
Human-Evolutionary Problem Solving through Gamification of a

Bin-Packing Problem

ABSTRACT

Many complex real-world problems such as bin-packing are

optimised using evolutionary computation (EC) techniques.

Involving a human user during this process can avoid producing

theoretically sound solutions that do not translate to the real world

but slows down the process and introduces the problem of user

fatigue. Gamification can alleviate user boredom, concentrate user

attention, or make a complex problem easier to understand. This

paper explores the use of gamification as a mechanism to extract

problem-solving behaviour from human subjects through

interaction with a gamified version of the bin-packing problem,

with heuristics extracted by machine learning. The heuristics are

then embedded into an evolutionary algorithm through the

mutation operator to create a human-guided algorithm.

Experimentation demonstrates that good human performers

augment EA performance, but that poorer performers can be

detrimental to it in certain circumstances. Overall, the introduction

of human expertise is seen to benefit the algorithm.

CCS CONCEPTS

Computing methodologies → Machine learning → Machine

learning approaches → Bio-inspired approaches → Genetic

algorithms;

Applied computing → Operations research → Decision analysis

→ Multi-criterion optimization and decision-making

KEYWORDS

Business planning and operations research, Games, Heuristics,

Interactive evolution, Machine learning

1 INTRODUCTION

There are many complex operational research problems arising

from the areas of cutting and packing [1]. Problems with real

world applications often requiring the use of optimisation

techniques to solve. One such problem is bin-packing [2], which

consists of a number of container objects (bins) and a fixed

number of items that need to be stored in them (boxes). The bins

are usually a large fixed size but can also vary, while the boxes

are almost always an assortment of smaller sizes. The objective is

to fit the boxes into as few bins as possible without violating the

bin size constraints. The problem can have various dimensions

and rises in complexity as the dimensionality increases.

Early attempts to solve the bin-packing problem examined

several approximation algorithms, often based on very simple

rules such as first fit (packing each box into the first bin it will fit

into) [3]. Additional algorithms have been created based on

heuristics derived from observation, analysis, or speculation, and

the performance of these algorithms has been tested against the

simple approximation algorithms by various studies [4, 5]. A

branch-and-bound algorithm making use of some of these

heuristics also proved effective at finding good approximations

[6]. However, none of these approximation algorithms are

guaranteed to provide an exact solution to an instance of the

problem.

Evolutionary algorithms (EAs) are a tried and tested method

for solving complex problems for which it is computationally

infeasible to generate an exact solution. The generalisation of EAs

allows them to be applied to many problems to generate good

approximate solutions. They use simple automated processes

requiring no human input after the initial encoding of the problem

representation.

Due to the capabilities of EAs many attempts have been made

to apply them to the bin-packing problem with various degrees of

success. Several of these studies found that an EA by itself often

performs poorly unless combined with other techniques. These

include combining a grouping genetic algorithm with a local

optimisation technique that obtained results superior to using

either technique in isolation [7]. Another study used a biased

random key genetic algorithm combined with some simple

heuristics to obtain solutions to both 2D and 3D bin-packing

problems [8]. Combining a genetic algorithm with a best fit

decreasing approximation algorithm to avoid infeasible solutions

[9] was also investigated.

Burke et al. [10] used genetic programming to create an

effective algorithm to solve bin-packing problems, allowing for

algorithms to be evolved based on the state of the bins. An

interesting result of this study was that the best of the obtained

evolved algorithms behaved almost identically to the first fit

approximation algorithm. This demonstrated how useful heuristics

can be derived from attempts to solve instances of the bin-packing

problem. Combining automatically generated rule-based and data-

based heuristics with a multi-objective optimisation problem was

also found to be effective, though this was not applied to bin-

packing [11].

Metaheuristics, such as EAs, are problem agnostic and good at

reaching a goal but can often take a long period of time or require

significant processing power to do so. Heuristics tend to be

problem specific and rely on an understanding of the problem or

the solution, or an approach that is known to be effective. Though

heuristics can often offer quicker and easier ways of doing things,

they might not always reach their goal.

Hyper-heuristics make use of a variety of metaheuristic and

heuristic methods to try to take advantage of the benefits of both

approaches. Hyper-heuristics have been used to generate

heuristics that can be turned into readable algorithms [12] and

have been applied to bin-packing with some success [13, 14].

Hyper-heuristics can encounter a couple of problems in their

application, chiefly the extra resources required to decide which

heuristic to make use of under what circumstances and providing

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Exeter

https://core.ac.uk/display/200766034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

GECCO’19, July 13-17, 2019, Prague, Czech Republic

2

the hyper-heuristic with a full library of different heuristics to

select from.

Effective heuristics can be derived from human approaches to

solving a problem. This has been achieved with limited success

through simple techniques that capture human behaviours to apply

to robots [15], and to analyse the heuristics from human

participants used in optimising routing problems [16].

Human-guided search has been investigated by Klau et al.

[17], who applied it to a variety of optimization problems

including a type of packing problem. Murawski and Bossaerts

[18] investigated the heuristics used by participants presented with

the knapsack problem, a problem of a similar nature to bin-

packing. Murawski and Bossaerts were able to recognise a

common human approach of applying a heuristic similar to the

greedy algorithm followed by a heuristic similar to a branch-and-

bound algorithm.

To best take advantage of human generated heuristics, it is

important to understand that not all individuals are equally good at

solving problems. Therefore, the best heuristics would

presumably be generated by those with expertise or domain

specific knowledge of the problem at hand. While this expertise

could be assessed prior to trying to capture any heuristic the user

applies to the problem, this could also be decided either during or

after the process by scoring the user on their performance. This

would involve giving the user feedback through a scoring system

and an interactive visual representation of the problem, which

would involve gamification of the bin-packing problem.

In applying gamification to the problem of linking gene

patterns to predicted breast cancer outcomes, Good et al. [19]

were able to make use of a crowd of both expert and non-expert

users to test their hypothesis. Their game was able to capture

useful knowledge from their expert players, which was then used

to train a decision tree classifier. They also found that the players

without domain specific knowledge performed less well. This was

due to the representation of the problem needing to be kept

complex for the experts to have a chance to take advantage of

their expertise, making the game much harder to play for the non-

experts.

To capture human derived heuristics a gamified version of the

bin-packing problem is proposed here. This game captures the

problem state and human input at each stage as the user solves a

simple 2D version of the bin-packing problem. After the problem

is solved, machine learning techniques are then applied to this

data and the heuristics employed by the human user are derived.

These derived heuristics are then used in place of or alongside of

the mutation operator in an EA to determine if they improve the

performance of the optimisation algorithm.

2 EXPERIMENTAL AND COMPUTATIONAL

DETAILS

2.1 Problem Definition

For the purpose of this paper the bin-packing problem will be

defined as follows. The problem consists of a fixed number of

bins and exactly twice that number of boxes, the number of which

determines the level of difficulty. Each bin has two dimensions,

labelled as size and weight, the capacities of which are fixed and

identical. The boxes have the same two dimensions, but their

values are randomised. This is done in such a way that the sum of

the weights and sizes of the boxes is enough to exactly fill half of

the bins. The approach taken is to randomly generate the boxes by

splitting half of the bins into slices and then shuffling and

distributing them evenly between all the bins.

The objective is to minimise the number of bins being used,

while the user interacts with the problem by selecting a single box

from any bin and choosing which bin to move it to. The size and

weight capacities of the bins act as constraints that can be

temporarily violated to generate an infeasible solution. However,

if a bin is already over-capacity in either dimension, no more

boxes can be moved into it. The user is not allowed to submit an

infeasible solution to be assessed and scored, and, due to the way

in which the problem is generated, there is always a guaranteed

optimal solution.

The scoring is calculated based on the number of full and

empty bins, followed by the distribution of boxes between the

partially-filled bins. This is to encourage the user to try to fill bins

exactly while using as few as possible. The optimum score for a

problem is calculated by multiplying the total number of bins by

the sum of the maximum size and weight capacities

𝑆𝑐𝑜𝑟𝑒𝑀𝑎𝑥 = 𝑁𝑜𝑂𝑓𝐵𝑖𝑛𝑠(𝑆𝑖𝑧𝑒𝑀𝑎𝑥 + 𝑊𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑥). (1)

All other scores are calculated by summing the individual totals

for each bin, with the score per bin decided by a conditional

statement. If the size and weight of the boxes contained in a bin is

zero or equals both maximum capacities then the bin scores the

sum of the maximum size and weight capacities. Otherwise, the

bin score is calculated as the sum of the absolute difference from

half the size capacity and half the weight capacity and then the bin

scores are all summed to determine the problem score

𝑆𝑐𝑜𝑟𝑒 = ∑ {

𝑆𝑖𝑧𝑒𝑀𝑎𝑥 + 𝑊𝑒𝑖𝑔ℎ𝑡
𝑀𝑎𝑥

, 𝑖𝑓 𝐵𝑖𝑛𝑐𝑎𝑝 = 𝐶𝑎𝑝
𝑀𝑎𝑥

 𝑜𝑟 𝐵𝑖𝑛𝑐𝑎𝑝 = 0

|
𝑆𝑖𝑧𝑒𝑀𝑎𝑥

2
− 𝐵𝑖𝑛𝑆| + |

𝑊𝑒𝑖𝑔ℎ𝑡
𝑀𝑎𝑥

2
− 𝐵𝑖𝑛𝑊| (2)

𝑛

𝐵𝑖𝑛=1

In these equations 𝑆𝑖𝑧𝑒𝑀𝑎𝑥 is the maximum size capacity of a

bin and 𝑊𝑒𝑖𝑔ℎ𝑡𝑀𝑎𝑥 is the maximum weight capacity of a bin.

𝐵𝑖𝑛𝑆 is the filled size of the current bin, 𝐵𝑖𝑛𝑊 is the filled weight

of the current bin, 𝐵𝑖𝑛𝑐𝑎𝑝 is the filled capacity of the current bin

in both size and weight, 𝐶𝑎𝑝𝑀𝑎𝑥 is the maximum capacity of the

bin for either size or weight, and 𝑛 is the number of bins.

A value of 500 was decided upon for the bin size capacity

based on the screen size of the object in pixels, and the bin weight

capacity was set to match to keep the two dimensions equal. After

a few trials the number of bins and boxes were set to 4 and 8

respectively for a problem that players solved easily (the easy

problem), and 6 and 12 for a more difficult problem (the medium

problem). A third, harder problem with 8 bins was also created

but because of poor user performance on the easier two problems

it was not taken further.

Human-Evolutionary Gamification of a Bin-Packing Problem GECCO’19, July 13-17, 2019, Prague, Czech Republic

 3

This version of the problem differs from many other

implementations by not allowing new bins to be created, and by

starting the problem with the boxes already distributed between

the bins. This brings it closer to real world equivalents of the

problem to allows users to employ their knowledge and expertise

in solving it.

2.2 Gamification and Implementation

Development of the bin-packing game was carried out using

C# and the Unity Game Engine. The game screen consisted of a

plain background with visual representations of the bins and

boxes in an isometric view in the centre of the screen and a small

number of user interface (UI) elements (Fig. 1).

A ‘weight’ symbol on each box showed the numerical weight

value of that box. Additionally, as can be seen in Figure 2 five

colours were used to show the weight of the box relative to the

minimum and maximum box weight values.

Each bin displayed underneath itself the total current weight

held by that bin as a numerical value out of the maximum bin

weight capacity. The size of each box could only be judged by

sight, as the screen size of each box in pixels directly related to

the size value of that box. The bin size capacity was shown by an

unmarked scale adjacent to the side of the bin with a white bar

indicating fullness. Whenever a box was selected it would be

removed from the bin it was in and a transparent ‘ghost’ image of

the box would highlight how it would change the bin capacity of

any bin the box hovered over as the user moved it around.

If a bin was exactly filled in size, a lid would appear on it (Fig.

2; A, B, G), while if it was exactly filled in weight the text

underneath would turn yellow (Fig. 2; A, C, F); if both then the

bin would also be surrounded by a yellow box (Fig. 2; A).

Conversely, the bin would be surrounded by a grey box if it

violated the constraints (Fig. 2; F, G, H, I, J).

If the size constraint was violated (i.e. the boxes in the bin had

a total combined size greater than 500) then the scale to the right

of the bin would turn grey (Fig. 2; F, H, J). If the weight

constraint was violated then the text underneath the bin would

turn grey (Fig. 2; G, I, J), and if both were violated then both

would happen (Fig. 2; J). If the constraints of any bin in the game

were violated then the solution was considered infeasible.

The user was told the optimum score before they played and

encouraged to compete with other players by achieving it in the

minimum number of moves. The game state and score at each

move was then logged in a text file.

 The game was demonstrated to prospective undergraduate

students and their family members who were then encouraged to

play it. Several individuals attempted the game, with a total of ten

users playing and successfully completing the easy 4-bin game,

three of which then also completed the medium 6-bin game.

2.3 Machine Learning

When deciding what to learn from the gathered data several

decisions needed to be made, the first of which was how best to

represent the problem. This needed to be carried out in a way that

allowed any problem-solving heuristic captured from the data to

be generalisable rather than only applicable to this specific

problem instance. This also needed to be done in such a way that

it took best advantage of the player capabilities.

 Each move of a box could be broken down into two parts;

target box selection followed by target bin selection. This could

however be confused by composite moves, in which a box might

be moved such that it temporarily makes the problem worse but

overall allows the user to solve the problem more quickly and

efficiently.

 However, the easy 4-bin problem could be solved in as little

as 6 or 7 moves which would make recognising composite moves

difficult. This is also confounded by players moving boxes back

and forth between the bins while deciding where to place them.

Given this, it was felt best to only look at single moves in the

current study.

The box selected could be decided at random and any heuristic

would theoretically still apply. The opposite might not be true, so

it was decided to use machine learning to capture which bin a

chosen box would be put into rather than which box was selected.

 In this initial experiment, only moves that improved the score

were included in the dataset for training. This ignored bad moves

made by players learning how to play the game or players who

struggled, but still allowed any good move to aid the learning

process. To generalise the problem representation only relative

properties of the problem (rather than specifics) could be used for

Figure 2: All possible bin states during gameplay.

Figure 1: The Bin-Packing game in progress

GECCO’19, July 13-17, 2019, Prague, Czech Republic

4

learning, and the two dimensions were combined into a single

total.

Several potential machine learning approaches were

considered for this task, and the decision tree regressor was

selected. The main reason was its ability to generate human-

understandable models of the players’ behaviour. This allows for

the tree to be sense-checked to ensure that it has captured a

reasonable approximation of human problem solving in this task.

The sklearn decision tree regressor from Scikit-learn [20] was

used to generate the trees that were used for this task.

Table 1: Inputs and output for decision tree regressor.

The decision was made to use four inputs to train a decision tree

regressor with the combined total remaining bin space and weight

capacity of the target bin as the output. The four inputs consisted

of: (i) the total size of the selected box, given as a total of box size

plus box weight, (ii) the maximum bin space available in any

single bin as a combined total of size and weight (but not

including empty bins), (iii) the minimum bin space available in

any bin (but not including full bins or infeasible bins), and (iv) the

mean bin space available across all partially-filled bins.

Two versions of the decision tree were generated, a simplified

and more generalised shallow tree limited to a maximum depth of

three and a minimum leaf size of three (Fig. 3) and a more

complex and complete tree with no restrictions (Fig. 4). The

simplified tree was expected to be more robust when given

problems of different complexities, though the complex tree might

well perform better on problems that are very similar to the

training problem.

 Once the trees were generated, they were used in a mutation

function as part of a genetic algorithm (GA), as an alternative to

the standard mutation operator. This function operated by

selecting a box at random and removing it from the bin it was

located in. The state of the problem was then analysed for the four

tree inputs and the tree queried. This returned the amount of

available space to look for in a bin and found the bin that most

closely matched this value. The box was then added to that bin.

The GA used was a standard Genetic Algorithm function from

the Platypus library for Python [21]. This used a population size

of 100 solutions coded as lists of integer strings, with simulated

binary crossover (SBX) and tournament selection with a

tournament size of 2. The standard mutation operator made use of

the problem encoded as Gray code to perform a bit flip mutation

with a probability equal to 1/n where n is the chromosome length.

This results in, on average, one member of the population being

mutated at a single point each generation.

Whether the GA should use the standard mutator or the

human-derived mutator (HDM) was determined by probability,

with three different probabilities tested after initial trial runs. The

three probabilities used were a control condition in which no

human-derived mutation was used (No HDM), one in which 10%

of human-derived mutation was used (HDM 0.1), and one in

which 40% of human-derived mutation was used (HDM 0.4).

Although the games had consisted of 4-bin, 6-bin, and 8-bin

problems these were too small to be a good test of the

Input (i) Input (ii) Input (iii) Input (iv) Output

Box Size Maximum

Space

Remaining

Minimum

Space

Remaining

Mean

Space

Remaining

Bin Space

Remaining

Figure 3: Simple Tree

Figure 4: Complex Tree. The tree is too detailed to be easily readable but is included to aid visualisation.

Human-Evolutionary Gamification of a Bin-Packing Problem GECCO’19, July 13-17, 2019, Prague, Czech Republic

 5

methodology. The proposed size of the problem for the EA to

solve was determined as a problem that would be unfeasible for a

human to solve, but not so large as to require a supercomputer to

run the genetic algorithm. After some test runs a problem size of

600 boxes with 300 bins was decided upon. This was 50 times the

size of the medium 6-bin problem that only a handful of the

players had completed.

In order to make a fair test, and given the stochastic nature of

GA, each condition was run 30 times. After a trial run it was seen

that the GA only started finding feasible solutions after about

10,000 function evaluations, and so it was decided to let the GA

run for 40,000 function evaluations each run with a population of

100.

During the testing phase an additional tree was generated and

tested that used only input from the poorer players, but (as

expected) this achieved worse results and generated fewer feasible

solutions so this was not pursued further.

In addition to recording the average score and the best scoring

solution among the population, the number of feasible solutions

(i.e. those that do not violate the problem constraints) were also

recorded.

3 RESULTS AND DISCUSSION

3.1 Simple Tree

The first experimental results from running the GA with a

mutator based on the simple tree are shown in Figure 5 and

Figure 6. For each run the average (mean) score across the

feasible population, the best score in the population, and the

percentage of feasible solutions were recorded. The 30 runs were

then averaged and compared.

In this test it was found that the No HDM condition converged

faster than the other two conditions both based on the average

population score (Fig. 5) and the best population score (Fig. 6).

However, none of the three conditions found a feasible solution

until after at least 10,000 generations had passed.

While the No HDM convergence contrasted strongly with the

HDM 0.4 condition, it was far less noticeable when compared

against the HDM 0.1 condition. However, the HDM 0.1 condition

overtook the No HDM condition before the full run had finished

and ended with better results in both categories.

From looking at more detailed results after all runs were ended

(Table 2) it is apparent that with regards to both mean and

minimum average score and best score HDM 0.1 was consistently

better across the 30 runs than both No HDM and HDM 0.4.

Although HDM 0.4 was able to achieve both the highest

maximum average score and maximum best score, it also

achieved the lowest minimum scores in both categories as well

showing the greatest variance.

Table 2: Simple Tree End Results

 Average

Score

Best

Score

% Feasible

Solutions

No

HDM

Mean 137,034.25 139,316.5 45.4

Max 142,379.49 145,314 59

Min 130,896.78 133,340 31

HDM

0.1

Mean 139,364.64 141,553.5 50.9

Max 144,952.29 147,540 61

Min 133,456.30 135,430 36

HDM

0.4

Mean 135,189.16 136,921.9 69.7

Max 148,354.47 149,382 84

Min 113,816.17 116,652 36

The most interesting difference apparent in Table 2 stems

from the percentage of feasible solutions in the final population;

as the amount of human-derived mutation increases the run

produces a larger percentage of feasible solutions.

For each of the three factors (Average Score, Best Score, and

Percentage Feasible Solutions) across the three groups (No HDM,

HDM 0.1, and HDM 0.4) in each data set of 30 runs a single

factor ANOVA was carried out, all of which found the results

differed significantly (Average Score p = .026; Best Score p =

.009; Percentage Feasible Solutions p < .001).

F-Tests were carried out to reveal any unequal variances

before two-sample t-Tests were carried out. These revealed

significant differences between No HDM and HDM 0.1 for

Average Score (t(58) = -2.96, p = .004), Best Score (t(58) = -2.89,

0

20000

40000

60000

80000

100000

120000

140000

10000 15000 20000 25000 30000 35000 40000

A
ve

ra
ge

 S
co

re

Number of Function Evaluations

Simple Tree Average Scores

No HDM

HDM 0.1

HDM 0.4

0

20000

40000

60000

80000

100000

120000

140000

10000 15000 20000 25000 30000 35000 40000

B
es

t
Sc

o
re

Number of Function Evaluations

Simple Tree Best Scores

No HDM

HDM 0.1

HDM 0.4

Figure 5: Simple Tree Average Scores

Figure 6: Simple Tree Best Scores

GECCO’19, July 13-17, 2019, Prague, Czech Republic

6

p = .005), and Percentage Feasible Solutions (t(58) = -3.29, p =

.002).

When comparing No HDM with HDM 0.4 significant

differences were only found between the Percentage Feasible

Solutions (t(51) = -10.86, p < .001), while comparing HDM 0.1

with HDM 0.4 found significant differences in Average Score

(t(36) = 2.33, p = .025)), Best Score (t(36) = 2.66, p = .012), and

Percentage Feasible Solutions (t(47) = -8.76, p < .001).

The tests showed HDM 0.1 to have performed significantly

better in all three areas over the No HDM standard GA after

40,000 function evaluations, while HDM 0.4 had a significantly

greater percentage of feasible solutions in the population pool.

3.2 Complex Tree

The complex tree results showed a similar pattern to the simple

tree, though less pronounced with regards to HDM 0.4. As can be

seen in Figure 7 and Figure 8 the No HDM condition converged

faster than the other two groups both with regards to best score

and average score, though only marginally faster than HDM 0.1.

As with the simple tree, the HDM 0.1 condition performed in

a very similar way to the standard GA (No HDM). The average

end results across the 30 runs after the 40,000 generations can be

seen in Table 3.

Table 3: Complex Tree End Results

 Average

Score

Best

Score

% Feasible

Solutions

No

HDM

Mean 135,841.06 137,928.7 44.1

Max 141,996.30 144,170 56

Min 130,134.70 132,116 32

HDM

0.1

Mean 136,841.64 138,949.5 50

Max 143,212.65 144,986 60

Min 131,380.34 133,540 35

HDM

0.4

Mean 128,657.76 131,067.7 66

Max 142,820.99 144,534 80

Min 113,161.62 117,424 26

Single factor ANOVA were carried out for each of the three

factors (Average Score, Best Score, and Percentage Feasible

Solutions) across the three groups (No HDM, HDM 0.1, and

HDM 0.4), and again all three found significant differences in the

means (Average Score p < .001; Best Score p < .001; Percentage

Feasible Solutions p < .001).

After testing for unequal variance between each pair of

conditions two-sample t-Tests were run. They found no

significant difference between the Average Score and Best Score

of the No HDM and HDM 0.1 groups (t(58) = -1.34, p = .19 and

t(58) = -1.37, p = .17 respectively), though Percentage Feasible

Solutions (t(58) = -3.85, p < .001) did differ significantly in

favour of HDM 0.1.

When comparing No HDM against HDM 0.4 all three factors

differed significantly; Average Score (t(35) = 4.31, p < .001)) and

Best Score (t(36) = 4.57, p < .001) in favour of No HDM, and

Percentage Feasible Solutions (t(36) = -7.36, p < .001) in favour

of HDM 0.4.

The comparison between HDM 0.1 and HDM 0.4 yielded

similar results, with HDM 0.1 having a significantly higher

Average Score (t(36) = 4.86, p < .001) and Best Score (t(38) =

5.18, p < .001) but a significantly lower Percentage Feasible

Solutions (t(39) = -5.25, p < .001).

0

20000

40000

60000

80000

100000

120000

140000

10000 20000 30000 40000

A
ve

ra
ge

 S
co

re

Number of Function Evaluations

Complex vs Simple Tree
Average Scores

No HDM

Complex HDM 0.1

Complex HDM 0.4

Simple HDM 0.1

Simple HDM 0.4

Figure 9: Complex Tree vs Simple Tree Average Score

0

20000

40000

60000

80000

100000

120000

140000

10000 15000 20000 25000 30000 35000 40000

B
es

t
Sc

o
re

Number of Function Evaluations

Complex Tree Best Scores

No HDM

HDM 0.1

HDM 0.4

Figure 8: Complex Tree Best Scores

0

20000

40000

60000

80000

100000

120000

140000

10000 15000 20000 25000 30000 35000 40000

A
ve

ra
ge

 S
co

re

Number of Function Evaluations

Complex Tree Average Scores

No HDM

HDM 0.1

HDM 0.4

Figure 7: Complex Tree Average Scores

Human-Evolutionary Gamification of a Bin-Packing Problem GECCO’19, July 13-17, 2019, Prague, Czech Republic

 7

3.3 Simple Tree vs Complex Tree

The results from the simple tree runs were then compared to

the equivalent results from the complex tree. No significant

difference was found between the Percentage Feasible Solutions

when comparing both the HDM 0.1 (t(58) = 0.54, p = .59) and

HDM 0.4 (t(50) = 1.10, p = .27) conditions against themselves.

When looking at the Average Score, the simple tree performed

significantly better in both the HDM 0.1 (t(58) = 3.07, p = .003)

and HDM 0.4 (t(58) = 2.82, p = .007) conditions. This was also

the case with regards to the Best Score, with the simple tree HDM

0.1 (t(58) = 3.22, p = .002) and HDM 0.4 (t(58) = 2.70, p = .009)

conditions outperforming the complex tree.

Both heuristics that derived from the simple tree therefore

outperformed the heuristics derived from the more complex tree.

From looking at a graphical comparison of the average solution

value (Fig. 9) and best solution value (Fig. 10) over function

evaluations, it can be seen that the simple tree HDM 0.1 condition

has the fastest convergence after the No HDM baseline condition,

while the simple tree HDM 0.4 has the slowest convergence.

3.4 Effect of Problem Size

Given the size of the problem and the limited number of

function evaluations allotted, it was decided to see how the

different techniques performed on a range of problem sizes. The

initial problem size was set at 4 bins, the same size of problem

that the users had played, and then doubled until reaching

approximately halfway towards the 300-bin problem size tested

above. The 4-bin problem with 8 boxes has an easily enumerable

search space of 48 = 65,536 possible combinations, but each

doubling in size causes the problem space to grow exponentially.

To give the algorithm a greater chance to find the optimum

each condition was given 200,000 function evaluations and run 50

times instead of 30. The simple tree was selected due to

performance, and the comparison was expanded by the addition of

a fourth condition involving the use of the human-derived

mutation 100% of the time, HDM 1.0. As the maximum score for

each problem is known, the scores were normalised to allow

performance comparison between problem sizes.

On the smaller problems the algorithms that make more use of

the human-derived mutation perform better with regards to

average score across the population (Fig. 11), but the performance

of the HDM 1.0 condition soon drops off. Both the HDM 0.1 and

HDM 0.4 conditions outperform No HDM across all problem

sizes with regards to average score.

HDM 1.0 struggles to find the best score (Fig. 12) across all

problem sizes, while the other three conditions do very well with

the smallest two problems and then abruptly drop into a gradual

decline. No HDM, HDM 0.1, and HDM 0.4 all found the 4-bin

optimum every run, while HDM 0.4 was also able to find the

optimum for the 8-bin problem every run. From the 16-bin

problem onwards none of the conditions were able to come close

to reaching the optimum.

3.5 Discussion

The game presented the players with a simplified version of

the bin-packing problem, due to the limitations of user fatigue and

attention. Despite this, the gamification of this problem and the

derivation of heuristics from analysis of gameplay has been

shown to improve the quality of solutions discovered by an

evolutionary algorithm on a much larger problem. This suggests

that the learned heuristics are scalable beyond the initial problem

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 8 16 32 64 128

N
o

rm
al

is
ed

 S
co

re

Problem Size

Mean Best Score

No HDM HDM 0.1

HDM 0.4 HDM 1.0

0

20000

40000

60000

80000

100000

120000

140000

10000 15000 20000 25000 30000 35000 40000

B
es

t
Sc

o
re

Number of Function Evaluations

Complex vs Simple Tree
Best Scores

No HDM

Complex HDM 0.1

Complex HDM 0.4

Simple HDM 0.1

Simple HDM 0.4

Figure 10: Complex Tree vs Simple Tree Best Score

Figure 11: Mean Average Score as problem size increases. The

problem size axis uses a base 2 logarithmic scale.

0.3

0.4

0.5

0.6

0.7

0.8

4 8 16 32 64 128

N
o

rm
al

is
ed

 S
co

re

Problem Size

Mean Average Score

No HDM HDM 0.1

HDM 0.4 HDM 1.0

Figure 12: Mean Best Score as problem size increases. The

problem size axis uses a base 2 logarithmic scale.

GECCO’19, July 13-17, 2019, Prague, Czech Republic

8

formulations and indicate significant promise for the method to be

used on real-world scale operational research problems.

The simple tree was seen to outperform the complex tree and it

is possible that this is due to overfitting of the initial problems by

the complex tree, which could potentially lead to less scalability

for the algorithm.

The rate of application of HDM revealed a synergy between

HDM and the standard mutation that was not expected before the

experiments were ran. It is clear that increased usage of HDM (i.e.

40%) results in a greater number of feasible solutions, but that the

quality of the solutions overall is poorer than with the smaller

10% HDM mutation.

The users that had played the bin-packing game that the trees

were generated from had been encouraged by the framing of the

game to keep their solutions feasible, which could explain why

using the human-derived mutation kept a larger percentage of

feasible solutions in the population.

Having a larger number of feasible solutions in the population

favours the production of feasible offspring, but perhaps

sometimes precludes the use of infeasible solutions in the short

term to generate better feasible solutions in the long term. Given

the formulation of the problem a single move can turn a good

solution into an infeasible one and vice versa.

As a natural function of the problems generated for the game

the human-derived mutation was mainly obtained from the middle

parts of the problem-solving process. There might well be

different processes employed by the users near the start or end of

the solution of a problem. This might mean that a better approach

could be to derive algorithms for various stages of the problem

and switch to them as the state of the population changes, though

this could also add further complexity and make the approach less

robust.

The simple tree gave a more generalised and approximate

output than the complex tree, and this worked better in almost

every area. This is not too surprising a result given the dangers of

overfitting that could come from using the complex tree.

It is worth noting that the 300-bin problem has an achievable

maximum score of 300,000 and none of the results within 40,000

function evaluations were able to reach even half of that. This is

not surprising given the size of the search space (300600) and the

limited number of function evaluations used. It could be seen

when looking at the effect of the problem size on performance

that even relatively small problems proved too difficult to reach

even 70% of the global optimum.

In the HUGS system mentioned in [17] the authors combined

human input/expertise with a version of a stock-cutting/bin-

packing problem. However, this was done by having the user

actively guide the optimisation process by allowing them to assign

priority to areas of the problem space and then running a problem-

specific heuristic to optimise the problem based on that guidance.

This process would then be repeated by the user until they were

happy with the result.

Capturing heuristics was done through observation of user

interactions rather than any systematic process and was used to

improve existing problem-solving heuristics rather than generate

new ones. This makes it difficult to compare the HUGS approach

to the approach taken in this paper, as it would be a comparison of

human involvement during the optimisation process vs. an

automated approach taking advantage of human expertise.

Creating a fair comparison of time and function evaluations in

these circumstances would not be possible.

In future work the human-derived heuristic used in the

mutation operator of the GA in this paper could be tested against

the standard algorithms normally employed to solve the bin-

packing problem.

4 CONCLUSIONS

In this paper a bin-packing game was proposed and created,

designed to capture human problem-solving heuristics. Data

captured from players of the game was processed to train a

decision tree regressor. This tree learned which bin to put a given

box into based on the general state of the problem at that time.

The general problem state was defined by mean, minimum, and

maximum available space across all partially-filled bins.

Two versions of this human-derived tree generated by the

machine learning process were then used within a mutation

operator for a GA, and used for a varying percentage of the time

to make three different conditions; No HDM in which the human-

derived mutation was not used, HDM 0.1 in which the human-

derived mutation was used 10% of the time, and HDM 0.4 in

which the human-derived mutation was used 40% of the time.

After running each condition 30 times for 40,000 function

evaluations for each tree it was found that using a simple tree for

10% of the time instead of the standard mutation operator

achieved significantly better results both by score and feasibility

than using just the standard mutation operator or using the human-

derived mutation 40% of the time.

The use of gamification and machine learning to capture

human problem-solving behaviour for use within an evolutionary

algorithm raises the prospect of other human-EA hybrids that are

able to make use of the intuition and domain expertise of humans

with the fast-global search of the evolutionary approach. The fact

that behaviours discovered by non-experts on small problems

were able to be translated to a large-scale problem to improve

performance is particularly worthy of mention.

REFERENCES
[1] G. Wäscher, H. Haußner, and H. Schumann, ‘An improved typology of cutting

and packing problems’, European Journal of Operational Research, vol. 183,

no. 3, pp. 1109–1130, Dec. 2007.

[2] D. S. Johnson, ‘Fast algorithms for bin packing’, Journal of Computer and

System Sciences, vol. 8, no. 3, pp. 272–314, Jun. 1974.

[3] J. O. Berkey and P. Y. Wang, ‘Two-Dimensional Finite Bin-Packing

Algorithms’, J Oper Res Soc, vol. 38, no. 5, pp. 423–429, May 1987.

[4] H. I. Christensen, A. Khan, S. Pokutta, and P. Tetali, ‘Approximation and

online algorithms for multidimensional bin packing: A survey’, Computer

Science Review, vol. 24, pp. 63–79, May 2017.

[5] E. G. Coffman, M. R. Garey, and D. S. Johnson, ‘Approximation Algorithms

for Bin-Packing — An Updated Survey’, in Algorithm Design for Computer

System Design, Springer, Vienna, 1984, pp. 49–106.

[6] S. Martello and D. Vigo, ‘Exact Solution of the Two-Dimensional Finite Bin

Packing Problem’, Management Science, vol. 44, no. 3, pp. 388–399, Mar.

1998.

[7] E. Falkenauer, ‘A hybrid grouping genetic algorithm for bin packing’, J

Heuristics, vol. 2, no. 1, pp. 5–30, Jun. 1996

Human-Evolutionary Gamification of a Bin-Packing Problem GECCO’19, July 13-17, 2019, Prague, Czech Republic

 9

[8] J. F. Gonçalves and M. G. C. Resende, ‘A biased random key genetic algorithm

for 2D and 3D bin packing problems’, International Journal of Production

Economics, vol. 145, no. 2, pp. 500–510, Oct. 2013.

[9] M. A. Kaaouache and S. Bouamama, ‘Solving bin Packing Problem with a

Hybrid Genetic Algorithm for VM Placement in Cloud’, Procedia Computer

Science, vol. 60, pp. 1061–1069, Jan. 2015.

[10] E. K. Burke, M. R. Hyde, and G. Kendall, ‘Evolving Bin Packing Heuristics

with Genetic Programming’, in Parallel Problem Solving from Nature - PPSN

IX, Springer, Berlin, Heidelberg, 2006, pp. 860–869.

[11] X. Li, K. Deb, and Y. Fang, ‘A derived heuristics based multi-objective

optimization procedure for micro-grid scheduling’, Engineering Optimization,

vol. 49, no. 6, pp. 1078–1096, Jun. 2017.

[12] P. Ryser-Welch, J. F. Miller, and S. Asta, ‘Generating Human-readable

Algorithms for the Travelling Salesman Problem Using Hyper-Heuristics’, in

Proceedings of the Companion Publication of the 2015 Annual Conference on

Genetic and Evolutionary Computation, New York, NY, USA, 2015, pp. 1067–

1074.

[13] E. López-Camacho, H. Terashima-Marin, P. Ross, and G. Ochoa, ‘A unified

hyper-heuristic framework for solving bin packing problems’, Expert Systems

with Applications, vol. 41, no. 15, pp. 6876–6889, Nov. 2014.

[14] K. Sim, E. Hart, and B. Paechter, ‘A Lifelong Learning Hyper-heuristic Method

for Bin Packing’, Evolutionary Computation, vol. 23, no. 1, pp. 37–67, Feb.

2014.

[15] C. Tijus et al., ‘Human Heuristics for a Team of Mobile Robots’, in 2007 IEEE

International Conference on Research, Innovation and Vision for the Future,

2007, pp. 122–129.

[16] G. Kefalidou, G. Kefalidou, and T. C. Ormerod, ‘The Fast and the Not-So-

Frugal: Human Heuristics for Optimization Problem Solving’, p. 7.

[17] G. W. Klau, N. Lesh, J. Marks, and M. Mitzenmacher, ‘Human-guided search’,

J Heuristics, vol. 16, no. 3, pp. 289–310, Jun. 2010.

[18] C. Murawski and P. Bossaerts, ‘How Humans Solve Complex Problems: The

Case of the Knapsack Problem’, Scientific Reports, vol. 6, p. 34851, Oct. 2016.

[19] B. M. Good, S. Loguercio, O. L. Griffith, M. Nanis, C. Wu, and A. I. Su, ‘The

Cure: Design and Evaluation of a Crowdsourcing Game for Gene Selection for

Breast Cancer Survival Prediction’, JMIR Serious Games, vol. 2, no. 2, Jul.

2014.

[20] F. Pedregosa et al., ‘Scikit-learn: Machine Learning in Python’, Journal of

Machine Learning Research, vol. 12, p. 2825−2830, Oct. 2011.

[21] ‘Platypus - Multiobjective Optimization in Python — Platypus documentation’.

[Online]. Available: https://platypus.readthedocs.io/en/latest/#. [Accessed: 06-

Feb-2019].

https://platypus.readthedocs.io/en/latest/
https://platypus.readthedocs.io/en/latest/

