning ability at each time interval plays a critical
role and helps DSCMN capture more variance in the data, leading to more accu-
rate predictions.

In our future work, we plan to adapt this model to problems associated with
multiple skills and apply it in the recommendation of related problems.
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