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RNA is the messenger molecule that conveys information from the genome and allows
the production of biomolecules required for life in a responsive and regulated way. Most
genes are able to produce multiple mRNA products in response to different internal
or external environmental signals, in different tissues and organs, and at specific times
in development or later life. This fine tuning of gene expression is dependent on the
coordinated effects of a large and intricate set of regulatory machinery, which together
orchestrate the genomic output at each locus and ensure that each gene is expressed
at the right amount, at the right time and in the correct location. This complexity of
control, and the requirement for both sequence elements and the entities that bind them,
results in multiple points at which errors may occur. Errors of RNA biology are common
and found in association with both rare, single gene disorders, but also more common,
chronic diseases. Fortunately, complexity also brings opportunity. The existence of many
regulatory steps also offers multiple levels of potential therapeutic intervention which
can be exploited. In this review, I will outline the specific points at which coding RNAs
may be regulated, indicate potential means of intervention at each stage, and outline
with examples some of the progress that has been made in this area. Finally, I will
outline some of the remaining challenges with the delivery of RNA-based therapeutics
but indicate why there are reasons for optimism.

Keywords: mRNA processing, RNA editing, RNA export, RNA therapeutics, ncRNA, splicing, RNA
epitranscriptomics, therapeutics

INTRODUCTION

The fundamental importance of RNA not only as a messenger molecule, but as a regulator of
genes in its own right is increasingly being recognized. The production of mature messenger RNA
(mRNA) is dependent on a plethora of processing and regulatory steps involving a complicated
repertoire of sequence elements, RNA binding proteins and other regulatory RNA species. Given
the complexity of the regulatory machinery, defects in non-coding regions of genes and regulatory
genomic regions are common in genetic disease, being present in up to 50% of cases (Yang et al.,
2013; Beaulieu et al., 2014) and are also the most common site of genetic variation conferring
susceptibility to common, complex disease (Manolio et al., 2008). There is, however, a silver lining.
The complexity that causes errors in gene expression or mRNA processing to be such a common
occurrence, also provides multiple and differential points of potential therapeutic intervention.
Over the past decade, there have been a number of examples, where the specifics of RNA regulatory
machinery have been harnessed to produce novel therapeutics that are now in phase III clinical
trials [e.g., Patisiran for Familial amyloid polyneuropathy (Rizk and Tuzmen, 2017), Custirsen for
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prostate cancer (Edwards et al., 2017) and AGS-003 for renal
cell carcinoma (Figlin, 2015)]. This review aims to explore
the potential for intervention in mRNA processing or post-
transcriptional regulation with selected examples for future
therapeutic benefit.

THE LIFECYCLE OF A CODING RNA

The processes involved in the production of a mature mRNA, and
its subsequent fate are multifaceted and complicated (Figure 1).
The life of an RNA molecule starts upon transcription, which
is controlled by tissue specific promoters and enhancers. The
immature primary RNA transcript (heterogeneous nuclear RNA
(hnRNA) or pre-mRNA) then undergoes a series of modifications
that involve the addition of the 5′ cap structure, removal of
the intronic sequences by constitutive or alternative splicing
and 3′ end processing events that include the addition of the
poly-A tail (Chen et al., 2017; Sperling, 2017; Zhang and Tjian,
2018). These processes are not a linear pipeline and occur
co-transcriptionally (Beyer and Osheim, 1988; Bentley, 2002).
Newly processed RNA may also undergo RNA editing, which
is mostly A to G or A to I substitution in humans (Chen,
2013). RNAs may also undergo epitranscriptomic decoration,
whereby different RNA modifications such as methylation of
adenosine residues (m6A) may be added. Such modifications
are added by a series of RNA readers, writers and erasers
(Helm and Motorin, 2017). Mature mRNAs are then exported
from the nucleus to the cytoplasm. This is an active and
regulated process, and one of the primary safeguards against
the translation of aberrant mRNAs (Williams et al., 2018). The
spatial and temporal expression of newly exported RNAs can
also controlled at the level of specific localization within the cell.
This can be passive, or an active process involving transport on
cytoskeletal tracks (Suter, 2018). Gene expression can also be
controlled at the level of translation. This can occur by virtue
of selective degradation of specific RNAs by mRNA surveillance
pathways such as nonsense-mediated decay, no-go decay and
non-stop decay (Harigaya and Parker, 2010; Klauer and van
Hoof, 2012; Lejeune, 2017), or it can be by regulation of the
rate of translation itself (Gorgoni et al., 2014). The half-life of
any given mRNA is then determined by a number of RNA
decay pathways, most of which involve successive decapping
and deadenylation of RNA molecules, which then renders them
susceptible to exonucleases (Wahle and Winkler, 2013; Borbolis
and Syntichaki, 2015). Finally, the fate of the RNA may also be
influenced by the action of both short and long non-coding RNAs
and RNA binding proteins which can result in degradation or
translational blocking (Fukao et al., 2015; Iadevaia and Gerber,
2015; Fukao and Fujiwara, 2017).

POTENTIAL POINTS OF THERAPEUTIC
INTERVENTION

Knowledge of the processes by which mature mRNAs are
expressed, processed and regulated opens up the possibility of

targeting the molecule with specific interventions for future
therapeutic benefit.

Therapeutic Modulation of Transcription
Therapeutic modulation of gene activity can be achieved
through several mechanisms which include triplex-forming
oligonucleotides (TPOs) synthetic polyamides (SPs) and artificial
transcription factors (ATFs) (Uil et al., 2003). These approaches
work by altering the expression level of a gene, rather than
restoring its sequence per se. TPOs and SPs work by binding
the major and minor groove, respectively, of the genomic
DNA in specific regions of the gene, with the consequence of
modulating gene activity at the level of transcription. This can
be achieved by using steric hindrance to block transcription
elongation for down-regulation of gene activity or conversely,
blocking access to naturally occurring repressor molecules to
bring about gene activation. ATFs are custom molecules designed
with DNA binding domains specific to the gene in question,
coupled to a trans-regulatory domain to produce the desired
activity. Although there have been some promising in vitro
studies, such as reactivation of the EPB41L3 gene, usually silenced
by methylation, to promote tumor suppression in breast, ovarian,
and cervical cell lines (Huisman et al., 2015), they have not yet
reached prominence in the clinic.

Therapeutic Modification of Splicing
RNA splicing is controlled by a complex interplay between
ribonucleoprotein complexes and sequence elements in the pre-
mRNA. The splicing process consists of two phosphodiester
transfer reactions; the first being an interaction between the
5′ splice site and the branch site, and the second comprising
cleavage at the 3′ splice site, and joining of the released exons.
This occurs due to the action of a family of small nuclear
ribonucleoproteins (snRNPs) named U1, U2, U4, U5, and
U6, which together with a battery of approximately 80 other
ancillary proteins form the core spliceosome and orchestrate the
splicing process (Will and Luhrmann, 2011). The spliceosome
is a dynamic machine that undergoes structural remodeling
and conformational change to bring about the excision of
introns and the joining of introns (Makarov et al., 2002). This
machinery is necessary but sometimes not sufficient for splice
site usage to occur; 98% of the genome produces multiple RNA
transcripts in a process termed alternative splicing (Pan et al.,
2008). The precise nature of transcripts produced under different
circumstances is under tight spatial and temporal regulation.
This is facilitated by the combinatorial control of a series
of splice site activators and inhibitor proteins that together
determine whether or not a given splicing event occurs in a
given circumstance. Serine Arginine rich proteins (SRSF) splicing
factors usually (but not exclusively) promote splice site usage,
whereas heterogeneous nuclear ribonucleoproteins (hnRNPs)
usually (but not exclusively) promote splice site silencing, as
well as having roles in nuclear export and other aspects of RNA
metabolism (Smith and Valcarcel, 2000; Cartegni et al., 2002).
Splicing defects can arise from single base pair changes to the
core and regulatory sequence elements, but can also arise from
insertion or deletion events and frameshifts, or from activation of
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FIGURE 1 | The lifecycle of an RNA. This figure illustrates the lifecycle of an mRNA. These processes are co-transcriptional, so the precise order of events is
illustrative. Blue lines in the transcript refer to introns and untranslated regions, whilst exons are indicted by red lines. The 5′ cap is indicated by a blue circle. Small
yellow circles indicate epitranscriptomic decoration, whilst pale blue lines within the exons refer to RNA editing events. The nuclear envelope is indicated by a large
dashed line. RNA binding proteins modifying stability are given by blue triangles, and miRNAs by green lines. The translating ribosome is indicated by beige circles.
Nascent polypeptide is given by green interlocked circles. Degraded RNA is indicated by a gray dashed line.

cryptic splice sites by other sequence changes. Similarly, changes
occurring in exon and intron splicing enhancer and silencer
elements can elicit dysregulation of splicing patterns of specific
genes (Blencowe, 2000). Dysregulation of the splicing regulatory
machinery by cellular stress has been reported in more complex
phenotypes such as cellular senescence (Holly et al., 2013; Latorre
et al., 2017) and altered global alternative splicing profiles are a
key characteristics of many complex diseases such as dementia,
cancer and type 2 diabetes (Tollervey et al., 2011; Berson et al.,
2012; Cnop et al., 2014; Love et al., 2015; Lu et al., 2015).
The complexity of splicing regulation offers several points of
potential intervention.

Moderation of the Core Spliceosome
The global dysregulation of splicing patterns that occur in
complex disease may be addressed by targeting the core
spliceosome. There are several compounds of bacterial origin that
affect the function of the SF3B component of the U2 snRNP,
which are showing promise as anti-cancer agents by causing
stalling of the cell cycle at the G1/S or G2/M checkpoints
(Nakajima et al., 1996). Although these approaches show
promise, to date most remain some distance from the clinic.

Moderation of Splicing Regulation
It may be possible to globally restore splicing patterns by targeting
the splicing regulatory proteins themselves. This could be done
at the level of mRNA expression, or at the level of activation

or cellular localization. Splicing factor expression has recently
been described to be negatively regulated at the mRNA level in
senescent primary human dermal fibroblasts by the constitutive
activation of the ERK and AKT pathways. Targeted inhibition
of either ERK or AKT, as well as gene knock down of their
effector genes FOXO1 and ETV6 was associated with restoration
of splicing factor expression and rescue from cellular senescence
(Latorre et al., 2018). Similarly, splicing factor activity and
localization is controlled at the protein level by the action of
a series of kinases and phosphatases including SRPK1, SRPK2,
CLK1 - CLK4, DYRK1-2, PIM1-2, and PRP4. The action of these
regulators ensures the correct localization of splicing factors for
action at the correct time and in the correct place. Several small
molecule inhibitors of SRPK1 or SRPK2 are in development
currently and show promise as anti-cancer agents for prostate
malignancy in humans (Mavrou et al., 2015; Bates et al., 2017).
Similarly, CLK protein kinase inhibitors have been demonstrated
to suppress cell growth in human mammary tumor cell lines
(Araki et al., 2015).

Moderation of Splice Site Choice
If monogenic disease is due to dysregulated splicing, in some
cases it may be possible to correct or reverse the defect by
restoration of correct splicing patterns. There are several means
of accomplishing this, including antisense oligonucleotides
(AONs), or steric hindrance agents such as morpholino
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oligonucleotides or similar to occlude specific splicing regulatory
sequences. This potential of this approach is best exemplified
by novel treatments for spinal muscular atrophy (SMA) and
Duchenne Muscular dystrophy (DMD) for which therapies for
manipulation of splicing have been developed and are now
licensed for clinical use. SMA is characterized by progressive
neuromuscular disorder caused by mutations in the Survival
Motor Neuron (SMN1) gene (Lefebvre et al., 1995; Lorson et al.,
1999). These are often deletion events. The human genome
contains a second SMN gene, SMN2, which due to the presence
of a single C-to-T transition at codon 280 which disrupts a
splicing enhancer site produces an unstable SMN transcript
lacking exon 7 (SMN17). This transcript is present at only
10% of SMN1 levels (Lorson et al., 1999) but has potential to
compensate for mutation-related reduced activity of SMN1. This
has formed the basis for a novel therapeutic strategy whereby
an AON (Nusinersen) has been designed to influence splicing
patterns of SMN2. Nusinersen targets the N1 (ISS-N1) motif
in SMN2, and promotes the inclusion of exon 7 and increases
levels of compensatory SMN2. Several clinical trials have now
been undertaken (Parente and Corti, 2018) and Nusinersen, also
known as Spinraza, has now been approved by both US and EU
regulatory authorities for clinical use.

Similar strategies have also been employed for Duchenne
Muscular dystrophy, an X-linked neuromuscular disorder that
affects 1:5000 newborn boys (Mendell et al., 2012), and is
primarily caused by deletions, frameshift or nonsense mutations
in the dystrophin (DMD) gene (Monaco et al., 1988). The
majority of these mutations yield mRNAs containing premature
termination codons, which trigger nonsense-mediated decay
and degradation of affected DMD transcripts. Several strategies
involving AONs targeted to specific splice sites have now
been employed to bring about exon skipping to remove
the offending exon(s) and lead to the production of a
truncated, but still partially functional DMD protein (Aartsma-
Rus, 2010; Niks and Aartsma-Rus, 2017). Similar approaches
have been employed to modify the effects of duplication
mutations in cell lines (Wein et al., 2017). Most AONs
under assessment as DMD therapeutics are chemically modified
2′-O-methyl-phosphorothioate oligonucleotides (2OMePS) or
phosphorodiamidate morpholino oligomers (PMOs) which can
be administered systemically (Goemans et al., 2011). One of these,
eteplirsen, a PMO which brings about skipping of exon 51, a
hotspot for DMD mutations, has demonstrated promising results
in a number of clinical trials and been designated ‘reasonably
likely to predict a clinical benefit’ by the FDA (Goemans
et al., 2011). Other approaches have employed ‘readthrough’
agents such as ataluren that allow bypass of the premature
termination codon and are now in Phase III clinical trials
(Namgoong and Bertoni, 2016).

Therapeutic Moderation of
Polyadenylation
Polyadenylation is an essential step in mRNA processing,
with a pivotal role in maintenance of RNA stability and
management of RNA turnover. Many genes contain more than

one polyadenylation site and display alternative polyadenylation,
producing mRNA transcripts with novel 3′ untranslated regions.
These may be differentially targeted by non-coding RNAs such as
miRNAs or RNA binding proteins, or have differential translation
efficiency (Elkon et al., 2013). Control of polyadenylation is
mediated by a number of sequence elements such as the
polyadenylation site itself, but also a series of upstream (U
and UGUA rich) and downstream (U and GU rich) elements
(Tian and Graber, 2012) that bind the protein complexes
that orchestrate the process. These sequence elements bind
the polyadenylation machinery that include the cleavage and
polyadenylation specificity factors, the cleavage stimulation
factors and the polyadenylate polymerase itself (Shi et al.,
2009). Differential choice of polyadenylation site is linked to the
proliferation and differentiation capacity of the cells; transcripts
in highly proliferative cells tend to have shorter 3′UTRs
(Sandberg et al., 2008). Differential use of polyadenylation sites
may also have impacts on mRNA stability, mRNA export and
localization, translation rates and protein localization (Tian and
Graber, 2012). Patterns of alternative polyadenylation are also
regulated by differential binding of RNA binding proteins; CSTF2
and CFIm subunits of the main polyadenylation machinery have
been shown to have effects on relative expression of alternatively
polyadenylated isoforms (Zheng and Tian, 2014). Other RNA
binding proteins such as HNRNPs H and I (Katz et al., 2010), as
well as CPEB1 (Bava et al., 2013) have also been associated with
alternative isoform choice. RBPs such as these may in the future
form the basis of therapies to influence the 3′ end processing of
alternatively polyadenylated transcripts as therapeutic agents.

Therapeutic Modification of RNA Editing
RNA editing is a mechanism of generating further transcriptomic
diversity and can impact the final sequence or structure of
both encoded proteins and non-coding RNAs (ncRNAs) (Ganem
and Lamm, 2017; Yablonovitch et al., 2017). RNA editing is an
extremely common event, occurring in the many dynamically
regulated mRNA transcripts and can comprise a variety of
modifications, the most common of which is adenosine to inosine
(A to I), which is eventually read as guanosine (Peng et al.,
2012). RNA editing is especially prevalent in Small Interspersed
Repetitive Elements (SINE) elements such as Alu, and also in
transcripts in the brain (Jepson and Reenan, 2008; Osenberg
et al., 2010). RNA editing events have been implicated in
control of mRNA splicing and miRNA regulation (Farajollahi
and Maas, 2010; Nishikura, 2010). RNA editing events are
primarily mediated by a family of adenosine deaminases acting
on RNA (ADARs), of which there are three major members;
ADAR1, ADAR2, and ADAR3. The three ADARs have common
functional domains, but differential structural features and some
degree of site specificity (Nishikura, 2016). ADAR expression
is itself regulated by transcription factors such as CREB and
activated by kinases such as JNK1 (Peng et al., 2006; Yang et al.,
2012). Dysfunction of ADAR1 is associated with diseases such as
Aicardi-Goutières syndrome (Rice et al., 2012), with psychiatric
disorders due to attenuated 5-HT2CR levels (Eran et al., 2013),
and also with cancer (Ganem et al., 2017), whereas ADAR2
is linked to circadian rhythm and epilepsy (Gallo et al., 2017).
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Although less advanced than therapies targeting splicing defects,
strategies to target ADARs to influence RNA editing are
beginning to be evaluated for future clinical benefit. ADAR1
has been demonstrated to target let7, a miRNA involved in
many processes including control of cell cycle (Roush and
Slack, 2008). Over-expression of ADAR1 and subsequent down-
regulation of Let7 has been shown to drive the self-renewal of
leukemic stem cells in human blood, an observation that can be
reversed by inhibition of ADAR1-mediated RNA editing (Zipeto
et al., 2016). Very recently, techniques for directing ADARs to
specific points of intervention have been developed. This system,
named RESTORE, uses a plasmid-borne guide RNA coupled to
an ADAR recruiting domain to deliver ADAR2 directly to the
region of interest. This approach has been used to successfully
edit phosphotyrosine residues in STAT1 with resultant changes
to the activity of this signaling protein (Merkle et al., 2019).
There are also newly emerging techniques based on modified Cas
technologies utilizing catalytically inactive Cas13-ADAR2 fusion
proteins to bring about RNA editing (Cox et al., 2017). These
early observations suggest that in the future, targeting ADARs or
other regulators of RNA editing may prove promising points of
traction for neurodevelopmental disorders and for cancer.

Modification of RNA Based
Epitranscriptomics
Epitranscriptomic modification of DNA is well known, but
it is now becoming increasingly evident that RNA is also
epigenetically modified. RNA is subject to decoration with
over 130 different modifications. Most of these map to very
abundant RNAs such as rRNAs and tRNAs, but a subset are
seen in mRNA, circRNA and lncRNA (Schaefer et al., 2017).
The most common marks are N(6)-methyl-adenosine (m6A),
5-methylcytosine (m5C), 5-hydroxymethylcytosine (hm5C) and
N1-methyladenosine (m1A), which have been shown to be
widely present throughout the transcriptome by high throughput
sequencing (Jung and Goldman, 2018). M6A is enriched in the
last exon of genes and also occurs preferentially at 5′ untranslated
regions (UTRs) (Ke et al., 2015; Meyer et al., 2015), whereas m1A
is enriched in promoters and 5′ UTRs (Dominissini et al., 2016).
m5C marks are often located at both 5′ and 3′ UTRs (Squires
et al., 2012). RNA modifications can influence gene expression by
a number of mechanisms, including influencing RNA structure,
recruiting other regulatory proteins (e.g., splicing factors, RNA
binding proteins involved in control of stability) or moderation of
translation (Nachtergaele, 2017). RNA epitranscriptomic marks
are added and removed by a series of writers (METTL3,
METTL14, WTAP, KIAA1429, RBM15/15B, and METTL16) and
erasers (FTO and ALKBH5) (Tong et al., 2018). Disruption of
m6A disrupts RNA metabolism; m6A depleted transcripts have
been reported to be unstable (Tang et al., 2018). Accordingly,
mutations in the writer or eraser machinery have been associated
with cancers such as hepatocellular carcinoma and acute myeloid
leukemia (AML) (Vu et al., 2017; Chen et al., 2018), and with
memory, fertility and metabolic phenotypes (Fischer et al., 2009;
Zheng et al., 2013; Nainar et al., 2016). The RNA epigenomic
writers and erasers are therefore promising future therapeutic

targets. At present, the work in this area is mainly in cell and
animal models. Silencing the METTL14 ‘writer’ led to restoration
of differentiation of myeloid cells in AML and inhibited AML cell
survival and proliferation (Weng et al., 2018). Similar strategies
targeting ALKBH5 have showed promise as anti-tumor agents
in glioblastoma stem cells (Schonberg et al., 2015). Studies
have suggested that small molecule inhibitors of FTO may have
potential utility as anticonvulsants in mouse models of epilepsy
in vivo, by suppression of 2-oxoglutarate (2OG) through altering
m6A levels (Zheng et al., 2014).

Modulation of RNA Export
The activity of genes is also dependent on the correct positioning
of mRNAs within the cell. Once processed, RNAs are usually
exported through the nuclear membrane into the cytoplasm
ready to be translated. This is not a passive process; it is
orchestrated by a portfolio of RNA export proteins which
escort the RNA molecule through the nuclear pore. Messenger
RNAs are primarily transported by Nxf1 and Xpo1, whereas
miRNAs are exported by Xpot and Xpo5. The transcription
Export complex 1 (Trex1) facilitates binding of Nxf1 to the
processed mRNA, and together with a collection of other
proteins such as karyopherins or importins causes the processed
mRNA to associate with and transit through the nuclear pore
(Viphakone et al., 2012). The nuclear pore itself is composed
of a collection of nucleoporins, and comprises a multi-subunit
structure consisting of a nuclear ring, a central transport channel
and a basket-like structure (Kabachinski and Schwartz, 2015).
Small molecules can diffuse across this barrier, but larger ones
such an mRNA cannot. Some of the specificity of transport is
achieved by the interaction of the nuclear transport machinery
with specific signal sequences in the mRNA itself (Lee et al.,
2006; Hutten and Kehlenbach, 2007), whereas other mRNAs
rely upon adaptor proteins (Huang et al., 2017). The expression
and localization of nuclear transporters is altered in certain
cancers (Zhou et al., 2013; Talati and Sweet, 2018), and have
been linked with some neurodegenerative disorders (Grima et al.,
2017) and comprises important components of inflammatory and
apoptotic response (Aggarwal and Agrawal, 2014; Kopeina et al.,
2018). Individual components of the nuclear export machinery
are currently under investigation as therapeutics. One of the
most promising, Selinexor, targets exportin 1 (Xpo1) and is
currently in pre-clinical trials and has shown efficacy against
acute myeloid leukemia and multiple myeloma (Kashyap et al.,
2016; Mahipal and Malafa, 2016).

Therapeutic Modulation of Non-coding
RNA Regulators of Gene Expression
The repertoire of genes expressed by any given cell in any
given circumstances is influenced by non-coding RNA (ncRNA)
regulators of gene expression. These ncRNA genes do not
encode proteins, but rather encode RNAs that contribute to
the regulation of other RNAs. They are classified into 2 broad
classes, short ncRNAs such as microRNAs (miRNAs) and longer
ncRNAs such as long non-coding RNAS (lncRNAs) and circular
RNAs (circRNAs).
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Modulation of Small Non-coding RNAs
MicroRNAs (miRNAs) and siRNAs are short non-coding
RNAs 20–25 bp in size. They interact with components of
the RNA-induced silencing complex (RISC) to bring about
translational blocking or RNA degradation. Each miRNA
interacts with specific binding sites in the 3′ UTR of its
target genes, which are 6–8 nt in length and are commonly
found in the genome; each miRNA is thus capable of targeting
hundreds of mRNA target genes simultaneously (Carthew
and Sontheimer, 2009). Several classes of miRNAs have been
associated with disease; these include the 17/92 cluster, the
miR-24 cluster or miR-3676, all of which are associated with
chronic lymphocytic leukemia (CLL) (Van Roosbroeck and
Calin, 2016). Other examples include miR-21, miR-10b, miR-
155, and Let-7a, which are associated with breast cancer
(Khalighfard et al., 2018), and miR-192, miR200c and miR-
17 which are associated with colon cancer (Ast et al., 2018).
Similarly miR-33a and miR-33 have been associated with
metabolic disease and atherosclerosis (Marquart et al., 2010;
Rayner et al., 2011) and miR-155 has links with inflammatory
diseases (Dorsett et al., 2008). The use of miRNAs as anti-
tumor therapeutics is currently receiving much interest. Specific
miRNAs can target the tumor suppressor machinery, and
are commonly referred to as onco-miRs, or they may target
the controls of cell cycle and act as tumor suppressors in
their own right. The small size and relative stability of
miRNAs and siRNAs, together with the observation that they
are readily taken up in endosomes and microvesicles (Rani
et al., 2017) renders them excellent candidates for therapeutic
modulation or use as biomarkers of disease. This can take the
form of antagomiRs that can target and silence endogenous
miRNAs or chemically modified miRNA mimics that can
increase regulation of their specific targets (Khvorova and
Watts, 2017). To date, 20 clinical trials have been undertaken
that exploit miRNA biology (Chakraborty et al., 2017), the
first of which miravirsen, which is targeted to miR-122,
is in phase II clinical trials for Hepatitis C (Lindow and
Kauppinen, 2012). In August 2018, the first siRNA-related
therapy, patisiran, was approved by the FDA for the treatment
of peripheral nerve disease by targeting an abnormal form of the
transthyretin (TTR) gene.

Modulation of LncRNAs
Long non-coding RNAs comprise a heterogeneous class of
non-coding RNAs, which are longer than 200bp in length.
They do not encode proteins, and originate from all most
genomic regions. They can originate from the locus that they
regulate, usually from the antisense strand, and regulate their
target in cis (Natural antisense Transcripts (NATs), or they
can map to entirely different genomic regions form their
targets (introns, pseudogenes, and non-coding DNA) and cause
regulation in trans. LncRNAs can also be associated with
promoters, enhancers or other regulatory regions and do not
have a homogeneous mode of action. They can activate or
repress their targets and can work by a number of mechanisms.
They are commonly involved in genomic imprinting; one of
the first lncRNAs discovered, XIST, coordinates X chromosome

inactivation (Brown et al., 1991). Other lncRNAs can act as
guides. This class of lncRNA includes ANRIL, which directs
the polycomb repressive complex to the site of action in
the case of the CDKN2A and CDKN2B genes (Kotake et al.,
2011) and the lncRNA HOTAIR, which has roles in colorectal
cancer (Kogo et al., 2011). They can also act as scaffolds,
directing the assembly of specific protein or RNA complexes
to their sites of action. For example, one function of the
lncRNA NEAT1, a multifunctional lncRNA with several roles
in tumorigenesis (Ghaforui-Fard and Taheri, 2018) is to bring
together the microRNA biogenesis machinery to enhance pri-
miRNA processing (Jiang et al., 2017), and the lncRNA LINP1,
which regulates the repair of DNA double strand breaks in
breast cancer by acting as a scaffold for the ku80 and DNA-
dependent protein kinase proteins (Zhang Y. et al., 2016).
They can also repress expression by acting as decoys, co-
regulators and inhibitors of RNA polymerase II. For example,
the lncRNA PANDA acts by sequestering its transcription
factor target NF-YA away from its site of action (Hung
et al., 2011). They have roles in regulators of subcellular
compartmentalization; the lncRNA MALAT is responsible for
localizing splicing factors to the nuclear splicing speckles
where they can be stored and regulated by phosphorylation
(Bernard et al., 2010).

In accordance with their pivotal role in regulating gene
expression, lncRNAs have been reported to be associated with
several diseases such as cancer (Huarte, 2015; Parasramka
et al., 2016; Peng et al., 2016), diabetes (Akerman et al., 2017;
He et al., 2017; Leti and DiStefano, 2017), neurodegenerative
disease (Riva et al., 2016) and cardiovascular disease (Hou
et al., 2016; Haemmig et al., 2017; Gangwar et al., 2018).
LncRNAs may represent promising therapeutic targets; they
are responsive to small molecule therapeutics; a recent study
documented 5916 lncRNAs that responded to 1262 small
molecule drugs (Yang et al., 2017). Although progress toward
the clinic has been slow, perhaps because of the diverse
modes of actions of lncRNAs, there are some promising
candidates. Several lncRNAs have been reported to be
dysregulated in osteoarthritis (OA), including HOTAIR,
RP11-445H22.4, GAS5, PMS2L2, H19, and CTD-2574D22.4
(Xing et al., 2014). At the present time, the majority of studies
have not progressed beyond cell or animal models, several
potential future therapeutic candidates have emerged; the
lncRNA PCGEM1 was demonstrated to inhibit synoviocyte
apoptosis on OA by moderation of its target miR-770
(Kang et al., 2016). Similarly, many lncRNAs have been
identified as potential therapeutic targets in cardiovascular
disease or cancer, including GAS5, LIPCAR, SENCR, ANRIL,
SMILR, and MALAT (Gomes et al., 2017). ASP and siRNA
approaches to therapeutically manipulate MALAT levels
are in development in human cancer cells and in animal
models (Arun et al., 2016). Targeting lncRNAs is subject to
more difficulty than miRNAs, because of their larger size
and the heterogeneity of their mode of action, which may
explain why their evaluation is not as advanced as that of
miRNAs. Nevertheless, they have significant potential as future
therapeutic targets.
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Modulation of CircRNAs
Circular RNAs (circRNAs) are a relatively newly discovered
class of non-coding RNA regulators found in multiple species
(Haque and Harries, 2017). They are formed from ‘backsplicing’
events of linear genes, and comprise circular molecules, which
are therefore relatively immune to exonucleases (Cocquerelle
et al., 1993; Schwanhausser et al., 2011; Jeck et al., 2013;
Lan et al., 2016; Lasda and Parker, 2016). Like lncRNAs,
circRNAs have been reported to influence gene expression
by a variety of mechanisms including action as miRNA
sponges or mRNA traps, as well as comprising modifiers
of transcription. translation, or splicing (Haque and Harries,
2017). Circular RNAs have been suggested to have roles in
many cellular processes, including embryonic development
(Xia et al., 2016), metabolism (Xu et al., 2015), regulation
of cell cycle (Zheng et al., 2016) and regulation of cellular
stress (Burd et al., 2010). In accordance with this observation,
dysregulated circRNA expression has been associated with
multiple human diseases such as cancer (Yao et al., 2017),
neurological disease (Khoutorsky et al., 2013), osteoarthritis (Liu
et al., 2016), cardiovascular disease (Taibi et al., 2014; Wang
et al., 2016), type 2 diabetes (Gu et al., 2017), pre-eclampsia
(Zhang Y.G. et al., 2016) and impaired immune responses

(Ng et al., 2016). Although the study of circRNAs is in its infancy
compared with other ncRNAs, they too have potential as future
therapeutic targets.

REMAINING BARRIERS AND FUTURE
PROSPECTS

This is an exciting time for RNA-based therapeutics, with several
notable examples making it as far as license for clinical usage.
Over the next decade, it is likely that there will be a large
expansion in the breadth and scope of human disorders that can
be treated using these, and similar approaches. Most developed
at the present time, are interventions targeted at specific splice
events and those involving small RNAs, but future work may
harness the potential of targeting other parts of the RNA
regulatory milieu (Figure 2).

Several barriers do, however, remain to the wide
implementation of these opportunities which are focused
mainly on delivery, specificity and duration of treatment. Firstly,
delivery of specific molecules to their site of action may be
challenging. For some applications, such as skin, which may be
treated topically or lung, which may be treated via inhalation,

FIGURE 2 | Potential points of intervention for RNA based therapies. This figure indicates the potential points at which interventions could be made to alter the
amount or nature of expressed RNA. Blue lines in the transcript refer to introns and untranslated regions, whilst exons are indicted by red lines. The 5′ cap is
indicated by a blue circle. Small yellow circles indicate epitranscriptomic decoration, whilst pale blue lines within the exons refer to RNA editing events. The nuclear
envelope is indicated by a large dashed line. RNA binding proteins modifying stability are given by blue triangles, and miRNAs by green lines. The translating
ribosome is indicated by beige circles. Nascent polypeptide is given by green interlocked circles. Each potential point of intervention is given by a red arrow.
Degraded RNA is indicated by a gray dashed line.
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therapeutic delivery of interventions may be easier. Delivery
to internal organs such as brain, liver or pancreas will require
different and systemic approaches. One reason why AONs,
readthrough agents and small RNAs have been at the forefront
of this emerging field is that their small size and relative
stability means that they can be more easily introduced into
cells. This may not be true of entities such as lncRNAs or
large circRNAs, which may be large molecules with potentially
challenging secondary or tertiary structure. Small molecules
can readily be introduced into cells using lipid-mediated
transfer agents, or endogenous structures such as endosomes
or microvesicles, which could be harnessed to deliver cargoes.
Secondly, there are questions of specificity. One feature of the
therapies that are in clinic currently is their specificity to their
sites of action. Gene expression and the regulation thereof is
highly tissue specific, and genes may often be required to be
expressed only at a specified time, or in response to specific
circumstances. It may not be advantageous to produce changes
in all tissues or at all times, and effects must of course be
limited to their intended targets. Specificity of effect can be
achieved by choosing targets that are only present at their
sites of action, or by modifying delivery so that cargoes are
only delivered to their intended place of action. For example,
strategies are emerging now which allow selective delivery of
senolytic cargoes to senescent cells only using galactosaccharide
nanoparticles, which harness the observation that senescent cells
harbor large quantities of lysosomal β-galactosidase (Munoz-
Espin et al., 2018). Similarly, strategies could be developed
that introduce therapeutic oligonucleotides under the control
of gene regulatory elements expressed only in the intended
target tissues. Lastly, one needs to consider the potential need

for repeated treatments. The approaches discussed here differ
from emerging “gene editing” technologies such as CRISPR, in
that they are not transmitted to future generations, and may
require repeated treatments. This can be considered both a
caveat and an advantage. The need for repeated treatments may
be burdensome for patients, but in reality, the vast majority
of currently available treatments for human disorders fall into
this category. Conversely, the need to deliver repeated doses
introduces a degree of flexibility, and allows treatments to
be quickly discontinued or changed if adverse effects occur.
We are at a time of huge advances in our understanding
of how our genome is curated and regulated and how our
genes are expressed.

The multifactorial control of gene expression, and the
complexity of this progress offers multiple points of potential
intervention for therapeutic benefit. Over the coming decades,
there is likely to be a huge increase in the number of therapies
for human diseases that target not the genes themselves, but the
expression and regulation of those genes. We are at the dawning
of the era of genomic medicine, and the future looks bright.
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