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Abstract—The interaction between swarm robots and human
operators is significantly different from the traditional human-
robot interaction due to unique characteristics of the system, such
as high cognitive complexity and difficulties in state estimation.
In this paper, we concentrate on a method for conveying input
from the operator to the swarm. Previous research has shown that
control through switching between behaviors offers the greatest
flexibility but is particularly difficult for human operators. A
recently developed method for finding optimal sequences for
composing behaviors offers a potential tool for aiding human
operators controlling swarms through behavior switching. This
paper compares participants performing a navigation task with
and without the availability of an optimal sequencing aid. Results
show that the task of preplanning a sequence of behaviors
and durations is more difficult for participants than switching
between executing behaviors to navigate. Users who used the aid
frequently created shorter paths than infrequent users and the
control group. In the trials that the aid was used, participants
tended to generate more complicated sequences and achieve the
first attempt more rapidly, than trials in which the aid was not
used.

Index Terms—Human-robot interaction, swarm robotics,
multi-robot systems

I. INTRODUCTION

Robot swarms use numerous simple robots to accomplish
complex tasks. Global behaviors emerge from local interaction
between the individual robots. These behaviors [1] which
include but are not limited to flocking (consensus on heading),
deployment (dispersion to Voronoi centers), and rendezvous
(movement to consensus location), allow the swarm to achieve
a diversity of tasks despite the individual robots’ limited
capability. A key advantage of robot swarms is that the system
is robust to individual robot failures and does not require cen-
tralized planning or control. Real world applications proposed
for robot swarms include area coverage, search and rescue
operations, agriculture, and military operations. Ideally one
might wish to synthesize sophisticated local control laws that
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would allow the swarm to accomplish complex tasks without
further intervention. Unfortunately this is not yet feasible for
anything beyond the simplest tasks and would not allow human
interaction unless we were able to synthesize and swap out
controllers in real time.

Today, swarm behavior can practically be influenced by
humans in three basic ways [2] 1) by changing control law pa-
rameters [3], for example, changing the heading of a flocking
swarm, 2) by switching between control laws [4], switching
from flocking to rendezvous to concentrate swarm to pass a
narrow aperture, for example, or 3) by altering the swarm’s
environment [5], herding the swarm with controlled robots, for
example. In each case the human control signal needs to be
conveyed in some way such as broadcast or propagation with
some indication of priority. These factors have been shown to
effect the rate of convergence to consensus (switch in behavior
or parameter) by up to three orders of magnitude [6]. Each
approach has its drawbacks. Control through an altered [7]
or virtual environment [8] is indirect and much slower in
response, although it allows flexibility in influencing behavior.
Control through parameters can be rapid and direct but has less
flexibility. Control through switching among behaviors is both
direct and can tailor behavior flexibly. It implicitly subsumes
control through parameters because default or human specified
parameters must be provided for a new behavior to execute.
While researchers have shown operators can use behavior
switching to guide swarms in tasks such as target search [3]
there is great variability and undoubtedly large inefficiencies
in their choice and timing of behaviors.

Because the state of a swarm executing a behavior is con-
stantly changing, its proximity to converging states of potential
succeeding behaviors is also changing, making some points
in time more advantageous for switching between behaviors
than others. Researchers have proven that this phenomena,
they term neglect benevolence, exists for all LTI (linear time
invariant) systems [4] and that human participants can learn to
approximate optimal switch times between swarm behaviors
although their responses almost always precede the optimal
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time [9]. While control of a library of behaviors and the ability
to specify their parameters provide an extraordinary degree of
control over a swarm, humans have difficulty in recognizing
swarm states [10] and predicting the effects of their interven-
tions [11] as well as the timing of their actions [9], making un-
aided control difficult and inefficient. The problem of behavior
composition is extremely difficult even for a computer because
of the large space of alternative behaviors and durations that
must be searched. The problem is reminiscent of RRT (rapidly-
exploring random tree) path planning for which researchers
have found [12]–[14] substantial gains from allowing human
interaction to steer the algorithm through restricted regions
reducing the space that must be searched.

In this paper we present an attempt to apply this approach
to computationally mediated control of a simulated swarm.
A study [15] has recently developed methods for optimally
composing sequences of swarm behaviors based on search
techniques similar to the A* algorithm. Given an initial state,
goal state, and objective function (such as minimizing distance
traveled) the algorithm can determine an optimal sequence of
behaviors and durations to reach the goal. Because of the size
of the search space, the algorithm is only suitable for very
small problems unless either the sequence of behaviors or their
durations can be fixed. In the reported experiment participants
were allowed to specify behavior durations while the algorithm
returned optimal sequences of behaviors matching the given
durations.

II. METHOD

A. Swarm Behaviors
The behavior library employed in this experiment is based

on Nagavali et al’s work [15], which consists of following
concrete behaviors:

1) Flock: All robots flock in a direction based on their
current initial positions and orientations.

2) Flock East: Robots flock in the positive x-axis direction
of the map.

3) Flock West: Robots flock in the negative x-axis direction
of the map.

4) Flock North: Robots flock in the positive y-axis direction
of the map.

5) Flock South: Robots flock in the negative y-axis direc-
tion of the map.

6) Rendezvous: All Robots move toward each other.
7) Antirendezvous: All robots move away from each other.
The three kinds of emergent behavior being composed

in this experiment were generated by different weightings
associated with responses within three concentric bands: repel,
align, and cohere (attract), as shown in Fig1. For Flocking,
all three responses were active with highest weight given to
align. To constrain the flocking direction, a vector parameter
is applied in the four biased flocking behaviours. Rendezvous,
convergence to a consensus location, was achieved through a
high weight on cohere with a slight weight on repel to prevent
collisions. In Antirendezvous, moving swarm apart, only repel
had non zero weight.

Fig. 1. Response regions.

B. Behavior Composition

The sequencer generates the optimal sequence of behaviors
for a user supplied set of durations. The algorithm generating
the optimal sequences is based on [15] which solves the
following problem: Given the current state x0 and a set of
goal states χg , a behavior library of swarm B, time horizon
tf , set of duration times T , a swarm behavior execution cost
function C(·) and heuristic cost-to-goal estimation function
H(·), find a sequence of swarm behaviors selected from B
that respectively last T to ensure that the swarm is in one
of the goal states in χg at the end of the time horizon tf . If
the algorithm cannot find such a swarm behavior sequence, it
returns an empty sequence (∅) to indicate failure.

Latency of response is a key usability problem for this
approach because of the extensive search required for opti-
mal behavior composition. To improve user experience the
program was parallelized through GPU programming in three
ways: multiple states corresponding to valid sub-sequences
were expanded simultaneously, robot positions were calculated
in parallel, and all possible behaviors in the behavior library
are searched and expanded together. These efforts reduced
latencies for problems of the size studied from 10-30 seconds
to 2-8 seconds, just below the 10 second limit needed to
maintain user attention [16].

C. Task

The navigation task requires participants to control a swarm
of robots to reach the destination area without colliding with
obstacles or going outside the map. Users control the composi-
tion of behaviors by entering a sequence of behaviors and their
durations in a two column list. When executed this sequence
of switched behaviors defines the paths which would be taken
by the robots. In the control condition the user must enter
both behaviors and durations. In the aid available condition
the participant may either specify both behaviors and durations
as in the control or enter only behavior durations in the first
column and allow the aid to return an optimal sequence of



behaviors matching those durations. After receiving the input
sequence, the system computes the trajectory of the swarm and
visualizes the result. Participants were instructed to try their
best to generate a valid and complete sequence within the
given time. A valid path was defined as robot trajectories that
are within the map boundary, and do not collide with obstacles.
A complete path was one in which all robot trajectories reach
the goal region. Participants were encouraged to continue
searching for improved sequences to minimize the sum of
distances traveled by robots even after attaining a valid and
complete sequence.

D. Testing Maps

Twenty testing maps were generated, each with a different
arrangement of obstacles and goal regions. The number of
obstacles per map ranged from 1 to 10, and the size of obsta-
cles was varied. The goal region size was kept constant but its
location changed among the maps. Initial robot positions were
also changed between maps but the number of robots (10) and
their initial orientation (facing east) were kept constant. A pilot
test was run to validate the difficulty and appropriateness of
maps. Three maps were found to be too hard for participants to
finish within the given time and were excluded. The remaining
17 maps were separated into a training set (5 maps) and test
set (12 maps).

Fig. 2. Sequencing Interface.

E. Sequencer Interface

The sequencer interface (Fig.2) allows users to control the
swarm of robots to finish a navigation task by generating
behavior sequences. A complete sequence command consists
of an array of concrete behaviors selected from the given
library and the corresponding duration time of each behavior.
On the panel to the right is the behavior list and sequence
editor where users could define and alter the behaviors and
their durations. The user could add or remove behaviors from
the sequence by inserting new behaviors at the bottom of the
list and moving them up to the desired position or deleting a
behavior causing subsequent behaviors to move up in the list.
Durations could be changed by typing a new value into their
textbox.

On the panel to the left is a map of the swarm’s workspace.
Small green circles correspond to swarm robots’ initial posi-
tions, blue circles correspond to obstacles, and the red circle
corresponds to the destination area that all robots must reach.
Lines correspond to the trajectory taken by each robot, while
colors of the line correspond to the behavior during particular
segments. These colors correspond to the list of behaviors and
durations on the panel to the right and the timeline near the
bottom of the panel. A timer at the top of the panel shows
the remaining time. When the timer reaches 0, the trial is
terminated and the next trial begun.

Fig. 3. Behavior List and Sequence Editor.

After entering the duration, selecting the behavior sequence
manually or with help of the aid, and pressing the Submit
button, the user can visualize the duration sequence on a
progress bar-like time horizon at the bottom of the sequencing
panel (Fig.3). Each color corresponds to the behavior color
of the corresponding path segment. In aided cases where the
user has entered more durations than the available sequence,
the time horizon is displayed as black. If the user input is
invalid (eg. more behaviors given than durations or the sum
of durations exceeds the maximum simulation time which is
set to 60 seconds for the experiment), a message indicating
the type of error is presented. When an input is valid and the
Run button is pressed, the system calculates the cost, validity
of path, completeness of path, and the remaining behavior
sequence if this has not been fully given and displays the
paths on the map. Validity and completeness were highlighted
in the labels as green if valid, red if invalid, and black when
first initialized. All of this information is displayed in the
console on the lower right which also provides a history of
commands. The Next button located to the right of the Run



button allows the user to move to the next map even if there is
time remaining. To prevent the user from pressing this button
accidentally, pressing the Next button invokes a popup that
asks once more whether the user wants to move to the next
map. A window at the bottom of the screen retains history of
the trial allowing the user to view earlier sequences.

III. EXPERIMENT

a) Participants: Twenty-one paid participants (average
age = 22.95±1.72, 6 female participants) were recruited from
the University of Pittsburgh and Carnegie Mellon University
communities. All of the participants reported substantial video
game experience. Eleven participants were randomly assigned
to the aid-available group while the other ten participants were
unaided.

b) Procedure: To evaluate the feasibility of human con-
trol of a swarm through prespecified behavior composition and
the benefit of aiding this form of control through optimum
sequence generation, we conducted an experiment comparing
a behavior composition control with an aid-available exper-
imental condition. Demographic information including age,
gender, education level and video game experience were
collected at the beginning of the session followed by a a
10-minute introduction. The experimenter walked through the
initial training map demonstrating the task and the use of
the interface. Participants solved the next 4 training maps
with experimenter assistance to familiarize themselves with
the system and task. Participants in the aid-available condition
were instructed in both modes of interaction but encouraged
to use the aid on the practice maps. Participants in the unaided
group received additional feedback at the end of each training
map showing the optimal sequence of behaviors given their
last sequence of durations. After the fixed order training map
set, participants were given 12 test maps in counter balanced
order with initial and goal regions indicated and instructed
to assemble a sequence of behaviors and duration times that
were valid and complete. They were encouraged to optimize
the sequence after the first successful attempt, during the time
remaining in the 4 minute trial. Trails ended at 4 minutes or
when the user decided to terminate. After the completing the
experiment, participants filled out the System Usability Scale
[17]. The entire session lasted approximately an hour.

IV. RESULTS

No significant difference on the total path length was
found between the aided group and unaided group (Aided:
1013.23 ± 45.5, Unaided: 1056.73 ± 28.0, p = .437). There
was also no difference in average time to completion (Aided:
175.50 ± 7.0s, Unaided: 183.52 ± 6.3s, p = .615) and
completion rate (Aided: 25.76±4.7%, Unaided: 23.33±4.9%).
No difference was found in completed maps with 74.2%
completion in the aided group and 76.6% in the unaided
condition. Unaided participants also reported marginally better
usability (75.2± 0.99vs.67.3± 0.85, p = .074) for the system
than those with access to the aid.

Fig. 4. Usage rates for participants in Aid-Available group.

However, defining the algorithm usage rate of each par-
ticipant as (the number of sequences generated by the algo-
rithm)/(the number of all the sequences generated), the average
usage rate in the aided group was only 25.3% (SD=16.9%). We
found that because the low rate of use many of the participants
in the aid-available condition used the aid only rarely as shown
in Fig. 4. The poor usage rate may reveal usability issues,
but on the other hand, it may also bias our evaluation of the
effectiveness of the aid algorithm itself. Alternately, excluding
the trials in which the algorithm was not used from the data
of the aided group and incomplete trails from both aided and
control groups, allows a different kind of comparison between
aided and unaided trials (Fig. 5).

Fig. 5. Performance metrics in aided and unaided trials.

Under these conditions the aided group needed more time
to generate a single sequence than the control group (23.90 vs.
19.83, t(154.37) = 3.631, p < .001), but the average number
of behaviors in each sequence was also higher (5.42 vs. 4.71,
t(158) = 3.631, p < .001). The aided group made fewer
attempts (8.17 vs. 9.55, t(212) = 2.824, p = .005) in gen-
erating sequences and achieved their first successful attempt
more rapidly (138.5s vs. 157.9s, t(182.87) = 1.873, p = .063)
often in a single trial.



V. DISCUSSION

The poor completion rate and subjective reports indicate the
current sequenced path planning process is neither efficient
nor natural. Participants found it awkward when they were
requested to provide unanchored and arbitrary parameters and
received feedback in the form of paths which might fail to
reach the goal (incomplete) or a message indicating them to
be invalid. Participants may prefer real-time interaction meth-
ods for switching between behaviors as in [10], [11] rather
than preplanning a complete behavior sequence which places
greater demands on working memory and decision making. We
are considering adding intermediate goal functions to shorten
the feedback loop and make the process more controllable for
users.

Our results show that participants were mostly unwilling to
use the sequencing algorithm and found it less usable than
generating the sequences manually. There are several possible
reasons why the aid may be difficult to use: a) If the input
duration time is not long enough for swarms to reach the target
area, the algorithm generates a feasible path with the shortest
distance between the endpoint and final target. This can lead to
a local optimum in which the swarm leaves obstacles between
it and the target, while ignoring a valid longer path. From
the users’ perspective, this reflects unreliability because the
algorithm appears to ignore obvious obstacles in its path. b)
Due to the computational limitations, the aided algorithm may
have long response times of up to 8 seconds when generating
the sequence, which is neither time-efficient nor pleasant to
use, c) For easy maps with one explicit feasible path, manual
or auto-generated sequences are almost identical since all
approach the optimal solution. Using the aid effectively for
hard maps with multiple obstacles which might benefit most
from human-machine cooperation requires an efficient strategy
such as defining the first few behaviors and durations to
constrain the path direction, and letting the algorithm fill out
the rest. However, only a few participants in the aided group
developed such strategies resulting in the lopsided distribution
of frequent and infrequent algorithm users shown in 4.

Providing access to an aiding algorithm influenced partici-
pants’ performance in sequence generation. Comparing trials
with and without algorithm use, both frequent and infre-
quent algorithm users arrived at their first valid and complete
trajectory more rapidly and produced more complex paths
with a larger number of behaviors. However, no performance
improvement in trajectory length was found. Those facts show
that the aid algorithm we used in the study could efficiently
help participants to generate a feasible sequence for swarms to
finish the task, but not significantly contribute to the sequence
optimization.

Another interesting finding is that for frequent users who
had developed effective strategies for interacting with the
algorithm, path lengths were reduced as well. Here we divided
participants by their usage rate of the aid algorithm, and
defined them as frequent users (users in the aided group
who used algorithm more than 18%) and infrequent user

(remaining users in the aided group + control group). A
possible explanation for the difference between frequent and
infrequent algorithm users may lie in the distinction between
exploration and optimization stages of the task. When a user
begins forming a sequence, the algorithm always produces
valid trajectories (within the map and without collision with
obstacles) for a given set of duration times, which is hard to
guarantee in manual composition. So the use of the algorithm
should decrease users’ workload at this stage, and lead to
earlier discovery of a feasible and complete solution because
only feasible solutions are being considered. After the first
feasible and complete trajectory is generated, users need
to trim the sequence to shorten its path length to improve
performance. Because the algorithm only supplies a duration
for the final segment, without strategies, the aided group has
little direct assistance for changing intermediate duration times
or behaviors. As a consequence, while they find a complete
and valid path in fewer attempts, these users have difficulty
in improving paths further and generate fewer paths. Frequent
users, by contrast, who have developed effective strategies,
such as progressing from smaller to larger sets of durations to
refine the path, are able to achieve shorter path lengths than
other groups.

In future research, we plan to explore approaches that
allow incremental construction and modification of paths while
preserving optimality of composition. We additionally plan
to expand our approach to other task settings such as area
coverage, in which finding a feasible trajectory is much easier
than in navigation, but harder for optimization.
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