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Abstract
Additive manufacturing (AM), also known as 3D printing, has been called a disruptive technology as it enables the
direct production of physical objects from digital designs and allows private and industrial users to design and produce
their own goods enhancing the idea of the rise of the “prosumer”. It has been predicted that, by 2030, a significant
number of small and medium enterprises will share industry-specific AM production resources to achieve higher
machine utilization. The decision-making on the order acceptance and scheduling (OAS) in AM production, particularly
with powder bed fusion (PBF) systems, will play a crucial role in dealing with on-demand production orders. This paper
introduces the dynamic OAS problem in on-demand production with PBF systems and aims to provide an approach for
manufacturers to make decisions simultaneously on the acceptance and scheduling of dynamic incoming orders to
maximize the average profit-per-unit-time during the whole makespan. This problem is strongly NP hard and extremely
complicated where multiple interactional subproblems, including bin packing, batch processing, dynamic scheduling,
and decision-making, need to be taken into account simultaneously. Therefore, a strategy-based metaheuristic decision-
making approach is proposed to solve the problem and the performance of different strategy sets is investigated through
a comprehensive experimental study. The experimental results indicated that it is practicable to obtain promising
profitability with the proposed metaheuristic approach by applying a properly designed decision-making strategy.

Keywords Order acceptance and scheduling . On-demand production . Random order arrival . Heuristic decision-making .
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1 Introduction

Additivemanufacturing (AM), also known as 3D printing, has
been called a disruptive technology as it enables the direct
production of physical objects from digital designs and, thus,
allows industrial as well as private users to design and produce
their own products enhancing the idea of the rise of the
“prosumer” [1, 2]. AM technology usually builds a structure
into its designed shape using a “layer-by-layer” approach,
which makes it versatile, flexible, highly customizable and
suitable for most sectors of industrial production [3]. This
characteristic of AM provides new opportunities for freedom
of design and enables on-demand production of customized
products without additional manufacturing costs due to the
geometric complexity. The importance of AM technology
has been recognized in various businesses [1, 2, 4, 5] and
has been considered as one of the key supporting technologies
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for smart design and manufacturing in Industry 4.0 [6]. The
advantages of AM technology over traditional manufacturing
have been identified and discussed by Attaran [7]. It also has
been predicted that, by 2030, a significant number of small
and medium enterprises will share industry-specific AM pro-
duction resources to achieve higher machine utilization and,
across all industries, local production near customers enabled
by AM will increase significantly [1]. By then, the problems
regarding production planning and scheduling in on-demand
production with industry-specific AM resources will be on the
table. Typically, the decision-making on the order acceptance
and scheduling (OAS) will play a crucial role when service
providers dealing with on-demand production orders from
small and medium enterprise are distributed around the world.

Two of the most representative AM processes, Selective
Laser Melting (SLM) and Electron Beam Melting (EBM),
classified as the Powder Bed Fusion (PBF) process, have re-
ceived significant attention in the research and have been
widely adopted in various industries due to their advantages
in producing fine-resolution and high-quality near-full-density
parts [3, 5]. PBF is an AM process, in which thermal energy
source, either a laser or electron beam, is used to melt and fuse
selective regions of a powder bed (ASTM:F2790-12a). A PBF
system is a kind of batch processing machine (BPM) in which
a batch of identical or non-identical parts can be processed
simultaneously according to its capacity. A batch of parts
can be grouped to form an AM job when they are able to fit
the AM machine’s production capacity, which is generally
limited by the cuboid space of the machine’s building cham-
ber. The production of a batch of parts is usually called an AM
job. The parts assigned to an AM job are processed simulta-
neously, and, once the job is started, no part can be added into
or taken out of the machine until the whole AM job is
completed.

The operations of an AM job usually comprise the follow-
ing three steps: preparation, production, and collection. The
general process of production with a PBF system is illustrated
in Fig. 1, though the energy source and materials used in a
particular PBF process might be different. First, a series of
operations are needed to set up an AM job, including the

processing of digital model data, preparation of powder mate-
rials, filling up the protective atmosphere, and warming up the
machine if necessary. For metal PBF systems like SLM and
EBM, the parts usually need to be built onto the metallic
building platform to avoid thermal-induced deformation and
should be properly oriented to reduce support structures [8, 9].
The metal parts are usually nested in two dimensions, al-
though it is possible in three dimensions, using their 2D
boundary box within the area of the building platform without
overlap for the purpose of safety. Afterwards, the AM job can
be started. A thin layer of powder materials with a typical
thickness of 20 to 60 μm will be generated upon a base plat-
form or the already-produced fraction of objects. Then, the
cross-sections of sliced CAD files will be subsequently
scanned using a high-power laser or electron beam to densify
the powder materials, and the platform goes down a pitch
equal to the layer thickness afterwards. These two procedures,
namely powder layering and powder melting, will alternate
until all parts in the job are produced [10]. Finally, the parts,
together with the building platform, can be taken out of the
machine when all the parts have been produced, and the ma-
chine can be cleaned for the preparation of the next AM job.
Before the parts are delivered, they usually need to be heat-
treated together with the building platform to release the ther-
mal stress, and, then, the parts can be cut off from the platform
for post-processing, such as support structures’ removal and
surface polishing if necessary.

The characteristics of production with PBF systems, in par-
ticular, the uncertainty of the production time of an AM job,
make it challenging when dealing with the OAS problem.
According to the classification of batch processing problems
(BPP) byMatin et al. [11], the production with PBF systems is
similar to a serial batch scheduling problem where the pro-
cessing time of each batch is a function of jobs’ attributes. Just
to be clear, the terms “AM job” and “part” in this paper cor-
respond to the terms “batch” and “job” used in BPP, respec-
tively. The processing time of an AM job can be seen as the
composition of two sections—the time spent on job prepara-
tion and part collection, which is relatively fixed, and the time
spent on the production of parts assigned to the job, which is a

Fig. 1 Illustration of the general production process with a powder bed fusion system

Int J Adv Manuf Technol



function of the parts’ attributes as well as the machine’s spec-
ifications. To produce the parts assigned to an AM job, the
processes of powder layering and powder melting are repeated
alternately until all the layers have been processed. The time to
melt powder materials to form a part depends on the building
speed of the machine which is usually measured by the vol-
ume rate. However, the time required for powder layering
depends on the number of layers and the settings of the ma-
chine. It must be pointed out that the accumulated time spent
on generating powder layers will be significant when the
thickness of each layer is quite small, even longer than the
time spent on densifying the powder materials in some cases.
For example, given that the layer thickness of 20 μm and 15 s
for generating each powder layer, the machine will spend
more than 62 h on generating powder layers to produce a part
300 mm high. This case could be worse for a particular PBF
process, like EBM, where each layer might need additional
time for powder materials’ pre-heating. Therefore, the produc-
tion time of an AM job could be extended significantly by
adding a new part, not only because it increases the time for
powder melting but also because it might increase the time
required for powder layering. The nature of production with
PBF systems makes the production time of an AM job incon-
clusive before all the parts assigned to this job have been
confirmed. Also, as the time for powder layering depends on
the number of layers presented by the highest part included in
an AM job and is shared by all the parts, the production time
of an individual part is inconclusive before the confirmation of
the job. Meanwhile, the production cost of an individual part
is variational when it is assigned to different AM jobs due to
the variety of production time. The difference of production
cost per volume of material could be more than 40% when the
part order was scheduled into different jobs [10].

This paper considers a dynamic OAS problem in an on-
demand production environment where the service provider
with multiple AMmachines is making decisions on the accep-
tance of orders placed by customers and scheduling the ac-
cepted orders simultaneously, to maximize the average profit-
per-unit-time obtained during the whole makespan. AM tech-
nologies, as a rapidly developing DDM technology, have be-
come an important service form which can be provided across
the world through an online platform, while the parts are pro-
duced locally near the customers [1, 3, 12, 13]. Generally,
within an online service platform, the service providers with
one or more PBF systems usually provide a unit service price
based on the volume of materials and a due date which is
generally a fixed time after the acceptance of the order.
Customers around the world usually upload their digital
models and make enquiries about the availability of the ser-
vices if they are satisfied with the price and due date. The
orders will be accepted automatically if the order can be de-
livered before the due date promised by the service providers.
Otherwise, the customers may either further negotiate with the

service providers for a new offer or turn to another service
provider. In this paper, we consider the decision-making prob-
lem faced by an individual service provider on how to select
the orders and schedule them within promised due date to
maximize the average profit-per-unit-time during the whole
makespan. For generalization, the orders are placed by cus-
tomer randomly in a chronological order and to wait for the
acceptance from the service provider. An order, termed part
order in this paper, only contains one digital model data which
has been properly oriented and cannot be separated. The ser-
vice provider tries to group arrived part orders instantly into a
batch to form an AM job on a specific AM machine by con-
sidering the constraints of the machine’s capacity as well as
the promised latest due date of each part order. A part order
will be accepted only if it can be processed within one of the
machines’ jobs and the complete time of the job is not later
than the promised latest due date. Otherwise, the part order
will be rejected and handed over to another department for
further negotiation with customers. All the accepted part or-
ders will be produced according to the scheduled start time of
the AM job they were assigned to. The completion time as
well as the start time of a production job can only be deter-
mined when all part orders included in this job are confirmed.
Therefore, any part order added into an unconfirmed AM job
will occupy the capacity of the machine and affect the com-
pletion time of the job, which may render the machine unable
to fit further part orders due to either the constraints of their
due dates or the machine’s capacity.

The dynamic OAS problem in on-demand production with
PBF systems is a joint decision on order acceptance and
scheduling of batch processing machines. It is vitally impor-
tant to appropriately determine which part orders should be
accepted and how they should be scheduled simultaneously so
as to maximize the average profit-per-unit-time corresponding
to the whole makespan. Although the topics of OAS and BPP
have been widely studied [11, 14, 15], to the best of our
knowledge, no research has been conducted to address the
dynamic OAS problem in production with PBF systems. In
this paper, the dynamic OAS problem is defined and mathe-
matically modelled with constraints of orders’ arrival time and
due date for the first time. Since both OAS and BPP are strong
NP hard problems, in regard to the characteristics of produc-
tion with PBF systems, a strategy-based heuristic decision-
making approach is proposed for the generation of feasible
schedule solutions. The proposed approach can be used for
the investigation of decision-making strategies to obtain
promising profitability with a given price and due date.
Alternatively, given an expected profitability and decision-
making strategy, the approach can be used to generate com-
petitive offers through reducing service price and/or
narrowing due date.

The paper is organized as follows. The related works are
reviewed in Section 2, and the problem of dynamic OAS in
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on-demand production with PBF systems is defined and
modelled mathematically in Section 3. In Section 4, the heu-
ristic procedures are proposed for the generation of feasible
AM jobs on a single machine as well as multiple machines to
form a feasible schedule result. Further, different decision
strategies are proposed based on the analysis of the selective
behaviours, which may affect the schedule results, during the
generation of a feasible schedule. A comprehensive experi-
mental study is designed and conducted in Section 5, followed
by conclusions and future research directions in Section 6.

2 Related works

As an emerging disruptive manufacturing technology, the ap-
plication of AM technologies has increased substantially in
different industries during the past years, and considerable
research, from scientific and technological challenges [3, 5,
7] to business model innovation and industry application is-
sues [2, 4, 16–18], has been carried out. A prediction of the
future of AM, based on an extensive Delphi survey by Jiang
et al. [1], indicated that, by 2030, a significant number of small
and medium enterprises will share industry-specific additive
manufacturing production resources to achieve higher ma-
chine utilization, learning effects, and quality assessments.
Also, it was predicted that, by 2030, the distribution of final
products will move significantly (> 25%) to selling digital
files for direct manufacturing instead of selling the physical
product due to the increase of local production near customers
enabled by additive manufacturing. The research and devel-
opment of the key technology of 3D printing cloud
manufacturing platforms was summarized by Guo and Qiu
[16], and the development of the combination of 3D printing
and cloud manufacturing was proposed. In recent years, even
more research is focusing on the practical problems related to
production with AM technologies [10, 19–23].

The problem of OAS in on-demand production with PBF
systems involves the decision-making on order acceptance
and scheduling of batch processing machines, both of which
have been widely studied in different production environ-
ments [14, 24–26]. The OAS problems usually occur, par-
ticularly in highly loaded make-to-order production systems,
when the production capacity of a company is overloaded
[14, 27]. A detailed taxonomy of OAS problems and a com-
plete review of literature before 2011 were presented by
Slotnick [14]. Recently, a genetic algorithm based on real-
time OAS approach for permutation flow shop problems to
maximize the revenue of a flow shop production business
was proposed by Rahman et al. [28]. The demand uncertain-
ty in production planning problems integrated with order
acceptance was introduced by Aouam et al. [29], and a relax
and fix (RF) heuristic for the construction of feasible solu-
tions which can then be improved by a fix and optimist (FO)

heuristic was proposed. Over the past decades, the BPPs
which can be observed in many industries and service sec-
tors have been widely studied in literature. Based on the
batch processing time and the batch capacity restriction,
the classification of BPP problems was proposed by Matin
et al. [11], and a mixed-integer linear programming model as
well as metaheuristic algorithms based on particle swarm
optimization were proposed for the flow shop BPP problem
with different batch compositions to minimize makespan.
The scheduling problems for single/multiple parallel and se-
rial batch processing machines have also been studied, and
various approaches have been developed [24, 26, 30–33].
Based on their previous studies of dynamic scheduling prob-
lem [34, 35], a case study focusing on online and dynamic
scheduling of parallel heat treatment furnaces at a real
manufacturing company was recently presented by
Baykasoğlu and Ozsoydan [36] where a multi-start and con-
structive search algorithm was proposed to minimize the
maximum completion time of the schedule. Concerning the
latest industrial revolution (Industry 4.0), a novel general
framework of assembly system was introduced by
Bortolini et al. [37] and an innovative multi-objective opti-
mization model as well as the key enabling technologies
were introduced for the assembly line balancing problem
[38, 39]. Although various approaches have been developed
for various OAS problems and BPP problems, it is hard to
adopt these approaches directly in on-demand production
with PBF systems due to the unique nature of AM
production.

The topic of AM has attracted considerable attention
over the past decades [3, 5]. However, research on pro-
duction planning and scheduling in AM, particularly, the
OAS problems, is just catching up. Order acceptance
and scheduling in production with PBF systems is an
extremely complicated problem where multiple topics,
including bin packing, batch processing, production
cost/profit, makespan, and decision-making on order ac-
ceptance/rejection, need to be taken into account simul-
taneously. However, most of the research emerging in
this field only addressed parts of the problem as shown
in Table 1. The production planning problem of multi-
ple metal AM machines was introduced and modelled
mathematically for the first time by Li et al. [10]. The
prob lem was so lved wi th CPLEX as wel l as
metaheuristic procedures to minimize the average pro-
duction cost per unit volume of material; however, the
due dates and the shape of part orders have not been
considered. In our recent research [22], the production
scheduling problem in a multiple AM machine environ-
ment by considering the release and due dates of part
orders was studied and a genetic algorithm approach
was developed to minimize the maximum lateness.
Inspired by our research, several studies have been
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reported recently. The production planning and schedul-
ing of identical parallel AM machines to fulfil the dif-
ferent orders by due dates and to minimize the total
tardiness was studied by Akram et al. [40], where the
mathematical formulation of the problem and a heuristic
procedure were proposed. The problem was formulated
as two subproblems—part/job assignment through part
clustering based on due dates and job scheduling based
on tardiness of the jobs. Dvorak et al. [41] investigated
the problem of scheduling parts on multiple AM ma-
chines while minimizing time spent and satisfying dead-
lines, bringing together bin packing, nesting, job shop
scheduling and constraint satisfaction. The problem was
encapsulated within constraints and graph theory to rep-
resent relationships between individual parts, and search
algorithms were introduced to find solution with mini-
mum makespan. A modified genetic algorithm for time
and cost optimization of an AM single-machine sched-
uling problem was proposed by Fera et al. [42] to bal-
ance the optimization of earliness/tardiness and produc-
tion costs. Oh et al. [43] studied the production plan-
ning and scheduling problem in production with multi-
ple AM machines where a heuristic algorithm was pro-
posed for decision-making on build orientation, 2D
packing and scheduling on multiple AM machines based
on the longest cycle time. A decision aiding model,
based on a multi-objective optimization for a batch of
parts and multiple fused deposition modelling (FDM)
printers, was proposed by Ransikarbum et al. [19] con-
sidering the operating cost, load balance among printers,
total tardiness and total number of unprinted parts as
objectives. The requirement of print time for FDM is
based on the sum of all part time which is different
with that of the PBF process. A cloud-based platform
fo r au t oma t ed o rde r p roc e s s i ng i n Add i t i v e
Manufacturing where the order acceptance is determined
according to the checking of manufacturing restriction

and design guidelines was proposed by Rudolph and
Emmelmann [21], while the scheduling problem was
not considered. The problem of multi-task scheduling
of distributed 3D printing services in cloud manufactur-
ing was discussed by Zhou et al. [13], and a 3D print-
ing service scheduling (3DPSS) method to reduce the
delivery time of tasks from candidate services obtained
through service matching was proposed. The authors
treated the 3D printer as a service which can only pro-
cess one job at a time, and, thus, the batching problem
was not considered. The OAS problem faced by AM
service providers in a competitive environment was in-
troduced and a strategy-based decision-making model
was proposed in our previous work [44], while the
decision-making strategies as well as their performance
need to be further investigated.

3 Problem statement

3.1 Problem definition and assumptions

The dynamic OAS problem addressed in this research can
be formally described as follows: a set of part orders
N = {1, 2, 3, … , n} is randomly placed by customers in
chronological order, and the service provider with a set
of AM machines M= {1, 2, 3, … ,m} makes decisions on
which part order should be accepted and how to schedule
the accepted part orders simultaneously to maximize the
average profit-per-unit-time obtained during the whole
makespan. The part orders have a specific arrival time,
material volumes, and boundary dimensions (height,
length, and width). For each part order, a promised due
date is given plus a fixed duration to its arrival time. The
AM machines have specifications, including operation
cost, production efficiency, building capacity (represented
as a cuboid space with maximum height, length, and

Table 1 An overview of the highly related literature on production planning and scheduling in AM

Literature Objective Batch
processing

Bin
packing

Cost/profit Production
time/makespan

Arrival/deliver
time

Order
acceptance

Li et al. [10] Min. cost Yes No Yes No No No

Kucukkoc et al. [22] Min. lateness Yes No No Yes Yes No

Akram et al. [40] Min. tardiness Yes Yes No Yes Yes No

Dvorak et al. [41] Min. makespan Yes Yes No Yes Yes No

Fera et al. [42] Multi. tardiness & cost Yes No Yes Yes Yes No

Oh et al. [43] Min. cycle time Yes Yes No Yes No No

Ransikarbum et al. [19] Multi. tardiness & cost Yes No Yes Yes Yes No

Rudolph and Emmelmann [21] Order processing No No Yes Yes No Yes

Zhou et al. [13] Min. delivery time No No Yes Yes Yes No

Li et al. [44] Max. profit Yes Yes Yes Yes Yes Yes
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width), and service price per unit material volume. Each
AM machine can handle one AM job at a time, and a
batch of non-identical parts can be processed simulta-
neously in this job according to the machine’s capacity.
The part order will be accepted only when it can be proc-
essed within one of the machines’ jobs, and the comple-
tion time of the job is not later than its promised due date.
Otherwise, the part order will be rejected if no machine
can process it before its promised due date. All the
rejected part orders will leave the system and be handled
by the related department for further negotiation with cus-
tomers. The scheduled AM jobs will be started for pro-
cessing according to their planned start time. The total net
profit equals the total revenue for producing all the ac-
cepted part orders, minus the total production cost of all
scheduled jobs, whereas the makespan is the difference
between the latest completion time and the earliest start
time of all scheduled jobs.

To further specify the problem that will be addressed in this
paper, the following assumptions are made:

& The AM machines considered in this paper are PBF sys-
tems with SLM/EBM processes used for metal part pro-
duction. All the AM machines belong to one service pro-
vider, who makes decisions based on the applied decision-
making strategy.

& The orders from customers have been separated into
individual part orders in which the parts have been
properly oriented according to the requirements of
SLM/EBM process and all the parts together with
necessary support structures are regarded as one dig-
ital model. The bottom side of the digital model
needs to be put onto the building platform.

& The part orders received by the service providers are from
those customers satisfied with the service price and would
like to place the orders if the parts can be delivered by the
promised due date. Otherwise, the customers will either
further negotiate with the service provider for a new offer
or turn to another service provider.

& A batch of parts assigned to a machine’s job is
feasible only when the parts can be placed in the
machine without overlapping with each other.
Currently, the building platform of major metal
PBF systems is rectangular and, for the purpose of
safety, the overlapping of parts within one AM job
should be avoided. One of the most common
methods to detect overlapping is using the boundary
box of a digital model. Therefore, the projection
shape of a digital model’s boundary box is consid-
ered as a rectangle.

& All the parts assigned to a machine’s production job
will be processed simultaneously. That is, once a pro-
duction job has started, no parts can be added to the

job and the processed parts can only be removed when
the job is completed. In this paper, all the parts are
made from the same material, which can be processed
by the AM machines configured with same/different
building efficiencies and operation costs.

& All the AM machines are available at the beginning
and the AM machine can only handle one job at a
time. That is, the jobs scheduled to a machine will
be processed one by one in sequence. The idle time
cost of the machine is not considered in this paper
as it only represents a small proportion of the total
production costs. However, it will be considered in
future research for practical applications.

3.2 Model notations and decision variables

To formulate the mathematical model of the real-time OAS
problem in on-demand production with PBF systems, the fol-
lowing notations are used:

i The index used for the part orders, i ∈N.
k The index used for the AM machines, k ∈M.
j The index used for the jobs j = 1, 2,… , n and j ∈N
hi The height of part order i.
wi The boundary width of part order i.
li The boundary length of part order i.
vi The material volume of part order i.
ri The arrival time of part order i.
di The promised due date of part order i.
Hk The maximum height of building space on machine k.
Wk The maximum width of building space on machine k.
Lk The maximum length of building space on machine k.
VTk Time for forming per unit volume of material for

machine k.
HTk Time for coating per unit height of material for

machine k.
TCk The operation cost per unit time for machine k.
HCk The cost of human work per unit time for machine k.
STk The time for setting up a new job on machine k.
MCk The cost of per unit volume of material used by

machine k.
PVk The service price of per unit volume of material for

machine k.

The decision variables are defined as follows:

Xi, k, j 1, if part order i is accepted and assigned
to the jth job on machine k; 0, otherwise.
∀i ∈N, k ∈M, j ∈N.

Yk, j 1, if the jth job on machine k is assigned
with any parts; 0, otherwise. ∀k ∈M, j ∈N.
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JPPk, j The profit obtained from the jth job on
machine k.

JPTk, j The production time of the jth job on
machine k.

JPCk, j The production cost of the jth job on
machine k.

JSTk, j The start time of the jth job on machine k.
JCTk, j The complete time of the jth job on machine k.
APT The average net profit-per-unit-time of the schedule.

3.3 Mathematics model

The objective of the dynamic OAS problem in on-
demand production with PBF systems is to maximize
the total net profit within the makespan for the whole
system, including all the AM jobs scheduled on all ma-
chines, which is termed “average profit-per-unit-time” in
this paper, and represented as APT. The makespan of the
whole system is defined as the difference between the
latest completion time and the earliest start time of all
scheduled AM jobs. Before being given the formulation
of the objective function, it is necessary to define the
components, including the production cost, production
time, and profit of an AM job, which are related to the
objective function. To keep the complexity of the model
at a minimum and focus on the main idea underlying the
research, the models of production cost as well as the
production time of an AM job are simplified based on
the work by Li et al. [10].

The production cost of an AM job generally comprises the
following three sections: (1) the cost of powder material melt-
ing which depends on the total material volume of all the parts
assigned to this job; (2) the cost of powder layering which
depends on the maximum height of the parts within the same
job; and (3) the cost of setting up a new AM job. The produc-
tion cost of the jth AM job scheduled to machine k, represent-
ed by JPCk,j, can be formulated as follows:

JPCk; j ¼ TCk &VTk þMCkð Þ&∑iϵNvi &X i;k; j

þ TCk &HTk &maxiϵN hi &X i;k; j
� �þ STk &HCk &Yk; j ð1Þ

Accordingly, the production time of the jth AM job sched-
uled to machine k, represented by JPTk,j, comprises the time
for powder melting, the time for powder layering, and the time
for setting up the job which can be formulated as follows:

JPTk; j ¼ VTk &∑iϵNvi &X i;k; j þ HTk &maxiϵN hi &X i;k; j
� �

þ STk &Yk; j ð2Þ

Given the service price of per unit volume of material PVk

for machine k, the net profit obtained from the jth AM job

scheduled to machine k, represented as JPPk,j, can be formu-
lated as follows:

JPPk; j ¼ PVk−TCk &VTk−MCkð Þ&∑iϵNvi &X i;k; j

−TCk &HTk &maxiϵN hi &X i;k; j
� �

−STk &HCk &Yk; j

ð3Þ

Therefore, the objective function of the dynamic OAS
problem can be formulated as follows:

maxAPT ¼ ∑k∈M∑ j∈NJPPk; j

maxk∈M ; j∈N JCTk; j
� �

−mink∈M ; j∈N JSTk; j
� � ð4Þ

3.4 Constraints

In the environment of on-demand production with PBF sys-
tems, several constraints have to be considered in the decision-
making on which part order should be accepted and how to
schedule the accepted part orders. First, the capacity con-
straints of the AM machine have to be considered when
attempting to assign a part order to a job on this machine. A
part order can be assigned to a job on the machine only when it
can be placed on the machine’s building platform without
overlapping with other parts already assigned to this job and
the height of the part must be smaller than the maximum
height supported by the machine. In this paper, both the ma-
chine’s building platform and the projection of parts are rep-
resented by rectangles. A Python function implemented by
Jacobs [45] is used to measure whether a part could fit in a
machine’s building platform by considering the parts already
included in the job. The capacity constraints of machine k are
represented as follows:

hi≤Hk ;∀i∈N ; k∈M ð5Þ

Fitk; j wi; lið Þ ¼ True;∀i∈N ; k∈M ; j∈N ð6Þ

The function Fitk,j(wi, li) is used to calculate whether a bas-
ket of rectangles (defined with the boundary width and length
of each part) could fit in a larger rectangle (defined with the
width Wk and length Lk of the machine’s building platform).
For each machine, the function always maintains a basket to
store the rectangles of all the parts which have been assigned to
the current AM job. When a new rectangle with width wi and
length liwill be added into the basket and the functionFitk,j(wi,
li) returns either True, if the basket of rectangles could fit in the
rectangle with widthWk and length Lk, or False if it could not.

Second, a part order can only either be assigned to an exact
AM job on a particular AM machine or be rejected. As the
extreme case is that all the part orders are assigned to one
machine and each AM job only processes one part, the num-
ber of all scheduled jobs should be no more than the number
of all the part orders. Also, an AM machine can only handle
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one AM job at a time; thus, the AM jobs should be scheduled
to themachine in sequence. That is, the secondAM job cannot
be scheduled if the first job on the machine has not been
scheduled yet. Meanwhile, a scheduled AM job can be started
only when the previous job has been completed on this ma-
chine. Therefore, the following constraints will be applied:

∑k∈M∑ j∈NX i;k; j≤1;∀i∈N ; k∈M ; j∈N ð7Þ

∑k∈M∑ j∈NY k; j≤N ;∀k∈M ; j∈N ð8Þ

Yk; j≥Yk; jþ1;∀k∈M ; j ¼ 1; 2;…; n−1 ð9Þ

JSTk; jþ1≥JCTk; j;∀k∈M ; j ¼ 1; 2;…; n−1 ð10Þ

Last but not least, the constraints of the arrival time and due
date of part orders have been considered in the dynamic OAS
problem. A part order only can be considered for scheduling if
the sum of its arrival and the completion time of the AM job to
process this part are no later than the promised due date for this
part order. In other words, the start time of an AM job should be
no earlier than any part order’s arrival time assigned to this job,
and the completion time of the job should be no later than any
part order’s promised due date. The time constraints of the jth
AM job scheduled to machine k can be represented as follows:

maxi∈Nk; j rif g≤JSTk; j;∀k∈M ; j∈N ð11Þ
mini∈Nk; j dif g≥JCTk; j;∀k∈M ; j∈N ð12Þ

where Nk, j is the set of parts assigned to the jth job on
machine k.

4 Heuristic procedures

4.1 Characteristics of an AM job

An AM production job can process a batch of non-identical
parts simultaneously, and the production time of the job is a
function of the properties of all parts assigned to this job as
well as the specifications of the AM machine to conduct this
job. Also, the AM job must be completed no later than any
promised due date of the part orders assigned to this job and
can be started no earlier than the completion time of the

previous job scheduled to this machine and the arrival time
of any part orders assigned to this job. Therefore, not only the
material volume and height of the part but also the arrival time
and promised due date of the part will cause a change in
production time of the job as well as a change in the job’s
available time slot. The available time slot for an AM job
which is in scheduling on a machine can be illustrated in
Fig. 2.

At the time moment t, the available time slot TSk,j for the
jth job on machine k can be formulated as follows:

TSk; j ¼ max t; JCTk; j−1
� �

;mini∈Nk; j dif g� � ð13Þ

An AM job is feasible only when the start time and the
completion time of the job are located within its available time
slot. For part order i arriving at or before the time moment t, it
can be assigned to the jth job on machine k as long as the
machine still has available capacity to accommodate it and the
adding of the part will not cause the production time of the job
to be longer than its available time slot. However, an AM job
should be confirmed to be scheduled on the machine and
move forward to schedule the next job when one of the fol-
lowing limits is reached:

& T i m e L i m i t s wh i c h c a n b e m e a s u r e d b y
min
i∈Nk; j

dif g−max t; JCTk; j−1
� �

≤JPTk; j,

& Capacity Limits means no part orders can be fitted in the
machine any more.

Once an AM job has been confirmed, the start time of the
job should be adjusted to its earliest available start time, that
is JSTk,j = max {t, JCTk,j − 1}, and accordingly the comple-
tion time of the job JCTk,j equals JSTk,j + JPTk,j.

4.2 Heuristic procedures for dynamic OAS

The problem of dynamic OAS in on-demand production with
PBF systems is a joint decision on order acceptance and BPM
scheduling, both of which have been proved as strongNP hard
problems [14]. Additionally, the generation of a feasible
schedule solution, in particular, batching part orders to form
an AM job, is an extremely complicated procedure when con-
sidering the constraints of the machine’s capacity as well as

Fig. 2 Available time slot for an
AM job in scheduling
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the arrival time and due date of each part order. Therefore,
heuristic procedures are proposed in this paper to generate
feasible schedule solutions for solving the dynamic OAS
problem efficiently.

An illustration of a dynamic OAS processing flow dia-
gram in on-demand production with PBF systems is shown
in Fig. 3. The part orders from customers arrive to the
system in a chronological order and wait for feedback from
the service provider. The order will be confirmed for pro-
duction, and if it can be delivered by the promised due
date; otherwise, the customer who released this order will
either further negotiate with the service provider for a new
offer or turn to another service provider. The AM machines
generate feasible AM jobs by selecting part orders from the
order pool according to their capacities and local decision
strategies and then propose the feasible AM jobs to the
service provider. Meanwhile, the service provider monitors
the feasible AM job list in real time and makes decisions
on which job is to be confirmed according to a global
decision strategy. Once an AM job was confirmed for
schedule, the part orders assigned to this job will be re-
moved from the order pool. All the AM machines in the
system will be informed at the same time so that they can
update their feasible AM jobs in real time. However, a part
order will leave the system if no AM machine can produce
it within its promised due date. The confirmed part orders
will be produced in the scheduled AM jobs.

Each AM machine in the system will monitor the order
pool and try to generate feasible AM jobs in real time. The
heuristic procedure to generate feasible AM job on a single
AM machine is described as Algorithm 1. At any given time,
the AMmachine maintains an in-scheduling AM job which is
still available to consider a new part. A part is feasible for the
AM job if it satisfies the capacity constraints and the produc-
tion time of the AM job, and after adding this part, is still no
longer than its available time slot. The AM machine will

get all the feasible parts from the order pool and select one
based on its local decision strategy and update the feasible part
list afterwards to select the next part. This procedure will be
repeated until the in-scheduling AM job has reached its time
or capacity limits, and, then, the AM job will be proposed to
the service provider for confirmation. Once the current in-
scheduling AM job is confirmed, it will be added to the ma-
chine’s confirmed job list and the in-scheduling AM job will
be renewed by emptying the part list in the job and updating
the available time slot of the job. For a new in-scheduling AM
job, the available time slot starts from the current timemoment
or the completion time of the last confirmed job on this ma-
chine whichever is later, and the ending of the time slot is far
enough from current time moment.

Within a multiple AM machine environment, each AM
machine will propose confirmable feasible AM jobs to the
service provider based on their local decision strategies.
Meanwhile, the service provider will make the decision on
which feasible AM job should be confirmed, based on its
global decision strategy, and, as a result, the part orders
assigned to this AM job will be accepted. The heuristic

Fig. 3 Decision-making strategy based on dynamic OAS procedures
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procedure to confirm the feasible AM jobs proposed by all the
AM machines is described in Algorithm 2. Once a feasible
AM job is confirmed, all the parts assigned to this job will
be removed from the order pool. At the same time, the deci-
sion will be communicated to all the AM machines in the
system, so that the AM machines could regenerate their con-
firmable feasible AM jobs from the order pool in real time.

4.3 Decision-making strategies

As mentioned previously, the production time of an AM
job is the function of the properties of all parts assigned
to this job and the specifications of the machine to
conduct this job. For an AM machine, the decision on
which part order should be assigned to the in-scheduling
AM job might significantly affect the production time of
the job and, as a result, may mean that the other part
orders in the order pool are no longer feasible. Different
choices will lead to different combinations of part or-
ders in the AM job and, thus, will lead to different
production time, production costs, and net profit. As a
strong NP hard problem, it is hard to generate the re-
sults for all possible choices, particularly for the prob-
lems with a big number of part orders and AM ma-
chines. Therefore, a set of local decision strategies is
proposed for the AM machine to generate high-quality
feasible AM jobs within a reasonable CPU time.
Meanwhile, for the service provider, a proper global
decision strategy is crucial to guarantee the whole sys-
tem generating maximum net profit within the whole
makespan. The final decision on the acceptance and
scheduling of a part order is the result of a combination
of local and global decision strategies. Each AM ma-
chine selects feasible part orders from the order pool
based on its local strategy to form a feasible AM job
and proposes it to the service provider. The proposed
feasible AM job would be confirmed if it complies with
the global decision strategy applied by the service pro-
vider. To investigate the influences of different selective

behaviours to the APT during the whole makespan, a set
of local decision strategies for AM machines and global
decision strategies for service provider are proposed in
this section, and the performance of different decision
strategies will be discussed in Section 5.

The most obvious decision strategy for both AM ma-
chines and service provider is stochastic selection,
named RDM and described in Strategy 1, which only
concerns the feasibility of the AM jobs and ignores
the profit derived from the production. Although sto-
chastic selection cannot guarantee the performance of
the generated solution, it is a practical way to know
about how the good results are different from the bad
results by comparing a set of schedule results generated
randomly. Theoretically, the optimized schedule result
could be found as long as the number of iterations for
stochastic selection is large enough.

For an AM machine in the system, the decision on which
feasible part order should be added into its in-scheduling AM
job will result in different production cost, time, and profit
which can be calculated with Eq. (1), Eq. (2), and Eq. (3)
respectively. At the time moment when the AM machine is
considering a feasible part order i, the production cost, time,
profit, and the start time of this job are represented as JPCi

k; j,

JPTi
k; j, JPP

i
k; j, and JST i

k; j, respectively, if this feasible part

order was added into this job. It is reasonable to assume that an
AM machine always tries to pursue maximum profit within
the shortest time. Therefore, the APT during the AM ma-
chine’s makespan could be considered as a decision variable
to determine if a feasible part order should be selected, which
is represented as PMSik; j and formulated as follows:

PMSik; j ¼
JPPi

k; j

JST i
k; j þ JPTi

k; j
ð14Þ

The AM machine makes a contribution to the total profit
only during its production time. However, within a makespan,
the AMmachine may be idle and thus does not contribute to the
total profit. Therefore, another consideration is to use the ratio
of the production time to makespan as the decision variable,
which is represented as PPTi

k; j and formulated as follows:

PPTi
k; j ¼

JPTi
k; j

JST i
k; j þ JPTi

k; j
ð15Þ

Strategy 1 Stochastic selection (RDM)
• The AM machines randomly select the feasible part orders to form

feasible AM jobs.
• The service provider randomly confirms the feasible AM jobs

proposed by AM machines.
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Alternatively, the arrival time of a feasible part order
could be considered as a decision variable by the AM
machine. The start time of an AM job depends on the
latest arrival time of all part orders assigned to this job
when the machine is idle. Therefore, the AM machine
could reduce its idle time by selecting feasible part or-
ders with earliest arrival time to enable the AM job to
start as soon as possible.

Based on this analysis, three local decision strategies,
named LPMS, LPPT, and LFIFO, respectively, and de-
scribed in Local Strategies, are proposed for the
decision-making during the generation of feasible AM
jobs by an AM machine.

For the whole system, the service provider makes
decision on which feasible AM job should be confirmed
to schedule based on an applied global strategy. The
profit-per-unit-time during the makespan of the whole
system if a feasible AM job is selected, represented
as PMSk, j, can be formulated as follows:

PMSk; j ¼
∑k∈M ; j∈NY k; j &JPPk; j þ JPP

0
k; j

MS j
ð16Þ

where JPP
0
k; j is the profit of the feasible job under consider-

ation andMSj is the current makespan of the system if the job
is selected and can be formulated as follows:

MS j ¼ max maxk∈M ; j∈NY k; j &JCTk; j; JCT
0
k; j

n o

−mink∈M ; j∈NY k; j &JSTk; j;

ð17Þ

where JCT
0
k; j is the completion time of the feasible job under

consideration.
Similarly, the ratio of production time to the total makespan

for the system if a feasible AM job is selected, represented
as PPTk, j, is formulated as follows:

PPTk; j ¼
∑k∈M ; j∈NY k; j &JPTk; j þ JPT

0
k; j

MS j
ð18Þ

where JPT
0
k; j is the production time of the feasible job under

consideration.

Two global strategies GPMS and GPPT, described in
Global Strategies, are proposed based on the above-
mentioned decision variables.

During the generation of the schedule solution, the three
local strategies for AMmachines and the two global strategies
for service provider can be combined as six different strategy
sets GPMS-LPMS, GPMS-LPPT, GPMS-LFIFO, GPPT-
LPMS, GPPT-LPPT, and GPPT-LFIFO.

5 Computational study

The computational study was conducted to investigate the
performance of the various decision strategies proposed in
Section 4.3. A series of problems with different number of
part orders and AM machines were generated randomly and
solved with the heuristic algorithms proposed in Section 4.2.
To evaluate the performance of different decision strategies,
the difference between potential bad and good schedule results
was investigated first with the proposed RDM decision strat-
egy. Then, the performance of decision strategy sets listed in
the previous subsection was evaluated by comparing their
results with the best schedule results obtained with RDM de-
cision strategy. The heuristic algorithms proposed in
Section 4.2 were implemented in Python language. For repro-
ducibility of the results, specific random seeds are used in the
developed Python programme for the generation of the data of
part orders and AM machines to keep consistency across dif-
ferent test problems. All experiments were performed on a
computer equipped with Intel® Core™ i7-7700 CPU
@3.60 GHz processors and 32 GB RAM. The CPU time
consumed on different problem sizes was compared as well
to evaluate the efficiency of the proposed heuristic algorithms.

5.1 Experiment design

A serial of test problems was designed to demonstrate various
on-demand AM production environments for the investiga-
tion of the heuristic algorithms and decision strategies pro-
posed in this paper. Each test problem consists of different
numbers of AM machines with different specifications and
different numbers of part orders which arrived randomly dur-
ing a specific time duration. The specification related to the
capacity and efficiency of an AM machine is referred to the
DMLS system produced by EOS®—a global industrial 3D
printing system supplier from Germany. Other parameters of

Local Strategies
• LPMS: The feasible part order with the maximum PMSi

k , j will be
selected into in-scheduling AM job.

• LPPT: The feasible part order with the maximum PPTi
k , j will be

selected into in-scheduling AM job.
• LFIFO: The feasible part order with the minimum riwill be selected into

in-scheduling AM job.

Global Strategies
• GPMS: The feasible AM job with the maximum PMSk, j will be

confirmed for schedule.
• GPPT: The feasible AM job with the maximum PPTk, j will be

confirmed for schedule.

Int J Adv Manuf Technol



the machine are given empirically. For a multiple AM ma-
chines environment, all the AM machines are same in capac-
ity, material cost, and service price, while other parameters
were generated randomly within the given ranges. The refer-
ence and random range for the specifications of AMmachines
used in this paper are shown in Table 2.

The part orders considered in the test problems were gen-
erated randomly with specific arrival time, ri, boundary di-
mensions (hi ×wi × li), material volume, vi, and the due date, d-
i, promised by the service provider. The random ranges of
parameters for the part orders used in this paper are shown
in Table 3. All part orders were assumed to arrive randomly
within a specific duration (e.g., 30 days), and different part
orders may arrive at the same time. The due date promised to a
part order by the service provider is an empirical duration
(e.g., 14 days) after the part order’s arrival time. It is the latest
due date if the part order was accepted for production which
will be taken as a constraint for scheduling.

Four levels of the number of AM machines (3, 5, 10, and
20) were considered for each size of test problem according to
a different number of part orders (50, 100, 200, 400, and 600).
Therefore, in total, 20 different test problems were tested for
the evaluation of the proposed heuristic algorithms and deci-
sion strategies. Also, to investigate the influence of promised
due date on the performance of various decision strategies,
five different promised due dates (1, 3, 7, 10, and 14 days)
were considered in each test problem. The definition of 20 test
problems is listed in Table 4.

5.2 Potential difference of schedule results

The RDM decision strategy was applied to generate schedule
results of the 20 test problems to discover how the poor sched-
ule is different from the good schedule. The best as well as the
worst schedule results were obtained through 100 iterations
(except test problem 12–15, 18–20 with 20 iterations) applied
with RDM decision strategy. The results are listed in Table 5
where the average profit-per-unit-time (APTbest,APTworst), to-
ta l prof i t (PPbes t ,PPwors t ) , total production time
(PTbest,PTworst), makespan (MSbest,MSworst), accepted part

orders (PObest,POworst), and number of scheduled AM jobs
(JOBbest,JOBworst) of the best and the worst schedule are pro-
vided for further discussion. Also, the CPU time consumption
of each problem is provided. The CPU time was measured in
the developed Python programme through recording the dif-
ference of system clock time before and after the execution of
the scheduling programme.

It can be seen that the CPU time consumption increases
exponentially as the problem size increases along with the
number of AM machines and part orders. For example, the
CPU time consumption is increased approximately 341 times
from 36 to 12,187 s for the problems with 3 AM machines,
while the number of part orders increases from 50 to 600.
However, the optimal schedule result cannot be guaranteed
within the given iterations because it is hard to exhaust all
possible solutions especially when the problem with big size.
The experiment with RDM decision strategy intends to

Table 2 Specifications of AM machine used in this paper

Parameters Reference value Random range

Hk ×Wk × Lk (cm
3) 32.5 × 25 × 25 –

VTk (h/cm
3 ) 0.030864 0.03–0.06

HTk (h/cm) 0.7 0.7–1.0

STk (h) 2 1–3

TCk (GBP/cm
3) 60 50–80

HCk (GBP/h) 30 25–50

MC (GBP/cm3) 2 –

Pk (GBP/cm
3) 6 –

Table 3 Parameters of part orders used in this paper

Parameters Random range Example

ri (time moment in h) 0–720 439

di (time moment in h) ri + 336 775

hi (cm) 2–32 20

wi (cm) 2–25 9

li (cm) 2–25 10

vi (cm
3) hi ×wi × li × (0.3 – 0.8) 1132

Table 4 Definition of the test problems in this paper

Index AM machines Part orders Iterations with RDM

1 3 50 100

2 3 100 100

3 3 200 100

4 3 400 100

5 3 600 100

6 5 50 100

7 5 100 100

8 5 200 100

9 5 400 100

10 5 600 100

11 10 50 100

12 10 100 100

13 10 200 20

14 10 400 20

15 10 600 20

16 20 50 100

17 20 100 100

18 20 200 20

19 20 400 20

20 20 600 20
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provide a perceptual understanding on how different it could
be between different schedule results.

Generally speaking, as shown in Table 5, the best schedule
results usually present higher total profit, shorter makespan,
and longer total production time compared to the worst sched-
ule results for all test problems. However, there is no neces-
sary correlation between the APT and the number of accepted
part orders as well as the number of scheduled AM jobs. That

is, more accepted part orders or scheduled AM jobs cannot
guarantee more production profit. For further investigation, a
difference indicator for APT, represented as DAPT, is defined
as DAPT = (APTbest − APTworst)/APTworst. Also, the ratio of to-
tal production time to the makespan is represented as PPTbest
and PPTworst, respectively, for the best and the worst schedule
results. Further comparison of the best and the worst schedule
results is listed in Table 6, where it can be seen that the average

Table 6 Further comparison of schedule results with RDM decision strategy

Problem (%)
1 163.58 79.06 106.91 2.62 1.51
2 178.25 102.85 73.31 2.87 1.97
3 193.14 130.44 48.07 2.95 2.29
4 186.12 138.84 34.06 2.93 2.35
5 192.30 158.69 21.18 2.89 2.77
6 219.22 128.81 70.19 3.26 2.50
7 238.42 127.91 86.40 4.05 2.88
8 263.36 196.96 33.71 4.32 3.36
9 279.17 185.56 50.45 4.63 3.58
10 283.03 230.22 22.94 4.67 4.32
11 204.49 124.74 63.93 2.93 3.55
12 374.87 205.10 82.77 6.50 4.66
13 424.45 291.33 45.69 7.55 5.95
14 475.67 357.82 32.94 8.47 6.99
15 526.31 425.34 23.74 8.81 7.71
16 199.33 110.56 80.29 3.93 2.83
17 314.67 207.40 51.72 7.68 5.84
18 575.82 439.03 31.16 11.62 9.81
19 737.00 649.14 13.54 14.33 14.08
20 813.24 667.49 21.84 16.19 13.74

Gray background and value in red indicates that the ratio of total production time to the makespan for the best schedule result is lower than the worst one,
which is different with other test problems

Table 5 Schedule results with RDM decision strategy

Profit-per-unit-�me ( ) Total profit ( ) Makespan ( ) Produc�on �me ( ) Accepted part orders Schedule AM jobs CPU
Problems ( )

1 163.58 79.06 155987 67730 953.6 856.7 2495 1294 45 34 17 11 36

2 178.25 102.85 148052 102920 830.6 1000.7 2382 1967 54 39 14 10 216

3 193.14 130.44 173582 130537 898.7 1000.8 2651 2294 51 64 13 17 878

4 186.12 138.84 182453 144808 980.3 1043.0 2875 2453 81 77 18 15 4877

5 192.30 158.69 196550 159904 1022.1 1007.7 2955 2792 59 92 14 17 12187

6 219.22 128.81 212408 127816 968.9 992.3 3158 2485 46 39 17 13 48

7 238.42 127.91 227511 126639 954.3 990.1 3861 2850 77 56 22 15 237

8 263.36 196.96 265004 199309 1006.2 1011.9 4350 3397 79 64 21 16 1113

9 279.17 185.56 280030 192623 1003.1 1038.1 4647 3717 104 79 23 17 5796

10 283.03 230.22 284840 238391 1006.4 1035.5 4703 4471 98 108 25 24 15650

11 204.49 124.74 182103 120347 890.5 964.8 2612 3427 47 44 14 16 82

12 374.87 205.10 342150 206441 912.7 1006.5 5929 4693 82 66 31 22 281

13 424.45 291.33 422684 301541 995.8 1035.1 7516 6159 119 108 32 26 253

14 475.67 357.82 483335 375461 1016.1 1049.3 8604 7335 165 134 39 30 1531

15 526.31 425.34 540339 442320 1026.7 1039.9 9046 8016 142 167 36 35 4419

16 199.33 110.56 152878 99699 767.0 901.8 3017 2554 44 33 16 11 154

17 314.67 207.40 287662 210628 914.2 1015.6 7017 5931 86 78 28 24 380

18 575.82 439.03 588941 458081 1022.8 1043.4 11883 10233 153 131 46 38 268

19 737.00 649.14 761088 662539 1032.7 1020.6 14798 14373 192 200 52 55 1440

20 813.24 667.49 821376 694927 1010.0 1041.1 16356 14303 222 204 62 49 15544

Gray background indicates that the best as well as the worst schedule results were obtained through 20 iterations applied with RDM decision strategy
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difference of APT between the best and the worst schedule
results is approximately 49.74%. Also, we can note that the
difference is smaller as the increase of the number of part
orders for problems with the same number of AM machines.
The most likely reason is possible schedule solutions in-
creased along with the increase of part orders while the itera-
tions with RDM decision strategy remains the same. For the
smallest test problem with 3 AMmachines and 50 part orders,
the APTof the best schedule results is more than double that of
the worst one. Additionally, the ratio of total production time
to the makespan for the best schedule results is always higher
than the worst one except with the 11th test problem. In con-
clusion, it seems likely that, compared to a poor schedule
result, good schedule results usually present higher total prof-
it, shorter makespan, and larger ratio of production time to
makespan.

5.3 Performance of decision strategies

The performance of various decision strategies proposed in
Section 4.3 is evaluated by comparing their schedule results
with the best and the worst schedule results obtained with
RDM decision strategy. Particularly, the averageAPTand total
profit of each schedule result are considered as comparative
items. The average APT and total profit of the schedule results
for the 20 test problems obtained by applying different deci-
sion strategies are listed in Table 7 and Table 8, respectively.
For each test problem, the highest APT as well as the highest
total profit were presented by one of the proposed decision

strategies but no one decision strategy always leads to the best
performance for different problems. Interestingly, the pro-
posed 6 non-random decision strategies likely do not present
poor performance concurrently for the same test problem. In
other words, when a decision strategy presents poor perfor-
mance some other decision strategy may present good perfor-
mance. As a result, except the 2nd test problem, all the best
results regarding APT and total profit were presented by one
of the 6 non-random decision strategies.

To further evaluate the performance of each decision strat-
egy, the distribution of APT obtained with each decision strat-
egy to the range between the best and the worst results obtain-
ed with RDM decision strategy is considered as the perfor-
mance indicator which is represented as Pstrategy and equals

Valuestrategy−ValueworstRDM

� �
= ValuebestRDM−Value

worst
RDM

� �
, w h e r e

the Value can be the APTor total profit of each schedule result.
The performance of each decision strategy compared to the
results obtained with RDM decision strategy is listed in
Table 9, where we can see that on average all the decision
strategies, except GPMS-LFIFO and GPPT-LFIFO, present
excellent performance both in APT and total profit which are
better than the best schedule results with RMD decision strat-
egy. However, it does not mean that the GPMS-LFIFO and
GPPT-LFIFO always present poor performance. For example,
these two decision strategies presented the best results in prob-
lems of 10, 13, 14, 20 and problems of 6, 18, respectively,
while other decision strategies gave poor performances. On
average, theGPMS-LPPT decision strategy presented the best
performance both in APT (129.1%) and total profit (139.7%).

Table 7 Average profit-per-unit-time (£/h) with different decision strategies

Problem GPMS-LPPT GPMS-LPMS GPMS-LFIFO GPPT-LPPT GPPT-LPMS GPPT-LFIFO

1 163.58 79.06 168.65 168.57 141.97 166.98 170.82 152.07
2 178.25 102.85 173.11 171.27 159.55 166.13 165.95 159.40
3 193.14 130.44 188.26 189.10 128.02 189.38 195.43 130.73
4 186.12 138.84 196.06 196.65 133.14 197.78 197.10 135.15
5 192.30 158.69 202.88 200.26 124.14 202.16 206.54 115.94
6 219.22 128.81 225.41 235.23 218.00 207.83 211.95 248.29
7 238.42 127.91 257.07 231.22 216.51 228.96 233.21 226.77
8 263.36 196.96 290.54 291.58 207.16 289.15 298.16 200.82
9 279.17 185.56 282.62 291.85 201.52 284.46 291.85 177.03
10 283.03 230.22 305.44 320.84 191.81 298.46 317.35 189.34
11 204.49 124.74 215.10 215.91 231.24 179.24 159.13 193.22
12 374.87 205.10 319.24 308.31 390.76 277.15 295.96 373.40
13 424.45 291.33 467.95 472.31 461.62 469.91 435.13 444.25
14 475.67 357.82 544.43 549.37 406.37 528.04 545.07 407.58
15 526.31 425.34 546.85 581.94 401.94 561.11 585.33 385.81
16 199.33 110.56 247.91 225.22 264.61 209.54 202.23 233.90
17 314.67 207.40 367.36 373.67 423.39 319.38 314.42 362.83
18 575.82 439.03 651.25 594.59 737.27 610.25 562.88 742.90
19 737.00 649.14 841.46 805.99 807.01 833.50 769.91 792.38
20 813.24 667.49 897.77 906.41 748.90 865.66 800.97 751.71

Gray background and value in red indicates that the highest APT presented by all decision strategies
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5.4 Influence of demand changing

Considering that the performance of each decision strategy is
variable in different test problems, the influence of demand

changing in the performance of decision strategies is investigat-
ed. The performance of different decision strategies in APT
regarding the number of AM machines and part orders is listed
in Table 10, where the grey background indicates that the

Table 8 Total profit (£) with different decision strategies

Problem GPMS-LPPT GPMS-LPMS GPMS-LFIFO GPPT-LPPT GPPT-LPMS GPPT-LFIFO

1 155987 67730 157050 150421 135793 155251 151477 141182
2 148052 102920 166393 166035 154584 162748 160897 155154
3 173582 130537 191400 190956 130984 191009 196986 132315
4 182453 144808 199030 201158 136171 200132 201617 137571
5 196550 159904 205995 207450 126780 205515 213959 118306
6 212408 127816 206427 210901 215913 186335 188527 209543
7 227511 126639 249207 227527 213351 219949 230966 223913
8 265004 199309 292799 288351 210341 295360 294857 205174
9 280030 192623 292011 298949 202743 296700 298949 180720
10 284840 238391 315020 333688 198251 310264 328287 193238
11 182103 120347 199947 200404 201323 166611 147704 164405
12 342150 206441 295873 285738 390991 274948 274691 351590
13 422684 301541 474820 469906 466290 472611 426551 440990
14 483335 375461 556856 567004 415673 542088 563821 420978
15 540339 442320 558458 603769 415625 579709 604562 399918
16 152878 99699 196931 178905 205176 166256 160455 179600
17 287662 210628 342744 350714 404636 295497 290103 322570
18 588941 458081 668854 600942 734863 618295 568753 727950
19 761088 662539 847050 825366 819628 827123 786693 804768
20 821376 694927 919542 923923 768418 904504 833804 774280

Gray background and value in red indicates that the highest total profit presented by all decision strategies

Table 9 The performance of each decision strategy

Problem
Performance in APT (%) Performance in total profit (%)

GPMS-
LPPT

GPMS-
LPMS

GPMS-
LFIFO

GPPT-
LPPT

GPPT-
LPMS

GPPT-
LFIFO

GPMS-
LPPT

GPMS-
LPMS

GPMS-
LFIFO

GPPT-
LPPT

GPPT-
LPMS

GPPT-
LFIFO

1 106.0 105.9 74.4 104.0 108.6 86.4 101.2 93.7 77.1 99.2 94.9 83.2
2 93.2 90.8 75.2 83.9 83.7 75.0 140.6 139.8 114.5 132.6 128.5 115.7
3 92.2 93.6 -3.9 94.0 103.7 0.5 141.4 140.4 1.0 140.5 154.4 4.1
4 121.0 122.3 -12.0 124.6 123.2 -7.8 144.0 149.7 -22.9 147.0 150.9 -19.2
5 131.5 123.7 -102.8 129.3 142.4 -127.2 125.8 129.7 -90.4 124.5 147.5 -113.5
6 106.8 117.7 98.6 87.4 92.0 132.2 92.9 98.2 104.1 69.2 71.8 96.6
7 116.9 93.5 80.2 91.4 95.3 89.5 121.5 100.0 86.0 92.5 103.4 96.4
8 140.9 142.5 15.4 138.8 152.4 5.8 142.3 135.5 16.8 146.2 145.4 8.9
9 103.7 113.5 17.1 105.7 113.5 -9.1 113.7 121.6 11.6 119.1 121.6 -13.6
10 142.4 171.6 -72.7 129.2 165.0 -77.4 165.0 205.2 -86.4 154.7 193.5 -97.2
11 113.3 114.3 133.6 68.3 43.1 85.9 128.9 129.6 131.1 74.9 44.3 71.3
12 67.2 60.8 109.4 42.4 53.5 99.1 65.9 58.4 136.0 50.5 50.3 107.0
13 132.7 135.9 127.9 134.2 108.0 114.9 143.0 139.0 136.0 141.2 103.2 115.1
14 158.3 162.5 41.2 144.4 158.9 42.2 168.2 177.6 37.3 154.5 174.6 42.2
15 120.3 155.1 -23.2 134.5 158.5 -39.2 118.5 164.7 -27.2 140.2 165.5 -43.3
16 154.7 129.2 173.5 111.5 103.3 139.0 182.8 148.9 198.3 125.2 114.2 150.3
17 149.1 155.0 201.4 104.4 99.8 144.9 171.5 181.8 251.8 110.2 103.2 145.3
18 155.1 113.7 218.0 125.2 90.5 222.1 161.1 109.2 211.5 122.4 84.6 206.2
19 218.9 178.5 179.7 209.8 137.5 163.0 187.2 165.2 159.4 167.0 126.0 144.3
20 158.0 163.9 55.9 136.0 91.6 57.8 177.6 181.1 58.1 165.7 109.8 62.8

Average 129.1 127.2 69.3 115.0 111.2 59.9 139.7 138.5 75.2 123.9 119.4 58.1
Gray background and value in red indicates that the performance is worse than the worst result obtained through random decision strategy
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performance is higher than the average performance of this de-
cision strategy while the value in red color is the best perfor-
mance presented by all decision strategies for the same problem.

In general, the decision strategies of GPMS-LPMS,
GPMS-LPPT, GPPT-LPMS, and GPPT-LPPT present good
performance for the problems in the lower left corner of
the matrix. While the decision strategies of GPPT-LFIFO
and GPMS-LFIFO present good performance for the prob-
lems in the lower right corner of the matrix. In other words,
the strategies of GPPT-LFIFO and GPMS-LFIFO are more
likely to provide better schedule results when the market
demand decreases. However, these two decision strategies
might give very poor schedule results when the demand is
greater than the capacities of all AM machines. The distri-
bution of decision-making strategy sets which presents the
best performance is shown in Table 11.

5.5 Influence of promised due date

The promised due date to a part order will affect the behaviour
of customers. The customers may move to other AM service
provider if the promised due date is too long. However, more
part orders might have to be rejected due to no AM machine
being able to produce the part on time if the promised due date
is too short. Therefore, it is necessary to investigate the influ-
ence of the promised due date to the schedule results. The APT
obtained through GPMS-LPMS decision strategy for the 20
test problems with different promised due dates (1, 3, 7, 10,
and 14 days) is listed in Table 12.

It can be seen fromTable 12 that the value ofAPT is increased
obviously as the due dates are increased from 1 day to 7 days.
However, it seems like the value of APTwill not keep increasing
when the due date is longer than 7 days for most test problems.

Table 10 Influence of demand changing to the performance of decision strategies

Strategy & 50 100 200 400 600
G

PM
S-

LP
PT

3 106.0 93.2 92.2 121.0 131.5
5 106.8 116.9 140.9 103.7 142.4

10 113.3 67.2 132.7 158.3 120.3
20 154.7 149.1 155.1 218.9 158.0

G
PM

S-
LP

M
S

3 105.9 90.8 93.6 122.3 123.7
5 117.7 93.5 142.5 113.5 171.6

10 114.3 60.8 135.9 162.5 155.1
20 129.2 155.0 113.7 178.5 163.9

G
PM

S-
LF

IF
O

3 74.4 75.2 -3.9 -12.0 -102.8
5 98.6 80.2 15.4 17.1 -72.7

10 133.6 109.4 127.9 41.2 -23.2
20 173.5 201.4 218.0 179.7 55.9

G
PP

T-
LP

PT

3 104.0 83.9 94.0 124.6 129.3
5 87.4 91.4 138.8 105.7 129.2

10 68.3 42.4 134.2 144.4 134.5
20 111.5 104.4 125.2 209.8 136.0

G
PP

T-
LP

M
S

3 108.6 83.7 103.7 123.2 142.4
5 92.0 95.3 152.4 113.5 165.0

10 43.1 53.5 108.0 158.9 158.5
20 103.3 99.8 90.5 137.5 91.6

G
PP

T-
LF

IF
O

3 86.4 75.0 0.5 -7.8 -127.2
5 132.2 89.5 5.8 -9.1 -77.4

10 85.9 99.1 114.9 42.2 -39.2
20 139.0 144.9 222.1 163.0 57.8

Grey background indicates that the performance is higher than the average performance of this decision strategy; value in red is the best performance
presented by all decision strategies for the same problem

Table 11 Distribution of decision-making strategy sets with best performance

& 50 100 200 400 600

3 GPPT-LPMS GPMS-LPPT GPPT-LPMS GPPT-LPPT GPPT-LPMS
5 GPPT-LFIFO GPMS-LPPT GPPT-LPMS GPMS-LPMS GPMS-LPMS

10 GPMS-LFIFO GPMS-LFIFO GPMS-LPMS GPMS-LPMS GPPT-LPMS
20 GPMS-LFIFO GPMS-LFIFO GPPT-LFIFO GPMS-LPPT GPMS-LPMS

Gray background indicates that the local decision strategy LFIFO was applied
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The most likely reason behind this phenomenon is because the
number of the part orders which could be produced on time is
big enough when the due date is long enough. The performance
of the schedule will depend on the decision strategies. Further
efforts will bemade to investigate how to determine a proper due
date promised to customers in our future research.

6 Conclusions and future research

In this research, the problem of dynamic OAS in on-demand
production with PBF systems with part orders dynamically ar-
riving in chronological order was introduced and modelled
mathematically to maximize the average profit-per-unit-time
during the whole makespan of the system. As the OAS in pro-
duction with PBF systems is a joint decision on order accep-
tance and BPM scheduling problems, both of which are known
to be strong NP hard, according to the characteristics of produc-
tion with PBF systems, two heuristic procedures based on
decision-making strategies were developed and implemented
with Python language. The first heuristic procedure was devel-
oped for the generation of feasible AM jobs on each machine
based on local decision-making strategy, and the second heuris-
tic procedure was developed for the confirmation of feasible
AM jobs by service provider based on global decision-making
strategy. The final decision on the acceptance and scheduling of
a part order is a combination of local and global decision-
making strategies arrived at by considering the local state of
the machines as well as the global state of the whole system.
Further, three local decision-making strategies and two global

decision-making strategies, which can be combined into six
different decision-making strategy sets, were designed based
on the influence of selective behaviours on the scheduling re-
sults. The comprehensive experimental results indicated that,
with the proposed heuristic procedures, the service provider is
capable of obtaining promisingAPTas well as total net profits in
an on-demand production environment with PBF systems by
applying a proper decision-making strategy.

The mathematical formulae and the heuristic procedures pro-
posed in this paper provide a fundamental approach for the in-
vestigation of dynamic OAS problems in on-demand production
with PBF systems. Firstly, the problem is formulated mathemat-
ically based on the analysis of production with PBF systems
where the dynamic release time and due date of orders have been
taken into account to reflect the realistic production scenarios.
The calculations of production time, cost, and profit of an AM
job in the model are parameterized with the realistic attributes of
parts andAMmachines. Therefore, the proposed approach could
be adopted in real industrial production with limited modifica-
tion. Secondly, the proposed heuristic procedures for the gener-
ation and confirmation of feasible AM jobs provide a practical
approach to solve the dynamic OAS problem in on-demand
production with PBF systems. The final decision on the accep-
tance and scheduling of a part order is instantly made by the
machines and the service provider cooperatively under con-
straints of machines’ capacities as well as orders’ release time
and due date. The experimental results indicated that the pro-
posed heuristic procedures work properly and different selective
behaviours lead to significant differences both in APT and total
profit. Regarding the 100 schedule results generated through

Table 12 Influence of due dates on the APTwith GPMS-LPMS strategy

Problem 1 day 3 days 7 days 10 days 14 days
1 12.86 72.06 142.61 156.34 168.57
2 22.83 111.21 171.94 180.43 171.27
3 31.79 121.56 183.11 183.00 189.10
4 45.02 154.29 182.62 188.99 196.65
5 58.18 162.53 191.07 191.04 200.26
6 12.28 81.59 172.95 176.34 235.23
7 24.04 131.68 238.13 265.34 231.22
8 28.91 162.78 269.37 284.61 291.58
9 37.18 219.20 283.71 300.25 291.85
10 64.80 241.88 290.25 303.08 320.84
11 12.81 108.91 243.61 234.32 215.91
12 17.41 185.35 364.27 357.03 308.31
13 37.77 236.42 482.05 511.75 472.31
14 64.70 351.09 518.97 545.17 549.37
15 91.20 396.59 515.58 549.23 581.94
16 11.40 113.61 222.20 223.54 225.22
17 16.45 175.64 400.04 384.07 373.67
18 38.95 292.70 592.63 673.42 594.59
19 70.63 449.47 809.40 853.55 805.99
20 94.67 546.57 860.06 901.27 906.41

Gray background and value in red indicates that value of APT is decreasing
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random selection for each problem, the best schedule results are
approximately 59 and 50.5% higher in APT and total profit,
respectively, compared to the worst results. Thirdly, the experi-
mental results indicated that it is practicable to obtain promising
APT as well as total profit through dynamic decision-making on
the acceptance and scheduling of on-demand production orders
appliedwith proper decision-making strategy sets. Regarding the
performance indicator defined in Section 5.3, the best perfor-
mance for each problem might be presented by a different
decision-making strategy set. However, on average, the
GPMS-LPPT decision strategy set presented the best perfor-
mance for all 20 problems both in APT (129.1%) and total profit
(136.7%). Last but not least, the experimental results indicated
that the change in the market demand and the promised due date
will affect the performance of a decision-making strategy set.
The decision-making strategy sets of GPPT-LFIFO or GPMS-
LFIFO will present the best schedule results in problems with
less demand, while one of the other decision-making strategy
sets will present the best results when there is sufficient demand.
For a particular decision-making strategy set (e.g., GPMS-
LPMS), the value of APT for all the 20 problems increases sig-
nificantly when the promised due dates are increased from 1 day
to 7 days. This is because the longer due date allows wider
available time slot for an AM job to consider more part orders.
However, if the promised due date is too long, the value of APT
might decrease because more idle time might be caused when
themachine prefers waiting for more part orders tomaximize the
utilization of its capacity.

As an attempt to address the dynamic OAS problem in on-
demand production with PBF systems, the proposed approach
and findings will open up research opportunities regarding
production problems in industrial AM production field.
First, the mathematical expressions proposed in this paper
can be further extended by considering true shape 2D/3D
nesting algorithms to cover more industrial AM processes
such as Selective Laser Sintering (SLS) and binder jetting
(ASTM:F2790-12a). Also, the cost structure of production
with AM machine can be further refined by considering the
idle time costs and materials changing costs of each AM ma-
chine for practical applications. Second, although the differ-
ence in schedule results has been demonstrated through ran-
dom selection with proposed heuristic procedures, optimiza-
tion algorithms are expected to solve the model optimally to
find out the exact best and worst results for the evaluation of
proposed decision-making strategies. Third, further investiga-
tion on the selective behaviours in decision-making on the
acceptance and scheduling of on-demand production orders
should be carried out to discover appropriate decision-making
strategies according to the market situations. It has been
proved in this paper that it is practicable to solve the dynamic
OAS problem in on-demand production with PBF systems
through the dynamic selection of part orders and confirmation
of AM jobs based on a proper decision-making strategy set.

However, advanced methodologies based on machine learn-
ing and/or bio-inspired algorithms are expected for the devel-
opment of optimal decision-making strategy sets.
Furthermore, within an on-demand production environment
where multiple service providers exist, the competition among
service providers may be taken into account in future research.
The problem will be more complex and challenging where the
service providers should make attractive offers to compete for
as many profitable orders as possible to maximize the average
profit-per-unit-time while the decision on acceptance of offers
would be made by customers. Therefore, the decision-making
strategies for both service providers and customers should be
investigated and a novel simulation-based heuristic approach
needs to be developed to solve the problem efficiently.
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