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Abstract—Automatically generated public medical knowledge
bases (KBs), such as SemMedDB, are commonly used in various
medical informatic tasks because of their comprehensive cover-
age. However, due to the imperfectness of the automatic algo-
rithms for generating those KBs, they often contain noisy state-
ments about medical concepts and relationships. For example, the
extraction precision of SemRep, the tool used for constructing
SemMedDB, is reported be 74.5%. Previous work focused on
improving the algorithms for more accurate extraction. In this
paper, however, we propose a supervised learning method to
automatically verify the medical relationships. Through a study
conducted on SemMedDB, we develop a method for generating
a large set of training data with a relative small human labor
annotation cost. We further propose nine features to characterize
each medical relationship instance. After testing on several
classifiers, our proposed methods can achieve the best F1 score
and Accuracy at 80%, which demonstrates the effectiveness of
our approach. In summary, our study demonstrates that noisy
relationships in large scale medical KBs can be identified and
removed without much human involvement.

Index Terms—knowledge graph verification, classification

I. INTRODUCTION

With the abilities of clearly stating the meaning of concepts
and the relationships among the concepts, knowledge bases
(KBs) have been applied in many medical related scenarios,
including providing reference knowledge to refine queries in a
medical retrieval system [1], helping doctors to make clinical
decisions [2], and assisting medical chat bots with medical
evidences [3]. A few examples of such medical knowledge
bases are presented in Table I, which are usually in the form
of [head concept, relationship, tail concept].

There is a trade-off between the quality and the coverage
of medical KBs. For example, the Unified Medical Language
Systems (UMLS) [4] is a manually generated medical KB
with such high quality that it can often be used as a gold
standard for many medical knowledge. However, its coverage
is relative limited. For example, according to our exploration,
after removing obsolete data 1, there are 13.4 million entries
in UMLS. However, if we focus on treatments, UMLS only
contains treatment information for 1,028 diseases, which is far
from sufficient.

1https://www.ncbi.nlm.nih.gov/books/NBK9684/

In contrast, automatically generated public medical KBs
such as Semantic MEDLINE Database (SemMedDB) [5], is
usually not as accurate due to the limitations of the extraction
algorithms used. For example, the extraction precision of Sem-
Rep, the tool used to generate SemMedDB, is only 74.5% [6],
and [7] identified many types of extraction errors generated
by SemRep. However, the coverage of SemMedDB is much
more comprehensive. It contains 18.5 million entries after
removing non-novelty data [8], which is huge comparing to
UMLS. Taking treatment as an example, SemMedDB contains
treatment information for 31,278 diseases.

However, because it contains many noisy information, di-
rectly applying SemMedDB sometimes may lead to sub-
optimal performance. For example, Zhang et al. [1] found
that SemMedDB could provide inaccurate medical knowledge
than unstructured Wikipedia in their diagnosis prediction task.
Zhang et al. [9] had to manually clean the comparative and
treatment relationships from SemMedDB before using them.

Among all the noisy information could exist in SemMedDB,
we are particularly interested in identifying potentially
wrong relationships. Table I shows two such examples from
SemMedDB and corresponding data from UMLS. Between
given concept pairs, SemMedDB provides several relation-
ships. It also presents the number of sentences where the rela-
tionship is extracted from. We call such number the support for
that relationship, and it is presented as the right most column
in Table I. The first example shows three relationships between
Anti-Inflammatory Agents and Aspirin, and the second example
shows five relationships between Reserpine and Hypertensive
disease. In the first example, Aspirin actually is an Anti-
Inflammatory Agent, so all three relationships in Table I are
wrong. In the second example, according to UMLS and our
expert annotation, treats, affects and disrupts are correct,
causes is wrong, while associated with is not sure. In fact,
there is a direct contradiction between treats and causes.

Consequently, to improve the utility of automatically gen-
erated medical KBs, in this paper, we target on verifying
the relationships in medial KBs. We select SemMedDB for
this study because it is probably the most commonly used
automatically generated public medical DB, and yet it contains
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TABLE I
EXAMPLES FROM SEMMEDDB AND UMLS

Head Concept SemMedDB Relationship Tail Concept Support
Anti-Inflammatory Agents, Non-Steroidal COEXISTS WITH; Aspirin 2
Anti-Inflammatory Agents, Non-Steroidal INTERACTS WITH Aspirin 4
Anti-Inflammatory Agents, Non-Steroidal ISA; Aspirin 574
Reserpine DISRUPTS Hypertensive disease 1
Reserpine CAUSES Hypertensive disease 1
Reserpine ASSOCIATED WITH Hypertensive disease 1
Reserpine AFFECTS Hypertensive disease 4
Reserpine TREATS Hypertensive disease 121
Head Concept UMLS Relationship Tail Concept
Anti-Inflammatory Agents, Non-Steroidal inverse isa Aspirin
Reserpine may treat Hypertensive disease

lots of noisy relationships due to its huge size [12]–[14], [22]–
[24].

In order to obtain high accuracy in identifying and resolving
noisy relationships in SemMedDB, we take a supervised
learning approach. There are therefore two main challenges
to be resolved in this study. The first challenge is to construct
a training dataset with adequate labeled data. Because it is
too expensive to manually annotate hundreds of thousands
medical relationships, our method, therefore, uses the relation-
ships in UMLS as the ground truth for labeling SemMedDB
relationships, which enabled us to cheaply and quickly build
up a big training set. Due to their size differences, UMLS
can only help to label a relatively small part of SemMedDB
relationships. Furthermore, these two KBs use different terms
for expressing the relationships, so we recruited two experts
with medical knowledge to annotate the relationship mappings
between two KBs with the help of the relationship definition.
The second challenge is how to characterize each type of
relationships, that is how to identify significant features to
represent the relationships. Later in the methodology section,
we will present the details on addressing this challenge.

The contributions of this study are:

(1) The problem explored in this study is innovative. Past
studies [10], [11], [15] concentrated on improving knowledge
extraction algorithms or combine several KBs to improve the
utility. Our focus is on automatically verifying the extracted
relationships to improve the KB’s utility.

(2) We developed a method to construct a large size of
training data for medical relationships without too much
human annotation effort, and identified a list of relationship
mapping from UMLS to SemMedDB.

(3) We proposed and developed an effective automatic
relationship verification model. Through combining both the
conceptual and semantic evidences, the model can obtain 80%
performance on both Accuracy and F1 measure.

In the reminder of the paper, we will first show the related
works in Section 2, then methodologies is demonstrated in
Section 3. Experiment and results are described in Section 4.
We have more discussion in Section 5, and finally give our
conclusion and future work in Section 6.

II. RELATED WORKS

Knowledge representation, extraction, application has al-
ways been the important topics in medical informatics. In
this section, we show the related works on medical KB’s
construction, usage and evaluation.

A. Medical Knowledge Base Construction

Broadly speaking, a knowledge base can be constructed
in two ways: manually generated or automatically extracted.
UMLS is a commonly used manual generated KB, and
some other examples include dbMAE, a KB of autosomal
monoallelic expression [25], and Freebase, a general KB
collaboratively composed by it community members [27].

KBs can also be constructed using information extraction
techniques. MetaMap [21] is an example algorithm for medical
concept extraction. Large quantity of text can be processed
for constructing comprehensive KBs with much cheaper ef-
forts. Using SemRep, another program for extracting subject-
relation-object triples from biomedical free text, SemMedDB
is constructed as the largest openly available medical KB, and
its coverage and quality has kept improving since 2003 [18].
dRiskKB is a KB constructed from MedLine using a semi-
supervised iterative pattern learning approach [16]. Wang et al.
[20] reported a KB extracted by a manifold medical relation
extraction model.

B. Usage of Medical Knowledge Bases

Due to imperfection of automatic algorithms, a large auto-
matically generated KB could contain various noisy informa-
tion. There is a need for verifying the relationships in the KB.
To obtain precise knowledge from automatically generated
KB, manually annotation before direct usage could be applied.
For example, Zhang et al. [9] manually cleaned extracted
comparative and treatment relationships from SemMedDB
before applied them in their clinical decision support tasks.
However, manual work is too expansive, or even impossible
when faced to a large data.

Another way to obtain more precise knowledge is to com-
bine several KBs. For example, Wei et al. [11] derived infor-
mation from RxNorm, Side Effect Resource 2, MedlinePlus,
and Wikipedia to get accurate medication information. Bejan
et al. [10] used the medication information from MEDI and



evidence from SemRep to supplement the features needed for
identifying treatment relationships. Both studies showed that
combining evidence from multiple KBs is more reliable.

However, different KBs may contain different domain
knowledge that cannot be easily combined. For example, Bejan
et al. [10] found that SemMedDB and MEDI only share
9% of their relationships. Also, different KBs use different
kinds of relationships. For instance, SemMedDB, MEDI, and
UMLS are using different relationship systems to connect their
concepts [4], [5], [11]. Consequently, manually efforts had to
be applied in order to map relations among different KBs.
For example, Vizenor et al. [17] manually examined concepts
and their relationships in order to map UMLS relationships to
relationships in Semantic Networks.

C. Medical Knowledge Bases Relationship Verification

Many works try to evaluate a KB by its entropy [26], [28],
[29], which is based on the assumption that all relationships in
KB are correct, and a more dense KB means more information.

However, Kilicoglu et al. [15] tried to evaluate the factuality
of the individual relationships in SemMedDB. They manually
annotated 500 PubMed abstracts as the training data, and pro-
posed a compositional approach to extract lexical and syntactic
features from the sentences where the individual relationship is
extracted from so that the quality of the individual relationship
can be evaluated. However, this work does not fit the scenario
where the original text is not available (i.e., only have a KB
graph). Therefore, we propose in this paper a method that
only utilities the KB graph structure to automatically verify
the relationships.

III. METHODOLOGIES

A. Collecting Labeled Training Data

Building a robust supervised model requires a large amount
of training data. Obtaining such amount of training data via
manual annotation imposes two challenges. Firstly, it is just
too expensive and too slow to do it manually. Secondly, it
requires the annotators to have adequate domain knowledge,
which in our case medical expertise. Consequently, we seeked
to obtain high quality medical knowledge for generating
training data via other means.

Our approach is to take the advantage of UMLS, which is
a manually generated KB, to generate labeled training data.
There are 218,452 medical concept pairs appearing in both
UMLS and SemMedDB. [anti-inflammatory agents, aspirin]
in Table I is such a concept pair appearing in both KBs. We call
those shared concept pairs the overlapping data between the
two KBs. Because each overlapping medical concept pair usu-
ally has different sets of relationships identified in SemMedDB
and UMLS, respectively, we can obtain a set of UMLS-
SemMedDB relationship pairs based on those two sets of
relationships. Again, using the concept pair [anti-inflammatory
agents, aspirin] in Table I as an example, they can generate
relationship pairs such as [inverse isa, COEXISTS WITH],
[inverse isa, ISA], and [inverse isa, INTERACTS WITH].

Because UMLS was constructed manually, when there is a
conflict in a relationship pair, we would usually think that it is
the relationship from SemMedDb to be wrong. This is because
SemMedDB was generated automatically, whose relationships
can have higher chance to be wrong. For example, UMLS
states that “may treat” relationship exists between [anti-
inflammatory agents, aspirin], whereas SemMedDB thinks
that the relationship ought to be “ISA”, due to the conflict
meaning between the two relationships, we would think that
the relationship in SemMedDB may be wrong. If every rela-
tionship pair is checked for such conflict, we would be able to
use UMLS data to clearly label the overlap part of SemMedDB
data as “correct” relationships or “wrong” relationships. This
not only helps to clean SemMedDb data, it also creates the
training data for automatically predicting other SemMedDB
relationships to be correct or wrong.

However, as stated in Section II-B, it is not straightforward
to automatically map relationships in UMLS to those in
SemMedDB. See Table I for examples of lacking clarity in the
mapping. Consequently, the procedure for collecting labeled
training data consists of two steps. The first step is to establish
reliable labels on the relationship pairs through expert manual
annotation. The second step is then to automatically assign
the labels to the relationships in SemMedDB based on the
annotated relationship pairs. In the remaining of this section,
we will present these two steps in details.

During the first step, based on the overlap concept pairs
between UMLS and SemMedDB, we performed automatic
identification of relationship pairs. Then, we hired two ex-
perts2 with medical background to manually identify correct
relationship pairs from UMLS to SemMedDB. In order to
maintain the annotation quality, we provided the annotators
with relationship definitions. Our annotators needed to read
the relationship definitions, and examined the relationships in
the overlapping data in order to assign the following labels:

• The label correct is assigned to a relationship pair
[relationship UMLS, relationship SemMedDB] if for any
concept pair [head concept, tail concept] that satisfies
UMLS relationship [head concept, relationship UMLS,
tail concept], it is logical to think that the concept pair
also satisfies SemMedDB relationship [head concept,
relationship SemMedDB, tail concept]. For example, re-
lationship pair [isa, ISA] is labeled as correct.

• The label wrong is assigned to a relationship pair [re-
lationship UMLS, relationship SemMedDB] if for any
concept pair [head concept, tail concept] that satisfies
UMLS relationship [head concept, relationship UMLS,
tail concept], it is logical to think that the concept pair
cannot satisfies SemMedDB relationship [head concept,
relationship SemMedDB, tail concept]. For example, re-
lationship pair [inverse isa, ISA] is labeled as wrong.

• The label not sure is assigned to a relationship pair [re-
lationship UMLS, relationship SemMedDB] if the anno-

2Both annotators obtained bachelor degree in Pharmeceutical Sciences, and
master degree in Medicinal Chemistry.



tator cannot find convincing logic inference from UMLS
relationship to SemMedDB relationship. For example, re-
lationship pair [contraindicated with disease, CAUSES]
is labeled as not sure.

The definitions of the three labels show that expert anno-
tators need clear understanding of each relationship in the
relationship pairs in order to assign the label correctly. There-
fore having clear definitions of each relationship is critical for
the annotation task. UMLS data come from 37 data sources,
and we successfully collected definitions for 116 UMLS
relationships from 10 resources, including FMA, CPT, UMD,
RXNORM, NDFRT, NDFRT FDASPL, NDFRT FMTSME,
SNOMEDCT US, SNOMEDCT VET and NCI. These are the
UMLS relationships we used in the study, all other UMLS
relationships were removed due to lack of clear definitions.
Kilicoglu, et al. [32] provided definitions for 60 SemMedDb
relationships, and these are the SemMedDB relationships we
used. Consequently, we selected in total 3,451 relationship
pairs from the overlapping data of two KBs, and each re-
lationship in these pairs has a clear definition.

The definitions of the three labels also show that expert
annotators need concept pairs to generate evidence for them
to make decisions on the labels. Each concept pair combined
with a relationship is an instance of the relationship. The more
instances we can find in SemMedDB, the more evidence the
annotators have to assign the label correctly. Since this is an
initial study, we focused on the relationship pairs that appear
very often in SemMedDB. Therefore, we set a threshold
of 30 instances in the overlapping part. Consequently, any
relationship pair whose SemMedDB relationship appears less
than 30 times in the overlapping part of SemMedDB will
be removed. Through this filtering, only 392 relationship
pairs were left for our experts to manually annotate. All the
annotations are available at 3. The weighted Kappa value of the
inter annotation agreement is 0.60. The majority disagreement
comes from “wrong” vs ”not sure”. To maintain the quality
of the data used in our training, we further removed 139
pairs disagreed by two annotators. This means that only 253
relationship pairs were left because they were agreed by both
experts. Finally, only 163 relationship pairs with “correct” or
“wrong” were used to generate training data, while 90 pairs
marked as “not sure” were not used.

The second step for generating the training data is to
propagate the labels on relationship pairs to the relationship
instances in SemMedDB. This is because the supervised model
built on the training data will predict whether a triple [head
concept, relationship SemMedDB, tail concept] is correct or
wrong. This propagation was conducted automatically and
was straightforward. Again using the examples in Table I
for illustration. Since our annotators agreed that relationship
pairs [inverse isa, ISA], [inverse isa, COEXISTS WITH] and
[inverse isa, INTERACTS WITH] are labeled as “wrong”,
based on the relationship instance [Anti-Inflammatory Agents,

3https://github.com/daz45/SemMedDB-relationship-verification-annotation-
data

inverse isa, Aspirin] mentioned in Table I, we can au-
tomatically assign label “wrong” to relationship instances
[Anti-Inflammatory Agents, ISA, Aspirin], [Anti-Inflammatory
Agents, COEXISTS WITH, Aspirin], and [Anti-Inflammatory
Agents, INTERACTS WITH, Aspirin]. Through this way, we
finally constructed a training dataset with 72,079 relationship
instances, in which 51,503 instances are labeled as “correct”,
and 20,576 instances are labeled as “wrong”.

We do notice that, Cui et al. [33] reported that 138,987
concept pairs in UMLS were found to have inconsistent
relationships across multiple sources. However, it only takes
1.03% of all concept pairs in UMLS, and also the mapping
between UMLS and SemMedDB relationships is manually
constructed by the experts. Such inconsistent relationships in
UMLS will only have a very limited effect, and is ignored in
the current study.

B. Collecting Labeled Testing Data

To objectively evaluate our proposed relationship verifica-
tion strategy, a testing dataset is needed beyond the training
dataset. We adopted a dataset provided by Kilicoglu, et al. [32].
They extracted 1,371 instances from 500 PubMed article ab-
stracts, and manually labeled those instances, which includes
95 instances labeled as “true” because they were correctly
extracted from the articles. These 95 instances were checked
to see whether or not they appear in the training data. After
removing those instances appearing in the training data, we
obtained 90 instances as “correct” testing samples.

However, we could not treat the “false” instances as
“wrong” testing samples. This is because Kilicoglu, et al.
[32]’s method could label an instance to be “false” either
because it is a true false instance or because the instance was
not correctly extracted.

Since it is hard for us to locate the evidence of “wrong”
instances from PubMed papers, our selection of “wrong”
instances in the testing collection has to come back to the over-
lapping data we collected between UMLS and SemMedDB.
Based on the annotation presented in Section III-A, among all
the relationship pairs marked as either “not sure” or “wrong”
but are disagreed by the two annotators, we randomly selected
107 instances with such relationship pairs for another round
of manual annotation. Two annotators labeled the correctness
of the SemMedDB instances by the evidence from UMLS.
For example, UMLS has [enterovirus, causeative agent of,
enterovirus meningitis], while SemMedDB has [enterovirus,
INTERACTS WITH, enterovirus meningitis], and both anno-
tators labeled this SemMedDB relationship as wrong, because
“INTERACTS WITH” is defined as “substance interaction”.
Through this round of annotation, we obtained 103 instances
marked as “wrong” by both annotators, out of which 90
instances were randomly selected to match the number of
“correct” instances. Finally, our testing collection consists of
90 “correct” instances and 90 “wrong” instances.



C. Constructing Weighted Semantic Network

SemMedDB organizes its concepts into hierarchy. For ex-
ample, Reserpine belongs to semantic type “Organic Chemi-
cal”, which in turn belongs to Semantic Group “Chemicals &
Drugs”. The structural information provided in the hierarchy
shows a semantic network [30].

Semantic type information has been an important feature for
identifying the relationship between two concepts in several
existing automatic KB extraction studies [15], [18], [20]. This
triggered us to utilize the semantic type and semantic group
information in our model.

The semantic network we constructed from SemMedDB is
a weighted network. Each pair of semantic type in the network
may have several edges because of different relationships
between them, and the weight is the count of the PubMed
papers that the relationship appears. Our assumption is that a
frequently appearing semantic type pair with a relation has a
higher chance to be correct. We applied the same method to
construct a network for semantic group too.

D. Identifying Features for Representing Instances

To perform classification for verifying relationships, each
relationship instance is represented as a set of features.
The verification of a relationship depends on the amount of
supports it gets, which can be in the form of the counts
of sentences showing the relationship, or the proportion of
sentences supporting this relationship against those supporting
other relationships, etc.

In total, we identified 9 features which are organized into
three groups: concept level, semantic type level, and semantic
group level features.

At the Concept level, we identified three features:
• C support: the logarithm value of the count of sup-

porting sentences for the relationship between two given
concepts. The reason to use the logarithm value rather
than the original value is to keep the scale of this feature’s
value similar to that of the following two features.

• C percentage:the percentage of the supporting sentences
for this relationship among all sentences with the two
given concepts.

• C isMax: the sign value to the statement of whether the
given relationship has the most number of supporting
sentences among all the relationships related to the two
given concepts. 1 means yes, and 0 means no.

At the Semantic type level:, we identify three features:
• ST support: the logarithm value of the count of support-

ing sentences for the relationship between two semantic
types of the given two concepts.

• ST percentage: the percentage of the supporting sen-
tences for this relationship among all sentences with two
given semantic types.

• ST isMax: the sign value to the statement of whether the
given relationship between two semantic types has the
most supporting sentences all the relationships related to
the two given concepts. 1 means yes, and 0 means no.

At the Semantic group level, we identify three features:
• SG support: the logarithm value of the count of support-

ing sentences for the relationship between two semantic
groups of the two given concepts.

• SG percentage: the percentage of sentences that support-
ing this relationship among all sentences with two given
semantic groups.

• SG isMax: the sign value to the statement of whether the
given relationship between two semantic groups has the
most supporting sentences all the relationships related to
the two given concepts. 1 means yes, and 0 means no.

E. Classification Methods

As mentioned above, each KB triple consists of two con-
cepts and a relationship between them. The task is to classify
whether the relationship between the concepts is correct or
wrong. The baseline in this study is c isMax, which essentially
takes the most frequently supported relationship as the correct
one. We then selected five classification methods: Gaussian
Naive Bayes, Logistic Regression, Random Forest, Decision
Tree and k Nearest Neighbor (kNN) for the experiments.
Although Supported Vector Machine (SVM) and Neural Net-
work are popular and effective classification methods, they
are not selected due to our large training data size and the
limited computation resources. All classifiers are based on the
implementation in Scikit-learn platform [19].

IV. EXPERIMENTS AND RESULTS

A. Experiment Settings and Evaluation Metrics

In the training procedure, 10 fold cross validation was
conducted to train the classification models. 90% data was
used for training and 10% was used for validation. For each
learned model, testing is conducted on 180 testing instances.
For each run, cross validation test was repeated for 50 times,
and reported scores are average of 50 rounds. The data split is
the same across different classifiers, and Wilcoxon significance
test was utilized to statistic significance tests. Massive param-
eters are tried to maximum the classification performance on
the training data, and we find most classifiers can achieve best
performance with default Scikit-learn parameters except kNN
achieve best on training data with k=3.

To evaluate the performance of verifying relationship in
SemMedDB, we select the following metrics: Precision =
|TP |

|TP |+|FP | , Recall = |TP |
|TP |+|FN | , F1 = 2·Recall·Precision

Recall+Precision , and

Accuracy = |TP |+|TN |
|TP |+|TN |+|FP |+|FN | , where TP, FP, TN, FN

represent true positive (correctly classified as “correct”), false
positive (wrongly classified as “correct”), true negative (cor-
rectly classified as “wrong”), and false negative (wrongly
classified as “wrong”).

B. Relationship Verification Performance

Table II shows the classification performance of the five
models and the Baseline on both training and testing datasets.
Wilcoxon significance test is conducted on 50 repetitive runs
on each run, and numbers labeled with * indicates a significant



TABLE II
CLASSIFICATION RESULTS ON TRAINING AND TESTING DATA

Training Testing
Classifier Precision Recall F1 Accuracy Precision Recall F1 Accuracy
Baseline 87.44% 92.70% 89.99% 85.27% 65.87% 92.22% 76.85% 72.22%
Gaussian Naive Bayes 88.75%* 90.45% 89.59% 84.99% 80.82%* 79.58% 80.19%* 80.34%*
Logistic Regression 88.27%* 92.65% 90.41%* 85.95%* 70.33%* 90.00% 78.96%* 76.01%*
Decision Tree 96.72%* 97.66%* 97.18%* 95.96%* 52.09% 61.80% 56.49% 52.34%
Random Forest 96.81%* 98.33%* 97.56%* 96.49%* 67.79%* 62.62% 65.09% 66.42%
k Nearest Neighbor 95.68%* 96.96%* 96.32%* 94.70%* 67.74%* 66.67% 67.19% 67.44%

TABLE III
FEATURE LEVEL ABLATION EXPERIMENTS FOR RELATIONSHIP

VERIFICATION WITH GAUSSIAN NAIVE BAYES

Training Testing
F1 Accuracy F1 Accuracy

Baseline 89.99% 85.27% 76.85% 72.22%
all features 89.59% 84.99% 80.19% 80.34%
C * 90.01% 85.31% 76.85% 72.22%
ST * 80.28% 71.87% 74.16% 74.44%
SG * 84.30% 74.28% 78.02% 77.78%
all - C * 81.84% 73.68% 66.02% 69.00%
all - ST * 89.84% 85.22% 80.09% 79.56%
all - SG * 89.68% 84.98% 80.32% 77.89%

improvement compared with Baseline (p-value<0.01). Base-
line has a Precision at 87.44%, but Recall at 92.70%, indi-
cating that this method generates a lot false positive instances
leading to high recall and low precision. This situation is even
worse on the testing data. It could imply that some wrong
SemMedDB relationships still have quite frequent instances.
Further study is needed.

We can also see that, on both training and testing data,
Logistic Regression significantly outperforms the Baseline
on all metrics except Recall. This shows the utility of the
proposed nine features. Furthermore, Gaussian Naive Bayes,
although has a slightly worse performance than the Baseline on
the training data, performs significantly better than the baseline
on the testing dataset. Its performance on the testing data is
even better than Logistic Regression. On the other hand, in the
training dataset, Decision Tree, Random Forest, and kNN all
have 96+% F1 and 94+% Accuracy performance, significantly
better than the Baseline. However, their performance are
significantly lower in the testing data, indicating a severe
overfitting problem. The reasons are further explored in section
IV-D.

C. Effectiveness of Features in Each Level

To obtain a better insight on the effectiveness of each level
features in our relationship verification task, we performed
several feature level ablation experiments using Gaussian
Naive Bayes model. As shown in Table III, all - ST * and all
- SG * give quite similar Accuracy and F1 score, implying
that the combination of concept level features with either
semantic type or semantic group level features can provide
similar information for the relationship verification task. Since
Accuracy of all - SG * is 1.6% less than that of all - ST *, and
SG * outperforms ST *, it seems that semantic group maybe

TABLE IV
FEATURE LEVEL ABLATION EXPERIMENTS FOR RELATIONSHIP

VERIFICATION WITH DECISION TREE

Training Testing
F1 Accuracy F1 Accuracy

Baseline 89.99% 85.27% 76.85% 72.22%
all features 97.18% 95.96% 56.49% 52.34%
C * 90.00% 85.21% 76.61% 71.50%
ST * 97.35% 96.17% 54.66% 56.78%
SG * 97.37% 96.20% 59.15% 59.33%
all - C * 97.57% 96.49% 60.81% 61.33%
all - ST * 97.33% 96.16% 61.29% 61.33%
all - SG * 96.38% 94.80% 57.53% 59.56%

a better representation than semantic type for the concepts in
this task. However, using both (i.e., all features) still give the
most robust performance on training and testing data.

Then, the results show that removing concept level features
(i.e., all - C *) makes the performance drop rapidly, but still
all features outperforms C * by a large degree, indicating that
concept level features are essential and play a complementary
role to the semantic network features. Also, we do notice that
using only concept level features (i.e., C *) gives the same
performance as the baseline, indicating that C isMax is the
key feature among three concept level features to Guassian
Naive Bayes model.

D. Overfitting of Decision Tree and Random Forest

Different from Gaussian Naive Bayes, Decision Tree and
Random Forest have a totally different classification pattern.
They both have a very high F1 and Accuracy (95+%) on the
training data, but have a very bad performance on the testing
data (see Table II). We show the feature level ablation exper-
iments with Decision Tree in Table IV. On the training data,
the concept level features gives the worst performance, while
the semantic type and group features can achieve 96+% F1 and
Accuracy, implying that the classifier can perform well with
either semantic type or group features, which is inconsistent
to the findings in Table III with Gaussian Naive Bayes. After
examining the results on the training data, we find that the
instances with same semantic type and semantic group features
have been classified to same category. For example, in SG *,
instances with [Chemicals & Drugs, TREATS, Disorders] are
all classified as “correct”, and achieve 96.20% Accuracy on
the training data. The reason is because the training data
has 5,289 “correct” instances for relationship pair [may treat,
TREATS], and 623 “wrong” instances for relationship pair



TABLE V
MEAN VALUE OF EACH FEATURE IN TWO CATEGORIES

Features Wrong Correct
C support 0.89 1.68
C percentage 0.34 0.85
C isMax 0.33 0.93
ST support 10.10 10.84
ST percentage 0.31 0.53
ST isMax 0.36 0.63
SG support 13.18 13.69
SG percentage 0.26 0.38
SG isMax 0.50 0.38

[contraindicated with disease, TREATS]. However, since se-
mantic group pair [Chemicals Drugs, Disorders] only has
5,794 instances, and majority are “correct” instances, Decision
Tree simply classifies all instances with [Chemicals Drugs,
TREATS, Disorders] as “correct”. It learns complicated hyper-
planes to fragment the space to fit the training data, but such
classifying pattern is not true in dealing with specific instances,
and hence had a very bad performance on testing data. We can
conclude that Decision Tree and Random Forest are overfitting
on the training data.

kNN can achieve 78.76% F1 and 77.22% Accuracy when k
is increased to 3,500 on the testing data, implying involving
more neighbors can improve model robustness. Table II shows
that kNN is like Decision Tree method, performs much worse
on the testing data but very well on the training data.

V. DISCUSSIONS

We find that the Gaussian Naive Bayes and Logistic Regres-
sion have similar classification patterns, classifying instances
with higher values in concept, semantic type and semantic
group level features as “correct”, and classifying instances
with smaller features values as “wrong”. It is consistent with
the data distribution of training data. The mean value of each
feature in two categories from the whole training data are
shown in Table V, and we can see that “wrong” categories
truly have a smaller support in 9 features than “correct”
categories, except SG isMax. It implies that, in most cases,
verifying the relationship according to the proposed 9 features
has high utility, and comparing to “wrong” instances, “correct”
instances are more frequently extracted from PubMed papers
and usually have a higher weight in the semantic network.

Then we examined the instances that the model predicted
wrongly in the testing data. There are totally 18 kinds of
relationships appearing in the testing data, and relationship
verification performance with Gaussian Naive Bayes model
on each relationship is shown in Table VI. Among all the
relationships, we found that the majority classification er-
rors comes from “TREATS” and “PART OF”. There are
12 “wrong” instances with relationship “TREATS”, whose
head concepts are all surgery, such as “Operative Surgical
Procedures” and “Hysterectomy”, and tail concepts are all post
surgery diseases, such as “Postoperative fistula”, and “Surgi-
cal Wound Infection”. UMLS gives a “causative agent of”,
implying the surgery cause these post surgery diseases, but

SemMedDB gives “TREATS”, and both annotators gives
“wrong” labels on them. These surgery concepts belong to
semantic group “Procedures”, and the disease concepts belong
to “Disorders”. In addition, there is a very high weight for
[Procedures, TREATS, Disorders] in the semantic network.
11 out of 12 instances have high c support, C percentage and
C isMax=1, and they are mistakenly classified as “correct”.
The only one that are correctly classified as “wrong” has low
c support, C percentage, and C isMax=0. This implies that
wrong instances with smaller values in three level features
are easy to be cleaned, but the ones with high support may
need extra knowledge or expertise to be recognized. Also,
it shows that some errors are repeated many times in the
automatic extraction process with SemRep, so that we cannot
use frequency counts to identify them.

On the other hand, 8 out of 20 “correct” instances with
relationship “PART OF” are wrongly classified as “wrong”,
and we find they have very small values on semantic type and
group level features. It indicates that such kind of unpopular
correct instances are also hard to be recognized by proposed
features, simply because only a very small number of PubMed
sentences that mentioned such knowledge. Relationship spec-
ified features maybe useful to solve this problem, for example
if we have prior knowledge that SemRep is very accurate in
extracting some particular relationships, we will classify them
as “correct” even with less support in current 9 features.

We can summarize that the proposed features are effective
in most cases. However, high weight in semantic network only
reflects the evidence supporting the relationship between the
semantic type or group pairs, but maybe not supportive to
the individual instances. For example, we know drug treats
diseases, but we do not know whether a specific drug can treat
a specific disease or not. Also, it is hard to detect unpopular
correct instances.

VI. CONCLUSIONS

In this study, we aim to verify the relationships in the
automatically generated KB - SemMedDB. We identified nine
features in three groups to characterize each medical relation-
ship instance, and proposed a supervised learning model to
automatically verify the medical relationships. We tested on
several classifiers, and the best one achieved both Accuracy
and F1 score 80%, which demonstrates the effectiveness of our
proposed methods. Also our analysis shows features related to
out extracted weighted semantic network is very effective. Our
study indicates that noisy relationships in large scale medical
knowledge bases, such as SemMedDB, can be identified and
removed with a few of manual annotation workload.

Base on our analysis, we find current features still have
limitation, which consider the information from the whole
SemMedDB. In the future, more hypothesis and features will
be proposed. For example, knowledge extracted from new
PubMed papers maybe have higher score than those from
old PubMed papers. Subsequently,the features can apply to
multiple medical knowledge bases to help identify the noisy
relationships without much human involvement.



TABLE VI
VERIFICATION PERFORMANCE OF 18 RELATIONSHIPS IN TESTING DATA

Correct Wrong
Relationships count count F1 Accuracy
INTERACTS WITH 1 42 100% 100%
PROCESS OF 8 0 100% 100%
AFFECTS 5 0 100% 100%
PREDISPOSES 3 0 100% 100%
DIAGNOSES 2 0 100% 100%
ADMINISTERED TO 2 0 100% 100%
DISRUPTS 1 0 100% 100%
PREVENTS 1 14 48.28% 93.33%
LOCATION OF 0 16 44.83% 81.25%
COEXISTS WITH 4 0 42.86% 75.00%
TREATS 35 12 47.28% 70.21%
CAUSES 3 0 40.00% 66.67%
PART OF 20 0 37.50% 60.00%
ISA 0 6 33.33% 50.00%
PRODUCES 2 0 33.33% 50.00%
ASSOCIATED WITH 1 0 0.00% 0.00%
NEG TREATS 1 0 0.00% 0.00%
NEG PART OF 1 0 0.00% 0.00%
total count 90 90
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