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Epilepsy surgery is a clinical procedure that aims to remove the brain tissue responsible

for the emergence of seizures, the epileptogenic zone (EZ). It is preceded by an evaluation

to determine the brain tissue that must be resected. The identification of the seizure

onset zone (SOZ) from intracranial EEG recordings stands as one of the key proxies

for the EZ. In this study we used computational models of epilepsy to assess to what

extent the SOZ may or may not represent the EZ. We considered a set of different

synthetic networks (e.g., regular, small-world, random, and scale-free networks) to

represent large-scale brain networks and a phenomenological network model of seizure

generation. In the model, the SOZ was inferred from the seizure likelihood (SL), a measure

of the propensity of single nodes to produce epileptiform dynamics, whilst a surgery

corresponded to the removal of nodes and connections from the network. We used the

concept of node ictogenicity (NI) to quantify the effectiveness of each node removal on

reducing the network’s propensity to generate seizures. This framework enabled us to

systematically compare the SOZ and the seizure control achieved by each considered

surgery. Specifically, we compared the distributions of SL and NI across different

networks. We found that SL and NI were concordant when all nodes were similarly

ictogenic, whereas when there was a small fraction of nodes with high NI, the SL was not

specific at identifying these nodes. We further considered networks with heterogeneous

node excitabilities, i.e., nodes with different susceptibilities of being engaged in seizure

activity, to understand how such heterogeneity may affect the relationship between SL

and NI. We found that while SL and NI are concordant when there is a small fraction of

hyper-excitable nodes in a network that is otherwise homogeneous, they do diverge if the

network is heterogeneous, such as in scale-free networks. We observe that SL is highly

dependent on node excitabilities, whilst the effect of surgical resections as revealed by

NI is mostly determined by network structure. Together our results suggest that the SOZ

is not always a good marker of the EZ.

Keywords: epilepsy surgery, ictogenic network, seizure onset zone, epileptogenic zone, neural mass model

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2019.00025
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2019.00025&domain=pdf&date_stamp=2019-04-26
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:m.lopes@exeter.ac.uk
https://doi.org/10.3389/fncom.2019.00025
https://www.frontiersin.org/articles/10.3389/fncom.2019.00025/full
http://loop.frontiersin.org/people/493076/overview
http://loop.frontiersin.org/people/26009/overview
http://loop.frontiersin.org/people/69822/overview


Lopes et al. SOZ vs. EZ in silico

INTRODUCTION

Epilepsy is one of the most common neurological disorders
affecting approximately 50 million people worldwide. Anti-
epilepsy drugs are the first line of treatment for epilepsy and they
provide sufficient seizure control in around two thirds of cases
(Kwan and Brodie, 2000). Surgery is an option for the remaining
individuals who are not seizure-free under medication. Epilepsy
surgery is preceded by a qualitative assessment of different brain
imaging modalities in order to try to identify the brain tissue
responsible for the generation of seizures, the epileptogenic zone
(EZ) (Rosenow and Lüders, 2001). Surgeons can only be sure that
the EZ was correctly inferred if as a result of it being removed
through surgery the patient has become seizure-free (Rosenow
and Lüders, 2001). Intracranial electroencephalography (iEEG)
is commonly used during the presurgical assessment to find the
seizure onset zone (SOZ) (David et al., 2011; Duncan et al., 2016)
which is assumed to be a marker of the EZ (Rosenow and Lüders,
2001). In fact, the SOZmay or may not be a good proxy of the EZ
depending on whether it is concordant with other data modalities
(Duncan et al., 2016). The assumption underlying the use of the
SOZ is that the region where seizures emerge, the seizure focus,
is at least part of the brain tissue responsible for the seizures.
However, the EZ and the SOZ may not coincide (Rosenow and
Lüders, 2001), which may explain why epilepsy surgery is often
unsuccessful and long-term positive outcome may be lower than
25% in extra-temporal cases (de Tisi et al., 2011; Najm et al.,
2013). The question arises as to whether the SOZ is a suitable
marker of the EZ.

Computational models have recently been proposed to
quantitatively examine clinical data and determine targets for
surgery (Hutchings et al., 2015; Goodfellow et al., 2016, 2017;
Khambhati et al., 2016; Lopes et al., 2017, 2018; Sinha et al.,
2017). These methods use MRI or iEEG data acquired during
presurgical workup to infer structural or functional brain
networks. The rationale to assess brain networks is based on
recent advances in our understanding of epilepsy that indicate
that seizures may arise from distributed ictogenic networks
(Richardson, 2012; Bartolomei et al., 2017; Besson et al., 2017).
We and others have shown that brain networks may be evaluated,
and relevant information extracted by placing a mathematical
model of seizure activity into each node of the network and
examine network dynamics (Hutchings et al., 2015; Goodfellow
et al., 2016; Lopes et al., 2017; Sinha et al., 2017). In this
context, two different approaches have been used to predict
targets for surgery. In refs. (Hutchings et al., 2015; Sinha et al.,
2017), the authors mimicked the clinical presurgical procedure
by simulating the SOZ, assuming this is a proxy for the EZ.
They used a phenomenological model of seizure transitions
to compute the escape time, i.e., the time that each network
node takes to transition from a normal state to a seizure-
like state. Nodes with the lowest escape time were considered
representative of the SOZ and therefore candidates for surgical
resection. In contrast, in our studies we simulated different
possible surgeries in silicowith the aim of evaluating how effective
each one was at stopping seizures (Goodfellow et al., 2016; Lopes
et al., 2017). In particular, surgeries were modeled by removing a

node from the network and its effect was quantified bymeasuring
the network propensity to generate seizures before and after node
removal. Nodes whose removal led to seizure freedom in silico
were defined to be targets for surgery. Both methods proved to
be predictive of surgical outcome and hold promise to be used
to optimize presurgical assessment of the EZ (Hutchings et al.,
2015; Goodfellow et al., 2016, 2017; Lopes et al., 2017, 2018;
Sinha et al., 2017).

Herein we are going to use this computational framework to
examine how well the SOZmay or may not be a marker of the EZ
in silico.

MATERIALS AND METHODS

Computational Model
To assess whether the SOZ is a reliable proxy to infer targets
for epilepsy surgery, we model surgery on large-scale brain
networks, where each network node may produce seizure activity
depending on both its internal excitability and interaction
with other nodes. A node represents a portion of brain tissue
which may be responsible for the emergence of seizures across
the network, and surgery is modeled as node removal from
the network.

We consider a phenomenological model of seizure dynamics,
the theta model (Lopes et al., 2017, 2018). Each node dynamics is
characterized by a phase θi described by the following first-order
ordinary differential equation (ODE):

θ̇i = (1− cos θi) + (1+ cos θi) Ii (t ) ,

where Ii (t) is the input current of node i. Depending on Ii (t),

the node is either at a fixed stable phase θ
(s)
i (Ii < 0), or

oscillating in a limit cycle (Ii > 0). The boundary Ii = 0
between the two states corresponds to a saddle-node on invariant
circle (SNIC) bifurcation. This simple model has been shown to
be a computationally efficient and a reliable approximation of
a more complex and biophysical realistic model of epileptiform

dynamics (Lopes et al., 2017). The phase θ
(s)
i represents a “normal

state” of brain activity whereas the limit cycle corresponds to a
“seizure state.”

Node excitability and interaction with other nodes are
expressed in the current,

Ii (t) = I
(i)
0 + ξi (t) +

K

N

∑

j 6=i

aji[1− cos
(

θj − θ
(s)
j

)

],

where I
(i)
0 is the excitability of node i, ξi (t) are noisy inputs,

K is the global scaling coupling of network interaction, aji is

j,ith entry of the adjacency matrix that encodes the network,

[1 − cos
(

θj − θ
(s)
j

)

] defines the output of node j, and θ
(s)
j is

its steady state. The noisy inputs represent signals from other
areas of the brain outside of the network under consideration.
The noise follows a Gaussian distribution with zero mean and
variance σ 2. Each node receives independent noise,

〈

ξi (t) ξj
(

t′
)〉

= σ 2δi,jδ(t − t′).

Frontiers in Computational Neuroscience | www.frontiersin.org 2 April 2019 | Volume 13 | Article 25

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Lopes et al. SOZ vs. EZ in silico

The steady state θ
(s)
i is obtained from setting θ̇i = 0 in the absence

of noise and inputs from other nodes (ξ (i) (t) = 0 and K = 0),

θ
(s)
i = −Re

{

cos−1

(

1+ I
(i)
0

1− I
(i)
0

) }

.

At I
(i)
0 < 0, there are two fixed points, one stable (θ

(s)
i ), and one

unstable (−θ
(s)
i ). We take the real part so that θ (s) = 0 at I0 > 0.

Following our previous study (Lopes et al., 2017), we use a
fixed standard deviation σ = 0.6 for all nodes. The excitability
I0 is set to−1.2, except when otherwise specified. The differential
equation was integrated using the Euler-Maruyama method.

This framework enables us to study and characterize brain
networks. A brain network may be inferred from different data
modalities (Bullmore and Sporns, 2009) and can be represented
by an adjacency matrix aji. The mathematical model is then a
means to understand how the network structure influences the
potential emergence of seizures across the network.

Seizure Likelihood
The SOZ is classically defined as the brain region from which
clinical seizures are generated (Rosenow and Lüders, 2001). In
network models of seizure dynamics, the SOZ can be defined
in a similar fashion: the SOZ corresponds to the network nodes
where seizure-like activity is first observed. When applied to
real brain networks, the modeling is thus capable of suggesting
whose nodes (i.e., brain regions) are more likely to be sources of
seizure activity. In particular, Sinha et al. constructed functional
networks from inter-ictal iEEG recordings and assessed them
by finding whose network nodes would first spike in a
phenomenological model of seizure transitions (Sinha et al.,
2017). Model dynamics was quantified using the inverse of the
escape time, the seizure likelihood (Sinha et al., 2017). We had
previously introduced the escape time as the time that each
network node takes to “escape” from normal activity to the
seizure state (Benjamin et al., 2012; Petkov et al., 2014). Nodes
that escape faster have a high seizure likelihood and correspond
to the model-based SOZ.

Here we redefine the seizure likelihood measure as

SL(i) =
1

T

∫ K2

K1

t(i)sz (K)dK

where t
(i)
sz (K) is the amount of time that node i spends in spiking

dynamics during a sufficiently large reference time T (we use
T = 4 × 106 time steps). For a fixed global coupling K, SL(i)

corresponds to the fraction of time node i spends in seizure
dynamics, i.e., the likelihood of finding the node in the seizure
state. We take the integral over K in order to account for the

dependence of t
(i)
sz on K, avoiding an arbitrary choice of K. We

choose a sufficiently large interval [K1,K2] to capture the full

variation of t
(i)
sz (as K → K1, t

(i)
sz → 0, whereas when K → K2,

t
(i)
sz → T). Finally, we normalize SL(i) by the maximum SL
across the network, so that SL is confined to the range [0, 1].
Nodes with SL(i) = 1 are the SOZ in silico, whereas nodes with
SL(i) = 0 do not participate in seizure activity. The average

SL across all network nodes for a fixed K corresponds to the
Brain Network Ictogenicity (BNI) (Chowdhury et al., 2014; Petkov
et al., 2014; Goodfellow et al., 2016; Lopes et al., 2017) and is an
advance on the integral redefinition of BNI introduced in Lopes
et al. (2018). This redefinition of seizure likelihood is essentially
equivalent to the measure used in Sinha et al. (2017): nodes that
escape faster to seizures are the nodes that spend longer times in
seizure dynamics. The reason to use the SLwithin the thetamodel
instead of the measure based on the escape time is that the SL is
computationally more efficient and robust.

Node Ictogenicity
To quantify the result of epilepsy surgery, we have previously
introduced the concept of Node Ictogenicity (NI) (Goodfellow
et al., 2016; Lopes et al., 2017). NI(i) measures the relative
difference in BNI upon removing node i from a network:

NI(i) =
BNIpre − BNI

(i)
post

BNIpre

where BNIpre is BNI prior to node resection, and BNI
(i)
post is

BNI after the removal of node i. As in previous works, we set
parameters such that BNIpre = 0.5 (Goodfellow et al., 2016; Lopes

et al., 2017). BNI
(i)
post is computed with the same parameters as

BNIpre, and typically yields a value smaller than BNIpre. Some
nodes may render the network free from spiking dynamics

BNI
(i)
post = 0 which corresponds to NI(i) = 1, whist others may

not affect BNI (BNI
(i)
post = BNIpre, and thus NI(i) = 0). In this

framework the EZ corresponds to the nodes with highest NI.
Whereas, SL is based solely on a presurgical network, using SOZ
as a proxy for the EZ,NI quantifies the result of different possible
surgical resections by comparing the dynamics of a post-surgical
network with the presurgical network, therefore using in silico
surgeries to define the EZ.

Comparison Measures
We aim to examine whether SL is equivalent to NI to clarify
whether the SOZ is concordant with the EZ in silico. Assuming
that the SOZ is predictive of the pathological tissue that must
be resected, then we would expect a high correlation between SL
and NI. We use a weighted Kendall’s rank correlation measure
(Carterette, 2009; Kumar and Vassilvitskii, 2010; Lopes et al.,
2017) to compare SL and NI. We calculate

τ =
P − Q

P + Q

where P is the number of groups of two nodes with the same
order in the two rankings (SL and NI), and Q is the number
of groups in reverse order. We take into account the relative
values of SL and NI by weighting each contribution to P and Q

by the product of the distances in SL and NI,
∣

∣

∣
SL(i) − SL(j)

∣

∣

∣
×

∣

∣

∣NI(i) − NI(j)
∣

∣

∣. τ = 1 means that SL and NI rankings have the

same ordering, whist τ = −1 corresponds to the two rankings in
reverse order.
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The weighted Kendall’s rank τ does not account for relative
differences between SL and NI as long as the two rankings have
the same order. For example, the sorted values of SL may grow
linearly, whist the sorted values of NI may show an exponential
growth. τ does not capture this difference. If the nodes are equally
ordered by the two measures, then τ = 1 independently of
the values of SL and NI. We thus also calculate the Pearson
correlation ρ to compare SL andNI across network nodes. In turn
ρ does not depend strongly on the ordering of the distributions
and that is why we use both τ and ρ to perform the comparison
between SL and NI.

Network Topologies
We have previously shown that the BNI and NI depend on
network topology (Lopes et al., 2017). Therefore, to compare
the SL with NI it is important to consider different network
topologies. We study regular, small-world, random, and scale-
free networks, both directed and undirected (Watts and Strogatz,
1998; Goh et al., 2001; Newman, 2003; Lee et al., 2004; Miši
et al., 2014). To construct a set of small-world networks we used
the Watts-Strogatz algorithm (Watts and Strogatz, 1998) and 9
rewiring probabilities (p = 0.1, 0.2, . . . , 0.9). The small-world
properties of these networks were confirmed using the small-
world measure (Telesford et al., 2011). Note that for p = 0
we obtain regular networks, whereas for p = 1 the algorithm
generates random networks (Watts and Strogatz, 1998). In
the case of undirected scale-free networks, we used the static
model (Goh et al., 2001) and examined 11 different topologies
characterized by degree distributions Pk ∝ k−α with a range of
exponents α = 2, 2.3, 2.6, . . . , 5. The smaller the exponent α the
more heterogeneous the network is with respect to the number
of connections per node. Directed scale-free networks were
generated using Barabási-Albert algorithm (Albert and Barabási,
2002). All networks consisted of 64 nodes and for each network
topology we studied three mean degrees c = 4, 8, 16. The reason
to focus on networks with 64 nodes is that this is the typical size
of networks inferred from intracranial EEG, where the number
of electrodes may span from about 30–100 (Goodfellow et al.,
2016). We discarded networks with disconnected components
and considered 10 networks realizations per network topology.
Therefore, we studied 1,010 networks in total (see Table 1).

Homogeneous and
Heterogeneous Excitabilities
Network nodes may differ from each other due to both
topological properties in the network, and their intrinsic

excitabilities I
(i)
0 . Nodes characterized by higher excitabilities are

more susceptible to spontaneously generate spiking activity due
to noisy inputs and also to be recruited into seizure dynamics by
other nodes.

Previous studies have considered homogeneous excitability
distributions, i.e., all nodes described by the same excitability I0
(Goodfellow et al., 2016; Lopes et al., 2017, 2018; Sinha et al.,
2017). This assumption was used for simplicity and due to a lack
of available data to make an informed decision about specific
excitabilities in different brain regions. Although it remains
unclear how to obtain these data, we can nevertheless study

TABLE 1 | Studied networks. p is the rewiring probability to obtain small-world

networks, and α is the degree distribution exponent of scale-free networks.

Networks

Topologies Undirected Directed

Regular 10 n.r. 10 n.r.

Small-world p = 0.1, 0.2, . . . , 0.9 p = 0.1, 0.2, . . . , 0.9

10 n.r. per p 10 n.r. per p

Random 10n.r. 10 n.r.

Scale-free α = 2, 2.3, 2.6, . . . , 5

10 n.r. per α

α = 3

10 n.r.

We considered 10 network realizations (n.r.) per topology. The table thus indicates 34

topologies and a total of 340 networks. We generated networks with three different mean

degrees, c = 4, 8, 16 (in the case of directed networks, it corresponds to mean in- and

out- degree). We did not consider scale-free networks with α = 2 and c = 4, as these did

not verify the condition of no disconnected components. Therefore, we studied 340 × 3

−10 = 1010 networks.

how heterogeneous excitabilities may impact on SL and NI.
For comparison, first we consider networks with homogeneous
excitabilities, and then two different cases with heterogeneous
excitabilities. In the homogeneous case, all network nodes have

the same excitability parameter I
(i)
0 = I0 and are completely

equivalent except for their local network topological properties
described in the adjacency matrix aji.

Rummel et al. has studied iEEG data of individuals with
refractory epilepsy and found a fraction of 8.3% of channels
in the SOZ. Given that the SOZ may be the consequence of
localized hyper-excitable brain tissue, we distinguish a group of
six randomly chosen nodes (i.e., about 9% of the network) with

higher excitabilities (I
(h)
0 ) compared to the other nodes with fixed

I0 = −1.2. We consider the existence of these hyper-excitable
nodes in regular, small-world, and random networks. Note that
in these networks, we have previously shown that NI is mostly
similar across nodes when excitabilities are homogenous (Lopes
et al., 2017). Thus, here we aim to understand whether hyper-
excitable nodes may or may not be detected by SL and NI. We
studied 5 random selections of hyper excitable nodes per network

and examined separately I
(h)
0 = −1 and −0.1, i.e., weakly and

strongly hyper-excitable nodes.
We further consider an additional scenario of heterogeneous

excitabilities. Again, we are particularly interested in potential
cases where considering heterogeneous excitabilities may lead to
different results when compared to homogeneous excitabilities,
as these may inform us on how safe is to assume that real
brain networks are homogeneous with regards to excitability. If
results change dramatically due to heterogeneities, then we must
be careful when using the homogeneity assumption. Here we
consider node excitabilities proportional to the inverse of the
node degree motivated by the fact thatNI has a strong correlation
with node degree (Lopes et al., 2017). The rationale behind this
choice was to observe whether by increasing the excitability
of nodes with low degree led to a different distribution of NI
compared to the homogeneous case and whether SL is affected

in a similar way. In the case of directed networks, we study I
(i)
0

proportional both to node in- and out-degree separately. We
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fixed the range of excitabilities, such that the node with the

largest number of connections had the minimum excitability I
(i)
0 ,

whist the node with the smallest number of connections had
the maximum I

(i)
0 . We chose five intervals of I0: [−2.5,−0.5],

[−2.5,−1.5], [−2,−1], [−1.5,−0.5], and [−5,− 0.5].

RESULTS

Homogeneous Excitabilities
We first focus on the comparison of the SOZ as represented by SL
and the effect of surgery (NI) in networks with homogeneous

excitabilities (I
(i)
0 = I0). Figure 1 shows representative

distributions of SL and NI in four different undirected network
topologies.We find that SL andNI distributions are flat in regular
networks (Figure 1A), which is to be expected because all nodes
are equivalent. In small-world networks, we find an increased
heterogeneity in both SL and NI compared to regular networks,
with a high correlation between SL and NI distributions (see
Figure 1B). Again, this is to be expected, because small-world
networks differ slightly with respect to node degree from regular
networks and node degree is highly correlated to NI (Lopes
et al., 2017). On the other hand, these results suggest that
differences in local efficiency do not significantly contribute to
define SL and NI. However, random and scale-free networks
present more diverging relationships between NI and SL. In
random networks, whilst SL is uncapable of distinguishing nodes,
NI does differentiate some nodes as being more ictogenic than
others (see Figure 1C). In the case of scale-free networks, SL
and NI appear to rank nodes similarly, however only a few
nodes show high NI, while many have relatively high SL (see
Figure 1D). This means that NI and SL are not concordant with
regards to the relative importance of each node to the generation
of seizures.

To further characterize the relationship between seizure
onset dynamics and underlying ictogenicity, we measured SL
and NI distributions in an extensive set of networks (regular,
small-world, random and scale-free networks, both directed
and undirected, with different mean degrees, see Material and
Methods). Figure 2 summarizes our systematic comparison of
SL and NI in undirected networks (mean degree c = 8).
τ accounts for the relation between orderings, whereas ρ is
the Pearson correlation between SL and NI distributions. As
observed in Figure 1A, regular networks are characterized by
flat distributions of SL and NI and consequently yield low
correlations between the two distributions (due to statistical
fluctuations). In the case of small-world and random networks,
we find a relative agreement between SL and NI distributions
(ρ ≈ τ ≈ 0.68), which shows that the two measures
are not interchangeable. We also observe that as we consider
networks with higher rewiring probabilities p, the concordance
between SL andNI increases, which suggests that the relationship
between the two measures is enhanced in networks with
lower clustering coefficients and lower average path lengths.
Furthermore, Figure 2B shows that in scale-free networks the
two distributions present similar orderings (τ ≈ 1) but low
correlation (ρ ≈ 0.34), in line with Figure 1D. Again, this

means that SL and NI are in conflict with regards to the relative
importance of each node to the emergence of seizures. Figure 1D
also shows that the weighted Kendall’s rank and the Pearson
correlation between the distributions do not change with varying
the exponent α of the scale-free degree distribution. Networks
with lower α have stronger hubs, i.e., subsets of nodes with higher
number of connections compared to those found in networks
with higher α. Our results suggest that the “strength” of the hubs
do not impact on the relationship between SL and NI.

We further studied sparser and denser networks (see
Figure S1). Together with Figure 2, we observe a tendency for
denser networks to show lower values of τ and ρ. This is to
be expected because as the networks get denser, they become
more similar to regular networks and therefore their SL and
NI distributions become flatter. The decrease in correlation and
ordering is most noticeable in small-world and random networks
given that these networks are more homogeneous than scale-
free networks with respect to node degree. Also, since higher
degree exponents α correspond to network more homogeneous,
we find that τ and ρ also become small for sufficiently large mean
degree and exponent α (see Figure S1D). Together these results
indicate that the patterns observed in Figure 1 are representative
of a wide range of network topologies. To further confirm these
findings, we also computed SL and NI distributions in directed
networks. Figure S2 demonstrates that our results are also valid
in directed networks.

Heterogeneous Excitabilities
We extend our comparison between SL and NI to networks with
heterogeneous excitabilities. This is meant to represent brain
tissue heterogeneities responsible for different propensities to
generate seizure activity across the network. We have already
seen in the previous section that network topological differences
between nodes may render them individually more or less
ictogenic. Now we consider nodes intrinsically different beyond
network differences. This intrinsic difference is modeled as nodes
being at different distances from the seizure-like state in the
parameter space. As described in the Methods, we introduce two
types of heterogeneous excitabilities: (1) we randomly select and
attribute high excitability to a group of nodes; and (2) we define
excitabilities inversely proportional to node degree.

Figure 3 shows representative SL and NI distributions of
regular, small-world, and random networks with randomly

located hyper-excitable nodes (I
(h)
0 = −0.1). Here we find

highly concordant distributions of SL and NI (τ > 0.99 and
ρ > 0.88), with both measures clearly distinguishing the hyper-
excitable nodes from the other nodes. These results suggest
that the SOZ may be a good predictor of the EZ when brain
networks are relatively homogeneous with regards to node degree
and focal differences arise from intrinsic tissue heterogeneities.
Figure S3A further confirms these findings in directed networks.
Additionally, we also considered networks with a small fraction

of nodes slightly hyper-excitable, I
(h)
0 = −1 (note that at all

other nodes I0 = −1.2). In this case, the agreement between SL
and NI is similar to what we have observed in the homogeneous
case (Figures 1, 2). Figure S3B displays τ and ρ in directed
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FIGURE 1 | Representative SL and NI distributions of (A) regular, (B) small-world, (C) random, and (D) scale-free undirected networks with homogeneous

excitabilities. The green squares correspond to NI(i), whilst the brown triangles are SL(i) values. The nodes were sorted such that the NI grows monotonously.

Parameters: number of nodes N = 64, mean degree c = 4, homogeneous excitability I0 = −1.2, probability of rewiring to generate the small-world network p = 0.1,

and degree distribution exponent of the scale-free network α = 2.6.

FIGURE 2 | Comparison between SL and NI distributions across different undirected networks with homogeneous excitabilities. The comparison is quantified by the

weighted Kendall’s rank τ (blue diamonds) and Pearson correlation ρ (red pentagrams). (A) represents regular (p = 0), random (p = 1), and small-world networks (with

varying probabilities of rewiring 0 < p < 1); whilst (B) corresponds to scale-free networks (with varying degree distribution exponent α). Error bars account for the

variability of τ and ρ across 10 network realizations per each topology. All networks have mean degree c = 8. Other parameters are the same as in Figure 1.

networks with I
(h)
0 = −1. This implies that the heterogeneities

need to be strong enough to make SL and NI distributions
equivalent.

We now turn to the second case: excitabilities proportional to
the inverse of node degree. This choice aims to clarify whether
SL and NI are concordant when both network topology and
node excitabilities are heterogeneous. Note that nodes with high

degree presented higher SL and NI in Figure 1, and likewise
nodes with high excitability correspond to higher SL and NI in
Figure 3. Therefore, here we are studying a case where excitability
and network topology “compete” in generating seizures. In
other words, this scenario allows us to also observe whether
network topology or node excitability are most responsible for
seizure generation.
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FIGURE 3 | Representative SL and NI distributions of (A) regular, (B) small-world, and (C) random undirected networks with heterogeneous excitabilities. The green

squares correspond to NI(i), whilst the brown triangles are SL(i) values. The nodes were sorted by their excitability I
(i)
0 . (D) displays the weighted Kendall’s rank τ (blue

diamonds) and Pearson correlation ρ (red pentagrams) across different undirected networks with heterogeneous excitabilities (Rg: regular networks; SW: small-world

networks with p = 0.1; and R: random networks). Node excitabilities I
(i)
0 were set to −1.2 apart from a group of six randomly chosen hyper-excitable nodes with

I
(h)
0 = −0.1. Error bars in (D) account for the variability of τ and ρ across 10 network realizations and 5 random selections of hyper-excitable nodes per each network.

Other parameters are the same as in Figure 1.

Figure 4 shows representative SL and NI distributions of
small-world, random, and scale-free networks with excitabilities
proportional to the inverse of node degree. We observe that SL
depends more strongly on the excitability than NI, particularly
in scale-free networks, in which highest NI values correspond to
nodes with highest node degree, whilst the highest SL is found
in the nodes with lowest node degree, but highest excitability.
Figure 4D demonstrates that SL and NI are mostly in agreement
in small-world and random networks, whereas in scale-free
networks they are different (τ < 0.67 and ρ < 0.35). These
results can be further compared to the case with homogeneous
excitabilities (see Figures S1A,B): we find that the heterogeneous
excitabilities are responsible for a reduction in the concordance
between SL and NI in scale-free networks. Note that in all these
cases, we compared networks with the same mean degree so that
differences could only be attributed to network topology and
excitability distribution, but not to network density.

Figure S4 further supports these results in directed networks.
Interestingly, in this case SL and NI are not even in agreement
in directed small-world and random networks. Note that
Figure S4B shows a rather high τ = 0.89 in directed scale-
free networks with excitability inversely proportional to out-
degree. This result is not in conflict with Figure 4D as the
excitability distribution in the directed networks differs strongly
from the excitability distribution in the undirected networks. We

performed the same comparison using other ranges of excitability
and obtained similar results (see Figure S5 for a wider range of
excitability compared to Figure 4). Together these results suggest
that the SOZ may be incapable of determining the EZ if network
topology and node excitabilities are heterogeneous.

DISCUSSION

Computer models to interrogate clinical data have shown
promise to quantify and predict the outcome of epilepsy surgery
(Hutchings et al., 2015; Goodfellow et al., 2016; Lopes et al.,
2017, 2018; Sinha et al., 2017). In this framework, clinical
data was used to infer structural or functional brain networks.
These networks were then analyzed using computational models
of epilepsy dynamics. Potential targets for surgical resection
were identified by either finding the SOZ in silico (Hutchings
et al., 2015; Sinha et al., 2017) or modeling different possible
surgeries and selecting the best based on the outcome observed
in the model (Goodfellow et al., 2016; Lopes et al., 2017, 2018).
Modeling the SOZ mimics the clinical approach in which it
is assumed that the SOZ is a proxy of the epileptogenic zone
(Rosenow and Lüders, 2001). In this study we aimed to clarify
the validity of this assumption. We tested whether the SOZ,
represented by SL, was a predictor of the effect of surgery in
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FIGURE 4 | Representative SL and NI distributions of (A) small-world, (B) random, and (C) scale-free undirected networks with heterogeneous excitabilities. The

green squares correspond to NI(i), whilst the brown triangles are SL(i) values. The nodes were sorted by their degree. (D) displays the weighted Kendall’s rank τ (blue

diamonds) and Pearson correlation ρ (red pentagrams) across different undirected networks with heterogeneous excitabilities (SW: small-world networks with p = 0.1;

R: random networks; SF1: scale-free networks with α = 2.3; and SF2: scale-free networks with α = 5). Error bars account for the variability of τ and ρ across 10

network realizations per each topology. Node excitabilities I
(i)
0 were defined as inversely proportional to node degree within the range [−2.5,−0.5]. Other parameters

are the same as in Figure 1.

silico as measured by NI. We performed the comparison in
different synthetic network topologies with different excitability
distributions. Although in some cases SL is concordant with
NI, in general the agreement is suboptimal and dependent on
network topology and excitability distribution. Therefore, our
results suggest caution when using the SOZ to infer targets for
surgery, both in the clinical context and within computational
models to predict epilepsy surgery outcome.

Our analysis was divided in two parts. First, we explored
networks with homogeneous excitability distributions, i.e., all
nodes were considered equivalent apart from their number of
connections. We found that in sparse networks, SL and NI
order nodes similarly, except in the case of scale-free networks,
where their correlation is low. We have previously observed
that hubs and rich-clubs have high NI (Lopes et al., 2017).
Although, SL also attributes a high ranking to these nodes, the
nodes do not show a high relative importance compared to
other nodes. This may be a consequence of the fact that hubs
can quickly spread seizure activity across the network (Stam,
2016), hence potentially masking their relative relevance for
seizure generation as measured by SL. Thus, previous modeling
approaches that used the escape time to predict surgical outcome
(Hutchings et al., 2015; Sinha et al., 2017) may have achieved
successful predictions due to the fact that these predictions
were mostly dependent on node ranking rather than on node

relative importance. However, node relative importance may be
crucial in delineating the brain tissue to resect if these model-
based recommendations for epilepsy surgery are to be used
prospectively in the clinical setting, where it will be desirable to
understand the relative impact of resecting different nodes.

In the second part of our analysis we considered networks
with heterogeneous excitability distributions. Computational
models of epilepsy surgery have generally assumed that network
nodes are equivalent apart from network topological differences
(Goodfellow et al., 2016, 2017; Khambhati et al., 2016; Lopes et al.,
2017, 2018; Sinha et al., 2017). In other words, these methods
have assumed that all brain regions are equally excitable, i.e., have
the same intrinsic susceptibility to generate seizures and focal
differences result from different connectivity patterns to other
regions. Here we investigated how model predictions of targets
for surgery were affected if we dropped this assumption. In
particular, we examined how SL and NI compare when different
network nodes had different excitabilities, i.e., nodes with
different susceptibilities to be recruited into seizure dynamics.
Again, the agreement between SL and NI depended on the
network topology. Most notably, in scale-free networks with
high excitabilities at the nodes with the lowest degree the NI
persisted well-correlated with node degree, as in the case of
homogeneous excitability distributions, whereas SL did not and
instead was mostly determined by node excitability. These results
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suggest that the reliability of SL and consequently the reliability
of the computational methods based on the seizure likelihood
(Hutchings et al., 2015; Sinha et al., 2017) to predict surgical
outcome are more reliant on the validity of the assumption
that excitabilities are homogeneous across the network than the
framework based onNI. These findings further suggest that node
properties such as degree and betweenness centrality (Lopes et al.,
2017) are significant determinants of how important a node is
in terms of the overall network ictogenicity and play more of a
role than intrinsic excitability. A potential consequence of this
for treating seizures is that disruptions to network structure,
such as those assumed to be attained in epilepsy surgery, are
potentially more beneficial than targeted manipulation of local
excitability. This may have implications for designing future
treatments for epilepsy that can be spatially targeted, such as
ablations, local drug delivery or optogenetics (Bennewitz and
Saltzman, 2009; Paz andHuguenard, 2015;McGovern et al., 2016;
Muller et al., 2016).

In summary, our results indicate that the SOZ may not
always be a reliable proxy to infer the brain tissue to resect.
The fact that seizures may emerge from one region does not
imply that this region is the one responsible for the seizure
emergence. Instead, our results indicate that the SOZ is not
always concordant with the EZ. This understanding demands
a more careful consideration of the SOZ in the clinical setting.
Thus, we suggest that presurgical evaluation may be optimized if
observational findings based on the SOZ are complemented with
predictions based on theNI framework. In some instances, the NI
framework may corroborate the hypotheses driven by the SOZ,
whilst in other instances it may not, thereby advising caution.
Furthermore, our results indicate that the concept of seizure
likelihood should not be used in silico to predict epilepsy surgery
outcome (Hutchings et al., 2015; Sinha et al., 2017). Predictions
based on the seizure likelihood may be flawed not only because
they are based on the validity of the SOZ concept, but also
because they are more dependent on the assumption that node
excitability may be disregarded to inform the targets for surgery.
Instead, we advocate for the use of the NI framework which
shows superior robustness with regard to the homogeneous
excitability assumption, and also simulates more closely the
actual surgical procedure.

Networks obtained from diffusion tensor imaging (DTI),
which represent the anatomical structure of the brain’s
white matter, typically vary in size from 82 to 4,000 nodes

(Fornito et al., 2016). Whilst we do not consider networks of this
size here, we expect our results to hold for larger networks. Future
studies should also examine whether SL and NI predictions
obtained from such structural networks are concordant with
predictions using functional networks inferred from intracranial
EEG (Goodfellow et al., 2016; Lopes et al., 2017; Sinha et al.,
2017). Note that DTI maps the whole brain, whereas intracranial
EEG only records electrical activity from brain tissue close to the
implanted electrodes. Thus, further studies should assess how
these differences impact on SL and NI and their relation. Our
findings may be further advanced by using more physiological
detailed models (Wendling et al., 2016), namely models that
describe different onset mechanisms of focal seizures (Wang
et al., 2017). Finally, future investigations should study in more
detail the relation between SL, NI and network topological
properties. For example, it has been shown that in- and out-
degree distributions have different impacts on neural dynamics
(Wu et al., 2019), and therefore they may also contribute
differently to SL and NI. Such studies may further advance our
understanding about the relation between the SOZ and the EZ.
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