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Software-implementations of brain-inspired computing underlie many important 10 

computational tasks, from image processing to speech recognition, artificial intelligence 11 

and deep learning applications. Yet, unlike real neural tissue, traditional computing 12 

architectures physically separate the core computing functions of memory and 13 

processing, making fast, efficient and low-energy computing difficult to achieve. To 14 

overcome such limitations, an attractive alternative is to design hardware that mimics 15 

neurons and synapses which, when connected in networks or neuromorphic systems, 16 

process information in a way more analogous to brains. Here we present an all-optical 17 

version of such a neurosynaptic system capable of supervised and unsupervised 18 

learning. We exploit wavelength division multiplexing techniques to implement a 19 

scalable circuit architecture for photonic neural networks, successfully demonstrating 20 

pattern recognition directly in the optical domain. Such photonic neurosynaptic 21 

networks promise access to the high speed and bandwidth inherent to optical systems, 22 

attractive for the direct processing of optical telecommunication and visual data..  23 

  24 



Introduction 25 

In our everyday life, artificial neural networks (ANNs) are already heavily active behind the 26 

scenes, for example carrying out tasks such as  face and speech recognition that are frequently 27 

performed on our mobile phones1. Thinking of more complex applications, such as  medical 28 

diagnostics2 and autonomous driving1 3, high-speed data-analysis will become even more 29 

important in the future. However, fulfilling this  demand for fast and efficient processing 30 

using traditional computation techniques is problematic, due to speed and energy 31 

inefficiencies4. Traditional computers are built following the von-Neumann architecture, 32 

having two separate units for memory and processor and operating in a sequential way one 33 

command at a time. Compared to the massively parallel signal processing of the brain, it 34 

becomes clear why simulating a neural network in software on a machine based on the von-35 

Neumann architecture and limited by the transfer of data between memory and processor, 36 

cannot be efficient5. A more radical approach – neuromorphic computing – seeks to overcome 37 

the limitations of carrying out brain-like processing using conventional computers by 38 

developing hardware mimics of the basic building blocks of biological brains, i.e. neurons and 39 

synapses, and combining these into suitably-scaled networks and arrays. Such an approach 40 

could, for example, enable the efficient processing and analysis of data in parallel directly on-41 

chip, so finding widespread utility in power-critical situations such as for mobile devices and 42 

so-called “edge computing” applications6.  43 

Recently, a number of different concepts for realizing hardware (i.e. neuromorphic) 44 

implementations for artificial intelligence (AI) have been proposed in the electrical domain7 8  45 

but optical approaches are very much in their infancy 9–13. A most promising candidate for 46 

photonic neuromorphic computing is however that based around  phase-change materials and 47 

devices, since these have been shown to exhibit an intrinsic ability to provide in hardware the 48 

basic integrate-and-fire functionality of neurons and the plastic weighting operation of 49 



synapses14 15 16 17 18. However, a fully optical, integrated and scalable neuromorphic 50 

framework for implementing spiking neural networks using phase-change materials has—to 51 

the best of our knowledge—not yet been demonstrated. In this work, therefore, we propose 52 

and fabricate an all-optical spiking neuron circuit, with integrated all-optical synapses, and 53 

demonstrate that such a system is capable of the prototypical AI task of pattern recognition. 54 

Moreover, training/learning in the system is implemented in both a supervised and an 55 

unsupervised way, both cases having a wide range of applications but relying on different 56 

learning rules. In the first case, where training sets with pairs of known inputs and outputs are 57 

present, supervised learning rules can be applied, such as the well-known backpropagation 58 

algorithm19 20. The second case requires unsupervised learning, meaning that the network 59 

adapts on its own to specific repeating features and patterns that are unknown beforehand21. 60 

We devise a scalable, layered architecture, based on wavelength division multiplexing 61 

(WDM), for realizing such complex integrated photonic systems, presenting a photonic neural 62 

network consisting of four neurons and sixty synapses (and 140 optical elements in total) 63 

which is able to successfully recognize letters presented to it. By implementing an all-optical 64 

spiking neural network on a nanophotonic chip, we provide a first step towards optical 65 

neuromorphic systems, which benefit from the high bandwidth and fast signaling properties 66 

that come with operating fully in the optical domain 22 23.  67 

Photonic implementation of an artificial neuron 68 

A sketch of our optical spiking neuron circuit, also incorporating all-optical synapses, and 69 

how it is integrated on a nanophotonic platform is shown in Figure 1a-b. The neuron 70 

represents a system comprising N input (pre-synaptic) neurons, one output (post-synaptic) 71 

neuron and N interconnecting synapses. Each connection between the pre-synaptic neurons 72 

and the post-synaptic neuron has a certain weight wi.  In the configuration of Figure 1a, optical 73 

pulses from the pre-synaptic neurons are fed from the left into the connecting synapses, 74 



thence to the post-synaptic neuron itself. The synapses are built of optical waveguides (see 75 

Figure 1b) and weighting is achieved via phase-change material cells (here of area 3.6 µm2 76 

and shown as red squares) integrated on top of the waveguides, which can modify the 77 

propagating optical mode in a controlled manner. Phase-change materials (PCMs)  are 78 

commonly used in re-writable optical disc technologies, such as Blu-ray RE, and exhibit a 79 

large contrast in the absorption of light between their amorphous and crystalline states 80 

(phases) of matter24 25 26. With the PCM-cell in the amorphous state, the synaptic waveguide 81 

is highly transmissive, representing a strong connection between two neurons. In the 82 

crystalline state, however, most of the light is absorbed leading to a weak connection. After 83 

the input pulses have been weighted, they are combined into a single waveguide using 84 

wavelength division multiplexing  (WDM) 27,28 and guided to the (output) spiking neuron 85 

circuit. This is composed of a ring resonator with its own integrated PCM-cell that can be 86 

switched (between crystalline and amorphous states) by the incoming combined pulses. 87 

Switching the neuronal PCM-cell in turn changes the optical resonance condition of the ring 88 

and its propagation loss. When the neuronal PCM-cell is in the crystalline state, a suitable 89 

probe pulse sent along the ‘output’ waveguide couples strongly into the ring resonator and so 90 

no output pulse (spike) will be observed. However, if the instantaneous combined power of 91 

the weighted input pulses from the pre-synaptic neurons is high enough to switch the neuronal 92 

PCM-cell to its amorphous state, the probe pulse is no longer on resonance with the ring and 93 

will be transmitted past the ring, so generating an output neural spike. As the switching of the 94 

PCM-cell only occurs above a certain threshold power, the neuron only generates an output 95 

pulse (spike) if the weighted sum of the input power exceeds this threshold. Thus, the system 96 

naturally emulates the basic integrate-and-fire functionality of a biological neuron, with the 97 

distinction that the artificial neuron integrates over the optical power at a fixed time, as 98 

opposed to its biological counterpart that integrates incoming pulses over time. This artificial 99 

neuron, shown in photonic circuit form in Figure 1c, serves as a building block in layered 100 



photonic networks (described later) suited to the scalable implementation of neurosynaptic 101 

systems.  102 

The neurosynaptic system described so far in the above provides the basic structure needed 103 

for supervised learning tasks, where the weights of the inputs are set by an external 104 

supervisor. However, in order to also be capable of unsupervised learning, we add a feedback 105 

waveguide channelling parts of the neuron’s output spike back to the synaptic PCM-cells. In 106 

this way (and as described in more detail later), the connections from all inputs that 107 

contributed to a particular output spike will be enhanced, while those that did not contribute 108 

will be weakened – or in Hebbian terms, “neurons that fire together, wire together.”  109 

Figure 1d shows an optical micrograph of the actual implementation (x3) of a single-neuron 110 

neurosynaptic system, fabricated via electron-beam lithography on a silicon-nitride on silicon-111 

oxide platform. Several input waveguides each with a synaptic PCM-cell on top (indicated by 112 

red ovals) are fed to the upper waveguide using small ring resonators as a simple multiplexing 113 

device (the ring resonators have four different radii increasing linearly from 40 µm to 55 µm, 114 

an optical Q of around 10000 and provide insertion loss of 1.5 dB - see supplementary section 115 

S5 for more details. This upper waveguide then leads the light to the neuronal (large) ring 116 

resonator (radius 60 µm) with its own integrated PCM-cell (area 9 µm2). Probe pulses sent to 117 

the waveguide lying below the neuronal ring resonator either couple to it or generate an 118 

output spike depending, as described previously, on whether the neuronal PCM-cell is in the 119 

crystalline or amorphous state. The light is coupled onto and off the chip using grating 120 

couplers which provide access to multiple optical fibres in the measurement setup. 121 

Optical performance of a single neuron device 122 

Figure 2a shows in detail the photonic signal processing and optical operation of a single 123 

neuron. Each input pulse is sent on a different wavelength i and firstly partly absorbed 124 



(weighted) by the relevant synaptic PCM-cell. After weighting, the individual input 125 

waveguides are combined with a multiplexer to a single waveguide, summing up the input 126 

powers. If this power is high enough to switch the neuronal PCM-cell of the large ring 127 

resonator (see Figure 2b), an output spike is generated and in the case of unsupervised 128 

learning the synaptic weights are adjusted using the feedback loop. In this specific 129 

device/example an output pulse is generated if the summed  power here exceeds 430 pJ (see 130 

section 9 in the supplementary materials). In Figure 2b a more detailed scanning electron 131 

micrograph of the ring resonator used to deliver the spiking neuron function can be seen. The 132 

neuronal PCM-cell used to tune the resonance condition is deposited on top of a waveguide 133 

crossing specially designed for low optical losses (0.23 dB 29). The second waveguide 134 

crossing (without a PCM-cell) is only used for testing purposes and offers the ability of a bias 135 

input.  136 

In order to characterise the integrate-and-fire type response (or activation function) of our 137 

neuron circuit, several transmission spectra for the resonator were obtained after sending 138 

pulses of different energy to the neuronal PCM-cell via the crossing waveguide (Figure 2c), 139 

see Methods section. By plotting the transmission of the ring resonator after different 140 

excitation pulses vs. the pulse energy at a fixed wavelength, an activation function as shown 141 

in Figure 2d is obtained. Depending on which wavelength is chosen, the contrast and 142 

maximum transmission level of the output function can be adjusted. Figure 2d shows the 143 

activation at 1553.4 nm (i.e. at the dashed line in Figure 2c), representing the operation with 144 

the highest contrast of 9 dB between the output states. It can clearly be seen that only above a 145 

threshold energy of 60% of the maximum pulse energy is a significant output generated. This 146 

non-linear response resembling the rectified linear unit (ReLU) function is crucial for neural 147 

activation functions, since it projects complex input data to higher dimensions enabling linear 148 

separation by the output neurons30.  149 



  150 



Supervised and un-supervised learning  151 

Having found the working point for our all-optical spiking neuron, supervised learning tests 152 

are now carried out. In this case, the synaptic weights of the network are set by an external 153 

supervisor (as for example done in software-based ANNs using the backpropagation 154 

algorithm). Here, a training set of data consisting of pairs of input patterns and the expected 155 

output is shown to the network. Depending on the deviation between the expected and actual 156 

output, the synaptic weights are adjusted in an optimization process until the solution is best 157 

approximated and the network is trained. 158 

The experimental neural network used is composed of two single neurosynaptic systems (of 159 

the type shown in Figure 1d) each consisting of four input (pre-synaptic) neurons connected 160 

to one output (post synaptic) neuron by four PCM synapses. The weights of the first neuron 161 

were set to the pattern “1010” meaning that the first and third PCM synapse were in a high 162 

transmission state (contributing significantly to the activation energy) and the second and 163 

fourth were in a low transmission state (contributing less to the activation energy). The second 164 

neuron was trained in the same way to the pattern “1100”. In Figure 3a and b the post-165 

synaptic neuron output is plotted as a function of the input pattern. It can clearly be seen that 166 

in both cases (i.e. for both input patterns) the neurons were trained successfully and, based on 167 

the neuron’s output, it can be easily concluded which pattern was presented to the network. 168 

Using only two output neurons on the same set of input neurons, our all-optical neuromorphic 169 

system can already solve simple image recognition tasks. By increasing the number of inputs 170 

per neuron and the number of neurons, more complex images can be processed and more 171 

difficult tasks, such as letter (or digit) recognition or language identification can be solved 172 

using this same basic approach, as we show later (in experiment for letter recognition, by 173 

simulation for digit recognition and language identification). 174 



Above we illustrated an example of supervised learning. This learning technique is feasible 175 

for many tasks but has the limitation that a training set with tuples of input patterns and 176 

expected outputs must be present. If the output is unknown, for example if an unknown but 177 

repeating pattern must be found from a data stream, then supervised learning is not applicable 178 

and unsupervised learning procedures are necessary. In an unsupervised approach, the 179 

network updates its weights on its own and in this way adapts to a certain pattern over time, 180 

without the need for an external supervisor.  181 

In order to do this, an update rule needs to be defined. A common concept in unsupervised 182 

learning is spike-timing-dependent plasticity (STDP) following Hebb’s postulate32. Here the 183 

change in the synaptic weight after an output spike depends on the relative timing between the 184 

input and the output spike of a neuron (i.e. the timing difference between pre- and post-185 

synaptic neuron firings). If an input signal arrives right before an output spike was generated, 186 

that input signal is likely to have contributed to reaching the firing threshold and the 187 

corresponding weight will be increased. If the input pulse arrives after the output spike 188 

occurred, the synaptic weight will be decreased. The amount of potentiation (weight increase) 189 

or depression (weight decrease) is a function of the time difference between input and output 190 

spike, as described by Bi and Poo33. 191 

A similar but simplified learning rule is applied in our all-optical neuron approach. As the 192 

timing between incoming pulses and output pules in our case is fixed (because we operate the 193 

neuron in a clocked way, one complete input pattern per time step – see Methods section), 194 

there is no varying time delay between input and output events. We therefore adopt a 195 

simplified learning rule, increasing the synaptic weights of all inputs that contributed to a 196 

spike generation, and decrease the weights of all that did not. Experimentally we obtain this 197 

behaviour by overlapping (in time) the output pulses with the input pulses (see Methods 198 

section).  199 



Figures 3d and e show the development over time of the four synaptic weights during 200 

unsupervised learning by a single neuron. Initially all the PCM-synapses are in the amorphous 201 

(high transmittance) state. When the input pattern ‘0110’ is repeated, the neuron adapts to it 202 

over time, until the neuron has finally learned this pattern without any intervention from an 203 

external supervisor. The neuron is now specialized to recognize this particular pattern. From 204 

Figure 3d it is clear that the weights w2 and w3, corresponding to the inputs three and four, 205 

stay almost constant over time, as the overlapping input and feedback pulses preserve their 206 

amorphous state. In contrast, weights w1 and w4 are depressed stepwise with each epoch.  207 

A scalable architecture for photonic artificial neural networks 208 

Having successfully demonstrated a single-neuron neurosynpatic system as a fundamental 209 

building block for photonic neural networks, a way of connecting these artificial neurons into 210 

larger networks is now developed. An architecture exploiting individually addressable, 211 

interlinked, photonic layers is thus implemented, as shown schematically in Figure 4a. The 212 

whole network consists of an input and an output layer which are optically connected via N 213 

hidden layers. Each hidden layer takes the output of the previous layer as an input and passes 214 

its outputs to the next layer. The input layer is the optical interface to the real world, taking 215 

the data to be processed and distributing it to the next level in the network. 216 

A single layer of the network consists of a collector, a distributor and its neurosynaptic 217 

elements. The collector gathers all the outputs from the previous layer, which are then equally 218 

distributed to the N neurons within the layer (fully connected network) by the distributor. The 219 

photonic neurons themselves operate as described in detail before: a phase-change synapse 220 

weights the inputs and a WDM multiplexer builds the sum, which is passed to the activation 221 

unit that decides if a neuronal output pulse is transmitted. In this architecture, each layer is 222 

addressed optically with its own waveguide for generating the probe signal. Therefore, the 223 



optical power in the layer is not limited by the transmitted optical response from a previous 224 

layer.  225 

Figure 4b describes how the constituent parts of a layer translate into the actual photonic 226 

circuit. The outputs from a previous layer are multiplexed onto a single waveguide using ring 227 

resonators (thus building the collector). This signal is then equally distributed to the neurons 228 

within this layer, again using ring resonators for demultiplexing (thus building the 229 

distributor). By choosing the gap between the feeding waveguide and ring resonator, the 230 

coupling efficiency can be tuned (see supplementary figure S8.) Following the formula for the 231 

coupling efficiency c_eff,i=1/(N’+1-i) with N’ neurons on the layer and the neuron position i  232 

then, for example, in a layer with four neurons this means, that 1/(4+1-1)=1/4 of the light is 233 

coupled to the first neuron, 1/3 of the remaining light is passed to the second neuron, 1/2 to 234 

the third and the residual light to the fourth neuron. The circuit-diagram of the actual photonic 235 

neuron, the neuro-synaptic system, was shown in Figure 1c and is the same as used in the 236 

experiments described above. The output pulses of a layer can then be connected to the 237 

collector of the next layer. 238 

We note that using the above approach no waveguide crossings are needed for distributing the 239 

signal to the neurons, thus preventing crosstalk and losses. Because the output pulses are 240 

generated for each layer individually, there is also no accumulation of errors and signal 241 

contamination over subsequent layers. This fact also simplifies the timing of the network as 242 

each layer can be processed step by step: First, the input pulses are sent, and the activation 243 

units are switched where appropriate. Second, the output probe pulses are sent and transmitted 244 

to the next layer (if the threshold for neuron switching was reached). In a final step, the PCM-245 

cells on the rings have to be returned to their initial state. 246 

  247 



Realization of a single-layer neurosynaptic system 248 

Figure 5 shows the experimental implementation of a full layer of the proposed neural 249 

network design consisting of four neurons with 15 synapses each. The full device is composed 250 

of more than 140 optical elements; optical micrographs of the photonic circuit are presented 251 

in section 2 of the supplementary materials. This network is capable, by way of example, to 252 

differentiate between four 15-pixel images, here representing the four letters A, B, C and D. 253 

In this system, the neurons are optically fed via an integrated WDM distributor with 15 ring 254 

resonators per neuron, while the collector is implemented off-chip using fiber-based WDM 255 

components (see Methods section). As desired, all four output neurons are only activated 256 

when the learned pattern is shown (Figure 5b): Neuron 1 only fires if pattern ‘A’ is shown, 257 

neuron 2 only reacts to pattern ‘B’ and so forth. Thus, the network is able to successfully 258 

classify the four 15-pixel images. (A more complex exemplar task of language recognition, 259 

using a larger network with the same architecture, is discussed in the supplementary 260 

materials). We note, that in the all-optical implementation of this architecture all artificial 261 

neurons need to be recrystallized after each spiking event. Therefore the number of operation 262 

cycles is eventually limited by the endurance of the PCM-cells. While individual PCM 263 

devices in endurance experiments have already shown 1012 switching cycles16, further 264 

improvements in material design and device engineering are needed for high-speed and long-265 

term switching operation. 266 

Integrated phase-change photonic networks, designed and implemented as described above, 267 

are capable of simple pattern recognition tasks and can adapt to specific patterns. When 268 

operated with a waveguide feedback loop, they are capable of learning without an operator 269 

needed, and can do this in a non-volatile fashion using phase-change materials. The large 270 

contrast in absorption of light between their amorphous and crystalline state of matter makes 271 

phase-change materials an attractive and simple solution to be integrated as synaptic 272 



weighting mechanism. Compared to conventional computers that can only simulate the 273 

parallelism of neural networks, our all-optical neurons are intrinsically suited for mimicking 274 

biological neural networks. Compared to speeds of biological neural networks (~ 275 

milliseconds) our proposed neurons could operate several orders of magnitude faster, giving 276 

rise to substantial potential in dealing with large amounts of data in a short amount of time. 277 

Working exclusively in the optical domain, the spiking neurosynaptic network benefits from 278 

high-bandwidth and fast data transfer rates intrinsic to light. Moreover, using a layered circuit 279 

architecture, we present a pathway to scaling our network to more complex systems which 280 

could be realized with foundry processing. This way also the off-chip components (used here 281 

for experimental expediency only) such as laser sources, optical amplifiers and modulators, 282 

can be integrated into a full system. Our integrated and novel design combines, via 283 

wavelength division multiplexing techniques, the outputs of multiple phase-change synapses 284 

to excite layered spiking phase-change neurons and holds promise for realizing all-optical 285 

neural networks capable of addressing the upcoming challenges of big data and deep learning.  286 

  287 
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Figure 1. All-optical spiking neuronal circuits. a-b) Schematic of the network realized in 385 

this work consisting of several pre-synaptic input neurons and one post-synaptic output 386 

neuron connected via PCM-synapses. The input spikes are weighted using PCM-cells and 387 

summed up using a WDM multiplexer. If the integrated power of the postsynaptic spikes 388 

surpasses a certain threshold, the PCM-cell on the ring resonator switches and an output pulse 389 

(neuronal spike) is generated. c) Photonic circuit diagram of an integrated optical neuron with 390 

symbol block shown in the inset (top right). Several of these blocks can be connected to larger 391 

networks using the wavelengths inputs and outputs as described in more detail in Figure 5 d) 392 

Optical micrograph of three fabricated neurons (B5, D1 and D2) showing four input ports. 393 

The four small ring resonators on the left are used to couple light of different wavelengths 394 

from the inputs to a single waveguide, which then leads to the phase-change material cell at 395 

the crossing point with the large ring. The triangular structures on the bottom are grating 396 

couplers used to couple light onto and off the chip. 397 

Figure 2. Spike generation and operation of the artificial neuron. a) Schematic of the 398 

photonic implementation of a phase-change neuron circuit. Light of different wavelength is 399 

weighted by phase-change elements w1-w4 and summed up by a multiplexer to a single 400 

waveguide. If this activation energy surpasses a threshold, an output pulse is generated, and 401 

the weights are updated. b) Scanning electron micrograph of a ring resonator used to 402 

implement the activation function. By switching the PCM-cell on top of the waveguide 403 

crossing, the resonance condition of the resonator can be tuned. The waveguide on the bottom 404 

of the ring is used to probe the resonance and generate an output pulse. c) Transmission 405 

measurement of the device in b) and its dependence of pulse energy. The resonance shifts 406 

towards shorter wavelength with increasing pulse energy send to the PCM-cell on the ring. At 407 

the same time the transmission increases because of reduced absorption in the PCM-cell and 408 

thus changes the coupling between ring and waveguide. d) Normalized transmission to the 409 



output at a fixed wavelength (dashed line in c)) showing the activation function used to define 410 

the firing threshold of the neuron. 411 

Figure 3. Supervised and unsupervised learning with phase-change all-optical neurons. 412 

a) and b) show the neuron output of two individual neurons when presented with different 413 

input patterns. Neuron one learned to recognize pattern ‘1010’, while neuron two generates an 414 

output signal when ‘1100’ is shown. In this example the eight weights of the neural network 415 

were set by an external supervisor. c) Schematic illustrating the unsupervised learning 416 

mechanism in an all-optical neuron. If an output spike is generated, the synaptic-weights 417 

where input and feedback pulses overlap in time are potentiated, while the weights that are 418 

only hit by the single feedback pulse are depressed. d) Change of the four synaptic weights 419 

over time when the pattern ‘0110’ is repeatedly shown starting from fully amorphous (high 420 

transmitting) weights. The weights where input- and feedback pulse overlap stay almost 421 

constant over several epochs. The other weights where only the feedback pulse is shown 422 

decrease continuously. e) Development of the weights over time, clarifying that the 423 

information of the pattern is encoded in the weights. 424 

Figure 4. Scaling architecture for all-optical neural networks. a) The general neural 425 

network is composed of an input layer, an output layer and several hidden layers. Each of 426 

these layers consist of a collector gathering the information from the previous layer, a 427 

distributor that equally splits the signal to individual neurons and the neuronal and synaptic 428 

elements of the layer itself. Each neuron has a weighting unit and a multiplexer to calculate 429 

the weighted sum of the inputs. The sum is then fed to an activation unit which decides if an 430 

output pulse is generated. b) Photonic implementation of a single layer from the network. The 431 

collector unites the optical pulses from the previous layer using a WDM multiplexer. A 432 

distributor made from the same rings as the collector but with adjusted coupling efficiency 433 

equally distributes the input signal to the PCM synapses of each neuron. The letters “P”, “W” 434 



and “R” denote the input ports used to probe the output, set the weights and return the 435 

neuronal PCM to its initial state. 436 

Figure 5 Experimental realisation of a single layer spiking neural network. a) The device 437 

consists of four photonic neurons, each with 15 synapses. Each synapse corresponds to a pixel 438 

in a 3x5 image (see b)) and is encoded in the wavelengths corresponding to the ring 439 

multiplexers (see numbering in b)). The full device comprises an integrated photonic circuit 440 

built up from 140 optical components.  b) The change in output spike intensity is shown for 441 

the four trained patterns illustrated on the right-hand side. The neural network successfully 442 

recognizes the four patterns as each neuron only responds (spikes) to one of the patterns. The 443 

error bars denote the standard deviation for n=5. 444 

 445 
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Methods 447 

Device fabrication 448 

The nanophotonic circuits used in this work are realized using electron-beam lithography 449 

(EBL) with a 100-kV system (Raith EBPG 5150). In a first step, opening windows for lift-off 450 

processing of alignment markers made from gold are exposed in the positive tone resist 451 

Polymethylmethacrylat (PMMA) on a silicon wafer (Rogue Valley Microdevices) with a 3300 452 

nm silicon oxide and 344 nm silicon nitride layer on top. After development in 1:3 453 

MIBK:Isopropanol for 2 min, a stack of 5 nm chromium, 120 nm gold and 5 nm chromium 454 

again are evaporated via electron-beam physical vapour deposition (PVD). The lift-off step to 455 

remove the PMMA is performed in acetone, leaving the gold markers for the alignment in the 456 

next EBL-steps.  457 

In the second lithography step the photonic structures are defined. TI Prime is used as an 458 

adhesion agent for the negative-tone ebeam resist maN 2403. The photonic circuitry is 459 

developed in MF-319 for 60 s and afterwards placed on a hotplate at 105°C for two minutes 460 

of reflow processing to reduce surface roughness. By reactive ion etching in a CHF3/O2 461 

plasma, the resist mask is transferred into the sample till the silicon nitride is fully etched. The 462 

remaining resist on the structures is removed in an oxygen plasma for 10 minutes. 463 

The last EBL step consists of writing windows for the deposition of the phase-change material 464 

and is executed in the same way as defining the marker windows. After development, 10 nm 465 

of the phase-change material GST are sputter-deposited and covered by a 10 nm film of 466 

indium tin oxide (ITO) to prevent oxidation of the GST.  The GST and ITO capping layers 467 

were deposited using RF sputtering with an argon plasma (5 mtorr working pressure, 15 sccm 468 

Ar, 30 W RF power, and base pressure of 2×10-6 Torr). Finally, the GST is crystallized on a 469 



hot plate for about 10 minutes at 210°C. The photonic circuits are composed of single mode 470 

waveguides at 1550 nm with a width of 1.2 µm. 471 

Measurement setup 472 

The experimental setup used to operate the all-optical neurons comprises pattern generation 473 

and read-out of the individual weights, as sketched in the Supplementary materials. The 474 

optical read-out is achieved via transmission measurement using a continuous wave laser 475 

(Santec, TSL 510) and four low-noise photodetectors D1-D4 (New Focus, Model 2011) that 476 

are monitored on a computer. In order to couple light efficiently onto the chip, an optical fiber 477 

array is aligned with respect to the on-chip grating couplers to provide multi-port input. For 478 

optimal coupling efficiency to the chip the polarization is optimized with a set of polarization 479 

controllers. 480 

Pattern generation as input for the on-chip neuron is accomplished with four cw-lasers set to 481 

different wavelength matching the on-chip multiplexer. Off-chip the four light paths are 482 

combined using a fiber multiplexer and desired optical pulses are created using an electro-483 

optical modulator (EOM) and a computer controlled electrical pulse generator (Agilent, HP 484 

8131A). After amplifying the pulses with an erbium-doped fiber amplifier (Pritel, EDFA) the 485 

pulses are de-multiplexed again and guided to the on-chip device. Using circulators pump and 486 

probe light are counter-propagating through the device enabling efficient separation of the 487 

beam paths. Arbitrary input patterns are then selected by switching on and off the shutters of 488 

the pump lasers. 489 

Similar to the input pulses, the output pulses are also created from a cw-laser in combination 490 

with an EOM and amplified by an EDFA. A small portion of the output is measured with 491 

detector D0, while the remaining light is amplified and send to the ports F1-F4 as a feedback 492 

pulse for weight adjustments. Turning off the feedback amplifier puts the device in a 493 



supervised learning mode. The setup used for the four neuron-network is shown in 494 

supplementary figure S2. 495 

Activation unit 496 

In order to obtain the ReLU function shown in Figure 2d pulses with different energies up to 497 

approximately 700 pJ have been sent to the ring resonator resembling the activation unit. 498 

Because of changes introduced in the structure of the PCM on the waveguide crossing, the 499 

transmission spectrum undergoes a significant change between the initial crystalline state (0% 500 

pulse energy) and the final amorphous state (maximum pulse energy). This is partially 501 

explained by the resonance wavelength (at which the light is coupled into the ring and 502 

therefore the transmission is minimal) slightly shifting to shorter wavelength with increasing 503 

amount of amorphization (which causes a change in the real part of the refractive index of the 504 

phase-change material, leading to a slightly shifted resonance condition (see Supplementary 505 

Materials)). However, we also observe that the minimum transmission after amorphizing the 506 

PCM-cell is much higher. This is a combined effect of the change in the imaginary part of the 507 

refractive index (absorption) and a change in the extinction ratio of the resonator. The lower 508 

absorption in the amorphous phase obviously leads to higher transmission but, equally 509 

important, changing the loss per round trip in the ring affects the coupling between ring and 510 

waveguide and therefore alters the extinction ratio. 511 

Estimation of the energy balance 512 

The maximum pulse energy used to switch the PCM-cell in this experiment was 710 pJ 513 

employing optical pulses of 200 ns width. For setting the weights similar energies are used. In 514 

the experiments we operate our neurons with relatively long optical pulses in order to 515 

implement two-pulse switching29 which relies on overlapping pulses in the time-domain. As 516 

the output pulse was amplified off-chip and the optical path was therefore relatively long 517 

(compared to on-chip waveguides), longer pulses had to be applied to ensure the overlap.We 518 



note, however, that lower switching energies can be employed by moving towards ps 519 

pulses29,31. It is also important to note that this operation scheme does not require continuous 520 

energy input for maintaining the state of the PCM weights due to their non-volatile response. 521 

Therefore, the energy budget per neuron to perform one operation is given by the switching 522 

energy for the ring resonator plus the energy required to return the PCM element to its 523 

original fully-crystalline state. 524 

Update of weights in unsupervised learning 525 

Via a feedback waveguide, the neuron’s output spike is guided back to the synaptic PCM-526 

cells (see Figure 3c). If the input pulses are now long enough in time such that they overlap 527 

with the feedback pulse at the waveguide crossing where the synaptic PCM-cell is located, 528 

then the overlapping pulses have enough energy to switch the synapse into its low-absorbing 529 

amorphous state (weights w2 and w3 in Figure 3c). A feedback pulse that encounters a synapse 530 

without an input pulse will partly crystallize the corresponding PCM-cell because of the lower 531 

pulse energy, and therefore decrease the weight (weights w1 and w4). Due to the properties of 532 

the phase-change material used, the PCM-cells can only be amorphized in a single step31, 533 

meaning that if the neuron fires, all contributing inputs will always be potentiated completely. 534 

Opposite to that, full crystallisation can be achieved in several steps29 and the weights can 535 

correspondingly be decreased stepwise. Successful unsupervised learning can be 536 

accomplished using such weight update rules, as we show experimentally in Figure 3 for 537 

small-scale systems, and in the supplementary information (section 10) by simulation for 538 

larger-scale systems.  539 

Image encoding and implementation of the WDM distributor and collector 540 

To feed a certain pattern to the neural network, it has to be encoded in optical pulse patterns 541 

which are presented to the on-chip network. The images shown in Figure 5b (corresponding to 542 



the letters A-D) are encoded in the following way: each pixel corresponds to the resonance 543 

wavelength of one of the ring resonators within a neuron, as indicated by the numbers 544 

superimposed on the pixels in fig 5b. These wavelengths are aligned to WDM channels 27-41 545 

in the telecommunication C-band. In the experiment we present the “white” pixels to the 546 

network such that the pulse pattern corresponding to an ‘A’ is, for example, represented by an 547 

optical pulse consisting of wavelengths 1, 3, 5, 8 and 14. These wavelengths are multiplexed 548 

onto the input waveguide as described in more detail in the supplementary materials and 549 

equally split to the synapses of the four neurons by the distributor. After adjusting the 550 

synapses (PCM-cells) corresponding to the patterns ‘A’, ‘B’, ‘C’ and ‘D’ using optical pulses, 551 

as described previously for the single neuron (Figure 3), the four different pulse patterns are 552 

sent to the input of the device. Subsequently, the change in the output spike intensity is 553 

observed for all four neurons as shown in Figure5b. 554 

Simulation of language identification with a two-layer network  555 

Using the scalable architecture, we further simulate the performance of a scaled-up, 556 

multilayer version of the network of fig. 5a for carrying out a much more complex task of 557 

language identification. The network for this task consists, as shown in Figure S16a),b) in the 558 

supplementary materials of four input neurons, three hidden layer neurons and two output 559 

neurons. The network is assembled using the scaling architecture described in Figure 4 and 560 

built up using model representations of photonic neurons according to the measured 561 

experimental data (activation function shown in Figure 2d)). This particular network is then 562 

used to detect if the language of a given input text is either English or German (the sample 563 

texts are taken from34). In a first step the ratio of each vowel (“a”, “e”, “i”, “o”, “u”) and the 564 

total number of characters in the input text is calculated (preprocessing). In a second step the 565 

five obtained ratios are fed to the inputs of the neural network and the outputs are computed. 566 

Each neuron in the simulated network uses the measured optical response from the on-chip 567 



neurons (see supplementary materials section 10). Already with a count of about 35 words in 568 

the input text, an accuracy above 90% for the language detection is attained. With 150 words 569 

the accuracy reaches 99.6%.  570 

  571 



Data Availability Statement 572 

All data used in this study are available from the corresponding author upon reasonable 573 

request. 574 
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