
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

8-2019

Who should make decision on this pull request?
Analyzing time-decaying relationships and file
similarities for integrator prediction
Jing JIANG
Beijing University of Aeronautics and Astronautics (Beihang University)

David LO
Singapore Management University, davidlo@smu.edu.sg

Jiateng ZHENG
Beijing University of Aeronautics and Astronautics (Beihang University)

Xin XIA
Monash University

Yun YANG
Beijing University of Aeronautics and Astronautics (Beihang University)

See next page for additional authors

DOI: https://doi.org/10.1016/j.jss.2019.04.055
Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

Part of the Software Engineering Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
JIANG, Jing; LO, David; ZHENG, Jiateng; XIA, Xin; YANG, Yun; and ZHANG, Li. Who should make decision on this pull request?
Analyzing time-decaying relationships and file similarities for integrator prediction. (2019). Journal of Systems and Software. 154,
196-210. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/4345

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/200766634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4345&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4345&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4345&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.jss.2019.04.055
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4345&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4345&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Author
Jing JIANG, David LO, Jiateng ZHENG, Xin XIA, Yun YANG, and Li ZHANG

This journal article is available at Institutional Knowledge at Singapore Management University: https://ink.library.smu.edu.sg/
sis_research/4345

https://ink.library.smu.edu.sg/sis_research/4345?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4345&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research/4345?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4345&utm_medium=PDF&utm_campaign=PDFCoverPages

Who Should Make Decision on this Pull Request?
Analyzing Time-Decaying Relationships and File Similarities for Integrator Prediction

Jing Jianga, David Lob, Jiateng Zhenga, Xin Xiac, Yun Yanga , Li Zhanga∗

a State Key Laboratory of Software Development Environment, Beihang University, Beijing, China
jiangjing@buaa.edu.cn,zjt james@163.com,ayonel@qq.com,lily@buaa.edu.cn
b School of Information Systems, Singapore Management University, Singapore

davidlo@smu.edu.sg
c Information Technology, Monash University, Melbourne, VIC, Australia

xin.xia@monash.edu

Abstract

In pull-based development model, integrators are responsible for making decisions about whether to accept pull requests and
integrate code contributions. Ideally, pull requests are assigned to integrators and evaluated within a short time after their submis-
sions. However, the volume of incoming pull requests is large in popular projects, and integrators often encounter difficulties in
processing pull requests in a timely fashion. Therefore, an automatic integrator prediction approach is required to assign appropri-
ate pull requests to integrators. In this paper, we propose an approach TRFPre which analyzes Time-decaying Relationships and
File similarities to predict integrators. We evaluate the effectiveness of TRFPre on 24 projects containing 138,373 pull requests.
Experimental results show that TRFPre makes accurate integrator predictions in terms of accuracies and Mean Reciprocal Rank.
Less than 2 predictions are needed to find correct integrator in 91.67% of projects. In comparison with state-of-the-art approaches
cHRev, WRC, TIE, CoreDevRec and ACRec, TRFPre improves top-1 accuracy by 68.2%, 73.9%, 49.3%, 14.3% and 46.4% on
average across 24 projects.

Keywords:
Integrator prediction, Code review, Open source, GitHub

1. Introduction

Various open source software hosting sites, notably Github,
provide support for pull-based development and allow devel-
opers to make contributions flexibly and efficiently [1]. In
GitHub, contributors fork a project’s main repository, and make
their code changes independent of one another. When a set of
changes is ready, contributors create and submit pull requests
to main repository. Any developers can provide comments and
exchange opinions about pull requests [2, 3]. Members of the
project’s core team (from here on, integrators) are responsible
to inspect submitted code changes, identify issues (e.g., vulner-
abilities), and decide whether to accept pull requests and merge
these code changes into main repository [1]. Integrators may
directly make decisions of pull requests, without leaving any
comments.

Ideally, pull requests are assigned to integrators and evaluat-
ed within a short time after their submissions. However in prac-
tice, integrators often encounter difficulties in processing pull
requests in a timely fashion. Gousios et al. made an explorato-
ry qualitative study to understand integrators’ work practices
and challenges in GitHub [1]. They highlighted that integrators
of popular projects mentioned that the volume of incoming pul-
l requests was just too large, and integrators saw triaging pull

∗Corresponding author

requests as a challenge. Therefore, an automatic integrator pre-
diction approach is required to assign appropriate pull requests
to integrators.

There have been several studies about reviewer recommen-
dation. Some previous works [4, 5, 6] analyzed past code re-
view history to recommend code reviewers in a code review
system Gerrit. In Gerrit, reviewers provide code-review scores
and verified scores. Integrators in GitHub play a similar role
as reviewers in Gerrit. It remains unknown whether these ap-
proaches are effective to predict integrators in GitHub. Other
previous works [7, 8] mainly analyzed review comments and
recommended commenters in GitHub. As described in sub-
section 2.1, some integrators directly make decisions of pull
requests, without leaving any comments. Reviewer prediction
based on comments fails to predict integrators for some pull
requests.

In this paper, we propose an integrator prediction approach
TRFPre which analyzes Time-decaying Relationships and File
similarities based on previous pull request decisions. TRFPre
rests on two key insights. The first is that integrators are not
necessarily confined to developers who provide comments and
exchange opinions. Some integrators do not leave any com-
ments in pull requests. TRFPre studies integration decisions in
previous pull requests, rather than comments in previous pull
requests. The second is that developers come and go as they

Preprint submitted to Journal of Systems and Software February 1, 2019

Published in Journal of Systems and Software,
Vol 154, August 2019, Pages 196-210
DOI 10.1016/j.jss.2019.04.055

please, resulting in high turnover [9]. TRFPre considers time-
decaying relationships and time-decaying file similarities. Old-
er pull requests are given lower weights.

The usage scenarios of our proposed tool are as follows:
Without Tool. Bob is an integrator in a large open source

project team, and his main responsibility is to review pull re-
quests submitted by other developers. Without our tool, he
browses pull request lists, and selects pull requests which are
appropriate for him. Then, he inspects code, detects bugs, and
discusses with other developers. Since some popular projects
receive many pull requests, pull request selection costs much
time, and reduces Bob’s time on code review. This problem
becomes more serious for some integrators, who are volunteers
and have limited time in open source software projects.

With Tool. Bob’s project adopts our tool. Our tool assigns
appropriate pull requests to Bob. Then, Bob directly inspects
pull requests and reviews code changes. Since our tool saves
Bob’s time on pull request selection, Bob has more time on
code review and evaluates more pull requests.

In an effort to demonstrate the effectiveness of our approach,
we collected datasets from GitHub. In total, we analyze 24
projects and 138,373 pull requests. We measure the perfor-
mance of approaches in terms of top-1 and top-2 accuracies,
and Mean Reciprocal Rank (MRR) [6]. The experimental re-
sults show that TRFPre makes accurate integrator predictions in
terms of accuracies and MRR. Less than 2 predictions are need-
ed to find correct integrator in 91.67% of projects. In compar-
ison with the state-of-the-art approaches cHRev [4], WRC [5],
TIE [6], CoreDevRec [10] and ACRec [8], TRFPre improves
top-1 accuracy by 68.2%, 73.9%, 49.3%, 14.3%, and 46.4% on
average across 24 projects.

The main contributions of this paper are as follows:

• We propose an integrator prediction approach TRFPre,
which analyzes time-decaying relationships and file sim-
ilarities based on previous pull request decisions.

• We evaluate TRFPre based on a broad range of datasets.
Results show that TRFPre outperforms cHRev, WRC, TIE,
CoreDevRec and ACRec by substantial margins.

The reminder of the paper is organized as follow. Section 2
presents a background of pull request evaluation, data collec-
tion and basic data statistics. Section 3 presents our integrator
prediction approach TRFPre. Section 4 presents an empirical
evaluation of the approach. Section 5 discuss ground truth and
feature importance. Section 6 discusses threats to validity, and
Section 7 discusses related works. Finally, Section 8 concludes
this paper.

2. Background and Data Collection

In this section, we begin by providing background informa-
tion about contribution evaluation process in GitHub, and con-
trast it with the process in Modern Code Review (MCR). Then,
we introduce how our datasets are collected, and report statis-
tics of our datasets.

Figure 1: An example of pull request evaluation

2.1. Pull Request Evaluation
GitHub is a web-based hosting service for software devel-

opment repositories in different areas, such as cloud comput-
ing [11, 12]. In GitHub, contributors fork a project’s main
repository, and make their code changes independent of one
another. When a set of changes is ready, contributors create
and submit pull requests to main repository. Any developers
can leave comments and exchange opinions about pull request-
s. Developers freely discuss whether code style meets the stan-
dard [13], whether repositories require modification, or whether
submitted codes have good quality [2]. According to com-
ments, contributors may modify codes. Finally, integrators in-
spect submitted code changes, and decide whether to integrate
these code changes into main repository or not [1]. Integrators
act as guardian for project quality [14].

In GitHub, integrators decide whether to integrate code
changes into repositories or not. Any developers can provide
comments and discuss pull requests. Integrators may provide
comments and ask contributors to modify codes. However, pro-
viding comments is not necessary for integrators. Integrators
may directly decide to accept or reject pull requests, without
leaving any comments.

To illustrate the process, Figure 1 shows an example of a pull
request with number 1308 in project rails1. Firstly, a contribu-
tor vi*** modified codes and submitted a pull request. In order
to protect developers privacy, we only show part of characters
in developers names. Secondly, developers br***, pe*** and
ed*** leaved comments and discussed the pull request. Finally,
an integrator jo*** decided to reject this pull request. In this
example, integrator jo*** directly made decision, and did not
provide any comments.

Let us now contrast the above process with Modern Code
Review (MCR). In MCR, typically a developer submits a code

1https://github.com/rails/rails/pull/1308

2

Table 1: Basic information of three pull requests
Pull request Contributor Integrator Creation time Files changed

494 vi*** jo*** 2011-5-11 railties/lib/rails/commands/runner.rb
1293 ja** jo*** 2011-5-25 railties/lib/rails/paths.rb
1308 vi*** jo*** 2011-5-26 railties/lib/rails/code statistics.rb

Table 2: Percentage of pull requests which their integrators do not provide
comments

Project Percentage of pull requests
rails 26.93

commcare-hq 42.51
tgstation 30.03
symfony 30.23

cocos2d-x 71.55
core 4.43

Baystation12 39.58
joomla-cms 26.7

app 29.41
metasploit-framework 26.85

bootstrap 26.84
dmd 35.66
cdnjs 24.57

zendframework 37.93
angular.js 23.79
cakephp 22.2
puppet 36.66

brackets 16.34
scala 20.35

ipython 18.01
sympy 12.71

node-v0.x-archive 14.68
wet-boew 66.3

katello 10

change to a code review system, e.g., Gerrit. Then, review-
ers discuss the change, leave comments and provide sugges-
tions. Next, the developer improves the change according to
comments. Reviewers provide code-review scores and verified
scores. The code change will be integrated to the main repos-
itory when it receives a code-review score of +2 (Approved)
and a verified score of +1 (Verified) in Gerrit [13]. In GitHub,
integrators directly decide to accept or reject pull requests, and
do not give any scores.

The example given in Figure 1 is not a sole example. Ta-
ble 2 describes the percentage of pull requests in our dataset
(described in Section 2.2.) for which the integrators do not
provide comments. In project cocos2d-x, 71.55% of pull re-
quests integrators do not provide any comments. In 75% of the
projects that we investigate in this work (18 out of 24), more
than 20% of pull requests integrators do not provide any com-
ments.

2.2. Data Collection and Statistics
GitHub provides access to its internal data through an API.

It allows us to access rich collection of OSS projects, and pro-
vides valuable opportunities for research. We gather informa-
tion through GitHub API and create datasets of projects.

Unpopular projects receive few pull requests, and do not need
integrator prediction. In data collection, we choose popular
projects, because they receive many pull requests and need in-
tegrator prediction. We obtain a list of projects from previous

Table 3: Basic Statistics of projects.
Project # Pull requests # Integrators Date of First

Pull Request
rails 14,237 46 2010-9-2

commcare-hq 11,572 31 2012-3-14
tgstation 10,327 35 2012-1-21
symfony 9,222 17 2010-9-1

cocos2d-x 8,939 13 2010-11-20
core 7,509 45 2012-8-25

Baystation12 7,062 21 2011-11-7
joomla-cms 6,252 27 2011-9-28

app 5,762 99 2012-8-23
metasploit-framework 5,279 46 2011-11-10

bootstrap 4,948 12 2011-8-19
dmd 4,923 14 2011-1-26
cdnjs 4,914 12 2011-2-26

zendframework 4,762 15 2010-9-4
angular.js 4,526 32 2010-9-8
cakephp 4,512 21 2010-9-5
puppet 4,105 82 2010-9-28

brackets 4,006 42 2011-12-8
scala 3,644 19 2011-12-1

ipython 3,628 14 2010-9-17
sympy 2,915 30 2010-9-1

node-v0.x-archive 2,374 29 2010-8-31
wet-boew 1,703 11 2012-5-25

katello 1,252 24 2012-4-12
Total 138,373 737

work [15]. Vasilescu et al. studied effects of continuous inte-
gration on software quality and productivity outcomes [15], and
made their research projects public2. We sort their projects by
the number of pull requests. Then we select 29 projects with
the most number of pull requests.

We collected pull requests of these 29 projects through
GitHub API in August 2016. We sent queries to GitHub API,
received its replies, and extracted data from project creation
time to July 31, 2016. For each pull request, we crawled its ID,
the contributor who submitted it, the creation time, the close
time, paths of modified files and the developer who closed the
pull request. The pull request could be closed by its contrib-
utor or an integrator. We ignored pull requests closed by their
contributors, because their final decisions were not made by in-
tegrators and did not need integrator prediction. For remaining
pull requests, we collected their integrators as developers who
closed pull requests. The contributor wrote a title to summa-
rize the modification of a pull request, and we gathered this text
information. We also collected comments of pull requests, in-
cluding their submission time and commenters.

We cannot directly collect integrator set through GitHub API.
Only integrators are granted the privilege of making decision-
s of pull requests submitted by others [16]. We analyze pull

2https://github.com/Yuyue/pullreq ci/blob/master/all projects.csv

3

requests and build a set of integrators for each project. More
specifically, if developers ever make decisions on pull requests
submitted by others, they are considered as integrators. This
integrator set includes active integrators who really work in
projects. We collect datasets of 29 projects, and find that 5
projects have less than 10 integrators. We exclude these 5
projects, and only study 24 projects with more than 10 inte-
grators, which really face integration prediction problem.

Table 3 presents statistics of collected data. The columns cor-
respond to project name (Project), the number of pull requests
(# Pull requests), the number of integrators (# Integrators), and
date of first pull request. We ignored pull requests closed by
their contributors, because their final decisions were not made
by integrators and did not need integrator prediction. Though
we collected datasets later than previous work [15], our datasets
only have pull requests closed by integrators, and the number of
pull requests in Table 3 may be smaller than previous work [15].
Some projects begin to use pull requests some time after project
creation. The date of first pull request shows start time of code
review based on pull requests. In total, our datasets include
138,373 pull requests and 737 integrators.

3. Proposed Approach

In this section, we describe our method TRFPre which ana-
lyzes Time-decaying Relationships and File similarities to pre-
dict integrators. We first introduce motivation and framework
of our approach, respectively. Then we describe features and
classifiers of TRFPre to solve integrator prediction problem.

3.1. Motivation

Table 1 describes basic information of pull requests with
numbers 494, 1293 and 1308 in project rails. Decisions for
these three pull requests were made by integrator jo***. From
these three pull requests, we can observe the following:

First, previous evaluation relationships are good indicators
to predict appropriate integrators. For example, pull request
with number 494 was created by contributor vi***, and it was
decided by integrator jo***. Then contributor vi*** created
another pull request with number 1308, and integrator jo***
also made decision for this pull request.

Second, changed files could also be helpful to predict suit-
able integrators. An integrator is likely to evaluate pull requests
which modify changed files located in similar locations. For ex-
ample, these three pull requests all modify changed files which
belong to folder railties/lib/rails, and they are all decided by the
same integrator jo***.

Third, an integrator who makes decisions on pull requests at
a particular time point is likely to evaluate other pull requests
in its near future. These three pull requests were created within
a 15-day interval (May 11 - May 26). We refer to this property
as temporal locality of integrators.

The above observations tell us that relationships, file simi-
larities and temporal locality may be helpful for integrator pre-
diction. Therefore, we use time-decaying relationships and file
similarities to build our integrator prediction approach TRFPre.

3.2. Method Framework
As shown in Figure 2, the entire framework contains two

phases: a model construction phase and a prediction phase. In
model construction phase, a composite model TRFPre Com-
poser is built from historical pull requests with known integra-
tors. In prediction phase, the model is used to predict integra-
tors for new pull requests.

In model construction phase, TRFPre first collects various
information from a set of training pull requests with known
integrators. We independently extract time-decaying relation-
ships (Step 1) and time-decaying file similarities (Step 2) from
crawled information. We describe detailed definitions and why
we choose these features in subsections 3.3 and 3.4. According
to pull request features and their integrators, we build random
forest classifier which decides probabilities of integrators (Step
3). Random forest classifier constructs a multitude of decision
trees for classification. Random forest classifier corrects for de-
cision trees’ habit of overfitting to their training set. TRFPre
independently builds another naive bayes classifier based on
training pull requests with known integrators (Step 4). Naive
bayes classifier assumes independence among predictor vari-
ables, and determines response based on the maximum log-
likelihood. Naive bayes classifier requires a small number of
training data to estimate parameters necessary for classification.
Next, these two classifiers are blended to construct TRFPre
composer (Step 5). Random forest classifier and naive bayes
classifier have different advantages in classification. The com-
bination takes advantages of both classifiers. In subsection 4.6,
results show that the combination of two classifiers achieves
better performance than a single classifier. We implement two
classifiers on top of the tool Weka3.

In prediction phase, we use TRFPre to predict whether a
pull request is likely to be evaluated by a specific integrator.
TRFPre first extracts time-decaying relationships (Step 6) and
time-decaying file similarities (Step 7). Then, it processes these
features into the random forest classifier built in the model con-
struction phase (Step 8). It also processes features into the naive
bayes classifier built in the model construction phase (Step 9).
These two classifiers will independently output two probabil-
ities of integrators, and these probabilities are combined by
leveraging the TRFPre composer constructed in the model con-
struction phase (Step 10). Integrators with the highest probabil-
ities are predicted.

3.3. Time-decaying Relationship
Developer social networks are often used in quality predic-

tion, defect prediction, bug triage and bug fixing [17]. Since
integration process is mainly a human process, we consider
socio-technical aspect of collaboration to predict integrators.
The basic intuition is that developers who recently evaluate a
contributor’s pull requests may be more likely to be appropriate
integrators.

We use decision histories to build relationships between inte-
grators and contributors. For a pull request P j (P j ∈ PS eti), its

3http://www.cs.waikato.ac.nz/ml/weka/

4

Model Construction Phase Prediction Phase

Training Pull

Requests with

Known Integrators

Time-decaying

Relationships

Time-decaying

File Similarities

Random Forest

Classifier

Naive Bayes

Classifier

TRFPre

Composer

1

3

2

4

5

New Pull

Requests

Time-decaying

Relationships

Time-decaying

File Similarities

Random Forest

Classifier

Naive Bayes

Classifier

TRFPre

Composer

6

8

7

9

10

Integrator

Prediction

Figure 2: Overall framework of TRFPre

decayRelationship_1

Random Forest

Classifier

Naive Bayes

ClassifierdecayFileSimilarity_1

decayRelationship_nc

decayFileSimilarity_nc

...

...

probability_nb_1

probability_rf_1

probability_rf_nc

probability_nb_nc

Pull Request Vector

...

...

probability_co_1

probability_co_nc

...

Integrator_1

Integrator_nc

...

Sort integrators

by probabilities

Integrator_m1

Integrator_mr

...

Suggestion list

+

+

Figure 3: Integrator ranking process

creation time is t j. Given a new pull request Pnew, its contribu-
tor is defined as Onew. OS etnew includes pull requests which are
submitted by contributor Onew before the new pull request Pnew.
Let denote the ith integrator as Di. PS eti includes pull request-
s on which integrator Di has made decision on within λ days
before new pull request Pnew. λ is used to describe the length
of temporal window, and we exclude pull requests which are
created more than λ days before new pull request. The intersec-
tion OS etnew

⋂
PS eti includes pull requests, which are submit-

ted by contributor Onew and integrator Di has made decision on
within λ days before new pull request Pnew. This intersection
OS etnew

⋂
PS eti may reflect the integrator Di’s interest in the

contributor Onew. If integrator Di often make decision on pull
requests submitted by contributor Onew , integrator Di may be
familiar with this contributor and like to make decisions on his
or her pull requests. For a new pull request Pnew, we compute
time-decaying relationship between integrator Di and contribu-

tor Onew, denoted as decayRelationship(Pnew,Di), as follows:

decayRelationship(Pnew,Di)

=
∑

(P j∈(OS etnew
⋂

PS eti))

(tnew − t j)−1 (1)

We use (tnew− t j)−1 to measure pull requests’ weights. We com-
pute time interval (measured in days) between tnew and t j. Any
pull requests in intersection of OS etnew and PS eti are created
before new pull request Pnew, and tnew is larger than t j. There-
fore, (tnew − t j) is larger than 0. Pull requests in more recen-
t time have higher weights. If an integrator has made deci-
sions on many pull requests recently submitted by a contrib-
utor, the integrator has close relation with this contributor. If
an integrator never makes decisions on pull requests submit-
ted by a contributor within λ days before new pull request,

5

decayRelationship(Pnew,Di) is set as 0.

3.4. Time-decaying File Similarity

Previous work [18] observed that files located in similar path-
s would be reviewed by similar experienced code reviewers. In-
tegrators are familiar with some files, and they may make deci-
sions on same files or files in similar locations. We use longest
common prefix in previous work [18] to compute file similarity,
and then add time-decaying function to compute time-decaying
file similarity.

In order to compute file distance between pull requests, we
need to define file similarity at first. Given two files f ilea and
f ileb, path distance fileDistance(f ilea, f ileb) is calculated as
follow:

pathDistance(f ilea, f ileb)

=
prefixLength(f ilea, f ileb)
maxLength(f ilea, f ileb)

(2)

The length of a file is the number of substrings in file
path. We take pull request with number 1308 in Table 1
as an example. This pull request has 1 modified file,
namely ”railties/lib/rails/code statistics.rb”. The file path in-
clude 4 substrings, including ”railties”, ”lib”, ”rails” and
”code statistics.rb”. Therefore, the length of this file is 4.
maxLength(f ilea, f ileb) is the maximum value of lengths of file
f ilea and file f ileb. Another pull request with number 1293
has 1 file ”railties/lib/rails/paths.rb”, and its length is also 4.
When we compare 2 files in pull requests with numbers 1308
and 1293, their maximum value of lengths is 4.

As described in previous work [18], the longest common pre-
fix length prefixLength(f ilea, f ileb) is the number of the longest
consecutive path components that appear in the beginning of
both file paths. We still take above 2 files as an example. ”rail-
ties”, ”lib”, ”rails” are the longest consecutive substrings that
appear in the beginning of both file paths. Therefore, the num-
ber of common substrings is 3. The path distance is computed
as the ratio of the longest common prefix length to the max
length. The path distance between above 2 files is 3

4 .
Next, we define file distance between pull requests. Let

us consider that files in pull request P j form file set FS et j.
FS etnew includes files in pull request Pnew. For a new pul-
l request Pnew and a former pull request P j, we compute pull
request distance, denoted as prDistance(P j, Pnew), as follows:

prDistance(Pnew, P j)

=

∑
f ilea∈FS et j

f ileb∈FS etnew

pathDistance(f ilea, f ileb)

| FS et j | × | FS etnew |
(3)

In GitHub, file modification is required to submit pull requests.
Therefore, both | FS et j | and | FS etnew | are lager than 0. We
sum up the file similarity of all possible pairs of files from pull
requests Pnew and P j, and finally compute average file similarity
by dividing the sum with the number of possible pairs. The
pull request distance is the average file similarity of all possible
pairings of files.

In previous work [18], all pull requests have the same
weights. Different from previous work [18], we give high-
er weights to pull requests in more recent time. We compute
time-decaying file similarity of the integrator Di, denoted as
decayFileSimilarity(Pnew,Di), as follows:

decayFileSimilarity(Pnew,Di)

=
∑

P j∈PS eti

prDistance(Pnew, P j) ∗ (tnew − t j)−1 (4)

As described in equation 1, (tnew − t j) is larger than 0. An in-
tegrator will have high time-decaying file similarity, if this in-
tegrator recently makes decisions on pull requests with similar
files as new pull request. As described in subsection 3.3, PS eti
includes pull requests on which integrator Di has made deci-
sion on within λ days before new pull request Pnew. We exclude
pull requests which are created more than λ days before new
pull request. If an integrator never makes decisions on pull re-
quests submitted by a contributor within λ days before new pull
request, decayFileSimilarity(Pnew,Di) is set as 0.

3.5. TRFPre Composer

Figure 3 shows integrator ranking process for a new pull re-
quest. We represent each pull request as a vector. Each feature
is an element in the vector. For a pull request Pnew submitted by
the contributor Onew, we compute values of time-decaying re-
lationship decayRelationship 1 and time-decaying file similar-
ity decayFileS imilarity 1 for integrator D1. We also compute
time-decaying relationships and time-decaying file similarities
for other integrators.

The number of integrators in a project is denoted as
nc. We combine all features together to generate an in-
tegrator vector, which includes 2 × nc elements for each
pull request. For a new pull request Pnew, elemen-
t 1 in integrator vector is the time-decaying relationship
decayRelationship 1 between integrator D1 and contributor
Onew; element nc in integrator vector is the time-decaying rela-
tionship decayRelationship nc between integrator Dnc and con-
tributor Onew; element nc + 1 in integrator vector is the time-
decaying file similarity decayFileS imilarity 1 of integrator D1;
element 2nc in integrator vector is the time-decaying file simi-
larity decayFileS imilarity nc of integrator Dnc.

Random forest classifier and naive bayes classifier indepen-
dently assign labels (in our case: the integrator) to a data
point (in our case: a pull request) with a certain probability.
Given a new pull request Pnew, for each integrator Di, ran-
dom forest classifier and naive bayes classifier output probabil-
ities probability r f (Pnew,Di) and probability nb(Pnew,Di) that
a new pull request Pnew will be assigned to integrator Di. Then
TRFPre combines probabilities for each integrator Di as fol-
lows:

probability co(Pnew,Di)
= probability r f (Pnew,Di) ∗ γ

+probability nb(Pnew,Di) ∗ (1 − γ) (5)

In above equation, γ is between 0 and 1. If γ = 0, TRFPre

6

approach only uses naive bayes classifier. If γ = 1, TRFPre
approach only uses random forest classifier. The value of γ can
be empirically determined. By default, we set the value of γ as
0.7. We discuss setting reason in subsection 4.6.

Given a new pull request Pnew, for each integrator Di, we
compute composite probability. Integrators with the highest
composite probabilities are predicted for new pull request.

4. Evaluation

In this section, we present results of our evaluation for pro-
posed approach. The aim of this study is to investigate the ef-
fectiveness of TRFPre approach in providing integrator predic-
tion solutions. We first present research questions, evaluation
procedure and evaluation metrics. We then present our experi-
ment results that answer these research questions. The experi-
mental environment is a windows server 2012, 64-bit, Intel(R)
Xeon(R) 1.90 GHz server with 24GB RAM.

4.1. Research Questions

We are interested to answer following research questions:
RQ1: How accurate is TRFPre in predicting integrators for
pull requests?

We propose TRFPre to find appropriate integrators for pull
requests. We aim to evaluate the performance of our method in
terms of accuracies and MRR.

RQ2: How do model construction time, prediction time, ac-
curacies, MRR and of TRFPre, cHRev [4], WRC [5], TIE [6],
CoreDevRec [10] and ACRec [8] compare in predicting inte-
grators?

In terms of model construction time and prediction time, ac-
curacies and MRR, we compare TRFPre with reviewer predic-
tion methods [5, 6], integrator prediction method [10] and com-
menter recommendation method [4, 8]. We mainly We describe
these methods’ supervised learning technique, proposed metric-
s, pros and cons in Table 4.

cHRev [4] mainly analyzes reviewers’ frequency, workdays,
and recency. Reviewers who recently and frequently provide
comments to the same files of new reviews are recommend-
ed. cHRev does not have model training process, and thus does
not have time overhead of model construction phase. As show
in Table 2, more than 20% of pull requests’ integrators do not
provide any comments in 18 (75%) projects. However, cHRev
analyzes review comments while many pull requests in GitHub
are not commented.

In order to predict reviewers, WRC [5] analyzes past reviews
with the same files. WRC computes weighted review coun-
t which specifies the review experience a developer has with a
specific file at the time a specific review is made. WRC recom-
mends reviewers who are recently active in reviewing the same
files as new reviews. Similar to cHRev, WRC does not have
time overhead of model construction phase. However, WR-
C does not consider file similarities. If previous reviews have
similar but different files as new review, these reviews are not
considered in reviewer recommendation.

To address the challenge of assigning suitable reviewers to
changes, TIE [6] integrates an incremental text mining model
which analyzes the textual contents in a review request, and a
similarity model which measures the similarity of changed file
paths and reviewed file paths. The text mining model is based
on naive bayes classifier, while similarity model does not need
model construction. TIE analyzes previous reviews whose up-
load time is within the past 100 days before new review. How-
ever, previous reviews uploaded within 100 days have the same
weights in reviewer recommendation.

In order to predict integrators, CoreDevRec [10] construct-
s a file path substring vocabulary, and builds path substring
features. CoreDevRec independently considers 4 social con-
nection features and 6 activeness features, such as following
relationship and the close time of the latest pull request. Core-
DevRec uses support vector machines (SVM) to analyze these
features and make prediction. In the majority of projects, the
number of substrings in file path vocabulary is more than 4,000.
Therefore, CoreDevRec has many substrings in model training
and long model construction time. The large number of sub-
strings may also introduce noise that affects its accuracy.

ACRec [8] proposes an activeness based approach to
recommend commenters for pull requests. ACRec simply
recommends developers who recently and frequently provide
comments. ACRec does not have time overhead of model
construction phase. However, ACRec does not consider pull
requests which do not have comments.

RQ3: What are appropriate configuration settings in integrator
prediction?

TRFPre uses time-decaying function (tnew − t j)−1 to measure
pull requests’ weights. Pull requests submitted in more recent
time are given higher weights. We would like to investigate
benefit of time-decaying function in integrator prediction.

Furthermore, the parameter γ is used to assign weights of
prediction likelihoods of naive bayes classifier and random for-
est classifier. By default, we set parameter γ as 0.7. We would
like to investigate accuracies and MRR of TRFPre for various
γ values.

In equations1 and 4, PS eti includes pull requests on which
integrator Di has made decision on within λ days before new
pull request Pnew. λ is used to describe the length of temporal
window, and we exclude pull requests which are created more
than λ days before new pull request. λ is set as no time limit by
default. We explore how the setting of λ affects performance of
TRFPre.

4.2. Evaluation Procedure

In order to simulate the usage of methods in practice, we sort
all pull requests in chronological order of their creation time.
Then pull requests created in the same month are put into a
group.

Next, we use these groups to build training sets and testing
sets. For the N th round, pull requests created in N months after
the first pull request are used to build a training dataset, and
pull requests created in the (N + 1)th month are used to build a

7

testing dataset. For example in the first round, the training set
is built by pull requests created in the first month after the first
pull request, and the testing set is built by pull requests created
in the second month after the first pull request. Then in the
second round, we build training set using pull requests created
within two months after the first pull request, and build testing
set using pull requests created in the third month. If no pull
requests are submitted in a month, we ignore this month.

Table 5: Number of rounds
Project # Rounds

rails 69
commcare-hq 47

tgstation 42
symfony 67

cocos2d-x 65
core 46

Baystation12 56
joomla-cms 57

app 45
metasploit-framework 56

bootstrap 59
dmd 66
cdnjs 65

zendframework 59
angular.js 67
cakephp 66
puppet 64

brackets 55
scala 55

ipython 67
sympy 67

node-v0.x-archive 57
wet-boew 50

katello 51

We use the training set and testing set to compute the perfor-
mance of TRFPre in each round, and then compute the average
accuracies and MRR of all pull requests. This setup ensures
that only past pull requests are used to build prediction model.

Table 3 shows date of first pull request in projects. We ana-
lyze pull requests between the date of first pull request and July
31, 2016. Table 5 shows the number of rounds in projects. All
projects have more than 40 rounds, and 10 projects have more
than 60 rounds.

4.3. Evaluation Metrics

In order to evaluate our method, we use accuracy and Mean
Reciprocal Rank (MRR). These metrics are commonly used in
evaluation of reviewer prediction approaches [5, 6, 18, 19].

We evaluate performance of integrator prediction with accu-
racy of top m predicted integrators, as described in initial s-
tudy [6]. The definition of the top m accuracy is as follows:

Accuracym =

∑
pr∈PR IsCorrect(pr)

|PR|
(6)

where m is the number of predicted integrators and PR is testing
set of pull requests. |PR| is the number of pull requests in testing
set. If one of top m predicted integrators really make decision
on a pull request, prediction is correct and IsCorrect(pr) func-
tion returns value of 1; otherwise, prediction is incorrect and

IsCorrect(pr) function returns value of 0. Accuracy describes
the percentage of pull requests which are correctly assigned to
integrators. We choose m value to be 1 and 2 in experiments.

According to previous work [18], Mean Reciprocal Rank (M-
RR) measures average value of reciprocal ranks of correct in-
tegrators in a prediction list. The reciprocal rank of a query
response is multiplicative inverse of rank of the first correct an-
swer. The definition of MRR is as follow:

MRR =

∑
pr∈PR

1
rank(candidates(pr))

|PR|
(7)

The rank(candidates(pr)) returns rank value of actual integra-
tor in prediction list candidates(pr). If prediction list does not
include actual integrator, the value of 1

rank(candidates(pr)) is 0. The
higher the value of MRR, the better it speaks of potential ef-
fort spent in noise. For example, a method with perfect ranking
should achieve MRR value of 1; MRR value of 0.5 suggests
that average correct answer is found at the second rank.

In order to compare two methods, we define the gain to com-
pare how the method 1 outperforms the method 2. As described
in initial study [20], accuracy gain and MRR gain are defined
as follows:

Gainaccuracym =
(Accuracym(1) − Accuracym(2))

Accuracym(2)
(8)

GainMRR =
(MRR(1) − MRR(2))

MRR(2)
(9)

where Accuracym(1) and MRR(1) evaluates the performance of
method 1, and Accuracym(2) and MRR(2) evaluates the per-
formance of method 2. If the gain value is above 0, it means
method 1 has better accuracy than method 2; otherwise method
2 has better prediction results.

Further, we define the following null hypotheses to assess the
statistical validity of results. The alternative hypotheses can be
easily derived from the respective null hypotheses.

H-1: There is no SSD between accuracym, MRR values of
TRFPre and cHRev.

H-2: There is no SSD between accuracym, MRR values of
TRFPre and WRC.

H-3: There is no SSD between accuracym, MRR values of
TRFPre and TIE.

H-4: There is no SSD between accuracym, MRR values of
TRFPre and CoreDevRec.

H-5: There is no SSD between accuracym, MRR values of
TRFPre and ACRec.

According to previous work [4], we applied One Way ANO-
VA test to assess statistically significant difference (SSD) with
α = 0.05 between accuracy and MRR values of compared ap-
proaches. Test purpose is to assess whether the distribution of
one of the two samples is stochastically greater than the other.

4.4. RQ1: Performance of TRFPre

In order to answer RQ1, we consult Table 6 and Table 7
which shows accuracies and MRR. In project cocos2d-x, TRF-
Pre achieves top-1 and top-2 accuracies of 0.76 and 0.94.
TRFPre achieves high accuracies in project cocos2d-x. In 14

8

Table 7: MRR of Approaches cHRev, WRC, TIE, CoreDevRec, ACRec and
TRFPre. (Best results in bold.)

Project MRR

cH- WRC TIE CoreD- ACRec TRF-
Rev evRec Rec

rails 0.36 0.43 0.39 0.52 0.48 0.53
commcare-hq 0.42 0.46 0.49 0.52 0.48 0.54

tgstation 0.31 0.37 0.33 0.51 0.41 0.54
symfony 0.62 0.92 0.86 0.93 0.82 0.93

cocos2d-x 0.72 0.72 0.78 0.82 0.85 0.87
core 0.39 0.56 0.44 0.61 0.44 0.63

Baystation12 0.42 0.52 0.46 0.58 0.52 0.61
joomla-cms 0.29 0.33 0.37 0.51 0.35 0.54

app 0.25 0.13 0.24 0.29 0.18 0.48
metasploit- 0.41 0.47 0.5 0.54 0.51 0.59
framework
bootstrap 0.74 0.76 0.81 0.78 0.75 0.81

dmd 0.46 0.64 0.55 0.68 0.55 0.7
cdnjs 0.72 0.59 0.77 0.82 0.85 0.84

zendframework 0.64 0.74 0.77 0.76 0.76 0.78
angular.js 0.45 0.45 0.51 0.53 0.55 0.55
cakephp 0.61 0.73 0.72 0.78 0.72 0.79
puppet 0.35 0.29 0.41 0.45 0.42 0.5

brackets 0.4 0.37 0.44 0.46 0.43 0.5
scala 0.51 0.5 0.58 0.62 0.63 0.67

ipython 0.54 0.58 0.57 0.65 0.6 0.68
sympy 0.47 0.45 0.51 0.51 0.51 0.56

node-v0.x-archive 0.49 0.43 0.56 0.61 0.58 0.64
wet-boew 0.61 0.69 0.67 0.7 0.68 0.76

katello 0.37 0.32 0.37 0.38 0.39 0.47
Average 0.48 0.52 0.55 0.61 0.56 0.65

projects, TRFPre achieves top-2 accuracies higher than 0.6. On
average, TRFPre achieves top-1 accuracy, top-2 accuracy, and
MRR of 0.48, 0.67 and 0.65. TRFPre achieves MRR values
greater than 0.5 in 91.67% of projects. That is, on average a
maximum of 2 predictions need to be examined to get correct
integrator.

RQ1: TRFPre makes accurate integrator predictions in
terms of accuracies and MRR. Less than 2 predictions are
needed to find correct integrator in 91.67% of projects.

4.5. RQ2: Approach Comparison

Table 6 and Table 7 show accuracies and MRR of cHRev [4],
WRC [5], TIE [6], CoreDevRec [10], ACRec [8] and our ap-
proach TRFPre. In order to compare TRFPre with other ap-
proaches, we compute accuracy gains and MRR gains, assess
the statistically significant difference between approaches, and
describe results in Table 8 and Table 9. Table 10 shows the total
model construction time for the 24 projects (in hours) and aver-
age prediction time per pull request (in seconds). cHRev, WRC
and ACRec do not have model construction phase. TRFPre’s
total model construction time is 14.3 hours, while its average
prediction time per pull request is only 0.07 seconds. In prac-
tice, TRFPre can construct models overnight, and the models
can be used to predict integrators for many pull requests. Each
time a pull request is processed, only a fraction of a second is
needed to produce a list of potential integrators.

First, we compare accuracy and MRR values between cHRev
and TRFPre. On average across 24 projects, TRFPre outper-

Table 9: MRR Gains and Statistical Results of Approaches cHRev, WRC, TIE,
CoreDevRec, ACRec and TRFPre.

Project MRR Gain %

TRFPre-
cHRev WRC TIE CoreD- ACRec

evRec
rails 47.2 *** 23.3 *** 35.9 *** 1.9 10.4 ***

commcare-hq 28.6 *** 17.4 *** 10.2 *** 3.8 *** 12.5 ***
tgstation 74.2 *** 45.9 *** 63.6 *** 5.9 *** 31.7 ***
symfony 50 *** 1.1 ** 8.1 *** 0 13.4 ***

cocos2d-x 20.8 *** 20.8 *** 11.5 *** 6.1 *** 2.4 ***
core 61.5 *** 12.5 *** 43.2 *** 3.3 ** 43.2 ***

Baystation12 45.2 *** 17.3 *** 32.6 *** 5.2 *** 17.3 ***
joomla-cms 86.2 *** 63.6 *** 45.9 *** 5.9 *** 54.3 ***

app 92 *** 269.2 *** 100 *** 65.5 *** 166.7 ***
metasploit- 43.9 *** 25.5 *** 18 *** 9.3 *** 15.7 ***
framework
bootstrap 9.5 *** 6.6 *** 0 3.8 *** 8 ***

dmd 52.2 *** 9.4 *** 27.3 *** 2.9 * 27.3 ***
cdnjs 16.7 *** 42.4 *** 9.1 *** 2.4 *** -1.2

zendframework 21.9 *** 5.4 *** 1.3 * 2.6 ** 2.6 ***
angular.js 22.2 *** 22.2 *** 7.8 *** 3.8 * 0
cakephp 29.5 *** 8.2 *** 9.7 *** 1.3 9.7 ***
puppet 42.9 *** 72.4 *** 22 *** 11.1 *** 19 ***

brackets 25 *** 35.1 *** 13.6 *** 8.7 *** 16.3 ***
scala 31.4 *** 34 *** 15.5 *** 8.1 *** 6.3 ***

ipython 25.9 *** 17.2 *** 19.3 *** 4.6 *** 13.3 ***
sympy 19.1 *** 24.4 *** 9.8 *** 9.8 *** 9.8 ***

node-v0.x-archive 30.6 *** 48.8 *** 14.3 *** 4.9 * 10.3 ***
wet-boew 24.6 *** 10.1 *** 13.4 *** 8.6 *** 11.8 ***

katello 27 *** 46.9 *** 27 *** 23.7 *** 20.5 ***
Average 38.7 36.7 23.3 8.5 21.7

∗ ∗ ∗p < 0.001, ∗ ∗ p < 0.01, ∗p < 0.05

Table 10: Total model construction time (in hours) and average prediction time
per pull request (in seconds) for cHRev, TIE, CoreDecRec, ACRec, and TR-
FRec for the 24 projects.

Approach Model construction time Prediction time
(in hours) (in seconds)

cHRev NA 0.04
WRC NA 0.01
TIE 4.2 0.05

CoreDevRec 120.5 0.2
ACRec NA 0.04
TRFRec 14.3 0.07

form cHRev results by 68.2%, 51.4% and 38.7% in terms of
top-1 accuracy, top-2 accuracy and MRR. Clearly, TRFPre out-
performs cHRev across accuracy and MRR values in all 24
projects. TRFPre records positive gains with statistical signif-
icance (with p-values<0.05) in all cases. Therefore, we find
support to reject Hypothesis H-1 in favor of TRFPre. As shown
in Table 10, TRFPre has longer prediction time than cHRev.
cHRev directly computes scores of integrators based on their
previous histories, and thus make quicker prediction than TRF-
Pre.

Next, we compare accuracy and MRR values between TRF-
Pre and WRC. In project tgstation, TRFPre achieves top-1 ac-
curacy, top-2 accuracy and MRR values of 0.33, 0.54 and 0.54,
which outperform WRC results by 50%, 74.2% and 45.9%, re-
spectively. On average across 24 projects, TRFPre outperforms
WRC results by 73.9%, 61% and 36.7% in terms of top-1 ac-
curacy, top-2 accuracy and MRR. Clearly, TRFPre outperforms
WRC across accuracy and MRR values. Furthermore, p-values
are smaller than 0.05 in most of cases, and TRFPre records pos-
itive gains with statistical significance. Therefore, we find sup-

9

port to reject Hypothesis H-2 in favor of TRFPre. Since WRC
has the simplest prediction algorithm and no model construc-
tion phase, WRC has the shorted prediction time.

Thirdly, we compare performance between TRFPre and TIE.
On average across 24 projects, TRFPre outperforms TIE results
by 49.3%, 30.6% and 23.3% in terms of top-1 accuracy, top-
2 accuracy and MRR. TRFPre achieves statistically significant
higher accuracy and MRR values than TIE in most of cases.
Therefore, we find support to reject Hypothesis H-3 in favor of
TRFPre. The model construction time of pull requests is 4.2
hours and 14.3 hours for TIE and TRFPre, respectively. TIE
costs shorter model construction time than TRFPre. This be-
cause TIE has 1 classifier, while TRFPre has 2 classifiers in
model construction.

Fourthly, we make comparison between CoreDevRec and
TRFPre. In project rails, TRFPre has lower top-1 accuracy
than CoreDevRec, but TRFPre has higher top-2 accuracy and
MRR than CoreDevRec. On average across 24 projects, TRF-
Pre improves CoreDevRec by 14.3%, 10.5% and 8.5% in terms
of top-1 accuracy, top-2 accuracy and MRR. The statistical test-
ing results show that most of p-values are smaller than 0.05, and
thus we find support to reject Hypothesis H-4. TRFPre achieves
higher accuracy and MRR values, because TRFPre considers
time-decaying relationships and time-decaying file similarities.
CoreDevRec independently analyzes file paths, social connec-
tions and integrators’ activeness. However, CoreDevRec does
not combine activeness with other features. Pull requests cre-
ated at different time have the same weights in analysis of file
paths and social connections.

In Table 10, CoreDevRec costs 120.5 hours for model con-
struction, which is much larger than TRFPre. This is because
CoreDevRec uses support vector machines to analyze many el-
ements. NV is the number of substrings in file path vocabulary.
In project cocos2d-x, NV is as large as 18,018. In the majority
of projects, NV is more than 4,000. The number of integra-
tors in a project is denoted as NC. For CoreDevRec, each pull
request vector has NV +10×NC elements. As described in sub-
section 3.5, each pull request vector has 2 × NC elements for
TRFPre, which is much smaller than CoreDevRec. Therefore,
TRFPre has shorter model construction time than CoreDevRec.

Finally, we compare performance between TRFPre and
ACRec. On average across 24 projects, TRFPre outperforms
ACRec results by 46.4%, 29.6% and 21.7% in terms of top-1
accuracy, top-2 accuracy and MRR. The statistical testing re-
sults show that most of p-values are smaller than 0.05, and thus
we find support to reject Hypothesis H-5. ACRec costs shorter
prediction time than TRFPre, because it simply computes de-
velopers’ activeness to make prediction.

RQ2: TRFPre achieves statistically significant higher accu-
racies and MRRs than cHRev, WRC, TIE, CoreDevRec and
ACRec.

4.6. RQ3: Configuration Setting
In order to answer RQ3, we build another approach RFRec

which uses non time-decaying relationships and file similari-
ties, and treats all pull requests with the same weigh 1. More

Table 11: Top-m Accuracies (m=1,2) and MRR of Approaches RFRec and
TRFPre. (Best results in bold.)

Project Top-1 Accuracy Top-2 Accuracy MRR

RFRev TRFPre RFRev TRFPre RFRev TRFPre
rails 0.22 0.36 0.41 0.53 0.42 0.53

commcare-hq 0.24 0.36 0.39 0.54 0.43 0.54
tgstation 0.27 0.33 0.47 0.54 0.49 0.54
symfony 0.85 0.89 0.91 0.94 0.9 0.93

cocos2d-x 0.71 0.76 0.92 0.94 0.83 0.87
core 0.35 0.47 0.5 0.65 0.53 0.63

Baystation12 0.3 0.38 0.55 0.65 0.54 0.61
joomla-cms 0.22 0.33 0.44 0.54 0.45 0.54

app 0.27 0.32 0.42 0.48 0.43 0.48
metasploit 0.31 0.41 0.49 0.6 0.51 0.59

-framework
bootstrap 0.64 0.67 0.83 0.9 0.78 0.81

dmd 0.44 0.53 0.59 0.72 0.61 0.7
cdnjs 0.7 0.74 0.9 0.9 0.83 0.84

zendframework 0.58 0.66 0.75 0.83 0.73 0.78
angular.js 0.33 0.35 0.48 0.55 0.51 0.55
cakephp 0.56 0.65 0.72 0.85 0.72 0.79
puppet 0.28 0.33 0.44 0.5 0.46 0.5

brackets 0.22 0.32 0.38 0.49 0.42 0.5
scala 0.39 0.47 0.61 0.71 0.6 0.67

ipython 0.45 0.49 0.67 0.75 0.65 0.68
sympy 0.27 0.37 0.5 0.57 0.49 0.56

node-v0.x-archive 0.43 0.46 0.63 0.66 0.62 0.64
wet-boew 0.49 0.59 0.78 0.86 0.69 0.76

katello 0.25 0.29 0.43 0.45 0.45 0.47

Table 12: Gains and Statistical Results of Approaches RFRec and TRFPre.
Project Top-1 Accuracy Top-2 Accuracy MRR

Gain % Gain % Gain %
rails 63.6 *** 29.3 *** 26.2 ***

commcare-hq 50 *** 38.5 *** 25.6 ***
tgstation 22.2 *** 14.9 *** 10.2 ***
symfony 4.7 *** 3.3 *** 3.3 ***

cocos2d-x 7 *** 2.2 *** 4.8 ***
core 34.3 *** 30 *** 18.9 ***

Baystation12 26.7 *** 18.2 *** 13 ***
joomla-cms 50 *** 22.7 *** 20 ***

app 18.5 *** 14.3 *** 11.6 ***
metasploit-framework 32.3 *** 22.4 *** 15.7 ***

bootstrap 4.7 * 8.4 *** 3.8 ***
dmd 20.5 *** 22 *** 14.8 ***
cdnjs 5.7 *** 0 1.2 ***

zendframework 13.8 *** 10.7 *** 6.8 ***
angular.js 6.1 ** 14.6 *** 7.8 ***
cakephp 16.1 *** 18.1 *** 9.7 ***
puppet 17.9 *** 13.6 *** 8.7 ***

brackets 45.5 *** 28.9 *** 19 ***
scala 20.5 *** 16.4 *** 11.7 ***

ipython 8.9 *** 11.9 *** 4.6 ***
sympy 37 *** 14 *** 14.3 ***

node-v0.x-archive 7 * 4.8 * 3.2
wet-boew 20.4 *** 10.3 *** 10.1 ***

katello 16 *** 4.7 * 4.4 *
Average 22.9 15.6 11.2

∗ ∗ ∗p < 0.001, ∗ ∗ p < 0.01, ∗p < 0.05

specifically, non time-decaying relationship can be measured
by |OS etnew

⋂
PS eti|. Non time-decaying file similarity can be

measured by
∑

P j∈PS eti prDistance(Pnew, P j). Based on these
features, RFRec also uses random forest classifier and naive
bayes classifier to compute likelihoods, and combine classifica-
tion results to make prediction.

10

Table 13: Performance with different γ
γ Top-1 Accuracy Top-2 Accuracy MRR
0 0.46 0.64 0.62

0.1 0.46 0.65 0.63
0.2 0.47 0.65 0.63
0.3 0.47 0.66 0.64
0.4 0.48 0.67 0.64
0.5 0.48 0.67 0.64
0.6 0.48 0.67 0.64
0.7 0.48 0.67 0.65
0.8 0.48 0.67 0.64
0.9 0.47 0.67 0.64
1 0.46 0.66 0.63

Table 11 compare accuracy and MRR values of RFRec and
TRFPre. We compute accuracy gains and MRR gains, assess
the statistically significant difference between approaches, and
describe results in Table 12. On average across 24 projects,
TRFPre improves RFRec by 22.9%, 15.6% and 11.2% in terms
of top-1 accuracy, top-2 accuracy and MRR. Furthermore, p-
values are smaller than 0.05 in almost all cases, and TRFPre
achieves positive gains with statistical significance. The only
difference between RFRec and TRFPre is time-decaying func-
tion. Results show that time-decaying function is effective to
improve performance of integrator prediction.

The parameter γ is used to assign weights of prediction likeli-
hoods of naive bayes classifier and random forest classifier. We
increases parameter γ from 0 to 1 with an interval of 0.1, and
evaluate performance of TRFPre. We compute average values
of 24 projects, and describe results in Table 13. Results show
that TRFPre achieves the highest values of accuracies and MR-
R when parameter γ is set as 0.7. Therefore, we set parameter
γ as 0.7 by default. When parameter γ is set as 0, TRFPre only
uses naive bayes classifier to predict integrators. When param-
eter γ is set as 1, TRFPre only uses random forest classifier
to predict integrators. The best performance is achieved when
parameter γ is set as 0.7. Results show that the combination
of naive bayes classifier and random forest classifier achieves
better performance than a single classifier.

By using two machine learning techniques, TRFPre can in-
crease top-1 accuracy from 0.46 to 0.48 (i.e., 4.3% improve-
ment). This improvement is achieved at the cost of increasing
training and prediction time. Training can be done once and the
resultant trained model can be used to predict integrators for
many pull requests. For prediction time, by using two machine
learning techniques, the average increase in prediction time per
pull request is 0.01 seconds (as compared to using Random For-
est alone) and 0.02 seconds (as compared to using Naive Bayes
alone). Since users would not be able to differentiate a 0.01 or
0.02 seconds prediction time difference, the results show that a
negligible increase in prediction time per pull request can yield
a small improvement in accuracy.

In Equations1 and 4, PS eti includes pull requests on which
integrator Di has made decisions within λ days before new pull
request Pnew. By default, we set the temporal window length λ
as infinite (i.e., no time limit), and consider all pull requests on
which integrators have made decision on. Here, we investigate
the effect of the temporal window length λ on the performance

Table 14: Performance with different λ (days)
λ Top-1 Accuracy Top-2 Accuracy MRR
5 0.43 0.61 0.6
10 0.45 0.63 0.62
30 0.47 0.65 0.63
60 0.47 0.66 0.64

120 0.47 0.67 0.64
no time limit 0.48 0.67 0.65

of TRFPre. We compute the approach performance with differ-
ent λ values, including: 5 days, 10 days, 30 days, 60 days, 120
days and no time limit. We compute average values of the 24
projects, and present the results in Table 14.

Results show that as λ increases, top-1 and top-2 accuracies
and MRR also increase. However, the increase in these evalu-
ation metrics is getting lesser and lesser for larger λ. TRFPre
achieves the highest values of accuracies and MRR when pa-
rameter λ is set to no time limit. The results suggest that old
data are also useful albeit they are less important than more re-
cent data. Also, since the performance at λ = no time limit is
the best, we use it as the default setting of TRFPre.

RQ3: The time-decaying function is effective for integrator
prediction. TRFPre achieves the best accuracy and MRR
values when parameter γ is set as 0.7 and parameter λ is set
as no time limit.

5. Discussion

In this section, we first discuss why we choose actual inte-
grators as ground truth. Then we explore feature importance in
integrator prediction.

5.1. Ground truth

In this paper, we consider ground truth as integrators who
actually evaluate pull requests. We do not know whether histor-
ical integrators are the best or appropriate for making decisions
on pull requests. Contributors submit pull requests, which are
evaluated by integrators. We send a survey to contributors, and
explore their attitudes towards integrators. More specifically,
we design a survey to include 2 questions.

1. In your experience, how often is an actual integrator of a
pull request the BEST person for reviewing code and deciding
its acceptance/rejection?

2. In your experience, how often is an actual integrator of
a pull request an INAPPROPRIATE person for reviewing code
and deciding its acceptance/rejection?

We provide nine choices for above questions including: ’N-
ever’, ’Almost Never’, ’Very Rarely’, ’Rarely’, ’Sometimes’,
’Often’, ’Very Often’, ’Almost Always’, ’Always’.

We randomly selected 300 contributors who submitted at
least 5 pull requests in a project in May 2018. We sent them
emails, and asked the above questions. We received responses
from 24 developers. Then, we randomly selected another 300
contributors who submitted at least 5 pull requests in a project,

11

Table 15: Distribution of the number of integrators
Integrators # Projects

[10, 20) 9
[20, 30) 5
[30, 40) 4
[40, 50) 4

[50, 100) 2

Table 16: How often is an actual integrator of a pull request the BEST person
for reviewing code and deciding its acceptance/rejection?

Choice Respondents
Never 0 / 0 %

Almost Never 0 / 0 %
Very Rarely 1 / 2.04 %

Rarely 1 / 2.04 %
Sometimes 4 / 8.16 %

Often 11 / 22.45 %
Very Often 15 / 30.61 %

Almost Always 12 / 24.5 %
Always 5 / 10.2 %

sent them emails, and received responses from 25 developer-
s in November 2018. In total, we obtained responses from 49
developers. These developers are from projects which have at
least 10 integrators. These projects include rails, symfony, an-
gular.js and so on. Table 15 shows the distribution of the num-
ber of integrators. 10 projects have at least 30 integrators, and
the number of integrators in the other 14 projects is between 10
and 30.

We ask developers how often an actual integrator of a pull
request is the BEST person for reviewing code and deciding its
acceptance/rejection. We plot their responses in Table 16. From
the table, we can note that 87.76% of our respondents agree that
it is often/very often/almost always/always the case that actual
integrators are the best ones.

Table 17 shows developers’ attitude about how often an actu-
al integrator of a pull request is the INAPPROPRIATE person
for reviewing and deciding its acceptance/rejection. From the
table, we can note that close to 77.55% of our respondents a-
gree that it is rarely/very rarely/almost never/never the case that
actual integrators are inappropriate ones.

Table 17: How often is an actual integrator of a pull request the INAPPROPRI-
ATE person for reviewing code and deciding its acceptance/rejection?

Choice Respondents
Never 3 / 6.12 %

Almost Never 9 / 18.37 %
Very Rarely 16 / 32.65 %

Rarely 10 / 20.41 %
Sometimes 8 / 16.33 %

Often 2 / 4.08 %
Very Often 1 / 2.04 %

Almost Always 0 / 0 %
Always 0 / 0 %

Table 18: Logistic regression analysis results
Feature Odds ratio

(Intercept) 2.99E-03 ***
decayRelationship 1.2 ***

decayFileSimilarity 1.16 ***
recentCommit 1.12 ***

recentComment 1.14 ***
recentPulls 1.13 ***

followerRelation 1.03 ***
followingRelation 1.06 ***

evaluateTime 0.97 ***
evaluatePulls 0.88 ***

latestTime 0.84 ***
∗ ∗ ∗p < 0.001, ∗ ∗ p < 0.01, ∗p < 0.05

The above survey results indicate that although our ground
truth data may not be perfect they are of reasonably high-
quality.

5.2. Feature Importance

This subsection presents a preliminary study to explore the
relative importance of features to the selection of integrators.
We investigate the importance of a total of 10 features; two of
them are proposed in this work while the other eight are sug-
gested in prior studies [8, 10]. They are listed below:

1. decayRelationship is proposed in this work and defined in
Equation 1.

2. decayFileSimilarity is also proposed in this work and de-
fined in Equation 4.

3. recentCommit is the number of commits submitted by an
integrator in 30 days.

4. recentComment is the number of comments submitted by
an integrator in 30 days.

5. recentPulls is the number of pull requests evaluated by an
integrator in 30 days.

6. followerRelation is a dichotomous variable indicating
whether the contributor is the follower of the integrator
or not.

7. followingRelation is a dichotomous variable indicating
whether or not the integrator follows the contributor.

8. evaluateTime is computed as the average interval time be-
tween the pull request submission and the integrator eval-
uation in recent 30 days.

9. evaluatePulls is the total number of pull requests evaluated
by the integrator before.

10. latestTime is computed as the interval time between close
time of the latest evaluated pull request by an integrator
and the new submitted pull request.

Logistic regression is used to model binary outcome vari-
ables, in which the log odds of the outcomes are modeled as
a linear combination of the predictor variables. Following a
previous work [21], we use a logistic regression model, and an-
alyze the correlations between various features extracted from

12

pull-request-integrator pairs and binary outcomes each indicat-
ing whether a pull request is evaluated by an integrator or not.
In order to ensure normality [21], every continuous variable in
the model is log transformed and then centered such that the
mean of each measure is 0 and standard deviation is 1.

Table 18 summarizes logistic regression analysis results. We
compute the correlation between a feature and the probability of
evaluating a pull request by an integrator in terms of odds ratio.
For example, an odds ratio of 0.6 suggests that as the value of
a feature increases by one unit, the odds of evaluating the pull
request by an integrator decreases by 40%; an odds ratio of 1.2
suggests that as the value of a feature increases by one unit, the
odds of evaluating the pull request by an integrator increases by
20%.

As shown in Table 18, p-values for all features are small-
er than 0.001, and there is a statistically significant correlation
between features and the likelihood whether integrators evalu-
ate pull requests. The odds ratio of feature decayRelationship
is 1.2. The feature decayRelationship is positively associated
with the likelihood of evaluating pull requests, and a unit in-
crease of it increases the odds of evaluating pull requests by
20%. We find that features decayRelationship and decayFileS-
imilarity that are proposed in this work have the highest values
of positive impact on integrators’ likelihoods of evaluating pull
requests.

6. Threats to Validity

Threats to internal validity relate to experimenter bias and
errors. First, we use decision histories to build relationships
between integrators and contributors. There may be some oth-
er communication channels that developers use, such as mail-
ing lists, instant messages or face-to-face discussion, and this
work ignores them. Future work may consider collecting data
from additional communication channels, and analyze its im-
pact on integrator prediction. Second, we identify developers
by their usernames in GitHub. A developer may use multiple
usernames, which is not considered in this work.

Threats to external validity relate to generalizability of our
study. Firstly, our experimental results are limited to 24 popu-
lar projects. We find that TRFPre achieves higher accuracy and
MRR values than cHRev, WRC, TIE, CoreDevRec and ACRec,
which are based on 24 projects in our datasets. We cannot claim
that the same results would be achieved in other projects. Our
future work will focus on evaluation in other projects to bet-
ter generalize results of our method. We will conduct broader
experiments to validate whether TRFPre performs well in in-
tegrator prediction. Secondly, our empirical findings are based
on open source software projects in GitHub, and it is unknown
whether our results can be generalized to other OSS platforms.
In the future, we plan to study a similar set of research questions
in other platforms, and compare their results with our findings
in GitHub.

Threats to construct validity refer to the degree to which
the construct being studied is affected by experiment settings.
First, we use accuracy and MRR, which are also used by pre-
vious works to evaluate effectiveness of reviewer prediction ap-

proaches [6, 18] and various automated software engineering
techniques [22, 23, 24]. Therefore, we believe there is little
threat to construct validity. Second, we have not studied all po-
tential factors affecting integrator prediction. In future work,
we plan to extract more factors and perform an in-depth and
comprehensive explanatory study to investigate which of these
factors are more important for selection of suitable integrators.

7. Related work

Related work to this study could be divided into three main
categories, including reviewer recommendation, developer rec-
ommendation and contribution integration.

Reviewer recommendation. There have been a number of
studies on reviewer recommendation.

Initial studies [5, 6, 10, 18, 19, 25, 26] analyze differen-
t code review activities and design reviewer recommendation
approaches. In order to recommend reviewers, approach WRC
analyzed past reviews with the same files [5]. Thongtanunam
et al. designed a file location-based code-reviewer recommen-
dation approach REVFINDER [18]. Xia et al. proposed a
hybrid and incremental approach TIE [6], and achieved bet-
ter performance than REVFINDER [18]. Since TIE [6] out-
performs REVFINDER [18], we choose TIE as a baseline for
comparison, rather than REVFINDER [18]. Jiang et al. used
support vector machines to analyze integrators’ previous deci-
sions, and designed an approach CoreDevRec to recommend
integrators [10]. Different from these approaches, we propose
integrator prediction approach TRFPre based on time-decaying
relationships and time-decaying file similarities. Experiment
results show that TRFPre achieves higher accuracies and MRRs
than cHRev, WRC, TIE and CoreDevRec.

Previous works [4, 7, 8, 27] designed approaches to recom-
mend commenters who provide comments and discuss pull re-
quests. Zanjani et al. analyzed review comments and proposed
a reviewer expertise approach [4]. Yu et al. built commen-
t networks to predict appropriate commenters of incoming pull
requests in GitHub [7, 27]. More recently, Jiang et al. pro-
posed the activeness based approach ACRec to recommend
commenters [8]. Since ACRec [8] has been demonstrated to
outperform Yu et al’s approaches, in this work we compare our
work only with cHRev and ACRec. Our experiments show that
our approach outperforms cHRev and ACRec. This is the case
since cHRev and ACRec along with some other existing com-
menter recommendation methods only analyze previous review
comments, and ignore pull requests without comments. How-
ever, these pull requests without comments still have integrators
and provide valuable historical information for integrator pre-
diction. As shown in Table 2, more than 20% of pull requests
integrators do not provide any comments in 18 (75%) projects.

Developer Recommendation. Recommendation systems
specific to software engineering (RSSE) help developers in a
wide range of activities. Finding developers is an important
need in recommendation systems specific to software engineer-
ing. Some previous studies designed approaches to assign bug
reports or change requests [20, 22, 23, 24, 28, 29, 30, 31, 32,
33, 34]. Anvik et al. applied a machine learning algorithm and

13

suggested a small number of developers to resolve bug report-
s [22]. Jeong et al. used bug tossing history to assign developers
for bug reports [30]. Matter et al. used a text-based method to
identify expertise of developers for bug reports [23]. Hossen
et al. considered source code authors, maintainers, and change
proneness to triage change requests [28]. V¢squez et al. uti-
lized source code authorship for assigning expert developers to
change requests [24].

Our approach addresses a different problem (integrator pre-
diction) than those considered in the above mentioned past s-
tudies (bug fixer recommendation or change request handler
recommendation).

Contribution integration. In pull-based development mod-
el, integrators have crucial role of managing and integrating
contributions. Some works studied contribution integration in
GitHub [1, 15, 35, 36]. Gousios et al. made an explorato-
ry qualitative study to understand integrators’ work practices
and challenges in GitHub [1]. Gousios et al. took an further
step, and studied contributors’ work practices and challenges
in contribution integration [35]. Vasilescu et al. studied quali-
ty and productivity outcomes relating to continuous integration
in GitHub [15]. Hilton et al. studied the usage of continuous
integration systems in contribution integration [36].

Different from these works, we solve a different problem and
design an automatic approach to predict integrators for incom-
ing pull requests.

8. Conclusion

In this paper, we propose an approach TRFPre to predic-
t integrators. TRFPre considers time-decaying relationships
and time-decaying file similarities. Based on these attributes,
TRFPre uses random forest classifier and naive bayes classifi-
er to compute composite probabilities and predict integrators.
We evaluate effectiveness of TRFPre on 24 projects containing
138,373 pull requests. We compare it to the state of art re-
viewer prediction approaches. The experimental results show
that on average across 24 projects, TRFPre improves cHRev,
WRC, TIE, CoreDevRec and ACRec by 68.2%, 73.9%, 49.3%,
14.3% and 46.4% in terms of top-1 accuracy. TRFPre achieves
better prediction performance than cHRev, WRC, TIE, Core-
DevRec and ACRec. When TRFPre is used to predict integra-
tors, less than 2 predictions are needed to find correct integrator
in 91.67% of projects. Therefore, we believe that TRFPre is
useful to find appropriate integrators and improve code review
process.

.

9. Acknowledgment

This work is supported by the National Key Research and
Development Program of China No. 2018YFB1004202, the
National Natural Science Foundation of China under Grant No.
61732019, and the State Key Laboratory of Software Develop-
ment Environment under Grant No.SKLSDE-2018ZX-12.

[1] G. Gousios, A. Zaidman, M.-A. Storey, A. van Deursen, Work practices
and challenges in pull-based development: The integrators perspective,
in: Proc. the 37th ICSE, Florence, Italy, 2015, pp. 1–11.

[2] J. Tsay, L. Dabbish, J. Herbsleb, Let’s talk about it: Evaluating contribu-
tions through discussion in github, in: Proc. of FSE, Hong Kong, China,
2014, pp. 144–154.

[3] M. M. Rahman, C. K. Roy, R. G. Kula, Predicting usefulness of code re-
view comments using textual features and developer experience, in: Proc.
of MSR, Buenos Aires, Argentina, 2017, pp. 215–226.

[4] M. B. Zanjani, H. Kagdi, C. Bird, Automatically recommending peer re-
viewers in modern code review, IEEE Transactions on Software Engineer-
ing 42 (6) (2016) 530–543.

[5] C. Hannebauer, M. Patalas, S. Stnkel, Automatically recommending code
reviewers based on their expertise: An empirical comparison, in: Proc. of
ASE, Singapore, Singapore, 2016, pp. 99–110.

[6] X. Xia, D. Lo, X. Wang, X. Yang, Who should review this change?
putting text and file location analyses together for more accurate recom-
mendations, in: Proc. of ICSME, Bremen, Germany, 2015.

[7] Y. Yu, H. Wang, G. Yin, T. Wang, Reviewer recommendation for pull-
requests in github: What can we learn from code review and bug assign-
ment?, Information and Software Technology 74 (2016) 204–218.

[8] J. Jiang, Y. Yang, J. He, X. Blanc, L. Zhang, Who should comment on this
pull request? analyzing attributes for more accurate commenter recom-
mendation in pull-based development, Information and Software Tech-
nology 84 (2017) 48–62.

[9] G. Robles, J. M. Gonzalez-Barahona, Contributor turnover in libre soft-
ware projects, in: Open Source Systems, 2006, pp. 273–286.

[10] J. Jiang, J.-H. He, X.-Y. Chen, Coredevrec: Automatic core member rec-
ommendation for contribution evaluation, Journal of Computer Science
and Technology 30 (5) (2015) 998–1016.

[11] W. Li, Y. Xia, M. Zhou, X. Sun, Q. Zhu, Fluctuation-aware and predictive
workflow scheduling in cost-effective infrastructure-as-a-service clouds,
IEEE Access (2018) 1–16.

[12] Y. Yu, G. Yin, T. Wang, C. Yang, H. Wang, Determinants of pull-based
development in the context of continuous integration, Science China In-
formation Sciences 59 (8) (2016) 1–14.

[13] V. J. Hellendoorn, P. T. Devanbu, A. Bacchelli, Will they like this? e-
valuating code contributions with language models, in: Proc. of the 12nd
MSR, Florence, Italy, 2015.

[14] A. Bacchelli, C. Bird, Expectations, outcomes, and challenges of modern
code review, in: Proc. of ICSE, San Francisco, USA, 2013.

[15] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, V. Filkov, Quality and produc-
tivity outcomes relating to continuous integration in github, in: Proc. of
FSE, Bergamo, Italy, 2015.

[16] G. Gousios, M. Pinzger, A. van Deursen, An exploratory study of the pull-
based software development model, in: Proc. the 36th ICSE, Hyderabad,
India, 2014, pp. 345–355.

[17] W. Zhang, L. Nie, H. Jiang, Z. Chen, J. Liu, Developer social networks in
software engineering: construction, analysis, and applications, SCIENCE
CHINA Information Sciences 57 (12) (2014) 1–23.

[18] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. I-
ida, K. ichi Matsumoto, Who should review my code? a file location-
based code-reviewer recommendation approach for modern code review,
in: Proc. the 22nd SANER, Montreal, Canada, 2015, pp. 141–150.

[19] V. Balachandran, Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommenda-
tion, in: Proc. of ICSE, San Francisco, USA, 2013, pp. 931–940.

[20] X. Xia, D. Lo, X. Wang, B. Zhou, Accurate developer recommendation
for bug resolution, in: Proc. the 20th WCRE, Koblenz, Germany, 2013,
pp. 72–81.

[21] J. Tsay, L. Dabbish, J. Herbsleb, Influence of social and technical factors
for evaluating contribution in github, in: Proc. the 36th ICSE, Hyderabad,
India, 2014, pp. 356–366.

[22] J. Anvik, L. Hiew, G. C. Murphy, Who should fix this bug?, in: Proc. the
28th ICSE, Shanghai, China, 2006, pp. 361–370.

[23] D. Matter, A. Kuhn, O. Nierstrasz, Assigning bug reports using a
vocabulary-based expertise model of developers, in: Proc. the 6th MSR,
Vancouver, Canada, 2009, pp. 131–140.

[24] M. Linares-Vasquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers,
D. Poshyvanyk, Triaging incoming change requests: Bug or commit his-
tory, or code authorship?, in: Proc. the 28th ICSM, Riva del Garda, Italy,
2012, pp. 451–460.

14

[25] A. Ouni, R. G. Kula, K. Inoue, Search-based peer reviewers recommen-
dation in modern code review, in: Proc. of ICSME, Raleigh, USA, 2016,
pp. 367–377.

[26] M. M. Rahman, C. K. Roy, J. A. Collins, Correct: Code reviewer recom-
mendation in github based on cross-project and technology experience,
in: Proc. of ICSE Companion, Austin, USA, 2016, pp. 222–231.

[27] Y. Yu, H. Wang, G. Yin, C. Ling, Reviewer recommender of pull-requests
in github, in: Proc. the 30th ICSME, Victoria, Canada, 2014, pp. 609–
612.

[28] M. K. Hossen, H. Kagdi, D. Poshyvanyk, Amalgamating source code au-
thors, maintainers, and change proneness to triage change requests, in:
Proc. the 22nd ICPC, Hyderabad, India, 2014, pp. 1–12.

[29] H. Kagdi, M. Gethers, D. Poshyvanyk, M. Hammad, Assigning change
requests to software developers, JOURNAL OF SOFTWARE: EVOLU-
TION AND PROCESS 24 (2012) 3–33.

[30] G. Jeong, S. Kim, T. Zimmermann, Improving bug triage with bug tossing
graphs, in: Proc. the 17th FSE, Amsterdam, The Netherlands, 2009, pp.
111–120.

[31] H. Hu, H. Zhang, J. Xuan, W. Sun, Effective bug triage based on historical
bug-fix information, in: Proc. the 25th ISSRE, Naples, Italy, 2014, pp.
122–132.

[32] W. Wu, Q. W. Wen Zhang, Ye Yang, Drex: Developer recommendation
with k-nearest-neighbor search and expertise ranking, in: Proc. the 18th
APSEC, Phan Thiet, Vietnam, 2011, pp. 389–396.

[33] D. Cubranic, G. C. Murphy, Automatic bug triage using text categoriza-
tion, in: Proc. the 16th SEKE, 2004, pp. 1–6.

[34] H. Liu, Z. Ma, W. Shao, Z. Niu, Schedule of bad smell detection and
resolution: A new way to save effort, IEEE Transactions on Software
Engineering 38 (1) (2012) 220–235.

[35] G. Gousios, M.-A. Storey, A. Bacchelli, Work practices and challenges in
pull-based development: The contributors perspective, in: Proc. of ICSE,
Austin, TX, USA, 2016.

[36] M. Hilton, T. Tunnell, K. Huang, D. Marinov, D. Dig, Usage, costs, and
benefits of continuous integration in open-source projects, in: Proc. of
ASE, Signore, Signore, 2016, pp. 426–437.

15

Ta
bl

e
4:

M
et

ho
ds

in
pr

ev
io

us
w

or
ks

M
et

ho
d

Su
pe

rv
is

ed
le

ar
ni

ng
te

ch
ni

qu
e

Pr
op

os
ed

m
et

ri
cs

Pr
os

C
on

s

cH
R

ev
[4

]
N

on
e

cH
R

ev
an

al
yz

es
re

vi
ew

co
m

m
en

ts
an

d
co

m
pu

te
s

re
vi

ew
er

s’
fr

eq
ue

nc
y,

w
or

kd
ay

s,
an

d
re

ce
nc

y
co

ns
id

er
in

g
sp

ec
ifi

c
fil

es
.

cH
R

ev
do

es
no

t
ha

ve
tim

e
ov

er
he

ad
of

m
od

el
co

ns
tr

uc
tio

n
ph

as
e.

cH
R

ev
co

ns
id

-
er

s
ac

tiv
en

es
s

of
re

vi
ew

er
s.

cH
R

ev
an

al
yz

es
re

vi
ew

co
m

m
en

ts
w

hi
le

m
an

y
pu

ll
re

qu
es

ts
in

G
itH

ub
ar

e
no

tc
om

-
m

en
te

d.
W

R
C

[5
]

N
on

e
W

R
C

co
m

pu
te

s
w

ei
gh

te
d

re
vi

ew
co

un
-

t
w

hi
ch

sp
ec

ifi
es

th
e

re
vi

ew
ex

pe
ri

en
ce

a
de

ve
lo

pe
rh

as
w

ith
a

sp
ec

ifi
c

fil
e

at
th

e
tim

e
a

sp
ec

ifi
c

re
vi

ew
is

m
ad

e.

W
R

C
do

es
no

th
av

e
tim

e
ov

er
he

ad
of

m
od

-
el

co
ns

tr
uc

tio
n

ph
as

e.
W

R
C

co
ns

id
er

s
ac

-
tiv

en
es

s
of

re
vi

ew
er

s
ba

se
d

on
pa

st
re

-
vi

ew
s.

W
R

C
do

es
no

tc
on

si
de

rfi
le

si
m

ila
ri

tie
s.

T
IE

[6
]

N
ai

ve
B

ay
es

cl
as

si
fie

r
T

IE
pr

op
os

es
a

hy
br

id
an

d
in

cr
em

en
ta

la
p-

pr
oa

ch
w

hi
ch

an
al

yz
es

te
xt

ua
lc

on
te

nt
an

d
fil

e
pa

th
s.

T
IE

co
m

bi
ne

s
te

xt
si

m
ila

ri
ty

an
d

fil
e

pa
th

si
m

ila
ri

ty
to

ge
th

er
to

m
ak

e
re

co
m

m
en

da
-

tio
n.

T
IE

co
ns

id
er

s
pr

ev
io

us
re

vi
ew

s
up

lo
ad

ed
w

ith
in

10
0

da
ys

be
fo

re
ne

w
re

vi
ew

as
e-

qu
al

ly
im

po
rt

an
t.

C
or

eD
ev

R
ec

[1
0]

SV
M

C
or

eD
ev

R
ec

an
al

yz
es

fil
e

pa
th

s,
so

ci
al

in
-

te
ra

ct
io

ns
an

d
ac

tiv
en

es
st

o
re

co
m

m
en

d
in

-
te

gr
at

or
s.

C
or

eD
ev

R
ec

fu
lly

co
ns

id
er

s
fil

e
si

m
ila

ri
ty

,
re

la
tio

n
si

m
ila

ri
ty

an
d

ac
tiv

en
es

s.
C

or
eD

ev
R

ec
us

es
su

pp
or

tv
ec

to
rm

ac
hi

ne
s

to
an

al
yz

e
m

an
y

su
bs

tr
in

gs
in

fil
e

pa
th

-
s,

an
d

th
us

ne
ed

s
lo

ng
m

od
el

co
ns

tr
uc

tio
n

ph
as

e
tim

e.
A

dd
iti

on
al

ly
,t

he
la

rg
e

nu
m

be
r

of
su

b-
st

ri
ng

s
m

ay
in

tr
od

uc
e

no
is

e
aff

ec
t-

in
g

its
ac

cu
ra

cy
.

A
C

R
ec

[8
]

N
on

e
A

C
R

ec
co

m
pu

te
s

re
ce

nc
y

ba
se

d
on

co
m

-
m

en
ts

.
A

C
R

ec
do

es
no

t
ha

ve
tim

e
ov

er
he

ad
of

m
od

el
co

ns
tr

uc
tio

n
ph

as
e.

A
C

R
ec

co
ns

id
-

er
s

co
m

m
en

te
rs

’a
ct

iv
en

es
s

A
C

R
ec

do
es

no
t

co
ns

id
er

un
co

m
m

en
te

d
pu

ll
re

qu
es

ts
.

16

Table 6: Top-m Accuracies (m=1,2) of Approaches cHRev, WRC, TIE, CoreDevRec, ACRec and TRFPre. (Best results in bold.)
Project Top-1 Accuracy Top-2 Accuracy

cH- WRC TIE CoreD- ACRec TRF- cH- WRC TIE CoreD- ACRec TRF-
Rev evRec Rec Rev evRec Rec

rails 0.2 0.3 0.16 0.37 0.31 0.36 0.31 0.4 0.4 0.51 0.49 0.53
commcare-hq 0.25 0.31 0.31 0.35 0.31 0.36 0.39 0.42 0.48 0.5 0.46 0.54

tgstation 0.14 0.22 0.14 0.29 0.22 0.33 0.25 0.31 0.28 0.53 0.38 0.54
symfony 0.42 0.89 0.78 0.89 0.69 0.89 0.65 0.9 0.9 0.93 0.9 0.94

cocos2d-x 0.56 0.55 0.61 0.68 0.73 0.76 0.78 0.78 0.89 0.92 0.94 0.94
core 0.21 0.42 0.23 0.43 0.21 0.47 0.34 0.46 0.39 0.66 0.41 0.65

Baystation12 0.2 0.32 0.21 0.36 0.29 0.38 0.37 0.5 0.45 0.61 0.52 0.65
joomla-cms 0.13 0.14 0.18 0.3 0.16 0.33 0.23 0.27 0.31 0.5 0.29 0.54

app 0.15 0.04 0.13 0.16 0.07 0.32 0.23 0.07 0.2 0.25 0.13 0.48
metasploit-framework 0.24 0.28 0.3 0.35 0.3 0.41 0.38 0.45 0.52 0.55 0.52 0.6

bootstrap 0.59 0.6 0.68 0.61 0.55 0.67 0.8 0.85 0.89 0.9 0.89 0.9
dmd 0.24 0.49 0.32 0.52 0.33 0.53 0.43 0.62 0.54 0.69 0.54 0.72
cdnjs 0.54 0.4 0.63 0.71 0.75 0.74 0.8 0.57 0.81 0.86 0.89 0.9

zendframework 0.49 0.62 0.65 0.63 0.63 0.66 0.66 0.74 0.79 0.8 0.79 0.83
angular.js 0.28 0.28 0.31 0.32 0.35 0.35 0.43 0.41 0.5 0.54 0.54 0.55
cakephp 0.4 0.54 0.53 0.64 0.53 0.65 0.65 0.85 0.79 0.85 0.8 0.85
puppet 0.21 0.13 0.24 0.28 0.24 0.33 0.32 0.23 0.38 0.42 0.4 0.5

brackets 0.23 0.2 0.25 0.28 0.23 0.32 0.37 0.32 0.41 0.43 0.38 0.49
scala 0.3 0.27 0.35 0.42 0.42 0.47 0.51 0.51 0.6 0.65 0.66 0.71

ipython 0.3 0.36 0.33 0.46 0.36 0.49 0.55 0.61 0.61 0.69 0.64 0.75
sympy 0.3 0.24 0.29 0.31 0.29 0.37 0.44 0.51 0.5 0.53 0.5 0.57

node-v0.x-archive 0.32 0.26 0.38 0.43 0.42 0.46 0.49 0.4 0.58 0.64 0.62 0.66
wet-boew 0.39 0.5 0.45 0.51 0.46 0.59 0.65 0.77 0.76 0.8 0.77 0.86

katello 0.19 0.14 0.17 0.19 0.2 0.29 0.33 0.27 0.31 0.33 0.36 0.45
Average 0.3 0.35 0.36 0.44 0.38 0.48 0.47 0.51 0.55 0.63 0.58 0.67

Table 8: Top-m Accuracy (m=1,2) Gains and Statistical Results of Approaches cHRev, WRC, TIE, CoreDevRec, ACRec and TRFPre.
Project Top-1 Accuracy Gain % Top-2 Accuracy Gain %

TRFPre- TRFPre-
cHRev WRC TIE CoreD- ACRec cHRev WRC TIE CoreD- ACRec

evRec evRec
rails 80 *** 20 *** 125 *** -2.7 16.1 *** 71 *** 32.5 *** 32.5 *** 3.9 ** 8.2 ***

commcare-hq 44 *** 16.1 *** 16.1 *** 2.9 16.1 *** 38.5 *** 28.6 *** 12.5 *** 8 *** 17.4 ***
tgstation 135.7 *** 50 *** 135.7 *** 13.8 *** 50 *** 116 *** 74.2 *** 92.9 *** 1.9 42.1 ***
symfony 109.5 *** 0 12.8 *** 0 29 *** 44.6 *** 4.4 *** 4.4 *** 1.1 4.4 ***

cocos2d-x 35.7 *** 38.2 *** 24.6 *** 11.8 *** 4.1 *** 20.5 *** 20.5 *** 5.6 *** 2.2 *** 0
core 123.8 *** 11.9 *** 104.3 *** 9.3 *** 123.8 *** 91.2 *** 41.3 *** 66.7 *** -1.5 58.5 ***

Baystation12 90 *** 18.8 *** 81 *** 5.6 *** 31 *** 75.7 *** 30 *** 44.4 *** 6.6 *** 25 ***
joomla-cms 153.8 *** 135.7 *** 83.3 *** 10 *** 106.3 *** 134.8 *** 100 *** 74.2 *** 8 *** 86.2 ***

app 113.3 *** 700 *** 146.2 *** 100 *** 357.1 *** 108.7 *** 585.7 *** 140 *** 92 *** 269.2 ***
metasploit-framework 70.8 *** 46.4 *** 36.7 *** 17.1 *** 36.7 *** 57.9 *** 33.3 *** 15.4 *** 9.1 *** 15.4 ***

bootstrap 13.6 *** 11.7 *** -1.5 9.8 *** 21.8 *** 12.5 *** 5.9 *** 1.1 0 1.1
dmd 120.8 *** 8.2 *** 65.6 *** 1.9 60.6 *** 67.4 *** 16.1 *** 33.3 *** 4.3 ** 33.3 ***
cdnjs 37 *** 85 *** 17.5 *** 4.2 ** -1.3 12.5 *** 57.9 *** 11.1 *** 4.7 *** 1.1

zendframework 34.7 *** 6.5 *** 1.5 4.8 * 4.8 ** 25.8 *** 12.2 *** 5.1 *** 3.7 *** 5.1 ***
angular.js 25 *** 25 *** 12.9 *** 9.4 ** 0 27.9 *** 34.1 *** 10 *** 1.9 1.9
cakephp 62.5 *** 20.4 *** 22.6 *** 1.6 22.6 *** 30.8 *** 0 7.6 *** 0 6.2 ***
puppet 57.1 *** 153.8 *** 37.5 *** 17.9 *** 37.5 *** 56.3 *** 117.4 *** 31.6 *** 19 *** 25 ***

brackets 39.1 *** 60 *** 28 *** 14.3 *** 39.1 *** 32.4 *** 53.1 *** 19.5 *** 14 *** 28.9 ***
scala 56.7 *** 74.1 *** 34.3 *** 11.9 *** 11.9 *** 39.2 *** 39.2 *** 18.3 *** 9.2 *** 7.6 ***

ipython 63.3 *** 36.1 *** 48.5 *** 6.5 * 36.1 *** 36.4 *** 23 *** 23 *** 8.7 *** 17.2 ***
sympy 23.3 *** 54.2 *** 27.6 *** 19.4 *** 27.6 *** 29.5 *** 11.8 *** 14 *** 7.5 ** 14 ***

node-v0.x-archive 43.8 *** 76.9 *** 21.1 *** 7 * 9.5 ** 34.7 *** 65 *** 13.8 *** 3.1 * 6.5 **
wet-boew 51.3 *** 18 *** 31.1 *** 15.7 *** 28.3 *** 32.3 *** 11.7 *** 13.2 *** 7.5 *** 11.7 ***

katello 52.6 *** 107.1 *** 70.6 *** 52.6 *** 45 *** 36.4 *** 66.7 *** 45.2 *** 36.4 *** 25 ***
Average 68.2 73.9 49.3 14.3 46.4 51.4 61 30.6 10.5 29.6

∗ ∗ ∗p < 0.001, ∗ ∗ p < 0.01, ∗p < 0.05

17

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	8-2019

	Who should make decision on this pull request? Analyzing time-decaying relationships and file similarities for integrator prediction
	Jing JIANG
	David LO
	Jiateng ZHENG
	Xin XIA
	Yun YANG
	See next page for additional authors
	Citation
	Author

	tmp.1559206089.pdf.nq2Qz

