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ABSTRACT 

Many complex real-world problems such as bin-packing are 

optimised using evolutionary computation (EC) techniques. 

Involving a human user during this process can avoid producing 

theoretically sound solutions that do not translate to the real world 

but slows down the process and introduces the problem of user 

fatigue. Gamification can alleviate user boredom, concentrate user 

attention, or make a complex problem easier to understand. This 

paper explores the use of gamification as a mechanism to extract 

problem-solving behaviour from human subjects through 

interaction with a gamified version of the bin-packing problem, 

with heuristics extracted by machine learning. The heuristics are 

then embedded into an evolutionary algorithm through the 

mutation operator to create a human-guided algorithm. 

Experimentation demonstrates that good human performers 

augment EA performance, but that poorer performers can be 

detrimental to it in certain circumstances. Overall, the introduction 

of human expertise is seen to benefit the algorithm. 
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1 INTRODUCTION 

There are many complex operational research problems arising 

from the areas of cutting and packing [1]. Problems with real 

world applications often requiring the use of optimisation 

techniques to solve. One such problem is bin-packing [2], which 

consists of a number of container objects (bins) and a fixed 

number of items that need to be stored in them (boxes). The bins 

are usually a large fixed size but can also vary, while the boxes 

are almost always an assortment of smaller sizes. The objective is 

to fit the boxes into as few bins as possible without violating the 

bin size constraints. The problem can have various dimensions 

and rises in complexity as the dimensionality increases. 

Early attempts to solve the bin-packing problem examined 

several approximation algorithms, often based on very simple 

rules such as first fit (packing each box into the first bin it will fit 

into) [3]. Additional algorithms have been created based on 

heuristics derived from observation, analysis, or speculation, and 

the performance of these algorithms has been tested against the 

simple approximation algorithms by various studies [4, 5]. A 

branch-and-bound algorithm making use of some of these 

heuristics also proved effective at finding good approximations 

[6]. However, none of these approximation algorithms are 

guaranteed to provide an exact solution to an instance of the 

problem. 

Evolutionary algorithms (EAs) are a tried and tested method 

for solving complex problems for which it is computationally 

infeasible to generate an exact solution. The generalisation of EAs 

allows them to be applied to many problems to generate good 

approximate solutions. They use simple automated processes 

requiring no human input after the initial encoding of the problem 

representation. 

Due to the capabilities of EAs many attempts have been made 

to apply them to the bin-packing problem with various degrees of 

success. Several of these studies found that an EA by itself often 

performs poorly unless combined with other techniques. These 

include combining a grouping genetic algorithm with a local 

optimisation technique that obtained results superior to using 

either technique in isolation [7]. Another study used a biased 

random key genetic algorithm combined with some simple 

heuristics to obtain solutions to both 2D and 3D bin-packing 

problems [8]. Combining a genetic algorithm with a best fit 

decreasing approximation algorithm to avoid infeasible solutions 

[9] was also investigated. 

Burke et al. [10] used genetic programming to create an 

effective algorithm to solve bin-packing problems, allowing for 

algorithms to be evolved based on the state of the bins. An 

interesting result of this study was that the best of the obtained 

evolved algorithms behaved almost identically to the first fit 

approximation algorithm. This demonstrated how useful heuristics 

can be derived from attempts to solve instances of the bin-packing 

problem. Combining automatically generated rule-based and data-

based heuristics with a multi-objective optimisation problem was 

also found to be effective, though this was not applied to bin-

packing [11]. 

Metaheuristics, such as EAs, are problem agnostic and good at 

reaching a goal but can often take a long period of time or require 

significant processing power to do so. Heuristics tend to be 

problem specific and rely on an understanding of the problem or 

the solution, or an approach that is known to be effective. Though 

heuristics can often offer quicker and easier ways of doing things, 

they might not always reach their goal. 

Hyper-heuristics make use of a variety of metaheuristic and 

heuristic methods to try to take advantage of the benefits of both 

approaches. Hyper-heuristics have been used to generate 

heuristics that can be turned into readable algorithms [12] and 

have been applied to bin-packing with some success [13, 14]. 

Hyper-heuristics can encounter a couple of problems in their 

application, chiefly the extra resources required to decide which 

heuristic to make use of under what circumstances and providing 
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the hyper-heuristic with a full library of different heuristics to 

select from. 

Effective heuristics can be derived from human approaches to 

solving a problem. This has been achieved with limited success 

through simple techniques that capture human behaviours to apply 

to robots [15], and to analyse the heuristics from human 

participants used in optimising routing problems [16].  

Human-guided search has been investigated by Klau et al. 

[17], who applied it to a variety of optimization problems 

including a type of packing problem. Murawski and Bossaerts 

[18] investigated the heuristics used by participants presented with 

the knapsack problem, a problem of a similar nature to bin-

packing. Murawski and Bossaerts were able to recognise a 

common human approach of applying a heuristic similar to the 

greedy algorithm followed by a heuristic similar to a branch-and-

bound algorithm. 

To best take advantage of human generated heuristics, it is 

important to understand that not all individuals are equally good at 

solving problems. Therefore, the best heuristics would 

presumably be generated by those with expertise or domain 

specific knowledge of the problem at hand. While this expertise 

could be assessed prior to trying to capture any heuristic the user 

applies to the problem, this could also be decided either during or 

after the process by scoring the user on their performance. This 

would involve giving the user feedback through a scoring system 

and an interactive visual representation of the problem, which 

would involve gamification of the bin-packing problem. 

In applying gamification to the problem of linking gene 

patterns to predicted breast cancer outcomes, Good et al. [19] 

were able to make use of a crowd of both expert and non-expert 

users to test their hypothesis. Their game was able to capture 

useful knowledge from their expert players, which was then used 

to train a decision tree classifier. They also found that the players 

without domain specific knowledge performed less well. This was 

due to the representation of the problem needing to be kept 

complex for the experts to have a chance to take advantage of 

their expertise, making the game much harder to play for the non-

experts. 

To capture human derived heuristics a gamified version of the 

bin-packing problem is proposed here. This game captures the 

problem state and human input at each stage as the user solves a 

simple 2D version of the bin-packing problem. After the problem 

is solved, machine learning techniques are then applied to this 

data and the heuristics employed by the human user are derived. 

These derived heuristics are then used in place of or alongside of 

the mutation operator in an EA to determine if they improve the 

performance of the optimisation algorithm. 

2 EXPERIMENTAL AND COMPUTATIONAL 

DETAILS 

2.1 Problem Definition 

For the purpose of this paper the bin-packing problem will be 

defined as follows. The problem consists of a fixed number of 

bins and exactly twice that number of boxes, the number of which 

determines the level of difficulty. Each bin has two dimensions, 

labelled as size and weight, the capacities of which are fixed and 

identical. The boxes have the same two dimensions, but their 

values are randomised. This is done in such a way that the sum of 

the weights and sizes of the boxes is enough to exactly fill half of 

the bins. The approach taken is to randomly generate the boxes by 

splitting half of the bins into slices and then shuffling and 

distributing them evenly between all the bins. 

The objective is to minimise the number of bins being used, 

while the user interacts with the problem by selecting a single box 

from any bin and choosing which bin to move it to. The size and 

weight capacities of the bins act as constraints that can be 

temporarily violated to generate an infeasible solution. However, 

if a bin is already over-capacity in either dimension, no more 

boxes can be moved into it. The user is not allowed to submit an 

infeasible solution to be assessed and scored, and, due to the way 

in which the problem is generated, there is always a guaranteed 

optimal solution. 

The scoring is calculated based on the number of full and 

empty bins, followed by the distribution of boxes between the 

partially-filled bins. This is to encourage the user to try to fill bins 

exactly while using as few as possible. The optimum score for a 

problem is calculated by multiplying the total number of bins by 

the sum of the maximum size and weight capacities 

 

𝑆𝑐𝑜𝑟𝑒𝑀𝑎𝑥 =  𝑁𝑜𝑂𝑓𝐵𝑖𝑛𝑠(𝑆𝑖𝑧𝑒𝑀𝑎𝑥 + 𝑊𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑥). (1) 

 

All other scores are calculated by summing the individual totals 

for each bin, with the score per bin decided by a conditional 

statement. If the size and weight of the boxes contained in a bin is 

zero or equals both maximum capacities then the bin scores the 

sum of the maximum size and weight capacities. Otherwise, the 

bin score is calculated as the sum of the absolute difference from 

half the size capacity and half the weight capacity and then the bin 

scores are all summed to determine the problem score 

 

𝑆𝑐𝑜𝑟𝑒 = ∑ {

𝑆𝑖𝑧𝑒𝑀𝑎𝑥 + 𝑊𝑒𝑖𝑔ℎ𝑡
𝑀𝑎𝑥

, 𝑖𝑓 𝐵𝑖𝑛𝑐𝑎𝑝 = 𝐶𝑎𝑝
𝑀𝑎𝑥
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In these equations 𝑆𝑖𝑧𝑒𝑀𝑎𝑥 is the maximum size capacity of a 

bin and 𝑊𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑥 is the maximum weight capacity of a bin. 

𝐵𝑖𝑛𝑆 is the filled size of the current bin, 𝐵𝑖𝑛𝑊 is the filled weight 

of the current bin, 𝐵𝑖𝑛𝑐𝑎𝑝 is the filled capacity of the current bin 

in both size and weight, 𝐶𝑎𝑝𝑀𝑎𝑥 is the maximum capacity of the 

bin for either size or weight, and 𝑛 is the number of bins. 

A value of 500 was decided upon for the bin size capacity 

based on the screen size of the object in pixels, and the bin weight 

capacity was set to match to keep the two dimensions equal. After 

a few trials the number of bins and boxes were set to 4 and 8 

respectively for a problem that players solved easily (the easy 

problem), and 6 and 12 for a more difficult problem (the medium 

problem). A third, harder problem with 8 bins was also created 

but because of poor user performance on the easier two problems 

it was not taken further. 
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This version of the problem differs from many other 

implementations by not allowing new bins to be created, and by 

starting the problem with the boxes already distributed between 

the bins. This brings it closer to real world equivalents of the 

problem to allows users to employ their knowledge and expertise 

in solving it. 

2.2 Gamification and Implementation 

Development of the bin-packing game was carried out using 

C# and the Unity Game Engine. The game screen consisted of a 

plain background with visual representations of the bins and 

boxes in an isometric view in the centre of the screen and a small 

number of user interface (UI) elements (Fig. 1). 

A ‘weight’ symbol on each box showed the numerical weight 

value of that box. Additionally, as can be seen in Figure 2 five 

colours were used to show the weight of the box relative to the 

minimum and maximum box weight values. 

 

 

Each bin displayed underneath itself the total current weight 

held by that bin as a numerical value out of the maximum bin 

weight capacity. The size of each box could only be judged by 

sight, as the screen size of each box in pixels directly related to 

the size value of that box. The bin size capacity was shown by an 

unmarked scale adjacent to the side of the bin with a white bar 

indicating fullness. Whenever a box was selected it would be 

removed from the bin it was in and a transparent ‘ghost’ image of 

the box would highlight how it would change the bin capacity of 

any bin the box hovered over as the user moved it around. 

If a bin was exactly filled in size, a lid would appear on it (Fig. 

2; A, B, G), while if it was exactly filled in weight the text 

underneath would turn yellow (Fig. 2; A, C, F); if both then the 

bin would also be surrounded by a yellow box (Fig. 2; A). 

Conversely, the bin would be surrounded by a grey box if it 

violated the constraints (Fig. 2; F, G, H, I, J).  

If the size constraint was violated (i.e. the boxes in the bin had 

a total combined size greater than 500) then the scale to the right 

of the bin would turn grey (Fig. 2; F, H, J). If the weight 

constraint was violated then the text underneath the bin would 

turn grey (Fig. 2; G, I, J), and if both were violated then both 

would happen (Fig. 2; J). If the constraints of any bin in the game 

were violated then the solution was considered infeasible. 

The user was told the optimum score before they played and 

encouraged to compete with other players by achieving it in the 

minimum number of moves. The game state and score at each 

move was then logged in a text file.  

 The game was demonstrated to prospective undergraduate 

students and their family members who were then encouraged to 

play it. Several individuals attempted the game, with a total of ten 

users playing and successfully completing the easy 4-bin game, 

three of which then also completed the medium 6-bin game. 

2.3 Machine Learning 

When deciding what to learn from the gathered data several 

decisions needed to be made, the first of which was how best to 

represent the problem. This needed to be carried out in a way that 

allowed any problem-solving heuristic captured from the data to 

be generalisable rather than only applicable to this specific 

problem instance. This also needed to be done in such a way that 

it took best advantage of the player capabilities. 

 Each move of a box could be broken down into two parts; 

target box selection followed by target bin selection. This could 

however be confused by composite moves, in which a box might 

be moved such that it temporarily makes the problem worse but 

overall allows the user to solve the problem more quickly and 

efficiently. 

 However, the easy 4-bin problem could be solved in as little 

as 6 or 7 moves which would make recognising composite moves 

difficult. This is also confounded by players moving boxes back 

and forth between the bins while deciding where to place them. 

Given this, it was felt best to only look at single moves in the 

current study. 

The box selected could be decided at random and any heuristic 

would theoretically still apply. The opposite might not be true, so 

it was decided to use machine learning to capture which bin a 

chosen box would be put into rather than which box was selected. 

 In this initial experiment, only moves that improved the score 

were included in the dataset for training. This ignored bad moves 

made by players learning how to play the game or players who 

struggled, but still allowed any good move to aid the learning 

process. To generalise the problem representation only relative 

properties of the problem (rather than specifics) could be used for 

Figure 2: All possible bin states during gameplay. 

Figure 1: The Bin-Packing game in progress 
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learning, and the two dimensions were combined into a single 

total. 

Several potential machine learning approaches were 

considered for this task, and the decision tree regressor was 

selected. The main reason was its ability to generate human-

understandable models of the players’ behaviour. This allows for 

the tree to be sense-checked to ensure that it has captured a 

reasonable approximation of human problem solving in this task. 

The sklearn decision tree regressor from Scikit-learn [20] was 

used to generate the trees that were used for this task. 

 

Table 1: Inputs and output for decision tree regressor. 

  

The decision was made to use four inputs to train a decision tree 

regressor with the combined total remaining bin space and weight 

capacity of the target bin as the output. The four inputs consisted 

of: (i) the total size of the selected box, given as a total of box size 

plus box weight, (ii) the maximum bin space available in any 

single bin as a combined total of size and weight (but not 

including empty bins), (iii) the minimum bin space available in 

any bin (but not including full bins or infeasible bins), and (iv) the 

mean bin space available across all partially-filled bins. 

Two versions of the decision tree were generated, a simplified 

and more generalised shallow tree limited to a maximum depth of 

three and a minimum leaf size of three (Fig. 3) and a more 

complex and complete tree with no restrictions (Fig. 4). The 

simplified tree was expected to be more robust when given 

problems of different complexities, though the complex tree might 

well perform better on problems that are very similar to the 

training problem. 

 Once the trees were generated, they were used in a mutation 

function as part of a genetic algorithm (GA), as an alternative to 

the standard mutation operator. This function operated by 

selecting a box at random and removing it from the bin it was 

located in. The state of the problem was then analysed for the four 

tree inputs and the tree queried. This returned the amount of 

available space to look for in a bin and found the bin that most 

closely matched this value. The box was then added to that bin. 

The GA used was a standard Genetic Algorithm function from 

the Platypus library for Python [21]. This used a population size 

of 100 solutions coded as lists of integer strings, with simulated 

binary crossover (SBX) and tournament selection with a 

tournament size of 2. The standard mutation operator made use of 

the problem encoded as Gray code to perform a bit flip mutation 

with a probability equal to 1/n where n is the chromosome length. 

This results in, on average, one member of the population being 

mutated at a single point each generation. 

Whether the GA should use the standard mutator or the 

human-derived mutator (HDM) was determined by probability, 

with three different probabilities tested after initial trial runs. The 

three probabilities used were a control condition in which no 

human-derived mutation was used (No HDM), one in which 10% 

of human-derived mutation was used (HDM 0.1), and one in 

which 40% of human-derived mutation was used (HDM 0.4).  

Although the games had consisted of 4-bin, 6-bin, and 8-bin 

problems these were too small to be a good test of the 

Input (i) Input (ii) Input (iii) Input (iv) Output 

Box Size Maximum 

Space 

Remaining 

Minimum 

Space 

Remaining 

Mean 

Space 

Remaining 

Bin Space 

Remaining 

Figure 3: Simple Tree 

Figure 4: Complex Tree. The tree is too detailed to be easily readable but is included to aid visualisation. 
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methodology. The proposed size of the problem for the EA to 

solve was determined as a problem that would be unfeasible for a 

human to solve, but not so large as to require a supercomputer to 

run the genetic algorithm. After some test runs a problem size of 

600 boxes with 300 bins was decided upon. This was 50 times the 

size of the medium 6-bin problem that only a handful of the 

players had completed.  

In order to make a fair test, and given the stochastic nature of 

GA, each condition was run 30 times. After a trial run it was seen 

that the GA only started finding feasible solutions after about 

10,000 function evaluations, and so it was decided to let the GA 

run for 40,000 function evaluations each run with a population of 

100. 

During the testing phase an additional tree was generated and 

tested that used only input from the poorer players, but (as 

expected) this achieved worse results and generated fewer feasible 

solutions so this was not pursued further.  

In addition to recording the average score and the best scoring 

solution among the population, the number of feasible solutions 

(i.e. those that do not violate the problem constraints) were also 

recorded. 

3 RESULTS AND DISCUSSION 

3.1 Simple Tree 

The first experimental results from running the GA with a 

mutator based on the simple tree are shown in Figure 5 and 

Figure 6. For each run the average (mean) score across the 

feasible population, the best score in the population, and the 

percentage of feasible solutions were recorded. The 30 runs were 

then averaged and compared. 

 

In this test it was found that the No HDM condition converged 

faster than the other two conditions both based on the average 

population score (Fig. 5) and the best population score (Fig. 6). 

However, none of the three conditions found a feasible solution 

until after at least 10,000 generations had passed. 

While the No HDM convergence contrasted strongly with the 

HDM 0.4 condition, it was far less noticeable when compared 

against the HDM 0.1 condition. However, the HDM 0.1 condition 

overtook the No HDM condition before the full run had finished 

and ended with better results in both categories. 

 

From looking at more detailed results after all runs were ended 

(Table 2) it is apparent that with regards to both mean and 

minimum average score and best score HDM 0.1 was consistently 

better across the 30 runs than both No HDM and HDM 0.4. 

Although HDM 0.4 was able to achieve both the highest 

maximum average score and maximum best score, it also 

achieved the lowest minimum scores in both categories as well 

showing the greatest variance. 

 

Table 2: Simple Tree End Results 

 Average 

Score 

Best  

Score 

% Feasible 

Solutions 

No 

HDM 

Mean 137,034.25 139,316.5 45.4 

Max 142,379.49 145,314 59 

Min 130,896.78 133,340 31 

HDM 

0.1 

Mean 139,364.64 141,553.5 50.9 

Max 144,952.29 147,540 61 

Min 133,456.30 135,430 36 

HDM 

0.4 

Mean 135,189.16 136,921.9 69.7 

Max 148,354.47 149,382 84 

Min 113,816.17 116,652 36 

 

The most interesting difference apparent in Table 2 stems 

from the percentage of feasible solutions in the final population; 

as the amount of human-derived mutation increases the run 

produces a larger percentage of feasible solutions. 

For each of the three factors (Average Score, Best Score, and 

Percentage Feasible Solutions) across the three groups (No HDM, 

HDM 0.1, and HDM 0.4) in each data set of 30 runs a single 

factor ANOVA was carried out, all of which found the results 

differed significantly (Average Score p = .026; Best Score p = 

.009; Percentage Feasible Solutions p < .001). 

F-Tests were carried out to reveal any unequal variances 

before two-sample t-Tests were carried out. These revealed 

significant differences between No HDM and HDM 0.1 for 

Average Score (t(58) = -2.96, p = .004), Best Score (t(58) = -2.89, 
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Figure 5: Simple Tree Average Scores 

Figure 6: Simple Tree Best Scores 
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p = .005), and Percentage Feasible Solutions (t(58) = -3.29, p = 

.002). 

When comparing No HDM with HDM 0.4 significant 

differences were only found between the Percentage Feasible 

Solutions (t(51) = -10.86, p < .001), while comparing HDM 0.1 

with HDM 0.4 found significant differences in Average Score 

(t(36) = 2.33, p = .025)), Best Score (t(36) = 2.66, p = .012), and 

Percentage Feasible Solutions (t(47) = -8.76, p < .001). 

The tests showed HDM 0.1 to have performed significantly 

better in all three areas over the No HDM standard GA after 

40,000 function evaluations, while HDM 0.4 had a significantly 

greater percentage of feasible solutions in the population pool. 

3.2 Complex Tree 

The complex tree results showed a similar pattern to the simple 

tree, though less pronounced with regards to HDM 0.4. As can be 

seen in Figure 7 and Figure 8 the No HDM condition converged 

faster than the other two groups both with regards to best score 

and average score, though only marginally faster than HDM 0.1. 

  

As with the simple tree, the HDM 0.1 condition performed in 

a very similar way to the standard GA (No HDM). The average 

end results across the 30 runs after the 40,000 generations can be 

seen in Table 3. 

 

Table 3: Complex Tree End Results 

 Average 

Score 

Best 

Score 

% Feasible 

Solutions 

No 

HDM 

Mean 135,841.06 137,928.7 44.1 

Max 141,996.30 144,170 56 

Min 130,134.70 132,116 32 

HDM 

0.1 

Mean 136,841.64 138,949.5 50 

Max 143,212.65 144,986 60 

Min 131,380.34 133,540 35 

HDM 

0.4 

Mean 128,657.76 131,067.7 66 

Max 142,820.99 144,534 80 

Min 113,161.62 117,424 26 

 

Single factor ANOVA were carried out for each of the three 

factors (Average Score, Best Score, and Percentage Feasible 

Solutions) across the three groups (No HDM, HDM 0.1, and 

HDM 0.4), and again all three found significant differences in the 

means (Average Score p < .001; Best Score p < .001; Percentage 

Feasible Solutions p < .001). 

 

After testing for unequal variance between each pair of 

conditions two-sample t-Tests were run. They found no 

significant difference between the Average Score and Best Score 

of the No HDM and HDM 0.1 groups (t(58) = -1.34, p = .19 and 

t(58) = -1.37, p = .17 respectively), though Percentage Feasible 

Solutions (t(58) = -3.85, p < .001) did differ significantly in 

favour of HDM 0.1. 

When comparing No HDM against HDM 0.4 all three factors 

differed significantly; Average Score (t(35) = 4.31, p < .001)) and 

Best Score (t(36) = 4.57, p < .001) in favour of No HDM, and 

Percentage Feasible Solutions (t(36) = -7.36, p < .001) in favour 

of HDM 0.4. 

The comparison between HDM 0.1 and HDM 0.4 yielded 

similar results, with HDM 0.1 having a significantly higher 

Average Score (t(36) = 4.86, p < .001) and Best Score (t(38) = 

5.18, p < .001) but a significantly lower Percentage Feasible 

Solutions (t(39) = -5.25, p < .001). 
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3.3 Simple Tree vs Complex Tree 

The results from the simple tree runs were then compared to 

the equivalent results from the complex tree. No significant 

difference was found between the Percentage Feasible Solutions 

when comparing both the HDM 0.1 (t(58) = 0.54, p = .59) and 

HDM 0.4 (t(50) = 1.10, p = .27) conditions against themselves. 

When looking at the Average Score, the simple tree performed 

significantly better in both the HDM 0.1 (t(58) = 3.07, p = .003) 

and HDM 0.4 (t(58) = 2.82, p = .007) conditions. This was also 

the case with regards to the Best Score, with the simple tree HDM 

0.1 (t(58) = 3.22, p = .002) and HDM 0.4 (t(58) = 2.70, p = .009) 

conditions outperforming the complex tree. 

Both heuristics that derived from the simple tree therefore 

outperformed the heuristics derived from the more complex tree. 

From looking at a graphical comparison of the average solution 

value (Fig. 9) and best solution value (Fig. 10) over function 

evaluations, it can be seen that the simple tree HDM 0.1 condition 

has the fastest convergence after the No HDM baseline condition, 

while the simple tree HDM 0.4 has the slowest convergence. 

  

3.4 Effect of Problem Size 

Given the size of the problem and the limited number of 

function evaluations allotted, it was decided to see how the 

different techniques performed on a range of problem sizes. The 

initial problem size was set at 4 bins, the same size of problem 

that the users had played, and then doubled until reaching 

approximately halfway towards the 300-bin problem size tested 

above. The 4-bin problem with 8 boxes has an easily enumerable 

search space of 48 = 65,536 possible combinations, but each 

doubling in size causes the problem space to grow exponentially. 

To give the algorithm a greater chance to find the optimum 

each condition was given 200,000 function evaluations and run 50 

times instead of 30. The simple tree was selected due to 

performance, and the comparison was expanded by the addition of 

a fourth condition involving the use of the human-derived 

mutation 100% of the time, HDM 1.0. As the maximum score for 

each problem is known, the scores were normalised to allow 

performance comparison between problem sizes. 

On the smaller problems the algorithms that make more use of 

the human-derived mutation perform better with regards to 

average score across the population (Fig. 11), but the performance 

of the HDM 1.0 condition soon drops off. Both the HDM 0.1 and 

HDM 0.4 conditions outperform No HDM across all problem 

sizes with regards to average score. 

 

 

HDM 1.0 struggles to find the best score (Fig. 12) across all 

problem sizes, while the other three conditions do very well with 

the smallest two problems and then abruptly drop into a gradual 

decline. No HDM, HDM 0.1, and HDM 0.4 all found the 4-bin 

optimum every run, while HDM 0.4 was also able to find the 

optimum for the 8-bin problem every run. From the 16-bin 

problem onwards none of the conditions were able to come close 

to reaching the optimum. 

 

3.5 Discussion 

The game presented the players with a simplified version of 

the bin-packing problem, due to the limitations of user fatigue and 

attention. Despite this, the gamification of this problem and the 

derivation of heuristics from analysis of gameplay has been 

shown to improve the quality of solutions discovered by an 

evolutionary algorithm on a much larger problem. This suggests 

that the learned heuristics are scalable beyond the initial problem 
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formulations and indicate significant promise for the method to be 

used on real-world scale operational research problems. 

The simple tree was seen to outperform the complex tree and it 

is possible that this is due to overfitting of the initial problems by 

the complex tree, which could potentially lead to less scalability 

for the algorithm. 

The rate of application of HDM revealed a synergy between 

HDM and the standard mutation that was not expected before the 

experiments were ran. It is clear that increased usage of HDM (i.e. 

40%) results in a greater number of feasible solutions, but that the 

quality of the solutions overall is poorer than with the smaller 

10% HDM mutation. 

The users that had played the bin-packing game that the trees 

were generated from had been encouraged by the framing of the 

game to keep their solutions feasible, which could explain why 

using the human-derived mutation kept a larger percentage of 

feasible solutions in the population. 

Having a larger number of feasible solutions in the population 

favours the production of feasible offspring, but perhaps 

sometimes precludes the use of infeasible solutions in the short 

term to generate better feasible solutions in the long term. Given 

the formulation of the problem a single move can turn a good 

solution into an infeasible one and vice versa. 

As a natural function of the problems generated for the game 

the human-derived mutation was mainly obtained from the middle 

parts of the problem-solving process. There might well be 

different processes employed by the users near the start or end of 

the solution of a problem. This might mean that a better approach 

could be to derive algorithms for various stages of the problem 

and switch to them as the state of the population changes, though 

this could also add further complexity and make the approach less 

robust. 

The simple tree gave a more generalised and approximate 

output than the complex tree, and this worked better in almost 

every area. This is not too surprising a result given the dangers of 

overfitting that could come from using the complex tree. 

It is worth noting that the 300-bin problem has an achievable 

maximum score of 300,000 and none of the results within 40,000 

function evaluations were able to reach even half of that. This is 

not surprising given the size of the search space (300600) and the 

limited number of function evaluations used. It could be seen 

when looking at the effect of the problem size on performance 

that even relatively small problems proved too difficult to reach 

even 70% of the global optimum. 

In the HUGS system mentioned in [17] the authors combined 

human input/expertise with a version of a stock-cutting/bin-

packing problem. However, this was done by having the user 

actively guide the optimisation process by allowing them to assign 

priority to areas of the problem space and then running a problem-

specific heuristic to optimise the problem based on that guidance. 

This process would then be repeated by the user until they were 

happy with the result. 

Capturing heuristics was done through observation of user 

interactions rather than any systematic process and was used to 

improve existing problem-solving heuristics rather than generate 

new ones. This makes it difficult to compare the HUGS approach 

to the approach taken in this paper, as it would be a comparison of 

human involvement during the optimisation process vs. an 

automated approach taking advantage of human expertise. 

Creating a fair comparison of time and function evaluations in 

these circumstances would not be possible. 

In future work the human-derived heuristic used in the 

mutation operator of the GA in this paper could be tested against 

the standard algorithms normally employed to solve the bin-

packing problem. 

4 CONCLUSIONS 

In this paper a bin-packing game was proposed and created, 

designed to capture human problem-solving heuristics. Data 

captured from players of the game was processed to train a 

decision tree regressor. This tree learned which bin to put a given 

box into based on the general state of the problem at that time. 

The general problem state was defined by mean, minimum, and 

maximum available space across all partially-filled bins. 

Two versions of this human-derived tree generated by the 

machine learning process were then used within a mutation 

operator for a GA, and used for a varying percentage of the time 

to make three different conditions; No HDM in which the human-

derived mutation was not used, HDM 0.1 in which the human-

derived mutation was used 10% of the time, and HDM 0.4 in 

which the human-derived mutation was used 40% of the time. 

After running each condition 30 times for 40,000 function 

evaluations for each tree it was found that using a simple tree for 

10% of the time instead of the standard mutation operator 

achieved significantly better results both by score and feasibility 

than using just the standard mutation operator or using the human-

derived mutation 40% of the time. 

The use of gamification and machine learning to capture 

human problem-solving behaviour for use within an evolutionary 

algorithm raises the prospect of other human-EA hybrids that are 

able to make use of the intuition and domain expertise of humans 

with the fast-global search of the evolutionary approach. The fact 

that behaviours discovered by non-experts on small problems 

were able to be translated to a large-scale problem to improve 

performance is particularly worthy of mention. 
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