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ARTICLE INFO ABSTRACT

This paper aims to determine the effects of uncertainties in the mechanical properties of FRP composites on the
dynamic responses of a full-scale all-FRP bridge. The novelty of the study is in determining the effects that the
uncertainties have on the global structural scale properties rather than component properties often studied in
literature. To achieve this aim, both uncertainty quantification and global sensitivity analysis are performed
using a computationally cost-effective approach based on the polynomial chaos expansion. The results reveal
that a coefficient of variation (COV) of 10% for four mechanical parameters can lead to COVs of 3.37%, 2.92%
and 3.07% for natural frequencies, COVs of 2.98%, 0.04% and 0.61% for modal masses (corresponding to unity-
scaled mode shapes) of the first lateral, first vertical and second vertical modes, and COV of 0.93% for the
absolute peak acceleration. The effect of uncertainties, therefore, is very small for the considered excitation case
and it could be neglected in the design. In addition, it was found that the longitudinal elastic modulus and shear
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modulus of the panel are the most influential mechanical parameters in dynamic analysis.

1. Introduction

Glass fibre reinforced polymers (FRPs) have increasingly been uti-
lised for the construction of bridges due to their high strength- and
stiffness-to-weight ratios, low maintenance costs and quick installation.
Due to their lightweight nature, FRP bridges may be very lively and
potentially suffer excessive vibration [1,2] causing user discomfort.
Therefore, vibration serviceability is increasingly governing the design
of FRP bridges [3]. A wider use of FRP materials for structural appli-
cations is being prevented by the lack of nationally or internationally
recognised design standards [3,4]. The underdeveloped guidance for
vibration serviceability design is attributed to the limited information
on the dynamic properties of FRP structures and vibration performance
under dynamic actions, e.g. pedestrian and wind excitations.

Currently, the influence that uncertainties in mechanical properties
have on the dynamic performance of FRP structures is unknown and
cost-effective approaches for quantifying this influence are required.
Manufacturing FRP composites involves complex processes char-
acterised by uncertainties, such as variations in fibre orientations and
fibre volume fractions, matrix material uncertainties, and variations in
environmental parameters and process conditions. The complexity of
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the manufacturing process makes the quality of FRP products difficult
to control, which might lead to considerable differences between the
actual mechanical properties and those specified in the design process
[5]. As a consequence, the dynamic properties of FRP structures and the
resulting vibration response might be difficult to predict accurately.
Although a probability-based load and resistance factor design philo-
sophy that accounts for uncertain mechanical properties has been em-
ployed for the static design for FRP structures [6], there is no such
counterpart for vibration serviceability. Conventional design criteria for
dynamic design, by simply limiting the fundamental frequency or static
deflection, may underestimate or overestimate the dynamic perfor-
mance of FPR structures and result in either over-conservative, cost-
ineffective designs or unserviceable structures. Therefore, developing
the knowledge about the effects of uncertainties in mechanical prop-
erties on the dynamic responses and providing a computational means
for time-effective quantification of these effects are crucial require-
ments for formulating guidelines and standards for the vibration ser-
viceability design of civil engineering FRP structures.

Most of the existing research is devoted to uncertainty quantifica-
tion (UQ) in the dynamic analysis of FRP composite components, e.g.
plates, beams or shells. Piovan et al. [7] studied the stochastic dynamics
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of composite I-beams and box beams with variations in fibre orientation
angles in the laminate and elastic properties of a ply (i.e. longitudinal
and transverse elastic modulus, shear modulus and Poison ratio). They
employed the Monte Carlo simulation (MCS) method to obtain the
statistics of dynamic properties (i.e. natural frequencies and frequency
response functions) and showed that the sensitivity of the dynamic
responses to uncertainty sources depends upon stacking sequence. Dey
et al. [8] performed the UQ of natural frequencies, frequency response
functions and mode shapes of a laminated cantilever plate with fuzzy
variation in ply orientation and in material properties at the ply scale.
They used polynomial chaos expansions (PCE)-based method and found
it to be computationally efficient compared with the global optimisa-
tion approach for uncertainty propagation of fuzzy variables. Se-
pahvand [9] focused on the quantification of the effects of the random
fibre orientation in a 12 plies laminate plate on its natural frequencies
and mode shapes using the PCE-based method. He found that the COV
of 10% for the fibre orientation gave rise to the COVs of no more than
6% for the natural frequencies of the first fifteen modes. Additionally,
the uncertainty in the fibre orientation caused different mode shapes for
the 10th and 11th modes compared with their nominal counterparts.
Awrush and Gomes [10] considered the control problem in a laminated
composite plate embedded with piezoelectric patches. A fuzzy interval
analysis methodology was employed to investigate the impact of un-
certainties in the material properties of the composite plate and pie-
zoelectric patches on natural frequency, mechanical vibration and
electric control input energy. Allegri et al. [11] investigated a virtual
planar composite truss for space applications (6 m long and 1 m wide),
which has 25 members of identical circular cross-section, using an ap-
proach based on the Monte Carlo evaluation of finite element stochastic
weighted integrals. Their analysis showed that the COVs of 15% for
Young’s and shear modulus and the COV of 5% for mass density can
lead to the COVs of 16.1% and 14.7% for the natural frequencies of 2nd
and 3rd modes, respectively.

Unlike UQ, there is limited insight into the sensitivity of dynamic
responses of FRP components to material parameters. Carvalho et al.
[12] utilised a multivariable linear regression analysis to assess the
sensitivity of the fundamental frequency of a laminated composite plate
to the thickness of each ply, several mechanical properties of the ma-
terial, and fibre orientation angles. They found that the fundamental
frequency is most sensitive to laminate thickness, followed by long-
itudinal elastic modulus. Liu [13] proposed a gradient-based analytical
method to calculate the sensitivity of the frequencies and mode shapes
with respect to fibre volume fractions and fibre orientations of T-shape
and square composite laminated plates. The gradient-based sensitivity
analysis (SA) method falls in the category of the local SA (LSA) which
concentrates on measuring the local effects of the variations in input
parameters on model outputs. By contrast, Dey et al. [14] presented a
global sensitivity analysis (GSA) approach based on random sampling-
high dimensional model representations for composite plates. They
investigated the influence of fibre-orientation angle, elastic modulus
and mass density on natural frequencies of a composite plate, and found
that the first three natural frequencies are most sensitive to ply-or-
ientation and least sensitive to elastic modulus.

The aforementioned research, except the work by Allegri et al. [11],
was restricted to either UQ or SA (mainly LSA) of dynamic responses in
FRP components and the uncertainty modelling started from the ply
level. Little attention has been paid to UQ and/or GSA of dynamic re-
sponses of full-scale civil engineering FRP structures. Specifically, UQ
can be used to quantify the uncertainty in dynamic responses propa-
gated from uncertain parameters whilst the GSA is an extension of UQ
that allows for determining the contributions of uncertain parameters
to the resulting uncertainty of dynamic responses. In structural en-
gineering design, FRP profiles are commonly used, including I, channel
and box sections, as well as custom shapes. The full-section properties
of FRP profiles, normally obtained from manufacturers, are usually
needed in the design. Therefore, to perform UQ and GSA of dynamic
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responses for actual FRP structures, it is more practical to use the ef-
fective properties of FRP profiles and start the uncertainty modelling
from the component level.

This study focuses on UQ and GSA of dynamic responses of a full-
scale 16.90 m long all-FRP footbridge whereby the uncertainty of input
parameters is modelled at the component level. MCS has been ex-
tensively employed in the literature to solve UQ and GSA problems
since it is intuitive and straightforward to implement and it is generally
applicable to a variety of problems. However, MCS requires a large
number of model evaluations to ensure the convergence with an ac-
ceptable accuracy, which severely hinders its wider applications to
large-scale engineering structures. For instance, it was reported that the
MCS implementation of UQ for a full-scale concrete-filled tubular arch
bridge spanning 90 m took around 45 days on a DELL desktop machine
with Pentium (R) D CPU 2.80 GHz [15]. When adopting MCS proce-
dure, GSA is computationally more expensive than UQ since it requires
calculation of the partial variances in addition to the computation of
total variance. By contrast, the PCE method [16,17], as a surrogate
model to represent the probabilistic response as a series expansion of
orthogonal polynomials of the random variables, has great capability to
model highly complex systems with low computational cost [18]. In
particular, once the PCE model is established, the tasks of both UQ and
GSA can be efficiently performed within the fast-to-run surrogate model
rather than the time-consuming original model. The statistical moments
(e.g. mean and variance) of target responses as well as the sensitivity
indices of uncertain parameters can then be analytically calculated by
post-processing the PCE coefficients. Therefore, the PCE method is
especially useful for the UQ and GSA of full-scale FRP structures.

This paper aims to determine the effects of the uncertainties in
mechanical properties of FRP components on the dynamic properties
(natural frequencies and modal masses corresponding to unity-scaled
mode shape) and vibration response of an actual all-FRP footbridge.
The work: 1) presents a straight-forward and computationally eco-
nomical numerical approach for UQ and GSA in full-scale FRP com-
posite structures and 2) provides a comprehensive numerical insight
into the effects of mechanical uncertainties for the longitudinal and
transverse homogenised elastic modulus and the shear modulus for
structural components. It is assumed that design values of mechanical
properties of FRP components represent the mean values. Since the
research is focused on the effects of uncertainties in FRP components,
the pedestrian load is assumed to be deterministic as specified in ISO
10137 [19] for the purpose of evaluating vibration serviceability limit
state. The methodology presented in the paper, using an example of a
FRP footbridge subjected to dynamic loading by a pedestrian, can be
generalised to structures subjected to any static or dynamic loads.

Following this introductory section, Sections 2 and 3 introduce the
method for vibration response analysis of footbridges and the PCE-
based UQ and GSA methods, respectively. Section 4 details the devel-
opment of the nominal finite element (FE) model of a full-scale all-FRP
footbridge and dynamic analysis. In Section 5, the UQ and GSA of dy-
namic properties and vibration response are presented. Conclusions are
drawn in Section 6.

2. Vibration response of footbridges

For a slender footbridge with well separated vibration modes, vi-
bration serviceability criteria specified in design standards routinely
require the estimation of the vertical vibration response caused by an
average single pedestrian. One of the first five harmonics of the pe-
destrian’s walking force is assumed to match one of the structural
natural frequencies [20-22]. In such an analysis, the walking force is
assumed to be a harmonic force and one (most relevant) vibration mode
of the structure is modelled as a single degree of freedom (SDOF)
system. The calculated response at the antinode of the relevant mode
shape is then compared with predefined vibration limits (typically se-
parating a region of acceptable from unacceptable vibration). More
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advanced design guidelines also require assessment of the vibration
performance to crowd loading [23,24]. The vibration response in this
case is estimated by multiplying the response to an average single
person excitation by a suitable factor that is a function of the number of
pedestrians present on the bridge at any one time and, in some cases,
the damping ratio of the relevant mode of vibration. The selection of
load model (i.e. single person loading or multiple-person loading) de-
pends on the purpose and use of the bridge as well as its geometry (e.g.
the deck width) [25].

The formulation for calculating the vertical vibration response due
to a single person loading is presented here as it is most relevant for the
footbridge considered in this paper. The bridge is modelled as a SDOF
model with modal mass m;, natural frequency f;, damping ratio ¢, and
unity-normalised mode shape ¢(x), where x represents the position
along the bridge longitudinal axis. A harmonic force model traversing
the bridge at a constant speed v,, = f, [,, is used to represent a walking
person [19]. Step frequency f,, is assumed to be equal to f/i(i = 1, 2, 3,
4, 5) to generate the worst-case, and physically feasible, response in
resonance by one of the first five forcing harmonics, whilst [,, represents
the step length. The force representing pedestrian, therefore, is [19]

F(t) = yGpsin(27f, t) (@)

where Gy is the weight of the pedestrian and y is the dynamic loading
factor which represents the amplitude of the dynamic force normalised

by Go.
The equation governing the motion of the footbridge is [26]
" . F(t
5O + 2050 + ol = T g0
mg (2)

where y, (¢) is the modal displacement of the bridge and w, = 27f; is the
circular natural frequency of the bridge. x(¢t) = v,,t describes the posi-
tion of the pedestrian along the bridge. Dots denote the derivatives with
respect to time.

3. Uncertainty quantification and global sensitivity analysis using
PCE

3.1. Formulation of PCE

PCE is a spectral decomposition technique that allows users to map
the input-output relationship of a physical system by projecting it onto
a basis of orthogonal polynomials with respect to the probability
measure of input random variables [27]. Consider a physical system
M (+), which is usually an expensive-to-run black-box function, with a
set of random variables & ={¢, £,,...,§;}. The PCE representation of the
target model can be expressed as

ME) =B+ D B UiE) + D) D Buey B £)
ar=1 a1=1 ap=1

+ Z Z Z 60(10(2aglp3(§a1’ gaz’ gog) + o

ar=1 az=1 a3=1 (3)
or in compact form

M) = B ¥(§)
zxgd @

where N¢ is the set of d-tuples of natural numbers; & = {ay,....,ct;, ..., %t}
are an d-dimensional indices; o; refers to the degree of the ith random
variable; B, are the PCE coefficients; and ¥,(£) are the multivariate
polynomials of order «. For practical implementation, the PCE with an
infinite number of terms defined in Eq. (4) needs to be truncated to a
finite degree p, yielding the following approximation

M@~ Y, B, AP = {ae N :liall < p}
acAP-d 5)

where
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d
llodly = ) o

i=1 (6)

As a result, the total number of terms retained in the above trun-
cated PCE is

(d+p)!
d!p! 7

K+1=

The multivariate polynomials ¥,(¢) are formulated by the tensor
product of the univariate ones

d
@) =14,
E ®

where 3, (§) are univariate polynomials that are orthogonal with re-
spect to the probability distribution p(&). The univariate orthogonal
polynomials 1 (§) satisfy the well-known three-term recurrence relation

P ) = € — a), () — buyp,_,(§), h=0,1,2, ..
P =0, HE =1 ©)

for which the recurrence coefficients are determined by the Darboux’s
formulae [28]

o = % h=01,2, .. 10)
and

b (1/’0’ 1/’0)’ h =0,

h = % h=1,2, .. 11)

where (s, ») stands for the inner product operator. As shown in Egs.
(10) and (11), the recurrence coefficients of a univariate orthogonal
polynomial are uniquely determined by its probability distribution. For
most standard probability distributions (such as, uniform, normal and
gamma), the recurrence coefficients are known analytically, while for
other probability distributions (such as, Weibull and Rayleigh) without
analytical recurrence coefficients, the discretisation method can be used
to determine these terms. Further details on the calculation of the re-
currence coefficients are available elsewhere [29].

The least-square minimisation is employed here to estimate the PCE
coefficients because of its efficiency for high dimensional problems. Let
{€}I_, be n samples of random variables and {y, = M(&)}IiL, be the
corresponding target responses, and then the PCE coefficients [§“ can be
estimated by solving the following least-square minimisation problem

2
n
B = argﬁarenNi?Htﬂ [yf - Z ﬁaqj“(gt)]

acAPd

a2

3.2. Analytical calculation of statistical characteristics

In statistics, statistical moments are used to characterise a variable’s
probability distribution. The most common statistical moments are
mean, which is a measure of the central tendency, and variance (or
standard deviation), which characterises the variability around the
mean value. For a response that follows a distribution (such as uniform
and normal) that is fully defined by two parameters, the mean and
variance are sufficient for the determination of its probability dis-
tribution.

Generally speaking, the calculation of statistical characteristics of
system responses involves complex high-dimensional integrals. The use
of the PCE surrogate model enables an efficient evaluation of the re-
sponse statistics. More specifically, the mean  and variance o2 can be
analytically calculated by post-processing the PCE coefficients

u=4 13)



X. Wei, et al.

(14)
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3.3. Analytical implementation of global sensitivity analysis

GSA is a powerful scheme for performing sensitivity analysis, al-
lowing for reliable assessment of the relative importance of uncertain
parameters based on their contributions to the variance of the model
output. It can be used for assessing the influence of the individual input
parameters over the whole input space on model responses as well as
their combined effects. The GSA is based on functional analysis of
variance (ANOVA), that is, the total output variance can be decom-
posed into a collection of partial variances induced by the effects of
individual inputs and the interaction effects. Specifically, the decom-
position of the total variance of model output can be expressed as [30]

V= Y Vit X Wt X

Vije + V2 d

1<i<d 1<i<j<d 1<i<j<k<d (15)
with
V=VY(©)
Vi=V(EQE)

V= VEWE §) - V- V]

Vik =VEWIE § ) - Viy = Vik—Vik - Vi— Vi = %
(16)

where E(-) and V(-) denote the expectation and variance operators,
respectively. y and £ are the output and input variables, respectively.

The variance-based sensitivity indices are defined as the ratios of
the partial variances to the total variance. Within the framework of
GSA, of particular interest are the first-order and total sensitivity in-
dices, which are expressed as

¥
Si=y an
and

_ Vi
Sri=1 7 18)

respectively, where V_; = V(E(YI£_,)), in which &, ={1,...§_.&, 164}
denotes all inputs & except &. The first-order sensitivity index S; mea-
sures the contribution to the total variance accounted for by the ith
input alone, whereas the total sensitivity index Sy; evaluates the total
contribution accounted for by all the ith input-related terms. The dif-
ference between them is that the latter takes into account the interac-
tion effects among the inputs while the former does not.

Due to the orthogonal nature of the basis functions of PCE, the
variance-based sensitivity indices can be computed analytically by
simply post-processing PCE coefficients [31], such that

o Dier, B (W W)

i

Sy B2 (Wi, W) 19)
N Zkern BE (P, W)
="K o2ip wo
Dot BE (P W) (20)
where index sets Li={ke APk >0k, =0,¢#i}; and

Lr={ke AP k; > 0}.
3.4. Implementation of the PCE-based UQ and GSA

A flowchart for the proposed PCE-based UQ and GSA method is
shown in Fig. 1. It comprises of main stages as follows:

(I) Sobol sequence-based experimental design [32], which has a de-
sirable low-discrepancy (space-filling) property, is used to
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Univariate orthogonal polynomials are
determined using the Darboux's
formulae in line with parameters’
probability distributions.

Sobol sequence sampling is adopted to
generate inputs. The generated Sobol
points are transformed into the real
physical space based on parameters’
probability distributions.

Y
v Univariate orthogonal polynomials are
used to formulate multivariate
polynomials by tensor product. Then,
PCE is formulated using multivariate
polynomials.

Each transformed input is entered into
the numerical model to calculate the
associated dynamic response.

y
The PCE coefficients are estimated from the
training data using the least-square
estimator. Then, the model validation
process is performed to check the prediction
performance of the constructed PCE.

4
Both the statistical characteristics (mean and
variance) of dynamic responses and the
sensitivity indices of uncertain parameters
can be analytically calculateed by simply
post-processing the PCE coefficients.

Fig. 1. Flowchart of PCE-based UQ and GSA.

generate input points based on parameter probability distribu-
tions. Note that Sobol points uniformly fall in the unit hypercube
[0, 11¢, while the structural parameters follow specific distribu-
tions. Therefore, before entering inputs into a numerical model of
the system under consideration (e.g. the FE model of the foot-
bridge considered in this paper), Sobol points are transformed into
the physical space of structural parameters based on the cumula-
tive probability equality principle.

(II) Subsequently, each transformed input is entered into the numer-
ical model to calculate the associated dynamic properties and vi-
bration response.

(I11) The PCE items can be determined based on an adopted model
order and parameters’ probability distributions. Then the least-
square estimator is used to calculate the PCE coefficients. Once the
PCE model is built, the explicit expressions of the relationship
between random parameters and dynamic responses are attained.
The statistical characteristics (mean and variance) of dynamic re-
sponses and sensitivity indices of mechanical parameters are then
analytically obtained using Eqs. (13) and (14) and Egs. (19) and
(20), respectively.

4. Dynamic analysis of a full-scale all-FRP footbridge
4.1. Bridge description

An all-FRP, simply supported, composite footbridge shown in Fig. 2
is considered. The bridge comprises of a single span FRP square box
girder that is 0.78 m wide, 0.78 m deep and 16.90 m long. The handrails
are made of FRP sections and there is a layer of asphalt surfacing. The
girder consists of the Advanced Composites Construction System
(ACCS) panels made of glass fibre-polyester matrix pultruded material
and 3-way connectors, as shown in Fig. 2b. Within the girder are five
diaphragms, evenly spaced along the bridge, connected to the sides of
the box. The primary vertical members of the handrail system are made
of 1910 mm high 3-way connectors placed every 845mm. The hor-
izontal elements of tube sections have a diameter of 57.16 mm and
thickness of 3.17 mm. The secondary elements in the vertical direction
are tube sections have a diameter of 38.2 mm and thickness of 3.17 mm,
with five placed evenly between each primary upright. The handrails
are attached to the side of the bridge by two steel bolts per post. The
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191m
3-way connector
0.78 m beam element
[TTTTA

ACCS panel
shell elements

3-way connector
ﬂ]ell elements

[TTTTI

(b)

Fig. 2. Photographs of the footbridge: (a) side view; (b) square box cross-section.

handrails extend 0.845 m beyond the length of the girder so that the
end posts are fixed to the ground. The total mass of the modelled bridge
is 1847 kg.

4.2. Nominal finite element model

A nominal finite element (FE) model was created using Abaqus/
Standard software [33] based on the design of the bridge and geometry
measurements taken on site. Fig. 2b shows geometry of the section in
the FE model. The panel was modelled with 4-node reduced integration
shell element (element ID S4R) whilst the 3-way connectors and FRP
tube sections were all modelled as 2-node linear beam elements (ele-
ment ID B31). The orthotropic shell elements in the ACCS panels were
assigned material properties provided in Table 1. The 3-way connectors
used in the corners of the box and for the handrail posts were assigned
isotropic properties given in Table 2, as their location means their
longitudinal characteristics dominate their contributions. Similarly, the
handrail tube beam elements were also modelled as isotropic elements
with properties listed in Table 2.

A point mass of 0.721 kg representing each of 84 steel bolts was
added at the points of handrail attachment to the box girder. The as-
phalt surfacing was modelled using a uniform mass of 30 kg/m? added
to the top panel of the girder. The diaphragm sections were rigidly
constrained to the inner side surfaces of the box. The handrails were
rigidly constrained to the sides of the beam. The bases of the end
handrail posts that are connected to the ground were fixed in all di-
rections. The box was simply supported 422.5 mm from each end of the
beam. Pinned-roller supports were assigned along this line at both ends.
To provide longitudinal restraint, without influencing the lateral
bending stiffness, an additional restraint at the centre line of the beam
was applied at one end at this point as well. In total there are 27,104
elements and 30,703 nodes. A rendered image of the FE model is shown
in Fig. 3.

4.3. Dynamic responses of the nominal footbridge

This section presents the dynamic parameters and vertical vibration
response to a pedestrian for the nominal footbridge.

4.3.1. FE modal analysis
The dynamic properties of the first three flexural modes of the box

Table 1
Material properties for ACCS panels.

Table 2
Material properties for 3-way connectors and FRP tubes.
3-way connectors FRP tubes
Density (kg/m>) 1950 1800
Young’s modulus (GPa) 32 20
Poisson’s ratio 0.35 0.35

(il
o IHl! ol n; .‘ql' 3“:;
J h“ e i .UI fi i

(L ]

Fig. 3. FE model of the footbridge.

Table 3
Modal parameters of the nominal bridge.

No. Description Frequency (Hz) Modal mass (kg)
1 1* lateral bending 4.31 607
2 1% vertical bending 4.90 862
3 2" vertical bending 15.82 907

girder are calculated using modal analysis and they are summarised in
Table 3. The modal masses correspond to the unity-scaled mode shapes
shown in Figs. 4-6.

Density (kg/m>) Longitudinal elastic modulus (GPa)

Transverse elastic modulus (GPa)

Shear moduli (GPa) Poisson’s ratios

1950 21.6 10

3 0.35
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x

Fig. 4. 1* lateral bending mode (Top view).

Fig. 5. 1% vertical bending mode (Side view).

Fig. 6. 2" yvertical bending mode (Side view).

4.3.2. Analysis of vertical vibration due to walking excitation

The vertical vibration modes of the bridge are well separated, and
only the first vertical mode is located in the frequency range of the first
five harmonics of the walking force, ranging from 1.2Hz to 12.0 Hz
[19]. Hence, the first vertical mode only is of interest here. The bridge
is modelled as a SDOF model having modal mass of 862 kg and natural
frequency f; of 4.9 Hz. The damping is assumed to be proportional
damping. The damping ratio is calculated to be 2.4% by using the Eq.
(2D,

@s C
SS9 @1)
where w; = 27f,, ¢; = 0.0005 and ¢, = 1.0. ¢; and c, are empirical values
from FRP footbridges of the same type [34].

The footbridge under consideration is narrow and located in a
sparsely populated area. Therefore, the most relevant pedestrian
loading scenario is a single pedestrian walking at 2.45 Hz to excite the
resonance by the second harmonic of the force.

The pedestrian is assumed to have weight Go = 700N and step
length of I, = 0.71m [35]. The step frequency is f,, = 2.45Hz. The
walking speed is v, =f,l, =1.74m/s, whilst y = 0.1 in Eq. (1).
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(=] —

Acceleration (m/sz)

2 ‘ ‘ ‘ ‘
0 2 4 6 8 10

Time (s)

Fig. 7. Acceleration at the midspan of the nominal footbridge.

Therefore, the nominal walking force is F = 70sin(9.87t) N [19]. The
vertical acceleration of the footbridge is calculated from Eq. (2) using
the Newark- numerical integration method [36] with time step of
0.005s. The resulting response, with a peak value of 1.54m/s? is
shown in Fig. 7.

5. Influence of mechanical uncertainties on dynamic responses

This section investigates the impact of the uncertainties in me-
chanical properties of the FRP components on the dynamic properties,
vibration response and vibration serviceability assessment of the foot-
bridge.

5.1. Characterisation of mechanical uncertainties

The main structural components are the ACCS panels and 3-way
connectors. Hence, variations of the mechanical properties of these two
components are considered only. The uncertain quantities are the
longitudinal and transverse elastic modulus and shear modulus of the
panel, and the Young’s modulus of the 3-way connector. The Poisson’s
ratio for the panels and 3-way connectors is assumed to be constant.
The mass density is also treated as constant since the proportions of the
fibre and matrix in pultruded profile materials are straight forward to
control during the pultrusion process. The specifications for the four
uncertain mechanical parameters are listed in Table 4, based on data
available in [37-43]. The mean values stated in the table are those used
in the nominal FE model. The coefficient of variation (COV) is assumed
to be 10% [5,44]. In addition, it is assumed that the random mechanical
properties follow Weibull distribution, which is most commonly used
for composites [6,42,44] and they are assumed to be mutually in-
dependent. Additionally, the perfect correlation is assumed for mem-
bers of the same type (i.e. all members of the same type possess the
same random value for each material property). Note that the PCE-
based approach can also be used for the case with correlated random
variables [45,46].

5.2. Uncertainty quantification of dynamic responses

In this section, the UQ in the dynamic properties and vibration re-
sponse of the footbridge with uncertain mechanical properties given in
Table 4 is implemented by following the procedures for the PCE-based
UQ method described in Section 3.4. The model order p is set to 2 and
the sample size for each mechanical property is set to 600. In general,
different PCE model orders can be utilized to fit different output vari-
ables. The selection of model order and sample size for construction of
PCE models is explored in Section 5.4. MCS is conducted and the results
are used as benchmark solutions for the verification of the PCE-based
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Table 4
Statistics of mechanical properties of FRP components [37-43].
Component Mechanical property Distribution Mean (GPa) COV (%)
Panel Longitudinal elastic modulus (E;) Weibull 21.6 10
Transverse elastic modulus (Er) Weibull 10 10
Shear modulus (Gs) Weibull 3 10
3-way connector Young’s modulus (Ey) Weibull 32 10

UQ method. The sample size for the MCS is set to 10,000, based on
[47,48].

5.2.1. Modal parameters

Following the procedures for the PCE-based UQ method sum-
marised in Section 3.4, Sobol sequence-based experimental design was
first carried to generate samples for the four uncertain mechanical
properties. Modal analysis was then performed on the FE model of the
footbridge for each set of samples, which resulted in calculation of
unity-scaled mode shapes, natural frequencies and modal masses.

It is found that for every set of samples, the first lateral, first vertical
and second vertical modes of the deck preserve (qualitatively) the same
global shape as observed in the nominal bridge mode, but they have
slightly different frequencies and modal masses. Note that modal mass
represents the physical mass weighted by the square of the magnitude
of the relevant mode shape. This bridge has an approximately uni-
formly distributed physical mass, and therefore any variation in the
calculated modal mass is due to the variation in the mode shape. The
damping ratio for each sampled data point is calculated using Eq. (21)
and the circular frequency for each sampled data point.

Based on the least-square estimator, the PCE coefficients for natural
frequencies and modal masses were estimated and subsequently their
means and standard deviations were analytically obtained using Egs.
(13) and (14). The results are shown in Figs. 8 and 9, along with their
COVs. They are also compared with their counterparts from MCS. The
excellent agreement between the two methods demonstrates high ac-
curacy of the PCE-based method. The results show that a COV of 10%
for the four mechanical parameters leads to the COVs of 3.37%, 2.92%
and 3.07% for the natural frequencies of the first lateral, first vertical
and second vertical modes, respectively. By contrast, the resultant COVs
of the modal masses of the first lateral, first vertical and second vertical
modes are 2.98%, 0.04% and 0.61%, respectively. These variations in
modal parameters are due to the variations in the relative stiffness of
the structural elements. The first lateral mode has the largest COV of
modal mass while the first vertical mode has the smallest COV of modal
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mass. This is because the mode shape of the first lateral mode includes
the most contribution from the handrails while the first vertical mode
contains the least. The participation of the handrails, which are much
less stiff than the box girder, in the modal motion of the whole bridge is
affected more by the changes in the stiffness distribution of the bridge
elements.

5.2.2. Vibration serviceability assessment

This section presents the effects of the uncertainties in mechanical
properties of FRP components on the vibration serviceability assess-
ment of the footbridge excited in resonance by a single pedestrian. The
pedestrian is modelled in the same way as described in Section 4.3.2.
For each model realisation, the walking frequency is equal to half of the
frequency of the first vertical mode.

For each set of samples of mechanical properties, the modal mass,
frequency and damping ratio of the first vertical mode can be obtained
using the methods presented in Section 5.2.1. Then, the vibration re-
sponse was calculated in the same way for the nominal case. Likewise,
the PCE-based UQ method was adopted to calculate the mean, standard
deviation and COV of the absolute peak acceleration, resulting in values
of 1.54m/s?, 0.014 m/s? and 0.93%, respectively (Fig. 10). This result
indicates that the uncertainties in mechanical properties of FRP com-
ponents have relatively small effects on the peak acceleration value.
The statistical characteristics obtained by the PCE method match well
those calculated by MCS, as shown in Fig. 10.

To put the results presented in the context of vibration serviceability
evaluation of the bridge, vibration limits defined by Sétra guidelines
[23] are used. Four comfort levels are defined based on the peak ac-
celeration ranges: 0-0.5 m/s> is maximum comfort, 0.5-1 m/s? is mean
comfort, 1-2.5m/s? is minimum comfort and above 2.5m/s? is un-
acceptable. It can be concluded that both the nominal footbridge re-
sponse of 1.54 m/s? and its variations result in minimum comfort level
for bridge users. Therefore, in this case study, variations in the me-
chanical properties of FRP elements did not result in changes in the
comfort level due to the small variation in vertical vibration response.
This conclusion might change once more sophisticated stochastic
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Fig. 10. Statistical characteristics of the absolute peak acceleration at the midspan of the bridge.

models for pedestrians and the non-resonance loading conditions are
introduced into the framework analysis, which is the next step in our
research.

5.3. Global sensitivity analysis of dynamic responses

Following the UQ, GSA is performed to assess the sensitivity of the
dynamic properties and vibration response to uncertain parameters
based on the formulas in Section 3.3. The GSA results lead to the fol-
lowing observations:

e For the natural frequencies, the longitudinal elastic modulus of the
panel E; is the most influential parameter while the transverse
elastic modulus Er has negligible influence. The elastic modulus of
the 3-way connector Ey is the second most influential parameter for

1

the first lateral and first vertical natural frequencies, and the shear
modulus of the panel G is the second most influential for the second
vertical natural frequency (Fig. 11). One can observe that joint ef-
fects among parameters do not exist since there is almost no dif-
ference between the first-order and total sensitive indices S; and Sr;.

® The GSA results are different for modal masses compared to those

for natural frequencies. For the first lateral and second vertical
natural frequencies, the parameters E; and Gs are dominant con-
tributors and the remaining two parameters have negligible influ-
ence. For the first vertical natural frequency, the parameter Gs ex-
hibits the most significant influence, followed by Ey, Er and Ej,
respectively. The interaction effects among parameters are not sig-
nificant (Fig. 12), as was the case for natural frequencies.

e F; influences the peak acceleration response most. Ey ranks the

second and the remaining parameters are of little importance
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sensitivity of the absolute peak acceleration to

(Fig. 13). Different from the previous results, the joint effects of the
parameters on the absolute peak acceleration is substantial, as in-
dicated by the pronounced discrepancy between their first-order and
total sensitivity indices S; and Sr;.

Overall, the longitudinal elastic modulus and shear modulus of the
panel are the most influential parameters for dynamic properties and
vibration response, and the influences of the transverse elastic modulus
and the elastic modulus of the 3-way connector are negligible.
Therefore, substantial attention should be paid to the accurate char-
acterisation of the statistics of the two dominant parameters since they
mainly account for the variability in the dynamic responses.

RMSRE =

2 2
1 (Sycegn - szasn) + (Sls’]éE - S%/]I)CS)
2 SMES Shics

where Sycs and Spcg represent the MCS-estimated and PCE-derived
statistical characteristics, respectively. RMSRE is used to evaluate the
performance of the PCE method. A smaller value of RMSRE indicates
better performance of the method. The results shown in Figs. 14-16
suggest that:

(22)

e Overall, the accuracy of PCE for UQ increases with increasing
sample size but it becomes stable after a certain sample size, for
example 600 samples for this study.

e Among the four model orders, the first order case exhibits the worst
performance. This is due to the fact that the first order PCE is a
linear model, which fails to map the nonlinear relationship between
random parameters and dynamic responses.

® The higher order PCE will not necessarily lead to better performance
due to possible overfitting issue. For example, for all three natural
frequencies and absolute peak acceleration, the second order PCE
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performs best as shown in Figs. 14 and 16.

e Although for all three modal masses the second order PCE does not
generally maintain the better performance than the third and fourth
order PCEs, the accuracy of the second order model is sufficiently
high, as illustrated by its small RMSRE values. The increase of model
order will lead to the exponential growth of the number of the PCE
terms, which will result in more model evaluations for determining
the PCE coefficients. Therefore, selecting the lowest order model
suitable for problem under consideration is preferable. Due to the
consistently good performance of second order PCE, this model
order is used in this study for UQ of dynamic responses.

e The UQ performance of PCE is different for different target dynamic

responses. For example, the second order PCE displays the best
performance for the computation of the natural frequencies and
absolute peak acceleration (Figs. 14 and 16), whereas, overall, the
fourth order PCE demonstrates the best performance of the eva-
luation of modal masses (Fig. 15). For different dynamic responses,
the underlying input-output relationship between the random
parameters and dynamic responses can be different, such as weak or
strong nonlinearity. This may explain the difference in UQ perfor-
mance of PCE for different target dynamic responses.

It should be noted that it is not expected to have results of a full set

of MCS to determine the model order and sample size. Instead, the
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model validation process should be performed to check the prediction
performance of the constructed PCE. The frequently used leave-one-out
cross-validation (LOOCV) [49] for model diagnosis can be used for this
purpose.

6.

Conclusions

This paper presents a stochastic characterisation of the dynamic

properties and vertical vibration response of a full-scale all-FRP bridge
using the PCE-based UQ and GSA methods. The uncertain variables
considered are the longitudinal and transverse elastic modulus and
shear modulus of ACCS panels and the Young’s modulus of 3-way
connectors. The UQ and GSA are based on a nominal FE model for the
FRP footbridge. The performance of the PCE-based UQ method is
compared with the brute-force MCS. In addition, the effects of the
model order and sample size on the PCE-based UQ performance are
explored. The following conclusions can be drawn:

The presented PCE-based UQ method enables the analytical de-
termination of the stochastic characteristics of dynamic properties
and vibration response using a small set of samples while main-
taining accuracy comparable to MCS. The overwhelming advantage
in computation effort over the MCS makes the PCE-based UQ
method especially applicable to UQ problems in large-scale FRP
structures.

Overall, the uncertainties in mechanical properties of FRP compo-
nents exert larger effects on natural frequencies than modal masses.
For example, the COV of 10% for four mechanical parameters of FRP
components leads to COVs of 3.37%, 2.92% and 3.07% for the
natural frequencies of the first lateral, first vertical and second
vertical modes, respectively. By contrast, the resultant COVs for the
modal masses of these three modes are much smaller, at values
2.98%, 0.04% and 0.61%. The COVs for modal masses are found to
be closely related to the participation of handrails in the modal
motion of the bridge.

The uncertainties in mechanical properties of FRP components have
limited effects on vertical resonant responses to a pedestrian ex-
citation modelled in a deterministic manner. For example, the COV
of 10% for four mechanical parameters of FRP components can only
lead to a COV of 0.93% for the absolute peak acceleration. This
small variation in vertical vibration response has negligible effects
on the vibration serviceability assessment for the FRP bridge. The
proposed methodology opens the door for investigating the effects
of uncertainties associated with pedestrian loading on the dynamic
response.

Overall, the longitudinal elastic modulus and shear modulus of the
panel are the most influential parameters for dynamic properties
and vibration responses, and the influence of the transverse elastic
modulus and the elastic modulus of the 3-way connector are negli-
gible. Therefore, it is reasonable to consider only the effects of the

11
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uncertainties in the two dominant parameters on the dynamic
properties and vibration response of the full-scale FRP footbridge.

e The accuracy of PCE for UQ increases with sample size, up to a limit,

600 samples in this study. After this larger sample sizes only have a
small influence on the accuracy. Using a higher-order PCE does not
always give rise to better performance.
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