Attractiveness is positively related to World Cup performance in male, but not female, biathletes

Tim W. Fawcett^{1,2*}, Jack Ewans², Alice Lawrence² and Andrew N. Radford²

¹Centre for Research in Animal Behaviour (CRAB), University of Exeter ²School of Biological Sciences, University of Bristol

*Correspondence: Tim Fawcett, Centre for Research in Animal Behaviour (CRAB), Washington Singer Laboratories, University of Exeter, Exeter EX4 4QG. Phone: +44 1392 725273. E-mail: t.w.fawcett@exeter.ac.uk.

SHORT TITLE: Successful male biathletes are more attractive

Ethics. The procedure was reviewed and approved by the University of Bristol Research Ethics Committee (ref. 12741) and informed consent was given by all participating raters.

Funding. No direct funding for this research.

Competing interests. We have no competing interests.

Authors' contributions. TWF, JE, AL and ANR designed the research; JE and AL collected the data; TWF analysed the data and wrote the paper with input from all other authors.

Acknowledgements. We thank Ian Penton-Voak for discussion and help in setting up E-Prime, and Louise Barrett, Erik Postma, Robbie Wilson and an anonymous reviewer for feedback on an earlier draft.

Data accessibility. Analyses reported in this article can be reproduced using the data and R code provided by Fawcett et al. (in press).

1 Lay summary

Performance in winter sports predicts attractiveness in men, but not in women. We examined the relationship between career-best performance metrics and attractiveness ratings for men and women who compete annually in the biathlon World Cup, a multidisciplinary sport that combines target shooting and cross-country skiing. Male biathletes who had achieved a higher peak performance in their career were rated as more attractive by the opposite sex,

7 whereas there was no such relationship for female biathletes.

8 Attractiveness is positively related to World Cup 9 performance in male, but not female, biathletes

10

11 Whole-organism performance capacity is thought to play a key role in sexual selection, 12 through its impacts on both intrasexual competition and intersexual mate choice. Based 13 on data from elite sports, several studies have reported a positive association between 14 facial attractiveness and athletic performance in humans, leading to claims that facial 15 correlates of sporting prowess in men reveal heritable or non-heritable mate quality. 16 However, for most of the sports studied (soccer, ice hockey, American football and 17 cycling) it is not possible to separate individual performance from team performance. 18 Here, using photographs of athletes who compete annually in a multi-event World Cup, 19 we examine the relationship between facial attractiveness and individual career-best 20 performance metrics in the biathlon, a multidisciplinary sport that combines target 21 shooting and cross-country skiing. Unlike all previous studies, which considered only 22 male athletes, we report relationships for both sportsmen and sportswomen. As 23 predicted by evolutionary arguments, we found that male biathletes were judged more 24 attractive if (unknown to the raters) they had achieved a higher peak performance 25 (World Cup points score) in their career, whereas there was no significant relationship 26 for female biathletes. Our findings show that elite male athletes display visible, 27 attractive cues that reliably reflect their athletic performance.

28

Keywords: sexual signaling, whole-organism performance, endurance, evolutionary sports
 science, fWHR, mouth curvature

31 INTRODUCTION

32 The evolution of mating preferences for indicators of direct or indirect fitness benefits is fundamental to all major theories of sexual selection (Kokko et al. 2006; Kuijper et al. 2012). 33 34 Although most research has focused on preferences for morphological 'ornaments' such as 35 enlarged appendages or bright color patches (Andersson 1994; Andersson and Simmons 36 2006), evidence suggests that mating patterns are also influenced by behavioral and 37 physiological characteristics, through their effects on whole-organism performance (Lailvaux 38 and Irschick 2006; Husak and Fox 2008; Lailvaux and Husak 2014). Individual variation in 39 performance can influence both intrasexual and intersexual interactions. In some animals, 40 athletic ability (e.g. endurance, sprint speed) predicts the outcome of intrasexual competition, 41 which in turn determines access to mating opportunities (e.g. beetles, crustaceans and lizards; 42 reviewed in Lailvaux and Irschick 2006). In others, courtship behavior directed towards the opposite sex involves active displays of maximum power output, motor skill or stamina and 43 44 these performance measures are associated with higher mating success (e.g. Anna's hummingbirds, Calypte anna, Clark 2009; golden-collared manakins, Manacus vitellinus, 45 46 Barske et al. 2011; Cuban burrowing cockroaches, Byrsotria fumigata, Mowles and Jepson 2015). 47

48 Competitive sport offers a unique setting in which to examine some of these issues in our own species. Recent studies on a range of different sports have suggested that women are 49 50 attracted to men with higher sporting ability, based purely on static images of their face and 51 upper shoulders. When shown facial photographs of elite sportsmen, women gave higher 52 attractiveness ratings to National Football League quarterbacks with better passer ratings 53 (Williams et al. 2010), cyclists who achieved a higher finishing position in the 2012 Tour de France (Postma 2014) and mixed martial artists who had won their bouts (Little et al. 2015). 54 55 A study on soccer and ice hockey (Park et al. 2007) also reported higher attractiveness ratings 56 for men who play in arguably more athletically demanding positions (strikers, 57 goalkeepers/goalies) than those in other positions (defenders/defensemen), although detailed 58 analysis of the workload in different soccer positions suggests a more complex picture 59 (Bloomfield et al. 2007; Gil et al. 2007). While facial attractiveness is unlikely to have a direct impact on success in any of these sports, it has been suggested that facial cues to 60 61 sporting performance could arise through multiple effects of testosterone and other androgens (Williams et al. 2010; Tsujimura and Banissy 2013; Zilioli et al. 2015). Androgens have been 62 63 linked both to the development of facial structure during puberty (Weston et al. 2007) and to 64 behavior in competitive interactions (Eisenegger et al. 2011; Oliveira and Oliveira 2014), 65 though direct evidence for a common mechanism is weak at best (Bird et al. 2016). According to evolutionary arguments, a female preference for more athletic men was 66 67 selectively favored in our recent evolutionary past because pairing with such men offered 68 direct or indirect benefits (Williams et al. 2010; Postma 2014; Longman et al. 2015). Such 69 arguments are perhaps most relevant for endurance, i.e. sustained activity over long distances, 70 which may have been an important determinant of foraging (hunting or scavenging) success 71 in ancestral environments and for which humans have an unusual capacity among mammals (Carrier 1984; Bramble and Lieberman 2004; Lieberman and Bramble 2007). However, the 72 73 extension of this evolutionary logic to performance in elite sports, and the empirical evidence 74 proposed to support it, is hotly debated. Critics have argued that the reported effect sizes are 75 weak, that findings from homogeneous groups of elite athletes cannot be generalized to the 76 wider human population and that available performance metrics reflect variation in sport-77 specific training rather than biological indicators of heritable fitness (Smoliga and Zavorsky 78 2015, 2016; see counter-arguments in Postma 2016). Although the genetic basis of variation 79 in elite athletic performance is disputed (Smoliga and Zavorsky 2016; Postma 2016), this debate overlooks a crucial point: a preference for more athletic males could evolve even if 80

84 There are, however, other important limitations of much of the published research on attractiveness and sporting ability. First, performance in team sports (e.g. American football, 85 86 soccer and ice hockey) is strongly dependent on the behavior of other individuals (i.e. the focal individual's team-mates). Even the Tour de France, which superficially may seem like 87 88 an individual sport, has a well-known strategic, team-based element (Torgler 2007) that 89 partly determines finishing positions in a given year. Although it seems likely that individual 90 performance capacity would have partly contributed to the measured outcomes in these 91 studies, a purer measure of athletic performance could be obtained by using an individual-92 level sport in which there is no team element.

93 A second limitation, specific to Postma's (2014) Tour de France study, is that 94 attractiveness ratings may have been influenced by the raters' knowledge of the research 95 aims. The online advertisement recruiting participants for this study explicitly stated that the aim was to investigate "the relationship between looks and performance" using "the portraits 96 of professional cyclists that have taken part in the 2012 Tour de France" (Postma 2012). It is 97 98 possible, therefore, that the reported relationship could have been driven by demand 99 characteristics (Orne 1962) leading participants to associate more athletic-looking faces with 100 higher attractiveness. To demonstrate a valid preference for more athletic individuals that is 101 not driven by demand characteristics, it is important that explicit information about the 102 sporting context is hidden from raters.

Finally, all previous studies have focused entirely on the relationship between facial
attractiveness and sporting performance in male athletes, ignoring whether a similar
relationship exists for female athletes. If the evolutionary explanation for this relationship is

106 credible-that an ancestral preference for more athletic mates led to direct or indirect fitness 107 benefits—then there are reasons to expect that the relationship will be different for females. 108 Evidence suggests that in our recent evolutionary past, it was primarily men rather than 109 women who engaged in hunting activities (Hawkes and Bliege Bird 2002; Marlowe 2007); 110 the potential benefits for a man choosing a more athletic partner are less clear. In addition, the 111 proposed role of testosterone as a mechanistic link between facial characteristics and athletic performance is more plausible for men than for women, given that the sexual divergence of 112 113 human facial structure (Weston et al. 2007) and neuromuscular performance (Beunen and 114 Malina 1988) coincides with a pubertal surge in testosterone production in men (Verdonck et 115 al. 1999). For these reasons, we would expect the relationship between facial attractiveness 116 and sporting performance to be weaker or even non-existent in women, compared to men. 117 Examining the relationships for both sexes would therefore allow a more comprehensive test of evolutionary predictions. 118

119 Here we report a study that addresses all the above limitations. For the first time, we 120 determine the relationship between facial attractiveness and sporting performance in both 121 male and female athletes in an individual-based sport without any team element, using attractiveness judgements made by raters who were unaware of the sporting connection. We 122 123 focus on the biathlon, a cross-country skiing race interspersed with rounds of target shooting 124 that tests elements of both endurance and skill. Cross-country skiing requires a large amount 125 of aerobic power, muscle strength (Neumayr et al. 2003), balance (Müller et al. 2011), 126 coordination and endurance (Stöggl et al. 2010), while shooting requires the ability to compose oneself via breathing techniques so that the physiological demands of the skiing do 127 128 not affect shooting accuracy (Sattlecker et al. 2007). The International Biathlon Union 129 organizes an annual series of World Cup events in which men compete over distances of 10-20 km and women over 7.5–15 km, generating individual performance metrics each year for 130

131 the top international competitors of both sexes. Independently, we obtained opposite-sex

132 attractiveness ratings for facial photographs of World Cup biathletes from a sample of

133 participants in the UK, where biathlon is not widely followed and therefore we could be

- 134 confident that the ratings were not influenced by a perceived connection to sport.
- 135

136 **METHODS**

137 Athletes

138 We obtained data on all 173 athletes (89 men aged 19–38 years; 84 women aged 22–40

139 years) who competed in the biathlon at the 2014 Winter Olympic Games in Sochi, Russia.

140 Passport-style photographs were downloaded from the Russian sports website P-Спорт (R-

141 Sport; archived at http://sochi2014.arch.articul.ru/www.sochi2014.com/en/biathlon-

142 athletes.htm) and rescaled to a standard size (144×80 pixels). We discarded 23 photos (12

143 male, 11 female) that were of poor quality, or had features that potentially identified the

144 subject as an athlete (e.g. national sports kit), or for whom performance data (see below) were

145 unavailable. This left us with a sample of 78 male and 78 female photos, depicting only the

146 head, neck and upper shoulders of the athlete, evenly lit against a plain background and

147 directly facing the camera. We took two sets of measurements from these photos that

148 previous research suggests may influence ratings of attractiveness and dominance: facial

149 width-to-height ratio (fWHR; Fig. 1a), calculated as the bizygomatic width (distance between

150 left and right cheekbones at the widest part of the face) divided by the upper facial height

151 (distance between upper lip and brow) (Weston et al. 2007; Carré and McCormick 2008); and

152 mouth curvature (Fig. 1b), calculated as the upturn of the mouth (vertical distance from

153 mouth center to left and right corners) divided by the mouth width (distance between left and

right corners) (Tamalas et al. 2016). We obtained the date of birth, height and weight for all

155 of these athletes from the P-Спорт website (see above).

156	To assess performance we used the 'World Cup total score' as defined by the
157	International Biathlon Union (2016; section 15.8.4.1). This total, recalculated each season,
158	comprises the points scored in all individual, non-relay World Cup events ('individual',
159	'sprint', 'pursuit' and 'mass start'), minus the two lowest scores; note that team-based events
160	('relay' and 'mixed relay') are excluded. The scoring system awards 60 points for winning a
161	race and gradually decreasing points down to 40th place (for full details see International
162	Biathlon Union 2016). We recorded each athlete's World Cup total score in every season
163	from 2001–02 to 2013–14 inclusive, as archived on the International Biathlon Union's
164	Datacenter (http://biathlonresults.com) and another biathlon statistics website
165	(http://www.realbiathlon.com), and then took the highest score for each athlete as a measure
166	of their career-best performance.
167	
168	Raters
169	To rate the attractiveness of the athletes we recruited 25 male and 25 female participants
170	(mean age 21.3 years, range 17–58) via e-mail, social media and opportunity sampling
171	around the University of Bristol campus; most were undergraduate students. This number of

172 raters is comparable to several previous studies using facial attractiveness judgements (e.g. n

173 = 21 in Penton-Voak et al. 2001; n = 28 in Penton-Voak and Chang 2008; n = 30 in Williams

174 et al. 2010; n = 33 in Little et al. 2015). Participation in the study was completely voluntary

175 and no payment was offered.

176

177 Procedure

178 Participants were taken to a test room in the University of Bristol's Life Sciences Building,

179 where they read and signed a consent form that provided basic information about the testing

180 procedure (without revealing the study's aims or the connection to sport) and explained that 181 they were free to withdraw at any stage. They then completed (at their own pace) a series of questions using keystrokes on a laptop computer, presented using E-Prime software version 182 183 2.0 (Psychology Software Tools 2002). After confirming their sex and age, the participants 184 were shown the photos of opposite-sex biathletes in randomized order and asked to indicate (i) how physically attractive they found that person on a scale from 1 (very unattractive) to 7 185 186 (very attractive) and (ii) whether they recognized the person. At the end of the study they were asked to indicate their sexual orientation. All details of the procedure were approved by 187 188 the University of Bristol Research Ethics Committee (ref. 12741).

189

190 Statistical analysis

191 One male rater identified himself as homosexual at the end of the task, so his ratings were 192 omitted before analysis. We also omitted 76 cases (less than 2% of the sample; no more than three cases for any athlete) where the rater reported that they recognized the face, even 193 194 though when probed by the experimenter none of these correctly identified that the faces 195 belonged to elite athletes. This left us with a sample of n = 3,746 attractiveness scores for 78 196 male and 78 female biathletes, rated by 24 male and 25 female participants. Including all of 197 the data (n = 3,900) did not change the patterns reported here (supplementary tables S3 and 198 S4). The results were also the same when excluding the small number (six women and three 199 men) of non-Caucasian biathletes (supplementary tables S5 and S6).

To analyze the factors affecting the variation in attractiveness ratings we ran a series of linear mixed-effects models (LMMs) using the packages *lme4* (Bates et al. 2015) and *lmerTest* (Kuznetsova et al. 2015) in R version 3.5.1 (R Core Team 2018). In all models, the athlete and rater identities were included as random effects to account for non-independent ratings. First, we fitted a model to the attractiveness data for both sexes combined, with fixed effects of athlete performance (highest World Cup total score), sex, age, height, body mass

206	index (BMI = weight (kg) divided by height (m) squared) and a two-way interaction term
207	between athlete sex and performance. BMI was used in place of weight to reduce problems
208	with multicollinearity, given that weight and height measurements are very strongly
209	correlated (44.0% shared variance between weight and height in female biathletes and 64.0%
210	in male biathletes, compared to 3.4% and 1.7% respectively between BMI and height).
211	Before analysis, the response variable (attractiveness rating) and all continuous predictors
212	(age, height, BMI and performance) were converted to Z scores (i.e. standardized) within
213	each sex by subtracting the mean and dividing by the standard deviation for that sex. We
214	included both linear and quadratic terms for the effects of age, height and BMI. Because the
215	sex \times performance interaction term was significant, we then analyzed the data for each sex
216	separately. Finally, we checked whether the observed relationships were mediated by mouth
217	curvature or fWHR by including these measurements (also converted to Z scores) as
218	additional predictors in the model.
219	The models were fitted using restricted maximum likelihood (REML) and the
220	significance of fixed effects was assessed using Wald t tests with Satterthwaite-approximated
221	degrees of freedom. Where significant effects were found we used likelihood-ratio tests
222	(based on maximum likelihood (ML) estimation) to check whether the inclusion of random
223	slopes (varying with rater identity) improved the fit of the model. Residual plots confirmed
224	assumptions of normality and homoscedasticity for all models.
225	The full data set and R code are available as supplementary information archived in the
226	Dryad digital repository (Fawcett et al. in press).

227

228 **RESULTS**

Raters varied significantly in the mean attractiveness rating they gave (random effect of rater identity, explaining 30.5% of the variation in ratings; LMM: $\chi^{2}_{1} = 1820.9$, *P* < 0.001). 231 Despite this, there was significant variation among biathletes in their mean rated

attractiveness (random effect of athlete identity, explaining 29.4% of variation; LMM: $\chi^{2}_{1} =$

233 1659.3, P < 0.001) and the raters showed strong agreement overall in which biathletes they

found attractive (intra-class correlation r = 0.838, based on variance components from one-

way ANOVA).

236 A model for both sexes combined, controlling for age, height and body mass index (BMI), revealed that the relationship between attractiveness and sporting performance 237 238 (career-best World Cup total score) differed significantly between male and female biathletes 239 (sex \times performance interaction term: P = 0.010; Table 1). There was also significant variation 240 among individual raters in how their ratings were related to athlete performance (random 241 slope term, explaining 0.5% of variation; $\chi^2_2 = 14.2$, P = 0.001). To decompose the sex \times 242 performance interaction term, we subsequently analyzed the sexes separately (Table 2). Among female biathletes, attractiveness ratings declined significantly with age, but there was 243 244 no effect of performance (Table 2a, Fig. 2a). By contrast, male biathletes who had achieved a 245 higher World Cup total score in their career were rated as significantly more attractive (Table 2b, Fig. 2b). All quadratic terms were non-significant (supplementary table S1), so were 246 247 omitted from the final models shown here. This pattern of results matches evolutionary 248 predictions, suggesting that women are sensitive to cues that reliably indicate athletic ability 249 in men.

Previous work (Williams et al. 2010; Tsujimura and Banissy 2013; Zilioli et al. 2015) has suggested that sporting performance might covary with differences in facial structure linked to androgens. For our data set, however, although fWHR was positively related to sporting performance in male biathletes (linear regression: $b \pm s.e. = 0.236 \pm 0.113$, $t_{70} =$ 2.08, P = 0.041), this morphological measure did not predict their facial attractiveness ratings (LMM: $b \pm s.e. = 0.023 \pm 0.066$, $t_{66.2} = 0.35$, P = 0.730). Another possibility is that athletic

256	ability is revealed not by facial structure but by facial expression, reflecting an athlete's
257	confidence or past success. We found that mouth curvature (a proxy for smiling; Tamalas et
258	al. 2016) was negatively related to sporting performance in male biathletes (linear regression:
259	$b \pm s.e. = -0.319 \pm 0.122$, $t_{70} = -2.62$, $P = 0.011$), but again did not predict their facial
260	attractiveness ratings (LMM: $b \pm s.e. = 0.067 \pm 0.072$, $t_{65.9} = 0.94$, $P = 0.353$). Importantly,
261	including fWHR and mouth curvature in our earlier models did not alter the pattern of other
262	effects: as before, facial attractiveness was positively related to performance in male (LMM:
263	$b \pm$ s.e. = 0.160 ± 0.071, $t_{72.4}$ = 2.27, P = 0.026), but not female (LMM: $b \pm$ s.e. = 0.011 ±
264	0.077, $t_{66.0} = 0.14$, $P = 0.888$), biathletes (supplementary table S2).

265

266 **DISCUSSION**

267 Our analysis shows that male biathletes who had achieved a higher World Cup total score in 268 their career were judged as more attractive by the opposite sex based solely on a photograph 269 of their face and upper shoulders, whereas there was no such relationship for female 270 biathletes. These patterns hold when controlling for age, height and BMI. Previous studies 271 have shown that attractiveness ratings are higher for elite sportsmen who won their last mixed 272 martial arts bout (Little et al. 2015) or achieved a higher finishing position in the 2012 Tour 273 de France cycling race (Postma 2014), while ours shows that attractiveness is also linked to 274 career-best performance in an annual competition in which individuals are 'playing the field', 275 without any dyadic or strategic team-based element. Most importantly, our study is the first to 276 examine this relationship in both sexes and show that it only exists for male athletes. By 277 keeping the sports connection hidden from raters, we ensured that the observed relationships 278 could not be driven by demand characteristics. Our results therefore provide strong evidence 279 that photographs of successful male athletes contain cues that are attractive to the opposite 280 sex.

281 There are at least four possible explanations for these results. The first possibility is 282 that, as suggested by some evolutionary hypotheses based on intersexual selection, more 283 athletic men have physical characteristics that reliably signal their greater performance 284 capacity, and women are attuned to those characteristics because in ancestral environments they predicted direct or indirect fitness benefits (Williams et al. 2010; Postma 2014; 285 286 Longman et al. 2015). For this hypothesis to work requires that athletes varying in their performance measures show perceptible differences in features of the head (including face), 287 288 neck or upper shoulders in static photographs, given that this was the only information seen 289 by our participants. As a candidate cue we examined fWHR, a sexually dimorphic measure 290 possibly linked to hormonal changes during puberty (Verdonck et al. 1999; Carré and 291 McCormick 2008) and correlated with aggressive behavior (Carré and McCormick 2008; 292 Carré et al. 2009), the outcome of violent conflicts (Zilioli 2015; Stirrat et al. 2012) and sporting success (Tsujimura and Banissy; but see Mayew 2013). A meta-analysis of studies 293 294 investigating fWHR concluded that it influences ratings of dominance or threat and, to a 295 lesser extent, ratings of attractiveness (Geniole et al. 2015). In our data set, fWHR was positively related to peak performance in male biathletes but not to their rated attractiveness, 296 and including it as a predictor in our statistical models did not explain the observed 297 298 relationship between performance and attractiveness. There may well be other cues besides 299 fWHR in the face, neck or upper shoulders that are consistently related to athletic 300 performance; further work using more detailed morphometric comparisons would be needed 301 to identify what these cues might be.

A second possible explanation is that success in World Cup events is reflected in an athlete's facial expression, which in turn influences their attractiveness to the opposite sex. For example, athletes who perform better than their rivals may be happier or more confident, either as a direct result of their success (e.g. good performances lead to higher confidence and 306 more positive mood states) or because pre-existing differences in confidence have an 307 important influence on outcomes in elite sport (Moritz et al. 2000; Feltz 2007; Hays et al. 308 2009), perhaps particularly in men (Woodman and Hardy 2003). To investigate this 309 possibility we quantified mouth curvature, a measure of facial expression indicative of 310 smiling (Tamalas et al. 2016). Previous research suggests that smiling can enhance 311 attractiveness (Jones et al. 2006; Golle et al. 2014), but perhaps only in women, with a neutral 312 (Penton-Voak and Chang 2008) or even negative (Tracy and Beall 2011) effect of smiling on 313 male attractiveness. In our study, including mouth curvature as an additional predictor did not 314 account for the observed relationship between performance and attractiveness in men, despite 315 a significant negative relationship between mouth curvature and performance. Future work 316 analyzing a more extensive set of feature point coordinates (Benson and Perrett 1991; 317 Tiddeman et al. 2001) may reveal subtler differences in facial expression that potentially 318 influence attractiveness judgements.

319 A third possibility is that athletes who are judged more facially attractive receive more 320 support and investment from an early age, ultimately leading to an improved career 321 performance compared to less attractive athletes. Studies suggest that attractive people are treated more favorably than less attractive people in a range of contexts, leading to better 322 323 economic prospects, a greater chance of being hired for jobs and even more affectionate 324 interactions with their mothers (Langlois et al. 2000; Little 2014). Such advantages could 325 extend into the sporting domain if, for example, better-looking athletes are more likely to be 326 selected for high-performance programs, receive extra attention from coaching staff and secure lucrative sponsorship deals, potentially enhancing their career performance. While 327 328 intriguing, we consider this to be an unlikely explanation for our results, because if anything 329 it would predict that the positive relationship between sporting performance and facial attractiveness should be stronger in female than male athletes. Sports coaching is dominated 330

17

331 by men (Knoppers 1992; Walker and Bopp 2011) and much has been written about the power 332 of male coaches over their athletes (Brackenridge 1997; Fasting and Brackenridge 2009), 333 particularly the circumstances under which this power can be exploited and lead to sexual 334 harassment or abuse of female athletes (Cense and Brackenridge 2001; Nielsen 2001; Fasting et al. 2003, 2004). Furthermore, while biased investment in more attractive athletes may have 335 336 a strong influence on progression to elite level, the impact on performance outcomes among those who have successfully made it to that level is likely to be much weaker. Nonetheless, 337 338 investigating attractiveness biases in sport would be a valuable direction for future work. 339 Evidence from the German Bundesliga suggests that a footballer's market value is enhanced 340 by his facial attractiveness, independent of actual performance ratings (Rosar et al. 2017), but 341 to our knowledge no studies have addressed whether coaching behavior and other aspects of 342 athlete development are affected by physical attractiveness, in either sex.

343 A final possibility is that more successful athletes spend more time, effort and money 344 enhancing their attractiveness through personal grooming, cosmetic surgery or other means. 345 We were unable to control for the use of make-up in the images, although it is important to note that these were fairly standardized, passport-style photographs rather than publicity 346 347 shots. While this explanation could potentially apply to some higher-profile sports in which 348 success generates fame, with accompanying publicity and advertising deals, it seems unlikely 349 to explain our results here, particularly given the absence of an effect in women. Nonetheless, 350 future studies could improve on our methodology by ensuring greater standardization of the 351 photos (e.g. covering of hair, no make-up).

Our study complements related findings in Tour de France cyclists (Postma 2014) and mixed martial artists (Little et al. 2015) and adds to the nascent field of evolutionary sports science (Wilson et al. 2017), highlighting the value of sports data as a rich resource for investigating how selection acts on psychological and physiological aspects of athletic

356	performance. Using annual performance measures from the biathlon World Cup, we found
357	that male, but not female, biathletes who had achieved a higher career peak were rated as
358	more physically attractive by the opposite sex. This pattern is consistent with the evolutionary
359	hypothesis that a female preference for more athletic men evolved through sexual selection,
360	but also with other potential explanations. Further work is required to identify the specific
361	cues that make better male athletes more attractive and to establish whether those cues
362	directly reveal natural variation in sporting ability, confidence arising from differential
363	success or biased investment in their athletic development.

364 **REFERENCES**

- 365 Andersson M. 1994. Sexual selection. Princeton (NJ): Princeton University Press.
- Andersson M, Simmons LW. 2006. Sexual selection and mate choice. Trends Ecol Evol.
- 367 21:296–302.
- Barske J, Schlinger BA, Wikelski M, Fusani L. 2011. Female choice for male motor skills.
 Proc R Soc B. 278:3523–3528.
- Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using
 lme4. J Stat Softw. 67:1–48.
- 372 Benson PJ, Perrett DI. 1991. Synthesising continuous-tone caricatures. Image Vis Comput.
- 373 9:123–129.
- Beunen G, Malina R. 1988 Growth and physical performance relative to the timing of the
 adolescent spurt. Exerc Sport Sci Rev. 16:503–540.
- 376 Bird BM, Cid Jofré VS, Geniole SN, Welker KM, Zilioli S, Maestripieri D, Arnocky S, Carré
- 377 JM. 2016. Does the facial width-to-height ratio map onto variability in men's
- testosterone concentrations? Evol Hum Behav. 37:392–398.
- 379 Bloomfield J, Polman R, O'Donoghue P. 2007. Physical demands of different positions in FA
- 380Premier League soccer. J Sports Sci Med. 6:63–70.
- Brackenridge C. 1997. 'He owned me basically...'. Women's experience of sexual abuse in
 sport. Int Rev Sociol Sport. 32:115–130.
- Bramble DM, Lieberman DE. 2004. Endurance running and the evolution of *Homo*. Nature.
 432:345–352.
- 385 Carré JM, McCormick CM. 2008. In your face: facial metrics predict aggressive behaviour in
- the laboratory and in varsity and professional hockey players. Proc R Soc B. 275:2651–
- 387 2656.

- 388 Carré JM, McCormick CM, Mondloch CJ. 2009. Facial structure is a reliable cue of
- aggressive behavior. Psychol Sci. 20:1194–1198.
- 390 Carrier DR. 1984. The energetic paradox of human running and hominid evolution. Curr
- 391 Anthropol. 25:483–495.
- 392 Cense M, Brackenridge C. 2001. Temporal and developmental risk factors for sexual
- harassment and abuse in sport. Eur Phy Educ Rev. 7:61–79.
- Clark CJ. 2009. Courtship dives of Anna's hummingbird offer insights into flight
 performance limits. Proc R Soc B. 276:3047–3052.
- 396 Eisenegger C, Haushofer J, Fehr E. 2011. The role of testosterone in social interaction.
- 397 Trends Cogn Sci. 15:263–271.
- Fasting K, Brackenridge C. 2009. Coaches, sexual harassment and education. Sport Educ
 Soc. 14:21–35.
- 400 Fasting K, Brackenridge C, Sundgot-Borgen J. 2003. Experiences of sexual harassment and
- 401 abuse among Norwegian elite female athletes and nonathletes. Res Q Exerc Sport.
 402 74:84–97.
- 403 Fasting K, Brackenridge C, Sundgot-Borgen J. 2004. Prevalence of sexual harassment among
- 404 Norwegian female elite athletes in relation to sport type. Int Rev Sociol Sport. 39:373–
 405 386.
- 406 Fawcett TW, Ewans J, Lawrence A, Radford AN. In press. Data and R code from:
- 407 Attractiveness is positively related to World Cup performance in male, but not female,
- 408 biathletes. Dryad Digital Repository. http://dx.doi.org/10.5061/dryad.nk764n1.
- 409 Feltz DL. 2007. Self-confidence and sports performance. In: Smith D, Bar-Eli M, editors.
- 410 Essential readings in sport and exercise psychology. Champaign (IL): Human Kinetics.
- 411 p. 278–294.

- 412 Geniole SN, Denson TF, Dixson BJ, Carré JM, McCormick CM. 2015. Evidence from meta-
- 413 analyses of the facial width-to-height ratio as an evolved cue of threat. PLoS ONE.

414 10:e0132726.

- 415 Gil SM, Gil J, Ruiz F, Irazusta A, Irazusta J. 2007. Physiological and anthropometric
- 416 characteristics of young soccer players according to their playing position: relevance for
- 417 the selection process. J Strength Cond Res. 21:438–445.
- 418 Golle J, Mast FW, Lobmaier JS. 2014. Something to smile about: the interrelationship
- 419 between attractiveness and emotional expression. Cogn Emot. 28:298–310.
- 420 Hawkes K, Bliege Bird R. 2002. Showing off, handicap signaling, and the evolution of men's
- 421 work. Evol Anthropol. 11:58–67.
- Hays K, Thomas O, Maynard I, Bawden M. 2009. The role of confidence in world-class sport
 performance. J Sports Sci. 27:1185–1199.
- Husak JF, Fox SF. 2008. Sexual selection on locomotor performance. Evol Ecol Res. 10:213–
 228.
- 426 International Biathlon Union. 2016. IBU biathlon guide 2016/2017. Salzburg, Austria:
- 427 International Biathlon Union. Available from:
- 428 <u>http://www.biathlonworld.com/downloads/</u>.
- 429 Jones BC, DeBruine LM, Little AC, Conway CA, Feinberg DR. 2006. Integrating gaze
- direction and expression in preferences for attractive faces. Psychol Sci. 17:588–591.
- 431 Knoppers A. 1992. Explaining male dominance and sex segregation in coaching: three
- 432 approaches. Quest. 44:210–227.
- 433 Kokko H, Jennions MD, Brooks R. 2006. Unifying and testing models of sexual selection.
- 434 Annu Rev Ecol Evol Syst. 37:43–66.
- 435 Kuijper B, Pen I, Weissing FJ. 2012. A guide to sexual selection theory. Annu Rev Ecol Evol
- 436 Syst. 43:287–311.

- Kuznetsova A, Brockhoff PB, Christensen RHB. 2015. lmerTest: tests in linear mixed effects
 models (version 2.0-33). Available from: http://CRAN.R-project.org/package=lmerTest.
- Lailvaux SP, Husak JF. 2014. The life history of whole-organism performance. Q Rev Biol.
 89:285–318.
- Lailvaux SP, Irschick DJ. 2006. A functional perspective on sexual selection: insights and
 future prospects. Anim Behav. 72:263–273.
- Langlois JH, Kalanakis L, Rubenstein AJ, Larson A, Hallam M, Smoot M. 2000. Maxims or
 myths of beauty? A meta-analytic and theoretical review. Psychol Bull. 126:390–423.
- Lieberman DE, Bramble DM. 2007. The evolution of marathon running. Sports Med.

446 37:288–290.

- 447 Little AC. 2014. Facial attractiveness. WIREs Cogn Sci. 5:621–634.
- 448 Little AC, Třebický V, Havlíček J, Roberts SC, Kleisner K. 2015. Human perception of
- fighting ability: facial cues predict winners and losers in mixed martial arts fights. Behav
 Ecol. 26:1470–1475.
- 451 Longman D, Wells JCK, Stock JT. 2015. Can persistence hunting signal male quality? A test

452 considering digit ratio in endurance athletes. PLoS ONE. 10:e0121560.

- 453 Marlowe FW. 2007. Hunting and gathering: the human sexual division of foraging labor.
- 454 Cross Cult Res. 41:170–195.
- 455 Mayew WJ. 2013. Reassessing the association between facial structure and baseball
- 456 performance: a comment on Tsujimura and Banissy (2013). Biol Lett. 9:20130538.
- 457 Moritz SE, Feltz DL, Fahrbach KR, Mack DE. 2000. The relation of self-efficacy measures
- 458 to sport performance: a meta-analytic review. Res Q Exerc Sport. 71:280–294.
- 459 Mowles SL, Jepson NM. 2015. Physiological costs of repetitive courtship displays in
- 460 cockroaches handicap locomotor performance. PLoS ONE. 10:e0143664.

- 461 Müller E, Gimpl M, Kirchner S, Kroll J, Jahnel R, Niebauer J, Niederseer D, Scheiber P.
- 462 2011. Salzburg Skiing for the Elderly Study: influence of alpine skiing on aerobic
- 463 capacity, strength, power, and balance. Scand J Med Sci Sports. 21:9–22.
- 464 Neumayr G, Hoertnagl H, Pfister R, Koller A, Eibl G, Raas E. 2003. Physical and
- 465 physiological factors associated with success in professional alpine skiing. Int J Sports
 466 Med. 24:571–575.
- 400 Wed. 24.371–373.
- 467 Nielsen JT. 2001. The forbidden zone: intimacy, sexual relations and misconduct in the
- 468 relationship between coaches and athletes. Int Rev Sociol Sport. 36:165–182.
- 469 Oliveira GA, Oliveira RF. 2014. Androgen responsiveness to competition in humans: the role
- 470 of cognitive variables. Neurosci Neuroecon. 3:19–32.
- 471 Orne MT. 1962. On the social psychology of the psychological experiment: with particular
- 472 reference to demand characteristics and their implications. Am Psychol. 17:776–783.
- 473 Park JH, Buunk AP, Weiling MB. 2007. Does the face reveal athletic flair? Positions in team

474 sports and facial attractiveness. Pers Individ Dif. 43:1960–1965.

- 475 Penton-Voak IS, Chang HY. 2008. Attractiveness judgements of individuals vary across
- 476 emotional expression and movement conditions. J Evol Psychol. 6:89–100.
- 477 Penton-Voak IS, Jones BC, Little AC, Baker S, Tiddeman B, Burt DM, Perrett DI.
- 478 Symmetry, sexual dimorphism in facial proportions and male facial attractiveness. Proc
- 479 R Soc B. 268:1617–1623.
- 480 Postma E. 2012. Human sexual selection survey: Do nice guys finish first, or are looks
- 481 deceiving? (Accessed 22 August 2012). Archived at
- 482 http://life.mcmaster.ca/~brian/evoldir/Archive/Mnth_Review_Aug_12.pdf.
- 483 Postma E. 2014. A relationship between attractiveness and performance in professional
- 484 cyclists. Biol Lett. 10:20130966.

- 485 Postma E. 2016. Why we should *not* dismiss a relationship between attractiveness and
- 486 performance: a comment on Smoliga and Zavorsky (2015). Biol Lett. 12:20160068.
- 487 Psychology Software Tools. 2002. E-Prime version 2.0. Available from:
- 488 http://www.pstnet.com.
- 489 R Core Team. 2018. R: a language and environment for statistical computing. Vienna,
- 490 Austria: R Foundation for Statistical Computing. Available from: <u>https://www.R-</u>

491 <u>project.org/</u>.

- 492 Rosar U, Hagenah J, Klein M. 2017. Physical attractiveness and monetary success in German
 493 Bundesliga. Soccer Soc. 18:102–120.
- 494 Sattlecker G, Müller E, Lindinger S. 2007. Performance determining factors in biathlon
- 495 shooting. In: V Linnamo PV Komi, E Müller, editors. Science and Nordic Skiing. Oxford
- 496 (UK): Meyer and Meyer Sport. p. 257–265.
- 497 Smoliga JM, Zavorsky GS. 2015. Faces and fitness: attractive evolutionary relationship or
 498 ugly hypothesis? Biol Lett. 11:20150839.
- 499 Smoliga JM, Zavorsky GS. 2016. Exercise physiology and sports science must be considered
- in evolutionary theories regarding human performance: a reply to Postma (2016). BiolLett. 12:20160856.
- 502 Stirrat M, Stulp G, Pollet TV. 2012. Male facial width is associated with death by contact
- violence: narrow-faced males are more likely to die from contact violence. Evol Hum
 Behav. 33:551–556.
- 505 Stöggl T, Enqvist J, Müller E, Holmberg H-C. 2010. Relationships between body
- 506 composition, body dimensions, and peak speed in cross-country sprint skiing. J Sports
 507 Sci. 28:161–169.

- 508 Tamalas SN, Mavor KI, Axelsson J, Sundelin T, Perrett DI. 2016. Eyelid-openness and
- 509 mouth curvature influence perceived intelligence beyond attractiveness. J Exp Psychol
 510 Gen. 145:603–620.
- 511 Tiddeman BP, Burt DM, Perrett DI. 2001. Prototyping and transforming facial textures for
- 512 perception research. IEEE Comput Graph Appl. 21:42–50.
- 513 Torgler B. 2007. "La Grande Boucle": determinants of success at the Tour de France. J
- 514 Sports Econ. 8:317–331.
- 515 Tracy JL, Beall AT. 2011. Happy guys finish last: the impact of emotional expressions on
 516 sexual attraction. Emotion. 11:1379–1387.
- 517 Tsujimura H, Banissy MJ. 2013. Human face structure correlates with professional baseball
- 518 performance: insights from professional Japanese baseball players. Biol Lett.
- *519 9:20130140.*
- 520 Verdonck A, Gaethofs M, Carels C, de Zegher F. 1999. Effect of low-dose testosterone
- treatment on craniofacial growth in boys with delayed puberty. Eur J Orthod. 21:137–
- 522 143.
- Walker NA, Bopp T. 2011. The underrepresentation of women in the male-dominated sport
 workplace: perspectives of female coaches. J Workpl Rights 15:47–64.
- Weston EM, Friday AE, Liò P. 2007. Biometric evidence that sexual selection has shaped the
 hominin face. PLoS ONE. 2:e710.
- 527 Williams KM, Park JH, Weiling MB. 2010. The face reveals athletic flair: better National
- 528 Football League quarterbacks are better looking. Pers Individ Dif. 48:112–116.
- 529 Wilson RS, David GK, Murphy SC, Angilletta MJ Jr, Niehaus AC, Hunter AH, Smith MD.
- 530 2017. Skill not athleticism predicts individual variation in match performance of soccer
- 531 players. Proc R Soc B. 284:20170953.

- 532 Woodman T, Hardy L. 2003. The relative impact of cognitive anxiety and self-confidence
- 533 upon sport performance: a meta-analysis. J Sports Sci. 21:443–457.
- 534 Zilioli S, Sell AN, Stirrat M, Jagore J, Vickerman W, Watson NV. 2015. Face of a fighter:
- 535 bizygomatic width as a cue of formidability. Aggress Behav. 41:322–330.

536 Figure 1. Measurement of (a) facial width-to-height ratio (fWHR) and (b) mouth curvature from portrait photographs. We calculated fWHR as W/H (following Weston et al. 2007), 537 538 where W is the bizygomatic width (distance between left and right cheekbones at the widest 539 part of the face) and H is the upper facial height (distance between upper lip and brow). We 540 calculated mouth curvature as Y/X (following Tamalas et al. 2016), where Y is the upturn of 541 the mouth (vertical distance from mouth center to left and right corners) and X is the mouth width (distance between left and right corners). Note that this image does not depict one of 542 543 the biathletes used in this study, but is shown purely for illustrative purposes. 544 545 Figure 2. Mean standardized attractiveness of (a) female and (b) male biathletes as rated by

546 the opposite sex, in relation to their career-best performance (highest World Cup total score).

547 Dots represent individual athletes. The thick black line in panel (b) shows the significant (P =

548 0.017) positive relationship between performance and attractiveness in male biathletes from a

549 linear mixed-effects model controlling for age, height and body mass index, with random

550 intercepts for athlete and rater identity and a random slope term (varying among raters) for

the effect of performance (rater-specific relationships shown as thin grey lines). The

552 corresponding relationship was non-significant (P = 0.933) for female biathletes.

Figure 1

557 Figure 2

560 Table 1. Estimates of fixed effects in a linear mixed-effects model predicting opposite-sex

Fixed effect	Estimate \pm SE	t	d.f.*	Р
intercept	0.006 ± 0.129	0.05	76.5	0.964
sex (male)	-0.014 ± 0.182	-0.08	77.2	0.938
age	-0.085 ± 0.049	-1.74	148.9	0.084
height	0.011 ± 0.047	0.23	148.8	0.820
BMI	0.043 ± 0.046	0.93	148.8	0.353
performance†	-0.070 ± 0.070	-1.00	159.0	0.319
sex × performance	$\textbf{0.245} \pm \textbf{0.094}$	2.61	159.3	0.010

attractiveness ratings for biathletes (both sexes, n = 156). 561

563

564

Table 2. Estimates of fixed effects in a linear mixed-effects model predicting opposite-sex 565

566	attractiveness	ratings	separately	for (a)) female	and (b) male	biathletes.
-----	----------------	---------	------------	---------	----------	--------	--------	-------------

Fixed effect	Estimate ± SE	t	d.f.*	Р
(<i>a</i>) women (<i>n</i> = 78)				
intercept	0.006 ± 0.129	0.05	38.9	0.964
age†	-0.209 ± 0.078	-2.69	76.2	0.009
height	0.016 ± 0.070	0.24	73.0	0.814
BMI	-0.060 ± 0.069	-0.87	72.9	0.388
performance	-0.007 ± 0.077	-0.09	73.0	0.933
(<i>b</i>) men $(n = 78)$				
intercept	-0.008 ± 0.127	-0.07	37.3	0.947
age	-0.017 ± 0.063	-0.27	73.0	0.789
height	0.000 ± 0.062	0.01	72.9	0.995
BMI	0.109 ± 0.062	1.77	72.9	0.081
performance‡	$\textbf{0.159} \pm \textbf{0.065}$	2.45	81.3	0.017

*denominator degrees of freedom derived using Satterthwaite approximation 567

†slope varies significantly among raters ($\chi^2_2 = 10.6, P = 0.005$) ‡slope varies significantly among raters ($\chi^2_2 = 16.3, P < 0.001$) 568

569

^{*}denominator degrees of freedom derived using Satterthwaite approximation †slope varies significantly among raters ($\chi^2_2 = 14.2, P = 0.001$) 562

570

SUPPLEMENTARY INFORMATION

- 571
- Table S1. Estimates of fixed effects in a linear mixed-effects model predicting opposite-sex 572
- 573 attractiveness ratings for biathletes (both sexes, n = 156), including linear and quadratic terms
- 574 for continuous predictors.

Fixed effect	Estimate ± SE	t	d.f.*	Р
intercept	0.135 ± 0.142	0.96	102.5	0.342
sex (male)	-0.014 ± 0.181	-0.08	76.7	0.938
age				
linear	-0.049 ± 0.054	-0.92	145.9	0.361
quadratic	-0.052 ± 0.040	-1.28	146.1	0.201
height				
linear	0.012 ± 0.047	0.25	145.8	0.803
quadratic	-0.053 ± 0.033	-1.60	145.8	0.111
BMI				
linear	0.065 ± 0.048	1.38	145.8	0.171
quadratic	-0.026 ± 0.031	-0.84	145.7	0.404
performance†	-0.092 ± 0.071	-1.30	155.8	0.197
sex × performance	0.265 ± 0.094	2.81	156.1	0.006

*denominator degrees of freedom derived using Satterthwaite approximation †slope varies significantly among raters ($\chi^2_2 = 14.1, P = 0.001$) 575

576

- Table S2. Estimates of fixed effects in a linear mixed-effects model predicting opposite-sex 577
- 578 attractiveness ratings separately for (a) male and (b) female biathletes, controlling for mouth

Fixed effect	Estimate \pm SE	t	d.f.	Р
(<i>a</i>) women $(n = 73)$				
intercept	0.051 ± 0.130	0.40	39.3	0.697
age†	-0.278 ± 0.081	-3.42	70.7	0.001
height	-0.003 ± 0.071	-0.05	66.0	0.963
BMI	-0.108 ± 0.072	-1.50	65.9	0.139
mouth curvature	-0.003 ± 0.062	-0.06	66.0	0.956
fWHR	0.065 ± 0.068	0.95	65.9	0.345
performance	0.011 ± 0.077	0.14	66.0	0.888
(<i>b</i>) men $(n = 73)$				
intercept	0.003 ± 0.129	0.02	38.7	0.981
age	-0.022 ± 0.065	-0.33	66.0	0.739
height	0.005 ± 0.065	0.08	65.9	0.936
BMI	0.104 ± 0.063	1.64	65.9	0.107
mouth curvature	0.067 ± 0.072	0.94	65.9	0.353
fWHR	0.023 ± 0.066	0.35	66.2	0.730
performance‡	0.160 ± 0.071	2.27	72.4	0.026

579 curvature and facial width-to-height ratio (fWHR).

- *denominator degrees of freedom derived using Satterthwaite approximation 580
- 581
- †slope varies significantly among raters ($\chi^2_2 = 17.4$, P < 0.001) ‡slope varies significantly among raters ($\chi^2_2 = 13.6$, P = 0.001) 582

Successful male biathletes are more attractive

- **Table S3.** Estimates of fixed effects in a linear mixed-effects model predicting opposite-sex
- attractiveness ratings for biathletes (both sexes, n = 156), including ratings from one
- 585 homosexual rater and ratings where the rater reported that they recognized the face (3,900
- 586 ratings in total).

Fixed effect	Estimate \pm SE	t	d.f.*	Р
intercept	0.000 ± 0.125	0.00	81.6	> 0.999
sex (male)	0.000 ± 0.177	0.00	81.6	> 0.999
age	-0.088 ± 0.049	-1.80	149.0	0.074
height	0.009 ± 0.047	0.20	149.0	0.843
BMI	0.045 ± 0.046	0.98	149.0	0.329
performance†	-0.071 ± 0.070	-1.01	157.7	0.312
sex × performance	0.246 ± 0.094	2.61	158.3	0.010

587 *denominator degrees of freedom derived using Satterthwaite approximation

588 †slope varies significantly among raters ($\chi^2_2 = 12.3, P = 0.002$)

Successful male biathletes are more attractive

- 589 Table S4. Estimates of fixed effects in a linear mixed-effects model predicting opposite-sex
- 590 attractiveness ratings separately for (a) female and (b) male biathletes, including ratings from
- 591 one homosexual rater and ratings where the rater reported that they recognized the face
- 592 (3,900 ratings in total).

Fixed effect	Estimate ± SE	t	d.f.*	Р
(<i>a</i>) women (<i>n</i> = 78)				
intercept	0.000 ± 0.125	0.00	42.5	> 0.999
age†	-0.207 ± 0.078	-2.66	75.9	0.010
height	0.013 ± 0.070	0.18	73.0	0.858
BMI	-0.058 ± 0.069	-0.84	73.0	0.402
performance	-0.009 ± 0.077	-0.12	73.0	0.903
(<i>b</i>) men ($n = 78$)				
intercept	0.000 ± 0.124	0.00	38.3	> 0.999
age	-0.024 ± 0.063	-0.38	73.0	0.703
height	0.001 ± 0.062	0.02	73.0	0.982
BMI	0.114 ± 0.062	1.83	73.0	0.071
performance‡	0.160 ± 0.065	2.46	81.0	0.016

*denominator degrees of freedom derived using Satterthwaite approximation 593

†slope varies significantly among raters ($\chi^2_2 = 10.0, P = 0.007$) ‡slope varies significantly among raters ($\chi^2_2 = 16.1, P < 0.001$) 594

595

- 596 **Table S5.** Estimates of fixed effects in a linear mixed-effects model predicting opposite-sex
- 597 attractiveness ratings for biathletes (both sexes, n = 147), excluding those biathletes identified
- as non-Caucasian (one Korean, one Chinese and one Japanese male biathlete, plus one
- 599 Korean, two Japanese and three Chinese female biathletes).

Fixed effect	Estimate ± SE	t	d.f.*	Р
intercept	0.061 ± 0.132	0.46	78.2	0.644
sex (male)	-0.072 ± 0.185	-0.39	78.0	0.698
age	-0.093 ± 0.050	-1.86	140.0	0.065
height	-0.010 ± 0.049	-0.20	139.9	0.845
BMI	0.036 ± 0.048	0.75	139.9	0.452
performance†	-0.106 ± 0.072	-1.47	151.2	0.142
sex × performance	$\textbf{0.288} \pm \textbf{0.096}$	3.00	151.6	0.003

600 *denominator degrees of freedom derived using Satterthwaite approximation

601 †slope varies significantly among raters ($\chi^2_2 = 18.3, P < 0.001$)

- Table S6. Estimates of fixed effects in a linear mixed-effects model predicting opposite-sex 602
- 603 attractiveness ratings separately for (a) female and (b) male biathletes, excluding those
- 604 biathletes identified as non-Caucasian (one Korean, one Chinese and one Japanese male
- biathlete, plus one Korean, two Japanese and three Chinese female biathletes). 605

Fixed effect	Estimate ± SE	t	d.f.*	Р
(<i>a</i>) women ($n = 72$)				
intercept	0.072 ± 0.131	0.55	37.9	0.588
age†	-0.259 ± 0.078	-3.32	72.4	0.001
height	-0.028 ± 0.070	-0.40	67.0	0.689
BMI	-0.109 ± 0.070	-1.57	66.9	0.121
performance	-0.021 ± 0.074	-0.28	67.0	0.782
(<i>b</i>) men ($n = 75$)				
intercept	-0.010 ± 0.128	-0.08	38.3	0.936
age	-0.008 ± 0.066	-0.11	70.0	0.910
height	0.003 ± 0.065	0.05	69.9	0.965
BMI	0.122 ± 0.065	1.87	69.9	0.066
performance‡	$\textbf{0.159} \pm \textbf{0.067}$	2.38	78.1	0.020

*denominator degrees of freedom derived using Satterthwaite approximation 606

†slope varies significantly among raters ($\chi^2_2 = 18.2, P < 0.001$) ‡slope varies significantly among raters ($\chi^2_2 = 16.5, P < 0.001$) 607

608