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Abstract  

Surface nanobubbles have been identified to play an important role in a range of 

industries from mineral processing to food science. The formation of surface 

nanobubbles is of importance for mineral processing in the extraction of complex 

ores, such as those containing rare earth elements. This is due to the way minerals 

are extracted utilising froth flotation. In this study, surface nanobubbles were imaged 

using non-contact atomic force microscopy on a polished cross section containing 

rare earth minerals. Nanobubbles were found on synchysite under reagent 

conditions expected to induce hydrophobicity in rare earth minerals, which is 

required for efficient processing.  

 

Synchysite –(Ce) is a rare earth fluorcarbonate mineral containing over 30% rare 

earth elements. Relatively little research has been conducted on synchysite, with 

only a few papers on its surface behaviour and flotation. The resulting nanobubbles 

were analysed and showed an average contact angle of 24 degrees± 8. These are in 

line with contact angles found on dolomite and galena by previous studies.  

 

Graphical Abstract 
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1. Introduction 

Nanobubbles are tiny gaseous bubbles on the surface of hydrophobic materials. 

They have unusual properties including very small contact angles compared to 

macroscopic bubbles and extremely long lifetimes [1]. Since being first imaged in 

2000, the use of surface nanobubbles has been explored in a wide range of 

industries from food to mineral processing [2-6].  

 

Recent challenges in mineral processing include the processing of finely grained 

complex ores for minerals containing key materials such as rare earth elements [7, 

8], sulphides [9, 10] and oxides [11]. As more conventional deposits and easily 

accessible ore bodies are exhausted, new deposits containing more unusual, less 

researched minerals are key for the future of supply of critical materials [12]. Froth 

flotation is the main technique of processing these ores, utilising the varying 

hydrophobicity of mineral surfaces under reagent regimes. Surface nanobubbles 

have previously been shown by Rudolph and Peuker [13] as a way to identify the 

hydrophobicity of a particle surface having a heterogeneous mineral composition. 

Thereby optimising flotation in complex ores of critical materials by understanding 

the hydrophobicity of each  mineral within the ore.  

 

Rare earth elements (REE) are a critical material identified by the European Union 

as vital to future development [14]. They include the fifteen lanthanide elements with 

the addition of scandium and yttrium [15]. The sourcing of REE has previously been 
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subject to fluctuation due to supply chain insecurity with new mineral sources vital for 

the sustainability of future supply [16-19]. Rare earth ores are highly complex, 

resulting in multiple stages of processing. Using life cycle analysis, the energy 

consumption of this extended processing effects the environmental impact of the 

final products they are used in such as wind turbines and electric cars [20, 21]. 

 

Synchysite- (Ce) (CaCe(CO3)2 F ) is a rare earth fluorcarbonate mineral which 

contains over 30o% (w/w) rare earth elements [22, 23]. Although not as prominent as 

its fluorcarbonate sibling bastnäsite, which currently supplies over 45% of the world’s 

REE, synchysite is still economically important in a number of deposits [24-26]. It is 

also important as a secondary ore mineral to deposits such as Bear Lodge, 

Wyoming and Nechalacho, Canada [27, 28]. Understanding the effect of reagents on 

the surface properties of synchysite is important for optimum processing of these 

deposits. 

 

The effect of mineral processing reagents on nanobubbles have previously been 

investigated by a selection of work, focusing on a range of minerals [29, 30]. These 

studies can be divided into those that focused on samples of single minerals and 

those that investigated complex ores [31, 32].Two studies focused on surfaces 

containing single minerals, Owens et al., [30] focused on dolomite, a carbonate 

mineral, whereas Mikhlin et al., [32] focused on galena, a lead sulphide mineral. 

Nanobubbles were found on galena under pre-treatment with oil-type collector 

xanthate, whereas nanobubbles were found on dolomite under depressant, 

surfactant-type collectors and water conditions, although nanobubble density 

increased under collector conditions. Previous studies on complex ores have linked 

nanobubbles to wettability and hydrophobicity [29, 31]. In complex ores, 

nanobubbles were found on eudialyte but not found on albite. Indicating 

nanobubbles under selective reagent regimes will form on specific minerals [13]. 

 

In this paper, we investigate surface nanobubbles on the synchysite ore under 

defined aqueous reagent conditions including surfactant-type collectors. Although 

studies have investigated complex ores [13, 29, 31], this is the first study to look at 

surface nanobubbles size and contact angle and to investigate nanobubbles on a 

rare earth fluorcarbonate mineral such as synchysite. 
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2. Materials & Methods 

Non-contact atomic force microscopy (NC-AFM) was conducted at the Helmholtz 

Institute Freiberg for Resource Technology on a Park Systems (South Korea) XE100 

AFM. Dynamic mode, amplitude modulated non-contact-AFM with the addition of 

Raman spectroscopy allowed the classification of different minerals, identifying 

synchysite and carbonatite gangue minerals within the ore sample. Nanobubbles 

were produced by the air water supersaturation method, i.e. cooling and then heating 

the aqueous solution to induce oversaturation. The solution was cooled to 5oC and 

was then heated to between 30oC and 40oC on top of the mineral sample whilst 

located within the liquid cell. Collectors, used in froth flotation, including fatty acid 

(sodium oleate) and hydroxamic acid (AM810) in dosages and ratios favourable for 

bastnäsite flotation were included in the reagent mix, although the exact makeup of 

the aqueous solution is subject to non-disclosure. Methodology and experimental 

setup are the same as Owens et al.,[30], with the liquid cell also being used in 

Rudolph and Peuker [13, 29]. 

 

750µL of aqueous solution was added to the liquid cell by injecting with a disposable 

plastic nozzle attached to a pipette. Although plastic contamination has been found 

in nanobubble research [33, 34], this study used the same equipment and 

methodology as Owens et al., [30] and Babel and Rudolph [31]. Babel and Rudolph 

[31] investigated the force curves of nanobubbles in approach and retraction 

showing the nanobubbles to contain gas not plastic. The same plastic injection 

method was also used by Ditscherlein et al., [35] and Knüpfer et al., [36]. The 

sample was cleaned between measurements by rubbing with diamond suspension 

[Stuers DiaPro ¼µm] before being washed with water, ethanol and water again. The 

sample was then sonicated before washing again with water. 

 

The ore containing synchysite from Songwe Hill, Malawi was provided by Mkango 

Resources Ltd. Songwe Hill is a carbonatite deposit within the Chilwa Alkaline 

Province, the main ore minerals are apatite and synchysite with the main gangue 

minerals being ankerite and calcite. For more details of the Songwe Hill deposit 

geology see Al Ali [22], Broom-Fendley et al., [37] and Broom-Fendley et al., [38]. 

The mineralogy of the sample was analysed on particles in a polished epoxy resin 



  

Journal of Colloid and Interface Science (Owens et al., 2019)  

6 
 

grain mount using Mineral Liberation Analysis (MLA) software and the SEM 

microscope (FEI Quanta 650 MLA-FEG machine) in combination with X-Ray 

spectroscopy detectors (Bruker Quantax X-Flash 5030 EDS-Detectors) in Freiberg, 

Germany, similar to Bachmann et al., [39]. In figure 1, the mineral composition of 

samples from Songwe Hill, Malawi is shown, where colours refer to different mineral 

species. Note that the composition is not representative of the ore geology shown at 

Songwe Hill, please see QEMSCAN results in Al Ali [22] for more details. However, 

the X- Ray spectra and MLA processed images enabled the identification of the 

synchysite mineral investigation area within the ore sample. Raman spectroscopy 

was used to navigate to the location of the synchysite mineralisation. One ore 

section was chosen, highlighted in red, to undertake measurements of synchysite.  

 

Figure 1. (a) Mineral Liberation analysis of Songwe Hill ore, light green shows synchysite, dark green 

is the carbonate mineral ankerite (b) Magnified area investigated in NC-AFM images. The sample 

area is highlighted in red. 

 

3. Results & Discussion  

In figure 2, the NC-AFM analysis of a high resolution area of 6oµm x 5oµm is shown. 

As can be clearly seen there are several small circular areas which are much higher 

than the surrounding topography. We identified these areas of high topography as 

nanobubbles by selecting bubbles over 8onm and fitting the nanobubbles to cross 

sections. These cross sections were fitted to the spherical cap model proposed by 
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Lohse and Zhang [40], with the effect of the cantilever tip taken into account using 

the methodology used in Wang et al., [41] (Electronic Supplementary Information, 

ESI†). From spherical cap fitting, 25 nanobubbles were selected out a possible 35 

nanobubble candidates (ESI†). Although the phase was not able to be clearly 

compared to the topography image due to the extreme topography of the sample 

and the surrounding phase boundaries to other minerals, there were indications that 

the phase changed due to the presence of nanobubbles (see ESI†). The height and 

lateral length of the nanobubbles were extracted from the spherical cap cross section 

fitted. The nanobubbles ranged in height from 71.9onm to 14.6onm, with their heights 

being much greater than the root mean square surface roughness (RMS) measured 

on this sample of synchysite of 1.9onm. Although the topography over the entire 

measured area was much more varied with an RMS of 7.6onm for the entire sample.  

 

 

Figure 2. Nanobubbles at the surface of synchysite mineral. (a) NC-AFM image 6µm x 5µm of 

synchysite grain surrounded by another mineral growth from Songwe Hill, Malawi. (b) Magnified area 

of two nanobubbles on surface of the synchysite grain in topography, red circles highlight the two 

nanobubbles location (c) Phase of the two nanobubbles in (b),(d) modelled 3-D view of the 

nanobubbles on synchysite  

 

The presence of nanobubbles on synchysite surface indicates that the surface was 

highly hydrophobic under this reagent regime. Nanobubble formation has previously 

been linked to reagents effecting the pinning of the nanobubbles both experimentally 

[30, 32] and using molecular dynamics simulations [42]. Although there are areas of 

extreme topography on the mineral sample, which has previously been linked to 

nanobubble formation, it is expected that both chemical heterogeneities, caused by 
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the chemical reagents, and physical heterogeneities, induce the nanobubble 

formation due to the pinning effects [30, 35]. 

 

The number of images acquired was affected by the extreme topography of the 

sample. During the cleaning protocol of rubbing with DiaPro ¼µm suspension the 

mineral sample had the strong possibility of splintering, causing gaps in the sample 

of over 30oµm. This splintering in the mineral caused extreme topography for NC-

AFM imaging of holes in the sample between 50-500onm. The splintering often 

caused resolution on the image to be lost. However, increased surface roughness 

has previously been shown to enable nanobubbles to survive under increased 

tapping force [35]. Future use of this technique on mineral sample needs to be aware 

of these problems. 

 

The contact angle can be calculated from the height and lateral length extracted from 

the spherical cap fitting. The contact angle of the nanobubbles has been linked to the 

oversaturation within the liquid by [40]: 

        
   

  
  

 

  
 (1) 

Θ is the contact angle of the nanobubble with ξ = oversaturation, σ = surface tension 

and L = length of nanobubble. With Lc (critical lateral length)= 4σ/Po~ 2.84oµm 

 

The average contact angle of the nanobubbles measured on synchysite was 24o± 8o 

standard deviation. The large standard deviation in contact angle could be due to 

variation in line pinning highlighted by Ditscherlein et al., [25] during their 

investigation of nanobubbles on rough alumina. The average contact angle of 23.8o 

was higher than previous studies of surface nanobubbles on the mineral dolomite 

using the same equipment and methodology, which showed a contact angle of 

between 15.14o and 9.74o depending on the aqueous conditions [30]. When using 

the typical cross sections provided by Mikhlin et al., [32], the surface nanobubble 

contact angle on galena was 4o (10omM collector) and 9o (0.1omM collector), also 

below the values in this study. However, previous research on the silicate mineral 

mica has found a wide range of contact angles between 30o and 60o, demonstrating 

that the synchysite contact angles are not unusually high [2, 43]. The surface 

roughness of the synchysite was also greater than the dolomite, RMS of 1.9 nm 
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compared to a RMS of 1.4nm. Studies by Agrawal et al., [44], and Wang et al., [45], 

have demonstrated that physical patterning, and therefore surface roughness, can 

affect the location and size of nanobubbles at a surface. 

 

Although the surface tension of macroscopic bubbles is affected by chemical 

reagents [46, 47], investigations into the surface tension of nanobubbles has 

indicated they are unaffected by reagents [48, 49]. If the surface tension is constant 

in nanobubbles even with the addition of reagents then oversaturation can be linked 

to the nanobubble contact angle using equation 1 [40]. Wang et al., [41] calculated 

oversaturation of 8.2 using a Lc. of 2.84oµm. The same methodology was used by 

Owens et al., [30], which showed an oversaturation of 1.7 with nanobubbles at the 

surface of dolomite. These results with the addition of the synchysite nanobubble 

data are plotted in figure 3. Using the same methodology here produces a gradient 

of 1.45oµm-1, and therefore an oversaturation of 4.1. As the aqueous solution was 

heated to a higher temperature in Owens et al., [30] it is expected that the 

oversaturation would be greater. 
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Figure 3. Nanobubble length versus sin(θ) of the contact angle. Previous results from Owens et al., 

[30] plotted to compare to synchysite results. Graph is plotted between 150 and 800nm and 0.1 and 

0.75 sin (θ), the lines are plotted with extrapolated intersections at 0,0, using equation 1 [40].  

 

Recent studies of bastnäsite have shown it has similar surface behaviour under 

flotation conditions to synchysite [50, 51]. The crystal system and calcium content of 

bastnäsite is different to synchysite, hexagonal with no calcium compared to 

monoclinic with 12o% calcium [52-54]. However, similar surface behaviour is not 

unexpected as both synchysite and bastnäsite are rare earth fluorcarbonates with 

significant rare earth element concentrations, 33-43o% and 63-52o% respectively [50, 

55]. Flotation investigations of bastnäsite ores using collectors such as 

hydroxamates and fatty acids have shown a high percentage recovery of bastnäsite 

from the ore [56]. Recent research into bastnäsite surface behaviour using zeta 

potential measurements and Fourier- transform infrared spectroscopy (FTIR) has 

found that hydroxamates bonding is heavily influenced by the metal cation on the 

mineral surface which chelates with the hydroxamic acid [57, 58]. When using 

330omg/L benzohydroxamic acid, the recovery of dolomite in micro-flotation tests 

was found to hover around 20o%, whereas recovery of bastnäsite climbed to 70o% 

[57]. As synchysite behaves similarly to bastnäsite, it would not be unexpected that 

hydrophobicity and therefore recovery of synchysite would be high under similar 

collectors [50]. 

 

Nanobubbles on the surface of hydrophobic synchysite provide an extension of 

earlier work on nanobubbles under reagent regimes [13, 29, 31]. Future work on rare 

earth fluorcarbonates should focus on producing samples less prone to splintering, 

either through different cleaning techniques or through the production of synthetic 

samples. Using nanobubbles to determine hydrophobicity would be particularly 

applicable in ores that are highly complex with small grain sizes where micro-

flotation or conventional contact angles are not feasible. These results also provide 

some insight into synchysite surface behaviour, a highly unstudied mineral.  

 

4. Conclusion 

In this work, we show the first results of nanobubbles in aqueous reagent regime, 

using anionic surfactants selectively adsorbing on the surface of a synchysite 



  

Journal of Colloid and Interface Science (Owens et al., 2019)  

11 
 

containing mineral sample. Synchysite is a rare earth fluorcarbonate mineral, which 

is economically important in a broad selection of deposits, located in countries 

ranging from Malawi to India. However, synchysite has previously been relatively 

unstudied. Nanobubbles were selected on the basis of height and their fit to a 

spherical cap model. The average contact angle of the nanobubbles on synchysite 

was 24o.This work builds on previous work on the size and distribution of 

nanobubbles at the surface of minerals under reagent regimes in order for selective 

hydrophobization. This adds to previous knowledge on other naturally hydrophobic 

surfaces such as graphite. These results are applicable for both nanobubble and 

rare earth processing research.  
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