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Weighted Machine Learning

Mahdi Hashemi∗, Hassan A. Karimi
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Abstract Sometimes not all training samples are equal in supervised machine learning. This might happen in different
applications because some training samples are measured by more accurate devices, training samples come from different
sources with different reliabilities, there is more confidence on some training samples than others, some training samples
are more relevant than others, or for any other reason the user wants to put more emphasis on some training samples.
In non-weighted machine learning techniques which are designed for equally important training samples: (a) the cost of
misclassification is equal for training samples in parametric classification techniques, (b) residuals are equally important
in parametric regression models, and (c) when voting in non-parametric classification and regression models, training
samples either have equal weights or their weights are determined internally by kernels in the feature space, thus no external
weights. The weighted least squares model is an example of a weighted machine learning technique which takes the training
samples’ weights into account. In this work, we develop the weighted versions of Bayesian predictor, perceptron, multilayer
perceptron, SVM, and decision tree and show how their results would be different from their non-weighted versions.
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1. Introduction

In this paper, machine learning algorithms are modified to take the training samples’ weights into account. The
weighted machine learning techniques developed in this work, not only provide developers with the opportunity
to give different weights to training samples, but also can be embedded into other algorithms such as AdaBoost
[1, 2], where there is a hierarchy of classifiers, each requiring to be trained using a different weighting over training
samples. Figure 1 shows, schematically, how non-weighted linear predictors become biased when the training
samples’ weights are taken into account. Figure 2 shows the same for nonlinear classifiers. There are two classes,
one indicated with circles and the other with squares. Darkness of training samples shows their weights and the
classifier is represented with a dashed line. As shown in the figure, the weighted classifier decides in favor of more
important samples by keeping more distance from them.

To bias the predictor in favor of more important training samples, we embed the training samples’ weights into
the cost function. This way we regulate the misclassification cost based on the weights during training. In other
words, misclassifying more important training samples would be more costly and the predictor will attempt to avoid
it. This approach is possible only for machine learning algorithms which are based on minimizing a cost function.
For Bayesian predictors, we embed the training samples’ weights into the probability distribution functions. This
way we increase the likelihood of a class when the irresponsive sample (the sample with an unknown output) is
close to training samples with large weights in that class. In short, training the weighted predictor is more concerned
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Figure 1. A non-weighted linear classifier (left) vs. a weighted linear classifier (right).

Figure 2. A non-weighted nonlinear classifier (left) vs. a weighted nonlinear classifier (right).

about correct prediction of training samples with larger weights than those with smaller weights. As a result, the
trained model predicts in favor of training samples with larger weights. This makes the weighted predictor different
than its non-weighted counterpart.

In this paper, we use the training dataset in Table 1 to show the difference between the weighted machine learning
techniques developed here and their non-weighted counterparts. We consider two classes ω1 and ω2, each with 10
samples, and two features l1 and l2 to simplify the visualization. Training samples and their weights in this table are
chosen carefully to emphasize the difference between weighted and non-weighted predictors. The training dataset
is shown in Figure 3. Circles represent class ω1 and squares represent class ω2. Darkness of training samples shows
their weight.

Figure 3. Training samples from two classes, circles and squares, shaded based on their weights.

2. Bayesian predictor

2.1. Classification

The Bayes classifier calculates the probability of different classes given the observed feature vector as p(ωj |x) =
p(ωj)p(x|ωj)/p(x) and then assigns x to the class with the highest probability [3, 4]; where p(ωj |x) is the posterior
probability, p(ωj) is the prior probability, and p(x|ωj) is the likelihood. The denominator, p(x), is usually ignored
in calculations as it is the same for all classes. A simple way to embed weights (gi) for training samples into the

Stat., Optim. Inf. Comput. Vol. 6, December 2018



M. HASHEMI AND H.A. KARIMI 499

Table 1. Training samples and their weights.

l1 l2 Class Weight
1 2 ω1 1
1 3 ω1 1
2 1 ω1 1
2 2 ω1 1
2 3 ω1 1
2 4 ω1 1
3 2 ω1 1
3 3 ω1 1
4 1 ω1 2
4 4 ω1 4
3 1 ω2 1
3 4 ω2 1
4 2 ω2 1
4 3 ω2 1
5 1 ω2 1
5 2 ω2 1
5 3 ω2 1
5 4 ω2 1
6 2 ω2 1
6 3 ω2 1

Bayes classifier is to define the prior probability (p(ωj)) as the sum of weights of training samples belonging to
class ωj divided by the sum of all weights (1).

p(ωj) =
∑

∀i|xi∈ωj

gi/
∑
∀i

gi (1)

Regardless of parametric or non-parametric definition of the likelihood (p(x|ωj)), an important drawback with
this simple approach is that it does not consider where the irresponsive sample (x) is situated with respect to more
important training samples in each class. For example, the irresponsive sample in Figure 4, shown with a cross, is
closer to more important samples (darker ones in the figure) in ω2 and one expects it to be classified in ω2. However,
based on the aforementioned approach, it will be classified in ω1 because ω1 has a larger prior (p(ω1) > p(ω2)) and
the likelihoods for two classes are equal (p(x|ω1) = p(x|ω2)). Likelihoods, p(x|ω1) and p(x|ω2), are calculated
without considering the weights. To solve this problem, weights need to be considered in likelihoods.

Figure 4. Two classes shown with circles and squares where the darkness of samples shows their weight.

To take into account the position of x with respect to more important training samples in each class, we define the
likelihood (p(x|ωj)) based on non-parametric Parzen windows [5], shown in (2), instead of calculating the priors
from (1).

p(x|ωj) =
1

Nj

∑
∀i|xi∈ωj

giK(x− xi,Σj) (2)
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In this equation, Nj is the size of the class ωj , xi represents the i-th training sample’s feature vector, x represents
the irresponsive sample’s feature vector, gi is the i-th training sample’s weight, K is the kernel function, and Σj

is the covariance matrix of features obtained based only on samples from class ωj . The step kernel in (3) or the
Gaussian kernel in (4) can be used in (2), where l is the dimension of feature space and the subscript k in xk and
xik refers to the k-th feature in the corresponding feature vector. More kernels are available in Hardle [6] and Fan
and Gijbels [7]. Instead of choosing the kernel bandwidth to be a constant value, which is the common practice,
we choose the covariance matrix for class ωj (shown by Σj) divided by a constant value (shown by σ) as the kernel
bandwidth for class j. The constant value (σ) can be tuned using cross-validation.

K(x− xi,Σj) =


1

|Σj/σ|1/2
|xk − xik | < 1

2 |Σj/σ|
1
2l

0 otherwise
(3)

K(x− xi,Σj) =
1

(2π)l/2|Σj/σ|1/2
exp(−1

2
(x− xi)

T (Σj/σ)
−1(x− xi)) (4)

Applying (2) to calculate the likelihoods in Figure 4 results in p(x|ω1) < p(x|ω2) and consequently p(ω1|x) <
p(ω2|x) which classifies the irresponsive sample in ω2.

2.2. Regression

In case of regression, (5) can be used to estimate the response at the irresponsive sample x. This equation estimates
the response at x as the weighted average of other training samples’ responses, where each training sample’s weight
is the multiplication of its original weight (gi) by the output of the kernel for that training sample (K(x− xi,Σ)).
In other words, a training sample’s weight in this equation (giK(x− xi,Σ)) is the combination of its importance
as well as its distance to the irresponsive sample in the feature space. The latter is what the kernel is concerned
about.

y(x) =

∑N
i=1 yigiK(x− xi,Σ)∑N
i=1 giK(x− xi,Σ)

(5)

Since there are no classes in regression, the covariance matrix of features (Σ) in (5) is defined over all training
samples.

2.3. Experiment

Here we use the dataset in Table 1 to show the effect of embedding training samples’ weights in likelihoods (2)
on the irresponsive sample’s classification. Priors are considered equal since the frequencies of the two classes are
the same. The Gaussian kernel in (4) with a bandwidth of Σj/3 is used as Parzen window, where Σj shows the
covariance matrix of class ωj . Figure 5 shows the division of the feature space between the two classes with and
without considering the training samples’ weights in calculating the likelihoods. It is shown that when the weighted
Bayesian classifier is applied, the classification of the irresponsive sample (shown with a cross) is switched from
class ω2 to class ω1 because of its proximity to some important samples in class ω1.

3. Linear predictors

3.1. Least squares (LS)

The output of the least squares (LS) predictor is xTw where w is the extended weight vector to include the
threshold or intercept (w0) and x is the extended feature vector to include a 1. The desired output is denoted with
yi. The weight vector will be computed so as to minimize the sum of squared errors between the desired and true
outputs [8], that is:
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Figure 5. Division of the feature space between the two classes, circles and squares, without (left) and with (right) considering
the training samples’ weights (darkness of samples) in Bayesian classifier.

J(w) =

N∑
i=1

(yi − xT
i w)2 (6)

where N is the number of training samples. Minimizing the cost function in (6) with respect to w results in:

∂J(w)

∂w
= 0 →

N∑
i=1

xi(yi − xT
i w) = 0 → (

N∑
i=1

xix
T
i )w =

N∑
i=1

xiyi (7)

Let us define:

X =


xT
1

xT
2

.

.
xT
N

 =


x11 x12 ... x1l 1
x21 x22 ... x2l 1
. . ... . .
. . ... . .

xN1 xN2 ... xNl 1

 and y =


y1
y2
.
.
yN

 (8)

where X is an N × (l + 1) matrix whose rows are the feature vectors with an additional 1, l is the number of
features, and y is a vector consisting of the corresponding desired responses. Then:

N∑
i=1

xix
T
i = XTX and

N∑
i=1

xiyi = XT y (9)

By substituting (9) in (7) we have:

(XTX)w = XT y → w = (XTX)−1XT y (10)

Matrix X+ = (XTX)−1XT is known as the pseudoinverse of X and is equal to X−1 if X is square. To
develop the weighted version of LS predictor, we adjust the cost of error based on the weight of training samples
(gi),

J(w) =

N∑
i=1

gi(yi − xT
i w)2 (11)

Minimizing the cost function in (11) with respect to w results in:

∂J(w)

∂w
= 0 →

N∑
i=1

gixi(yi − xT
i w) = 0 → (

N∑
i=1

gixix
T
i )w =

N∑
i=1

gixiyi (12)
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Let us define:

G =


g1 0 0 ... 0
0 g2 0 ... 0
. . . ... .
. . . ... .
0 0 0 ... gN

 (13)

Then:

N∑
i=1

gixix
T
i = XTGX and

N∑
i=1

gixiyi = XTGy (14)

Substituting (14) in (12) results in:

(XTGX)w = XTGy → w = (XTGX)−1XTGy (15)

Equation (15) is known as weighted least squares [9]. Let us investigate what happens if the weight of all
training samples is equal to a constant c. In this case, G = c× IN×N where IN×N is the N ×N identity matrix.
Substituting this in (15) results in:

w = (XT cIX)−1XT cIy = (cXTX)−1cXT y =
1

c
(XTX)−1cXT y = (XTX)−1XT y (16)

In other words, the weighted LS is no different than the non-weighted LS if all weights are equal. This is the
case with all weighted predictors developed in this work.

3.1.1. Experiment. Here we use the dataset in Table 1 to show the effect of embedding the training samples’
weights in LS (15). Figure 6 shows the division of the feature space between the two classes with and without
considering the training samples’ weights in computing the linear classifier. Circles represent class ω1 and squares
represent class ω2. Darkness of training samples shows their weight. In the weighted LS classifier, training samples
with large weights from class ω1 push the border toward class ω2.

Figure 6. Division of the feature space between the two classes, circles and squares, without (solid line) and with (dashed
line) considering the training samples’ weights (darkness of samples) in LS classifier.

3.2. Perceptron

The perceptron cost function is defined as [10]:

J(w) =

N∑
i=1

yiw
Txi , yi =


+ 1if wxi > 0 but xi ∈ ω2

−1 if wxi < 0 but xi ∈ ω1

0 if wxi > 0 and xi ∈ ω1

0 if wxi < 0 and xi ∈ ω2

(17)
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where N is the number of training samples, xi is the i-th feature vector including an additional 1 as its last
element, and w is the weight vector (the perpendicular vector to the hyperplane classifier toward class ω1) including
the threshold (w0) as its last element. The cost function is minimized if the classifier produces a positive response
for samples of class ω1 and a negative response for samples of class ω2. We can iteratively find the weight vector
that minimizes the perceptron cost function using the gradient descent scheme [10, 11]:

wt+1 = wt +∆wt = wt − α
∂J(w)

∂w
|w=wt = wt − α

N∑
i=1

yixi (18)

where wt is the weight vector estimate at the t-th iteration and α is the training rate which is a small positive
number.

We embed the training samples’ weights (gi) in the perceptron cost function (19) to punish the classifier more
for misclassifying training samples with larger weights and less for training samples with smaller weights. In other
words, the training samples’ weights enter the cost function to adjust the perceptron cost based on the importance
of training samples. The perceptron classifier is no longer equally fair to all training samples.

J(w) =

N∑
i=1

giyiw
Txi (19)

With the new cost function, the iterative steps for updating the weight vector through the gradient descent scheme
will change to:

wt+1 = wt +∆wt = wt − α
∂J(w)

∂w
|w=wt = wt − α

N∑
i=1

giyixi (20)

If we define α̃i = αgi we obtain:

wt+1 = wt −
N∑
i=1

α̃iyixi (21)

Therefore, the weighted perceptron classifier can be obtained by including the weights in the cost and defining
the training rate as α̃i = αgi which means a different training rate for each training sample based on its weight.
Adjusting the training rate based on the training samples’ weights and including the weights in the cost function
bias the trained perceptron in favor of training samples with larger weights.

3.2.1. Experiment. Here we use the dataset in Table 1 to show the effect of including training samples’ weights
in perceptron classifier. Figure 7 shows the division of the feature space between the two classes with and without
considering the training samples’ weights in computing the linear classifier. The high cost of misclassifying
important samples from class ω1 in weighted perceptron classifier pushes the border toward class ω2.

3.3. SVM

3.3.1. Two linearly separable classes. Assume ω1 and ω2 are two linearly separable classes shown in Figure 8.
SVM [12, 13, 14] maximizes the margin around the hyperplane separating the two classes. We know that the
distance between a sample xi and a hyperplane f(x) = wTx+ w0 = 0 is obtained from |f(xi)|/||w||. Assume x1

is the nearest sample in class ω1 to the hyperplane f(x) and x2 is the nearest sample in class ω2 to the hyperplane
f(x). Then x1 and x2 are called support vectors. To maximize the margin, the hyperplane f(x) must intersect the
line connecting x1 and x2 at its midpoint, as shown in Figure 8. Therefore, we can scale w and w0 so that f(x1) = 1
and f(x2) = −1. This leads to having a margin of:

|f(x1)|
||w||

+
|f(x2)|
||w||

=
1

||w||
+

1

||w||
=

2

||w||
(22)
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Figure 7. Division of the feature space between the two classes, circles and squares, without (solid line) and with (dashed
line) considering the training samples’ weights (darkness of samples) in perceptron classifier (logistic activation function
and adaptive training rate with 1000 iterations).

Figure 8. SVM classifier for two linearly separable classes; black points show support vectors.

Since x1 and x2 are the closest samples to the hyperplane f(x), the distance of other samples from the hyperplane
is greater than 1/||w||, as shown in Figure 8. Therefore, we have:{

f(xi) ≥ 1 ∀xi ∈ ω1

f(xi) ≤ −1 ∀xi ∈ ω2

(23)

We define:

yi =

{
+ 1 ∀xi ∈ ω1

−1 ∀xi ∈ ω2

(24)

Substituting (24) in (23) results in:

yif(xi) ≥ 1 , ∀xi (25)

We need to maximize the margin (2/||w||) in (22) which is equivalent to minimizing the norm ||w||. The
mathematical formulation for finding w and w0 of the hyperplane follows:

 minimizeJ(w,w0) =
1

2
||w||2 =

1

2
wTw (26)

subject to yi(w
Txi + w0) ≥ 1 , i = 1, 2, ..., N (27)
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where N is the number of training samples. The above cost function is convex and the constraints are linear and
define a convex set of feasible solutions. The corresponding Lagrangian function L(w,w0, λ) for the above convex
programming problem is defined as follows [15, 16, 17, 18]:

L(w,w0, λ) =
1

2
wTw −

N∑
i=1

λi[yi(w
Txi + w0)− 1] (28)

where λi, i = 1, 2, , N are the Lagrangian multipliers associated with the constraint in (27). We need to find w,
w0, and λ by solving the Lagrangian duality: maxλ≥0minw,w0L(w,w0, λ) [15, 16, 17, 18]. The Karush-Kuhn-
Tucker conditions that minw,w0L(w,w0, λ) has to satisfy are [15, 16, 17, 18]:



∂L(w,w0, λ)

∂w
= 0 → w =

N∑
i=1

λiyixi (29)

∂L(w,w0, λ)

∂w0
= 0 →

N∑
i=1

λiyi = 0 (30)

λi ≥ 0 , i = 1, 2, ..., N (31)
λi[yi(w

Txi + w0)− 1] = 0 , i = 1, 2, ..., N (complementary slackness conditions) (32)

Equations (29) and (30) depend only on training samples whose λi ̸= 0, referred to as support vectors. On the
other hand, the conditions in (32) state that either λi or yi(wTx+ w0)− 1 must be zero. Therefore support vectors
are training samples where |wTx+ w0| = 1 (i.e. yi(wTx+ w0)− 1 = 0 and λi ̸= 0) which means they are on the
boundary of the margin. Therefore, (29) and (30) depend only on support vectors and consequently the hyperplane
classifier is designed only based on support vectors and is independent of other training samples because their λi is
zero. While, none of the training samples falls inside the margin (by construction), this is not necessarily the case
for irresponsive samples. The intuition is that maximizing the margin on the training samples will lead to good
separation on the irresponsive samples.

By expanding (28), we have:

L(w,w0, λ) =
1

2
wTw − wT

N∑
i=1

λiyixi − w0

N∑
i=1

λiyi +

N∑
i=1

λi

By replacing
∑N

i=1 λiyi = 0 from (30) in the above equation, we get:

L(w,w0, λ) =
1

2
wTw − wT

N∑
i=1

λiyixi +

N∑
i=1

λi

By substituting w from (29), we have:

L(w,w0, λ) =
1

2

[
N∑
i=1

λiyixi

]T [ N∑
i=1

λiyixi

]
−

[
N∑
i=1

λiyixi

]T [ N∑
i=1

λiyixi

]
+

N∑
i=1

λi

L(w,w0, λ) = −1

2

[
N∑
i=1

λiyixi

]T [ N∑
i=1

λiyixi

]
+

N∑
i=1

λi

L(w,w0, λ) =

N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
T
i xj

Now we maximize the above Lagrangian function with respect to λ:
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max
λ

(
N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
T
i xj

)
(33)

subject to
N∑
i=1

λiyi = 0 (34)

λi ≥ 0 , i = 1, 2, ..., N (35)

Once the optimal Lagrangian multipliers (λi) have been computed by maximizing (33), w is obtained by
replacing them in (29) and w0 is computed as an average value obtained using complementary slackness conditions
in (32) for support vectors (λi ̸= 0).

The weighted version of SVM needs to be more sensitive to training samples with larger weights. In other words,
the distance from training samples to the classifier hyperplane needs to be compromised based on their weights.
From a geometric point of view, we develop the weighted SVM by moving training samples toward the classifier
hyperplane by a factor proportional to their weight (gi). We measure the distance of a training sample (xi) from
the classifier hyperplane (f(x)) through (36), where the actual distance is reduced by a factor of 1/(1 + gi). If a
training sample’s weight is zero, its distance to the classifier hyperplane, in (36), remains intact, and if its weight
is very large, its distance will become close to zero.

|f(xi)|
||w|| × (1 + gi)

=
|wTxi + w0|

||w|| × (1 + gi)
(36)

Assume x1 is the nearest sample in class ω1 to the classifier hyperplane based on the distance calculated
from (36) and x2 is the nearest sample in class ω2 to the classifier hyperplane. We can scale w and w0 so that
f(x1)/(1 + g1) = 1 and f(x2)/(1 + g2) = −1. This leads to having a margin of:

|f(x1)|
||w|| × (1 + g1)

+
|f(x2)|

||w|| × (1 + g2)
=

1

||w||
+

1

||w||
=

2

||w||
(37)

Since x1 and x2 are the closest samples to the hyperplane, the distance of other samples from the hyperplane
(based on (36)) is larger than 1. Therefore, we have:{

f(xi)/(1 + gi) ≥ 1 ∀xi ∈ ω1

f(xi)/(1 + gi) ≤ −1 ∀xi ∈ ω2

(38)

We define:

yi =

{
+ 1 ∀xi ∈ ω1

−1 ∀xi ∈ ω2

(39)

Substituting (39) in (38) results in:

yif(xi)/(1 + gi) ≥ 1 , ∀xi (40)

We need to maximize the margin (2/||w||) in (37) which is equivalent to minimizing the norm ||w||. The
mathematical formulation for finding w and w0 of the hyperplane follows:


minimizeJ(w,w0) =

1

2
||w||2 =

1

2
wTw (41)

subject to yi

(
wTxi + w0

1 + gi

)
≥ 1 , i = 1, 2, ..., N (42)
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where N is the number of training samples. The above cost function is convex and the constraints are linear and
define a convex set of feasible solutions. The corresponding Lagrangian function L(w,w0, λ) for the above convex
programming problem is defined as follows:

L(w,w0, λ) =
1

2
wTw −

N∑
i=1

λi

[
yi

(
wTxi + w0

1 + gi

)
− 1

]
(43)

where λi, i = 1, 2, , N are the Lagrangian multipliers associated with the constraint in (42). We need to find w,
w0, and λ by solving the Lagrangian duality: maxλ≥0minw,w0L(w,w0, λ) [15, 16, 17, 18]. The Karush-Kuhn-
Tucker conditions that minw,w0L(w,w0, λ) has to satisfy are [15, 16, 17, 18]:



∂L(w,w0, λ)

∂w
= 0 → w =

N∑
i=1

λiyixi

1 + gi
(44)

∂L(w,w0, λ)

∂w0
= 0 →

N∑
i=1

λiyi
1 + gi

= 0 (45)

λi ≥ 0 , i = 1, 2, ..., N (46)

λi

[
yi

(
wTxi + w0

1 + gi

)
− 1

]
= 0 , i = 1, 2, ..., N (complementary slackness conditions) (47)

The conditions in (47) state that either λi or yi[(w
Tx+ w0)/(1 + gi)]− 1 must be zero. Therefore support

vectors are training samples where |wTx+ w0|/(1 + gi) = 1 (i.e. yi[(wTx+ w0)/(1 + gi)]− 1 = 0 and λi ̸= 0).
It is now clear how our modified distance function in (36) affects the choice of support vectors. Before, support
vectors were those geometrically closest to the hyperplane but now a trade-off between the weight (gi) and the
geometrical distance to the hyperplane determines whether a training sample is a support vector or not.

By expanding (43), we have:

L(w,w0, λ) =
1

2
wTw − wT

N∑
i=1

λiyixi

1 + gi
− w0

N∑
i=1

λiyi
1 + gi

+

N∑
i=1

λi

By replacing
∑N

i=1
λiyi

1+gi
= 0 from (45) in the above equation, we get:

L(w,w0, λ) =
1

2
wTw − wT

N∑
i=1

λiyixi

1 + gi
+

N∑
i=1

λi

By substituting w from (44), we have:

L(w,w0, λ) =
1

2

[
N∑
i=1

λiyixi

1 + gi

]T [ N∑
i=1

λiyixi

1 + gi

]
−

[
N∑
i=1

λiyixi

1 + gi

]T [ N∑
i=1

λiyixi

1 + gi

]
+

N∑
i=1

λi

L(w,w0, λ) = −1

2

[
N∑
i=1

λiyixi

1 + gi

]T [ N∑
i=1

λiyixi

1 + gi

]
+

N∑
i=1

λi

L(w,w0, λ) =

N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
T
i xj

(1 + gi)(1 + gj)

Now we maximize the above Lagrangian function with respect to λ:
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max
λ

(
N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
T
i xj

(1 + gi)(1 + gj)

)
(48)

subject to
N∑
i=1

λiyi
1 + gi

= 0 (49)

λi ≥ 0 , i = 1, 2, ..., N (50)

Once the optimal Lagrangian multipliers (λi) have been computed, by maximizing (48), w is obtained by
replacing them in (44) and w0 is computed as an average value obtained using complementary slackness conditions
in (47) for support vectors (λi ̸= 0). Labeling a new sample is no different here; if f(x) = wTx+ w0 > 0, x is
classified in ω1, and otherwise in ω2.

An interesting observation is that the term (1 + gi) appears everywhere in the computations as a denominator
of yi. It means the weighted SVM can be obtained by replacing yi with yi/(1 + gi) in non-weighted SVM
computations.

3.3.2. Two linearly nonseparable classes. If the two classes are not linearly separable which is usually the case
in real-world problems, e.g. Figure 9, then it is not possible to find an empty band separating them. Each training
sample will have one of the following constraints, as shown in Figure 9:

• it falls outside the band and is correctly classified, i.e. yi(wTxi + w0) > 1,
• it falls inside the band and is correctly classified, i.e. 0 ≤ yi(w

Txi + w0) ≤ 1, or
• it is misclassified, i.e. yi(wTxi + w0) < 0.

Figure 9. SVM classifier for two linearly nonseparable classes; black points show support vectors.

We can summarize the three above constraints in one by introducing the slack variable (ξi) [12]:

yi(w
Txi + w0) ≥ 1− ξi ,


ξi = 0 if xi is outside the band and correctly classified
0 < ξi ≤ 1 if xi is inside the band and correctly classified
ξi > 1 if xi is misclassified

(51)

The optimization task is now to maximize the margin (minimize the norm) while minimizing the slack variables
[12]. The mathematical formulation for finding w and w0 of the hyperplane follows:

Stat., Optim. Inf. Comput. Vol. 6, December 2018



M. HASHEMI AND H.A. KARIMI 509


minimizeJ(w,w0, ξ) =

1

2
||w||2 + C

N∑
i=1

ξi =
1

2
wTw + C

N∑
i=1

ξi (52)

subject to yi(w
Txi + w0) ≥ 1− ξi , i = 1, 2, ..., N (53)

ξi ≥ 0 , i = 1, 2, ..., N (54)

The smoothing parameter C is a positive user-defined constant that controls the trade-off between the two
competing terms in the cost function. The two terms are against each other because minimizing the norm (i.e.
maximizing the margin) increases the slack variables by increasing the number of training samples inside the
band. On the other hand, decreasing the number of samples inside the band is equivalent to decreasing the margin.
Therefore, by choosing a very large C → ∞, the width of the margin disappears, 2/||w|| → 0, because we allow
the norm to grow much faster than slack variables (ξi). The corresponding Lagrangian function L(w,w0, ξ, λ, µ)
for the above convex programming problem is defined as follows [15, 16, 17, 18]:

L(w,w0, ξ, λ, µ) =
1

2
wTw + C

N∑
i=1

ξi −
N∑
i=1

µiξi −
N∑
i=1

λi[yi(w
Txi + w0)− 1 + ξi] (55)

where λi, i = 1, 2, , N are the Lagrangian multipliers associated with the constraint in (53) and µi, i = 1, 2, , N
are the Lagrangian multipliers associated with the constraint in (54). We need to find w, w0, and λ by solving the
Lagrangian duality: maxλ≥0minw,w0,ξL(w,w0, ξ, λ, µ) [15, 16, 17, 18]. The KarushCKuhnCTucker conditions
that minw,w0,ξL(w,w0, ξ, λ, µ) has to satisfy are [15, 16, 17, 18]:



∂L(w,w0, ξ, λ, µ)

∂w
= 0 → w =

N∑
i=1

λiyixi (56)

∂L(w,w0, ξ, λ, µ)

∂w0
= 0 →

N∑
i=1

λiyi = 0 (57)

∂L(w,w0, ξ, λ, µ)

∂ξi
= 0 → C − µi − λi = 0 , i = 1, 2, ..., N (58)

µiξi = 0 , i = 1, 2, ..., N (59)
µi ≥ 0 , λi ≥ 0 , i = 1, 2, ..., N (60)
λi[yi(w

Txi + w0)− 1 + ξi] = 0 , i = 1, 2, ..., N (complementary slackness conditions) (61)

Equations (56) and (57) depend only on training samples whose λi ̸= 0, referred to as support vectors. On
the other hand, the conditions in (61) state that either λi or yi(w

Tx+ w0)− 1 + ξi must be zero. Therefore
support vectors are training samples where yi(w

Tx+ w0) = 1− ξi (i.e. yi(wTx+ w0)− 1 + ξi = 0 and λi ̸= 0).
Therefore, correctly classified training samples outside the margin are not support vectors because we have
yi(w

Tx+ w0) > 1 and yi(w
Tx+ w0)− 1 + ξi cannot be zero considering ξi ≥ 0. It means that support vectors

are those on the edge of the margin (ξi = 0), correctly classified inside the margin (0 < ξi < 1), or misclassified
(ξi ≥ 1), as shown in Figure 9. From (58) and (59), we can see that λi = C for support vectors falling inside the
margin (ξi > 0) and 0 < λi < C for support vectors falling on the edge of the margin (ξi = 0). Therefore, (56) and
(57) depend only on support vectors and consequently the hyperplane classifier is designed only based on support
vectors and is independent of other training samples because their λi is zero.

By expanding (55), we have:

L(w,w0, ξ, λ, µ) =
1

2
wTw +

N∑
i=1

Cξi −
N∑
i=1

µiξi − wT
N∑
i=1

λiyixi − w0

N∑
i=1

λiyi +

N∑
i=1

λi −
N∑
i=1

λiξi
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L(w,w0, ξ, λ, µ) =
1

2
wTw +

N∑
i=1

(C − µi − λi)ξi − wT
N∑
i=1

λiyixi − w0

N∑
i=1

λiyi +

N∑
i=1

λi

By replacing
∑N

i=1 λiyi = 0 from (57) and C − µi − λi = 0 from (58), we get:

L(w,w0, λ) =
1

2
wTw − wT

N∑
i=1

λiyixi +

N∑
i=1

λi

By substituting w from (56), we end up with:

L(w,w0, λ) =
1

2

[
N∑
i=1

λiyixi

]T [ N∑
i=1

λiyixi

]
−

[
N∑
i=1

λiyixi

]T [ N∑
i=1

λiyixi

]
+

N∑
i=1

λi

L(w,w0, λ) = −1

2

[
N∑
i=1

λiyixi

]T [ N∑
i=1

λiyixi

]
+

N∑
i=1

λi

L(w,w0, λ) =

N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
T
i xj

Now we maximize the above Lagrangian function with respect to λ:



max
λ

(
N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
T
i xj

)
(62)

subject to
N∑
i=1

λiyi = 0 (63)

0 ≤ λi ≤ C due to Equation (58) , i = 1, 2, ..., N (64)

Once the optimal Lagrangian multipliers (λi) have been computed, by maximizing (62), w is obtained by
replacing them in (56) and w0 is computed as an average value obtained using complementary slackness conditions
in (61) for support vectors (λi ̸= 0). However, ξi is also unknown in (61). We know from (58) and (59) that ξi is
zero for training samples whose λi < C. Therefore, if we only use the training samples whose 0 < λi < C (support
vectors falling on the edge of the margin) to find w0 via (61), we can consider ξi = 0.

In the linearly nonseparable case the Lagrangian multipliers (λi) are bounded above by C, which is the only
difference between the linearly separable and nonseparable cases. The slack variables, ξi, and their associated
Lagrangian multipliers, µi, are not involved in finding the classifier hyperplane but their effect is indirectly felt
through C [4].

The weighted version of SVM needs to be more sensitive to training samples with larger weights (gi). In other
words, the distance from training samples to the classifier hyperplane needs to be compromised based on their
weights. However, the modified distance function in case of two nonseparable classes is different than separable
classes. When the two classes are separable, we always move training samples toward the classifier hyperplane
by a factor proportional to their weight because training samples are always on the correct side of the classifier
hyperplane. On the other hand, in case of two nonseparable classes, a training sample might lie on the wrong side
of the classifier hyperplane. Therefore, if a training sample lies on the correct side of the classifier hyperplane,
we should move it toward the hyperplane and otherwise away from it by a factor proportional to its weight. This
way we increase the sensitivity of the classifier to training samples with large weights. We introduce the modified
distance function for weighted SVM, in case of two nonseparable classes, as:
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|f(xi)|
||w||

× (
1

1 + gi
) =

|f(xi)|
||w||

−
(
1− 1

1 + gi

)
|f(xi)|
||w||

if xi is correctly classified

|f(xi)|
||w||

× (1 +
gi

1 + gi
) =

|f(xi)|
||w||

+

(
1− 1

1 + gi

)
|f(xi)|
||w||

if xi is not correctly classified
(65)

We define:

yi =

{
+ 1 ∀xi ∈ ω1

−1 ∀xi ∈ ω2

→ yi
f(xi)

|f(xi)|
=

{
+ 1 if xi is correctly classified
−1 if xi is not correctly classified

(66)

Using (66), we can combine the two distance functions in (65) in one:

|f(xi)|
||w||

−
(
yi

f(xi)

|f(xi)|

)(
1− 1

1 + gi

)
|f(xi)|
||w||

=
|f(xi)| − yi

(
1− 1

1+gi

)
f(xi)

||w||
, ∀xi (67)

By scaling w and w0, and introducing the slack variable (ξi) we can define the following constraint for training
samples:

|f(xi)| − yi

(
1− 1

1 + gi

)
f(xi) ≥ 1− ξi,


ξi = 0 if xi is outside the band and correctly classified
0 < ξi ≤ 1 if xi is inside the band and correctly classified
ξi > 1 if xi is misclassified

(68)

The optimization task is now to maximize the margin (minimize the norm) while minimizing the slack variables
(ξi). The mathematical formulation for finding w and w0 of the hyperplane follows:


minimizeJ(w,w0, ξ) =

1

2
||w||2 + C

N∑
i=1

ξi =
1

2
wTw + C

N∑
i=1

ξi (69)

subject to |wTxi + w0| − yi

(
1− 1

1 + gi

)
(wTxi + w0) ≥ 1− ξi , i = 1, 2, ..., N (70)

ξi ≥ 0 , i = 1, 2, ..., N (71)

The corresponding Lagrangian function L(w,w0, ξ, λ, µ) for the above convex programming problem is defined
as follows:

L(w,w0, ξ, λ, µ) =
1

2
wTw + C

N∑
i=1

ξi −
N∑
i=1

µiξi−

N∑
i=1

λi

[
|wTxi + w0| − yi

(
1− 1

1 + gi

)
(wTxi + w0)− 1 + ξi

] (72)

where λi, i = 1, 2, , N are the Lagrangian multipliers associated with the constraint in (70) and µi, i = 1, 2, , N
are the Lagrangian multipliers associated with the constraint in (71). We need to find w, w0, and λ by solving the
Lagrangian duality: maxλ≥0minw,w0,ξL(w,w0, ξ, λ, µ) [15, 16, 17, 18]. The KarushCKuhnCTucker conditions
that minw,w0,ξL(w,w0, ξ, λ, µ) has to satisfy are [15, 16, 17, 18]:
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∂L(w,w0, ξ, λ, µ)

∂w
= 0 → w =

N∑
i=1

λixi

(
|wTxi + w0|
wTxi + w0

− yi

(
1− 1

1 + gi

))
(73)

∂L(w,w0, ξ, λ, µ)

∂w0
= 0 →

N∑
i=1

λi

(
|wTxi + w0|
wTxi + w0

− yi

(
1− 1

1 + gi

))
= 0 (74)

∂L(w,w0, ξ, λ, µ)

∂ξi
= 0 → C − µi − λi = 0 , i = 1, 2, ..., N (75)

µiξi = 0 , i = 1, 2, ..., N (76)
µi ≥ 0 , λi ≥ 0 , i = 1, 2, ..., N (77)

λi

[
|wTxi + w0| − yi

(
1− 1

1 + gi

)
(wTxi + w0)− 1 + ξi

]
= 0, i = 1, 2, ..., N (co. slack. con.) (78)

By expanding (72), we have:

L(w,w0, ξ, λ, µ) =
1

2
wTw +

N∑
i=1

Cξi −
N∑
i=1

µiξi−

N∑
i=1

λi

[
|wTxi + w0| − yi

(
1− 1

1 + gi

)
(wTxi + w0)

]
+

N∑
i=1

λi −
N∑
i=1

λiξi

L(w,w0, ξ, λ, µ) =
1

2
wTw +

N∑
i=1

(C − µi − λi)ξi−

N∑
i=1

(wTxi + w0)λi

[
|wTxi + w0|
wTxi + w0

− yi

(
1− 1

1 + gi

)]
+

N∑
i=1

λi

By replacing C − µi − λi = 0 from (75), we get:

L(w,w0, λ) =
1

2
wTw −

N∑
i=1

(wTxi + w0)λi

[
|wTxi + w0|
wTxi + w0

− yi

(
1− 1

1 + gi

)]
+

N∑
i=1

λi

L(w,w0, λ) =
1

2
wTw − wT

N∑
i=1

λixi

[
|wTxi + w0|
wTxi + w0

− yi

(
1− 1

1 + gi

)]
+

w0

N∑
i=1

λi

[
|wTxi + w0|
wTxi + w0

− yi

(
1− 1

1 + gi

)]
+

N∑
i=1

λi

By replacing
∑N

i=1 λi

(
|wT xi+w0|
wT xi+w0

− yi

(
1− 1

1+gi

))
= 0 from (74), we have:

L(w,w0, λ) =
1

2
wTw − wT

N∑
i=1

λixi

[
|wTxi + w0|
wTxi + w0

− yi

(
1− 1

1 + gi

)]
+

N∑
i=1

λi

L(w,w0, λ) =

N∑
i=1

λi + wT

(
1

2
w −

N∑
i=1

λixi

[
|wTxi + w0|
wTxi + w0

− yi

(
1− 1

1 + gi

)])
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By substituting w from (73), we end up with:

L(w,w0, λ) =

N∑
i=1

λi +

[
N∑
i=1

λixi

(
|wTxi + w0|
wTxi + w0

− yi

(
1− 1

1 + gi

))]T
(
1

2

[
N∑
i=1

λixi

(
|wTxi + w0|
wTxi + w0

− yi

(
1− 1

1 + gi

))]
−

[
N∑
i=1

λixi

(
|wTxi + w0|
wTxi + w0

− yi

(
1− 1

1 + gi

))])

L(w,w0, λ) =

N∑
i=1

λi −
1

2

[
N∑
i=1

λixi

(
|wTxi + w0|
wTxi + w0

− yi

(
1− 1

1 + gi

))]T
[

N∑
i=1

λixi

(
|wTxi + w0|
wTxi + w0

− yi

(
1− 1

1 + gi

))]

Now we maximize the above Lagrangian function with respect to λ:



max
λ

N∑
i=1

λi −
1

2

[
N∑
i=1

λixi

(
|wTxi + w0|
wTxi + w0

− yi

(
1− 1

1 + gi

))]T
×H(w,w0, λ, x) (79)

subject to
N∑
i=1

λi

(
|wTxi + w0|
wTxi + w0

− yi

(
1− 1

1 + gi

))
= 0 (80)

0 ≤ λi ≤ C due to Equation (75) , i = 1, 2, ..., N (81)

where H(w,w0, λ, x) =
N∑
i=1

λixi

(
|wT xi+w0|
wT xi+w0

− yi

(
1− 1

1+gi

))
.

Once the optimal Lagrangian multipliers (λi) have been computed, by maximizing (79), w is obtained by
replacing them in (73) and w0 is computed as an average value obtained using complementary slackness conditions
in (78) for support vectors whose 0 < λi < C and considering ξi = 0. Labeling a new sample is no different here;
if f(x) = wTx+ w0 > 0, x is classified in ω1, and otherwise in ω2.

Maximizing the above Lagrangian function for weighted SVM with respect to λ is not as easy as (62) because
this time w and w0 are involved in the process of finding the Lagrangian multipliers (λi) in (79) while they are
unknown. The appearance of w and w0 in (79) originates from the dichotomy in the distance function in (65).
Therefore, an iterative optimization technique must be adopted:

• w and w0 are initialized for a non-weighted SVM,
• Loop: repeat until convergence

• λi are calculated using (79)
• w and w0 are calculated using (73) and (78)

The time complexity of the above algorithm is k times more than the time complexity of finding the non-weighted
SVM classifier hyperplane (O(N3) with a naive implementation of a quadratic programming solver [4]), where k
is the number of iterations in the loop. Since w and w0 are initialized using a non-weighted SVM, rather than
randomly, the convergence is expected to happen in a few iterations.

From a geometric point of view, the loop in the above algorithm updates the classifier hyperplane by redefining
the distance of training samples to the hyperplane in each iteration. This is equivalent to relocating the training
samples after each iteration with respect to the hyperplane classifier based on their weights and updating the
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Table 2. Training samples and their weights for SVM.

l1 l2 Class Weight
1 1 ω1 4
1 2 ω1 2

1.4 1.5 ω1 2
2 1 ω2 1
2 2 ω2 1

classifier hyperplane based on the relocated training samples. Therefore, the following algorithm offers an
alternative but geometrically equivalent approach to the above algorithm with the same time complexity. The
following algorithm can take advantage of existing software and libraries for non-weighted SVM to develop the
weighted SVM.

• w and w0 are initialized for a non-weighted SVM,
• Loop: repeat until convergence

• X̂t = X −
(
1− 1

1 + g

)
.

(
|Xwt−1 + w0t−1 |

||wt−1||

)
.y

wT
t−1

||wt−1||
(82)

• find wt and w0t for the non-weighted SVM classifier hyperplane based on X̂t

where the subscript t stands for the iterator inside the loop. At the first step in the loop, X is the input feature
matrix (each row representing one training sample), y is a column vector containing the responses, w is a column
vector representing the norm of the classifier hyperplane, w0 is the intercept of the classifier hyperplane, and g is a
column vector containing the training samples’ weights. The dot shows array (or element-wise) operations versus
matrix operations shown with a cross. In (82),

(
1− 1

1+g

)
.
(

|Xw+w0|
||w||

)
is the magnitude by which we have to move

the training samples, and
(
−y wT

||w||

)
is the movement direction. The movement magnitude is proportional to the

training sample’s weight. The movement is in the direction of the classifier’s vector (w) for training samples in
class ω2 (y=-1) and in the opposite direction of w for training samples in class ω1 (y=1). In other words, we have to
update the position of a training sample by moving it

(
1− 1

1+gi

)
.
(

|xiw+w0|
||w||

)
toward the classifier hyperplane if it

is correctly classified or the same amount away from the hyperplane if it is wrongly classified. Therefore, training
samples with large weights which were not normally selected as support vectors, now have a higher chance of
being selected as support vectors if the aforementioned shift could drop them inside the margin.

3.3.3. Experiment. Due to SVM’s stability to changes in a small part of the training data, the dataset in Table 1
cannot differentiate between the non-weighted and weighted SVM. In other words, the two classifiers are the same
for that dataset. Instead, we use the dataset in Table 2 to show the effect of embedding training samples’ weights
in SVM. Figure 10 shows the division of the feature space between the two classes with and without considering
the training samples’ weights in computing the linear classifier. In weighted SVM, the important samples in class
ω1 will move toward class ω2, through (82), and repel the border toward class ω2.

4. Nonlinear predictors

4.1. Decision trees

Ordinary binary decision trees (OBDTs) split the feature space into hyperrectangles with sides parallel to the
axes [19]. Nodes in an OBDT, shown in Figure 11, are binary questions whose answers are either yes or no and
the answer to these questions determines the path to a leaf which is equivalent to a response (nominal label in
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Figure 10. Division of the feature space between the two classes, circles and squares, without (solid line) and with (dashed
line) considering the training samples’ weights (darkness of samples) in SVM classifier (C=1).

classification or numerical estimate in regression). Questions at nodes are of the form is xk ≤ α ? where xk is
the k-th feature and α is a threshold. To predict the response of an irresponsive sample, one needs to answer the
question at each node and traverse to the left or right node based on the answer until a leaf (response) is reached.

Figure 11. Ordinary binary decision trees; Q stands for question and R stands for response.

The training process involves designing the questions, structuring the tree, and associating each leaf with a
response. Each node splits the training dataset into two disjoint groups, each corresponding to one of the answers:
yes or no. Many questions can be asked at each node based on what feature (xk) to choose and what threshold
(α) to use. Different thresholds that can be considered for a specific feature at a node are determined based on
the training samples at that node. For example, if there are N samples at a node, there could be N -1 different
thresholds, each taken halfway between consecutive distinct values of xk among the training samples at that node.
Therefore, if there are l features and N training samples at a node, (N − 1)× l different questions can be asked.
The best question to ask at a node is the one which maximizes the impurity decrease (∆I). The impurity decrease
is calculated through (83) [19]:

∆I = I − NY

N
IY − NN

N
IN (83)

where I is the impurity of the ancestor node, N is the number of training samples in the ancestor node, NY

is the number of training samples in the descendant node corresponding with the answer yes to the question,
NN is the number of training samples in the descendant node corresponding with the answer no to the question,
and IY and IN are the impurities of the descendent nodes. Entropy of training samples at a node, in (84), is a
common definition of node impurity in classification tasks (Iclassification) [19], where N is the number of training
samples at this node, M is the number of classes, and N(ωi) is the number of training samples from class ωi at this
node. Therefore, in classification, impurity at a node is proportional to the heterogeneity of classes among training
samples at that node. The largest impurity (log2 M ) happens when training samples are equally distributed among
classes and the least impurity (0) happens when all training samples belong to the same class.
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The impurity of a node in regression tasks (Iregression) is commonly calculated as the variance, in (85), where
yi is the response of the i-th training sample at this node and ȳ is the average of responses at this node.

Iclassification = −
M∑
i=1

N(ωi)

N
log2

N(ωi)

N
(84)

Iregression =

∑N
i=1(yi − ȳ)2

N
(85)

A node is considered a leaf if the maximum impurity decrease (∆Imax) for that node is less than a user-defined
threshold or it contains only a few training samples, although other alternative conditions have been used in the
literature [19, 20]. The majority rule in case of classification or the average rule in case of regression is commonly
used to determine the response at that leaf [19].

In the weighted version of OBDT, the impurity decrease (∆I) and impurity (I) are calculated through the
following equations:

∆I = I −
∑

gY∑
g
IY −

∑
gN∑
g
IN (86)

Iclassification = −
M∑
i=1

g(ωi)∑
g

log2
g(ωi)∑

g
(87)

Iregression =

∑N
i=1 gi(yi − ȳ)2∑N

i=1 gi
(88)

where
∑

gY and
∑

gN are the sum of the weight of training samples corresponding to the answers yes and no,
respectively,

∑
g is the sum of the weight of all training samples at the ancestor node, g(ωi) is the sum of the

weight of training samples belonging to class ωi, and gi is the i-th training sample’s weight.
A node is considered a leaf if the maximum impurity decrease (∆Imax) for that node is less than a user-defined

threshold or the total weight of training samples inside it, is too small. In case of classification, the class with the
largest total weight (argmaxωj

∑
i∈ωj

gi) is associated with that leaf. In case of regression, the weighted average
of the responses (

∑
i∈leaf giyi/

∑
i∈leaf gi) is associated with that leaf.

In the weighted decision tree, samples with larger weights play a more important role in deciding what question
to ask at a node (by playing a more significant role in calculating impurity and impurity decrease), when to stop
splitting the nodes, and what response to associate with a leaf.

4.1.1. Experiment. Here we use the dataset in Table 1 to show the effect of embedding training samples’ weights
in decision tree. Figure 12 shows the division of the feature space between the two classes with and without
considering the training samples’ weights in developing the decision tree. The important samples from class ω1

change the way the weighted decision tree divides the feature space between the two classes in comparison with
the non-weighted decision tree.

4.2. Multilayer perceptron (MLP)

In the backpropagation algorithm [21, 22, 23], the architecture of the network is fixed and its synaptic weights are
computed so as to minimize a cost function defined as:

J(w) =

N∑
i=1

ϵ(i) (89)

where N is the number of training samples and ϵ(i) is a function of the network’s output (ŷ(i)) and the desired
output (y(i)) for the i-th training sample. A common choice for ϵ(i) is the sum of squared errors in the output nodes
[24, 25, 22, 23]:
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Figure 12. Division of the feature space between the two classes, circles and squares, without (solid line) and with (dashed
line) considering the training samples’ weights (darkness of samples) in decision tree classifier (minimum impurity decrease
for splitting a node is considered 0.1).

ϵ(i) =
1

2

kL∑
j=1

(
ŷLj (i)− yLj (i)

)2
, i = 1, 2, ..., N (90)

where L refers to the output layer, kL represents the number of nodes in the output layer, ŷLj (i) represents the
output of the j-th node in the output layer, and yLj (i) represents its corresponding desired value. We also have the
following equation for calculating the output of the j-th node at the r-th layer for the i-th training sample (ŷrj (i)):

ŷrj (i) = fr
j

(
νrj (i)

)
(91)

νrj (i) =

kr−1∑
k=1

wr
jkŷ

r−1
k (i) (92)

where fr
j is the activation function at the j-th node of the r-th layer, kr−1 is the number of nodes at the (r-1)-th

layer, ŷr−1
k (i) is the output of the k-th node in the (r-1)-th layer, and wr

jk is the synaptic weight from the k-th node
at the (r-1)-th layer to the j-th node at the r-th layer.

We can iteratively find the synaptic weight vectors that minimize the perceptron cost function using the gradient
descent scheme [21, 22, 23]. In each iteration, the weight vector (including the threshold) of the j-th node in the
r-th layer (wr

j ) is modified through (93):

wr
j (new) = wr

j (old) + ∆wr
j (93)

The modification term in (93) (∆wr
j ) is computed through (94) according to the gradient descent scheme:

∆wr
j = −α

∂J(w)

∂wr
j

(94)

By substituting the cost function from (89) in (94) and applying the chain rule in differentiation, we obtain:

∆wr
j = −α

∂
∑N

i=1 ϵ(i)

∂wr
j

= −α

N∑
i=1

∂ϵ(i)

∂wr
j

= −α

N∑
i=1

∂ϵ(i)

∂νrj (i)

∂νrj (i)

∂wr
j

(95)

By defining δrj (i) =
∂ϵ(i)
∂νr

j (i)
in the above equation, we obtain:

∆wr
j = −α

N∑
i=1

δrj (i)
∂νrj (i)

∂wr
j

(96)
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We can calculate ∂νr
j (i)

∂wr
j

using (92) as follows:

∂νrj (i)

∂wr
j

=


∂νr

j (i)

∂wr
j1

.

.
∂νr

j (i)

∂wr
jkr−1

 = ŷr−1(i) (97)

where kr−1 is the number of nodes in the (r-1)-th layer and ŷr−1(i) is the output vector of the (r-1)-th layer for
the i-th training sample. By substituting (97) in (96) we obtain:

∆wr
j = −α

N∑
i=1

δrj (i)ŷ
r−1(i) (98)

The above equation obtains the correction term for batch mode [26]. In online or pattern mode, instead of
summing up the corrections over all training samples and updating the weights at once, the weights are updated
once for each individual training sample before moving on to the next [26]. In stochastic mode, the gradient at each
iteration is calculated based on a random subset of training samples [27].

Now we have to compute δrj (i) based on the definition of the cost function given in (90). First we calculate this
term for the output layer (r = L):

δLj (i) =
∂ϵ(i)

∂νLj (i)
(99)

By substituting (90) and (91) in the above equation we get:

δLj (i) =
∂

∂νLj (i)

[
1

2

kL∑
m=1

(
fL
m(νLm(i))− yLm(i)

)2]
(100)

By keeping only the terms that are dependent on νLj (i) we get:

δLj (i) =
∂

∂νLj (i)

[
1

2

(
fL
j (ν

L
j (i))− yLj (i)

)2]
=
(
ŷLj (i)− yLj (i)

) ∂fL
j (ν

L
j (i))

∂νLj (i)
(101)

where ŷLj (i) is the output of the j-th node in the output layer for the i-th training sample, yLj (i) is its
corresponding desired value, and fL

j is the activation function of the j-th node in the output layer which takes
νLj (i) as input.

Now we compute δrj (i) for hidden layers (r < L):

δrj (i) =
∂ϵ(i)

∂νrj (i)
=

kr+1∑
k=1

∂ϵ(i)

∂νr+1
k (i)

∂νr+1
k (i)

∂νrj (i)
=

kr+1∑
k=1

δr+1
k (i)

∂νr+1
k (i)

∂νrj (i)
(102)

We use (92) to calculate:

∂νr+1
k (i)

∂νrj (i)
=

∂

∂νrj (i)

[
kr∑

m=1

wr+1
km ŷrm(i)

]
(103)

Replacing ŷrm(i) with fr
m (νrm(i)) based on (91), we get:

∂νr+1
k (i)

∂νrj (i)
=

∂

∂νrj (i)

[
kr∑

m=1

wr+1
km fr

m (νrm(i))

]
(104)

By keeping only the terms that are dependent on νrj (i) we get:

Stat., Optim. Inf. Comput. Vol. 6, December 2018



M. HASHEMI AND H.A. KARIMI 519

∂νr+1
k (i)

∂νrj (i)
=

∂

∂νrj (i)

[
wr+1

kj fr
j

(
νrj (i)

)]
= wr+1

kj

∂fr
j

(
νrj (i)

)
∂νrj (i)

(105)

Replacing the above equation in (102), we obtain:

δrj (i) =

kr+1∑
k=1

δr+1
k (i)wr+1

kj

∂fr
j

(
νrj (i)

)
∂νrj (i)

(106)

where kr+1 is the number of nodes in the (r+1)-th layer, wr+1
kj is the synaptic weight from the j-th node in the

r-th layer to the k-th node in the (r+1)-th layer, and fr
j is the activation function of the j-th node in the r-th layer

which takes νrj (i) as input.
To develop the weighted version of MLP, we include each training sample’s weight (gi) in the cost function to

adjust the MLP cost based on the importance of training samples. The MLP classifier will no longer be equally fair
to all training samples. We modify the MLP cost function as in (107) to punish the classifier more for misclassifying
training samples with larger weights and less for training samples with smaller weights.

J(w) =

N∑
i=1

giϵ(i) (107)

We can compute the modification term (∆wr
j ) through gradient descent scheme as follows:

∆wr
j = −α

∂J(w)

∂wr
j

= −α
∂
∑N

i=1 giϵ(i)

∂wr
j

= −α

N∑
i=1

gi
∂ϵ(i)

∂wr
j

(108)

By applying the chain rule in differentiation:

∆wr
j = −α

N∑
i=1

gi
∂ϵ(i)

∂νrj (i)

∂νrj (i)

∂wr
j

(109)

By replacing ∂ϵ(i)
∂νr

j (i)
with δrj (i), we obtain:

∆wr
j = −α

N∑
i=1

giδ
r
j (i)

∂νrj (i)

∂wr
j

(110)

By applying (97), we obtain:

∆wr
j = −α

N∑
i=1

giδ
r
j (i)ŷ

r−1(i) (111)

Therefore, the only difference between the above equation for computing the correction term and (98) is the
presence of the training samples’ weights (gi) in the summand. If we define α̃(i) = αgi, we obtain:

∆wr
j = −

N∑
i=1

α̃(i)δrj (i)ŷ
r−1(i) (112)

The above equation shows that the weighted version of the backpropagation algorithm for MLP is obtained by
defining the training rate as α̃(i) = αgi, which means a different training rate for each training sample based on
its weight; remembering that the cost must also be calculated through (107) which includes different weights for
training samples. Adjusting the training rate based on the weight of training samples and including the weights in
the cost function bias the trained MLP in favor of training samples with larger weights.
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4.2.1. Experiment. Here we use the dataset in Table 1 to show the effect of embedding training samples’ weights in
the cost function (107) and backpropagation algorithm (111). The MLP is designed with one hidden layer including
two nodes. Including more hidden nodes will result in all training samples being correctly classified in both non-
weighted and weighted MLP, a zero classification cost for both non-weighted (89) and weighted (107) MLP, and
consequently similar classifiers. With two hidden nodes some training samples cannot be correctly classified, so
we can see the difference between non-weighted and weighted MLP classifiers. Figure 13 shows the division of
the feature space between the two classes with and without considering the training samples’ weights in the cost
function and the backpropagation algorithm. Despite both weighted and non-weighted MLP misclassify the same
four training samples, the weighted MLP classifier provides a better fit (a lower error) for the two more important
samples from class ω1.

Figure 13. Division of the feature space between the two classes, circles and squares, without (solid line) and with (dashed
line) considering the training samples’ weights (darkness of samples) in MLP classifier (logistic activation function and
adaptive training rate with 2000 iterations).

4.3. Nonlinear SVM

In nonlinear SVM [28], training samples are nonlinearly mapped from their original l-dimensional space (where
they cannot be linearly separated) into a k-dimensional space (k >> l) where they are more likely to be linearly
separable [29, 4]. However, there is no guarantee that training samples will be linearly separable in the new k-
dimensional space. Therefore, linear SVM with slack variables is used to find the hyperplane separating the two
classes in the k-dimensional space. Although the classifier is a hyperplane in the k-dimensional space, it is a
hypersurface in the l-dimensional space due to the nonlinear mapping, hence the name nonlinear SVM. The next
step is to find the dimensionality of the new space (k) and the mapping function. We use the following equations,
obtained in Section 3.3.2, to find the SVM classifier hyperplane f(x̃) = wT x̃+ w0 in the k-dimensional space,
where x̃i is the i-th feature vector (xi) mapped into the k-dimensional space.



max
λ

(
N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyj x̃
T
i x̃j

)
(113)

subject to
N∑
i=1

λiyi = 0 (114)

0 ≤ λi ≤ C due to Equation (58) , i = 1, 2, ..., N (115)

 w =

N∑
i=1

λiyix̃i (116)

λi[yi(w
T x̃i + w0)− 1 + ξi] = 0 , i = 1, 2, ..., N (complementary slackness conditions) (117)

By substituting w from (116) in (117) as well as in the hyperplane f(x̃) = wT x̃+ w0 we end up with:
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f(x̃) =

(
N∑
i=1

λiyix̃i

)T

x̃+ w0 =

N∑
i=1

λiyi
(
x̃T
i x̃
)
+ w0 (118)

λi

[
yi

(
N∑
j=1

λjyj(x̃
T
j x̃i) + w0

)
− 1 + ξi

]
= 0, i = 1, 2, ..., N (complementary slackness cond.) (119)

An elegant property of the SVM helps to implicitly map the training samples into the k-dimensional space
without knowing the mapping function and k. Notice that training samples enter into (113), (118), and (119)
in pairs, in the form of inner products (x̃T

i x̃j) in the k-dimensional space. Therefore, for finding w and w0 of
the hyperplane in the k-dimensional space and even for classifying a new sample using (118), only the inner
product of pairs of feature vectors in the k-dimensional space is required. Knowing the mapping function and
the dimensionality of the new space (k) is not necessary. We can use the kernel trick to find the inner product
of two feature vectors in the k-dimensional space without actually mapping them from the l-dimensional space
into the k-dimensional space. According to Mercer’s theorem, for any kernel (K), there exists a space in which
K(xi, xj) = x̃T

i x̃j [30, 31, 32]. Equations (120), (121), and (122) are examples of kernel functions (31) called
polynomial, radial basis function, and hyperbolic tangent, respectively, where σ is the kernel’s bandwidth.

K(xi, xj) = (xT
i xj + 1)q , q > 0 (120)

K(xi, xj) = exp

(
−||xi − xj ||2

σ2

)
(121)

K(xi, xj) = tanh(βxT
i xj + γ) , for appropriate values of β and γ, e.g. β = 2 and γ = 1 (122)

Therefore, to convert the linear SVM to nonlinear SVM we just need to replace the inner product of the mapped
feature vectors (x̃T

i x̃j) by a kernel function of the original feature vectors K(xi, xj):



max
λ

(
N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyjK(xi, xj)

)
(123)

subject to
N∑
i=1

λiyi = 0 (124)

0 ≤ λi ≤ C due to Equation (58) , i = 1, 2, ..., N (125)


f(x) =

N∑
i=1

λiyiK(xi, x) + w0 (126)

λi

[
yi

(
N∑
j=1

λjyjK(xj , x) + w0

)
− 1 + ξi

]
= 0 , i = 1, 2, ..., N (complem. slackness cond.) (127)

Although f(x) is linear in the k-dimensional space, it is nonlinear in the l-dimensional space due to the
nonlinearity of the kernel function.

Here we explain why we cannot develop the weighted version of nonlinear SVM. We use the following equations,
obtained in Section 3.3.2, to find the weighted SVM classifier hyperplane f(x̃) = wT x̃+ w0 in the k-dimensional
space, where x̃i is the i-th feature vector (xi) mapped into the k-dimensional space.
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max
λ

N∑
i=1

λi −
1

2

[
N∑
i=1

λix̃i

(
|wT x̃i + w0|
wT x̃i + w0

− yi

(
1− 1

1 + gi

))]T
× T (w,w0, λ, x) (128)

subject to
N∑
i=1

λi

(
|wT x̃i + w0|
wT x̃i + w0

− yi

(
1− 1

1 + gi

))
= 0 (129)

0 ≤ λi ≤ C due to Equation (75) , i = 1, 2, ..., N (130)

where T (w,w0, λ, x) =
N∑
i=1

λix̃i

(
|wT x̃i+w0|
wT x̃i+w0

− yi

(
1− 1

1+gi

))
.


w =

N∑
i=1

λix̃i

(
|wT x̃i + w0|
wT x̃i + w0

− yi

(
1− 1

1 + gi

))
(131)

λi

[
|wT x̃i + w0| − yi

(
1− 1

1 + gi

)
(wT x̃i + w0)− 1 + ξi

]
= 0, i = 1, 2, ..., N (co. slack. con.)(132)

Training samples do not enter into (128), (131), and (132) in the form of their inner products (x̃T
i x̃j) in the

k-dimensional space, thus the kernel trick cannot be used here.
A plausible approach for developing the weighted nonlinear SVM is to develop the weighted linear SVM in the

k-dimensional space using the iterative algorithm at the end of Section 3.3.2:

• w and w0 are initialized for a non-weighted SVM in the k-dimensional space,
• Loop: repeat until convergence

• ˆ̃Xt = X̃ −
(
1− 1

1 + g

)
.

(
|X̃wt−1 + w0t−1 |

||wt−1||

)
.y

wT
t−1

||wt−1||
(133)

• find wt and w0t for the non-weighted SVM classifier hyperplane based on ˆ̃Xt

The above algorithm attempts to develop the non-weighted linear SVM classifier, f(x̃), in the k-dimensional
space, iteratively relocate the mapped feature vectors (ˆ̃xi) with respect to this hyperplane based on their weights
(133), and find the new hyperplane f(ˆ̃xi) until convergence. However, the Mercer’s theorem provides neither the
dimensionality of the new space (k) nor the mapping function [33]. Therefore, it is not possible to map the feature
vectors into the k-dimensional space and we do not know X̃ in (133).

To bypass the lack of knowledge about X̃ in the k-dimensional space, one might consider updating the position
of feature vectors in the original l-dimensional space with respect to the nonlinear classifier hypersurface based on
their weights iteratively until convergence. However, the hypersurface in the l-dimensional space is not known. It
is worth noting that even if the hypersurface was known, moving the training samples perpendicularly toward/away
from a hypersurface is a challenging mathematical problem.

5. Experiment with breast cancer data

The University of Wisconsin hospital breast cancer dataset was obtained from UCI machine learning repository
[34]. This dataset has 683 samples, after samples with missing data are removed. This is a classification problem
with 9 input features and 2 classes. The features include: clump thickness, uniformity of cell size, uniformity of
cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, mitoses.
All input features are numerical values between 1 and 10. The two classes, that need to be predicted, are benign
(444 samples) and malignant (239 samples). For weighted machine learning, we need a weight associated with
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each training sample, reflecting its reliability or accuracy. Due to the lack of such weights in this dataset (and to
our knowledge in other machine learning datasets), we apply the following procedure to produce artificial weights
for training samples. A function runs through each training sample, switches its output class from what it is to
the other one with a random probability of 0 < k < 1, and assigns a weight of 1− k to that training sample. This
way, a training sample’s weight shows how reliable that training sample is and there are no changes imposed on
test samples. Weighted machine learning techniques take advantage of these weights to take the training samples’
reliability into account but non-weighted machine learning techniques ignore these weights. Leave-one-out or one-
fold cross validation is used to estimate the accuracy of weighted and non-weighted machine learning techniques,
reported in Table 3, where hyperparameters are optimized using cross-validation.

Table 3. Accuracy of different classification techniques for breast cancer prediction.

Technique Overall accuracy (%) Settings
Non-weighted version Weighted version

Bayesian 46.71 76.72
Non-parametric Parzen windows with
Gaussian kernel (10) where σ=1
Priors are based on class frequencies

LS 45.39 92.39
SVM 51.24 64.86 Smoothing parameter (C)=18

Decision tree 48.17 89.90 A node is considered a leaf if the maximum impurity
decrease (∆Imax) for that node is less than 0.04

Perceptron 51.10 93.12

Logistic activation function
Cost function: Sum of squared errors
Maximum number of iterations: 1000
Not updating the weights after those iterations
resulting in an increase in the total cost
Multiply all learning rates by 1.1 or 0.8 after
each step based on whether the total cost decreases
or increases
Adaptive learning rate: multiply the learning
rate for a parameter by 1.2 if the partial
derivative of the loss, with respect to that
parameter, remains the same sign in successive
steps and multiply it by 0.7 otherwise [35]

MLP 55.64 89.02
In addition to the settings for the perceptron:
Maximum number of iterations: 2000
Number of hidden nodes for MLP: 2

The higher accuracy of weighted machine learning techniques (see Table 3) comes as no surprise since they take
advantage of weights while non-weighted machine learning techniques do not. Nevertheless, it proves the proposed
weighted machine learning techniques’ efficiency in appropriately taking the training samples’ weights into
account, whenever such weights are available, in order to improve the prediction accuracy. Clearly, as mentioned
earlier, the weighted SVM classifier shows the least difference with its non-weighted counterpart, underlying its
relative reluctance to react to weights in comparison with other weighted predictors. The weighted least squares
and weighted perceptron achieve the highest accuracy, shedding light on the linear separability of the two classes
in this specific application. On the other hand, the weighted Bayesian classifier makes more dramatic changes in
the border, resulting in a lower accuracy than other weighted non-linear classifiers (decision tree and MLP), for the
same reason, i.e. the linear separability of the two classes in this specific application.

Stat., Optim. Inf. Comput. Vol. 6, December 2018



524 WEIGHTED MACHINE LEARNING

6. Conclusions

The weighted machine learning techniques developed in this paper provide developers with the opportunity to
give different weights to training samples. These weights are used to adjust the classifier/regressor in favor of
more importance samples, and thereby giving a higher significance to more important samples. It is worth noting
that the weighted linear and nonlinear classifiers change the division of the feature space only around the border
(the most uncertain area) and areas far from the border are less likely to change their label. The weighted SVM
classifier showed the least difference with its non-weighted counterpart when the training samples’ weights are not
much variant. The reason for this is that SVM classifier is designed only based on support vectors not all training
samples. If the weights of training samples are not much different, their relocation based on their weights might not
be large enough to change the selection of support vectors. In other words, the weighted SVM classifier would be
different than its non-weighted version only if relocating training samples based on their weights would result in a
rearrangement of training samples significant enough to change the selection of support vectors. In other words, the
weighted SVM has the highest stability with respect to weight changes in a small subset of training samples. The
weighted MLP also takes the training samples’ weights into account through smallest adjustments in its nonlinear
border. However, the MLP’s behavior is highly dependent on the network’s size. In other words, a larger number
of hidden nodes will result in a more significant difference between the weighted and non-weighted MLP. On
the other hand, the weighted decision tree and weighted Bayesian classifiers showed the most dramatic changes
in how the feature space is divided between the two classes in comparison with their non-weighted counterparts.
The reason is that these two models are highly local, especially the non-parametric Bayesian classifier. Therefore,
even small changes in the training samples’ weights would result in a different classification of the feature space.
The weighted LS and perceptron showed slight and similar changes in how they divide the feature space between
the two classes in comparison with their non-weighted counterparts. The similar behavior is because both models
minimize the sum of squared errors, although in different ways. The difference between weighted and non-weighted
versions being slight in these two cases originates from their linear nature and consequently their rather restricted
flexibility in modifying their shape. How the weighted machine learning techniques developed in this work will
contribute in improving the prediction accuracy in different real-world applications is yet to be seen. Our next step,
toward underscoring the significance of weighted machine learning models, is to apply them to spatial-temporal or
environmental data, where the training samples’ weights reflect the spatial-temporal autocorrelation between each
training sample and the irresponsive (or test) sample.
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