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Abstract. This paper proposes a concise overview of the role of pos-
sibility theory in logical approaches to reasoning under uncertainty. It
shows that three traditions of reasoning under or about uncertainty (set-
functions, epistemic logic and three-valued logics) can be reconciled in
the setting of possibility theory. We offer a brief presentation of basic
possibilistic logic, and of its generalisation that comes close to a modal
logic albeit with simpler more natural epistemic semantics. Past applica-
tions to various reasoning tasks are surveyed, and future lines of research
are also outlined.
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1 Introduction

Uncertainty often pervades information and knowledge. For this reason, the han-
dling of uncertainty in inference systems has been an issue for a long time in 
artificial intelligence (AI). As logical formalisms have dominated AI research 
for several decades, this problem was first tackled using modal logics or non-
monotonic reasoning, or yet many-valued logics. Key-issues are reasoning under 
incomplete information (how to infer useful conclusions despite incompleteness?) 
and inconsistent information (how to protect useful conclusions from inconsis-
tency?).

With the advent of Bayesian networks, Bayesian probabilities have become 
prominent at the forefront of AI methods, challenging the original supremacy 
of logical representation settings. However, Bayesian networks are in some sense 
miraculous, because, viewed as representing human information, they are neither 
incomplete nor inconsistent. The problem of dealing with incomplete probabilis-
tic knowledge is then avoided, especially by Bayesian probability proponents, 
assuming that any state of knowledge can be accounted for by a unique proba-
bility distribution. However, due to the self-duality of probabilities, the Bayesian 
approach cannot distinguish between the lack of belief in a proposition and the 
belief in its negation, which is precisely what incomplete information is all about.
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The need for this distinction seems to have led to the emergence of ad hoc uncer-
tainty calculi in early expert systems.

Besides, there has been a divorce between logic and probability in the early
20th century. Logic was then considered as a foundation for mathematics, while
probability theory was found instrumental in representing statistical data. The
school of subjective probability took it for granted that degrees of belief should
be additive and self-dual, which led to paradoxes when trying to account for
ignorance. Yet, logic and probability were originally motivated by the formalisa-
tion of some aspects of human reasoning. Boole, De Morgan, De Finetti used to
attach probabilities to logical formulas and try to make deductions from them.
But so doing, and in contrast with Bayesian networks, you run the risk of at
worst assigning incompatible probabilities, or at best only deriving probability
intervals rather than precise probabilities for conclusions. While this can be con-
sidered as a weakness of the logical approach, one may also claim that this state
of facts is more faithful to human knowledge, which is often incomplete and
sometimes inconsistent. There are now well-defined approaches to uncertainty
that try to marry additivity and incompleteness [1]. These settings are charac-
terized by the existence of a pair of dual measures for distinguishing between
the support of a proposition and the lack of support of its negation, for instance
Walley’s imprecise probability theory, Shafer’s evidence theory, and possibility
theory, the latter first outlined by Shackle [2] in a very hostile scientific environ-
ment, later on taken up by Cohen [3] and Zadeh [4].

Possibility theory has a remarkable situation among the settings devoted
to the representation of imprecise and uncertain information. First, it may be
numerical or qualitative [5]. In the first case, possibility measures and the dual
necessity measures can be regarded respectively as upper bounds and lower
bounds of ill-known probabilities; they are also particular cases of Shafer plau-
sibility and belief functions respectively. In fact, possibility measures and neces-
sity measures constitute the simplest, non trivial, imprecise probability system.
Second, when qualitative, possibility theory provides a natural approach to the
grading of possibility and necessity modalities on finite ordinal scales. Especially,
possibility theory has a logical counterpart, namely possibilistic logic [6], which
remains close to classical logic. In this overview paper, we focus our attention on
the unifying power of all-or-nothing possibility theory for epistemic reasoning.
Then we briefly present possibilistic logic (PosLog), which handles degrees of
certainty, and its recent extension called generalized possibilistic logic (GPL).
Then we briefly review some application areas for PosLog and GPL.

2 Three Approaches to Handling Incomplete Knowledge

There seems to be three traditions for dealing with incomplete information and
the ensuing representation of beliefs.

The Set-Function Tradition. Set-functions are used to assign degrees of
beliefs to propositions represented by subsets of possible states of affairs, also
called events: for instance, subjective probability adopts this point of view. More



generally, if S represents a set of states of affairs and A is a subset thereof, the
idea is to attach a degree of confidence g(A) usually in the unit interval (but
not always, for instance Spohn [7] uses integers). The main properties of the set-
function g are monotonicity with inclusion (g(B) ≥ g(A) whenever A ⊆ B), and
limit conditions g(∅) = 0, g(S) = 1. Other examples of such confidence functions
g are possibility and necessity measures, belief or plausibility functions, upper
and lower probabilities [1].

The Multiple-Valued Logic Tradition. Very early in the 20th century, schol-
ars in logic like �Lukasiewicz realized that it is not always possible to declare that
a given proposition is true or is false. Due to a lack of knowledge, only weaker
qualifiers may be used, such as possible, unknown, or yet indeterminate. So the
idea was to define the epistemic status of complex propositions from truth-tables
extending the ones of classical logic, augmenting the set of truth-values with a
new symbol lying between true and false and standing for unknown and the
like, while sticking to the propositional syntax. This led to three-valued logics
such as the ones of �Lukasiewicz or Kleene. Of course, it was then natural to
extend this view to more truth-values, even a continuum thereof. In the same
spirit, Belnap [8] proposed to add a fourth truth-value standing for the idea of
conflicting information about a proposition.

The Modal Logic Tradition. In this approach, the idea is to represent the
belief modality at the syntactic level using a necessity symbol � that prefixes
propositions from a standard propositional language, and more generally, any
formula, in fact. In this way, one can explicitly express that a proposition p
is believed or known, writing �p, and we can make a clear syntactic distinc-
tion between the fact of not believing p (i.e., ¬�p) and believing its negation
(i.e., �¬p). This is the setting of epistemic or doxastic logics originally due to
von Wright, Hintikka, and developed further by Fagin et al. [9]. These logics
often adopt axioms (K, D) that ensure (i) the equivalence between knowing or
believing a conjunction �(p ∧ q) and believing each of the conjoints �p land �q
(this is called the adjunction law), and (ii) that �p is a stronger statement than
♦p ≡ ¬�¬p (expressing a lack of support for the negation of p). This approach
makes a clear difference between belief and knowledge (viewed as true belief),
and allows to construct very complex formulas involving nested modalities and
the usual Boolean connectives.

These three traditions are supposed to address closely related issues: they
try to propose tools to represent belief and uncertainty when information is
lacking. But they look at odds with one another. The main claim of this paper
is that possibility theory is instrumental to bridge these apparently unrelated
approaches and to put them in a unified setting.

3 The Simplest Logic of Belief and Partial Ignorance

The simplest format to express beliefs is propositional logic (PL). Consider
a propositional language L = {p, q, r, . . . } built from atomic variables A =



{a, b, c, . . . } and usual connectives ∧,∨,¬, . . . . A belief base is understood as
a finite subset K ⊂ L of propositions believed by an agent. In the usual
semantics, a proposition p is evaluated on the set of interpretations of L, say
S = {s : A → {0, 1}}, assigning a truth-value to each variable. Let [p] be the
set of models of p, interpretations s for which p is true (which is denoted by
s |= p), and [K] be the set of models of all p ∈ K, i.e., [K] = ∩p∈K[p]. Denote
by K ⊢ p the syntactic inference of p from K, using inferences rules in PL and
modus ponens, and by K |= p the semantic inference, defined by [K] ⊂ [p]. It is
well-known that K |= p ⇐⇒ K ⊢ p (soundness and completeness).

3.1 Boolean Beliefs

The semantics in terms of interpretations is ontic in the sense that it tells
whether propositions are true or false in each state of the world. However it
does not match the idea that propositions in K represent beliefs. A belief should
be evaluated with respect to an epistemic state, namely a non-empty set E of
interpretations that are not ruled out by the agent. This is the simplest repre-
sentation of incomplete information. Epistemic states are more or less informed:
E is said to be more specific than E′, if E ⊂ E′: E is more informed than E′.
An epistemic state E is said to be fully informed if E = {s} for some s ∈ S, and
totally ignorant if E = S. In the tradition of epistemic logic, an agent is said to
believe p if p is true in all interpretations the agent considers possible, i.e., in
its epistemic state. This leads to an epistemic semantics for propositional logic,
whereby propositions p are evaluated in epistemic states, namely:

E |= p ⇐⇒ E ⊆ [p].

And we can define an epistemic semantic inference as K |=e p ⇐⇒ ∀E �=
∅, E ⊆ [K] implies E ⊆ [p]. However, there exists a least specific epistemic
state for an agent whose belief base is K and this is E = [K]. So the ontic
and epistemic semantics lead to the same inference: K |= p ⇐⇒ K |=e p.
But the epistemic semantics is potentially richer than the ontic one, as one
may distinguish between the situation where E ⊆ [¬p] (the agent believes the
negation of p) and the situation where E �⊆ [p] (the agent does not believe p),
which collapse if E = {s}. Clearly, the propositional language cannot grasp
this distinction. To account for it at the syntactic level we must let the belief
modality � appear in the syntax, to mean that the agent believes p. In fact, the
precise meaning of this modality can range from the agent is informed that p to
the agent knows that p.

On this basis, we consider an epistemic language L� built on top of L:

– Atomic variables form the set A� = {�p : p ∈ L} (i.e., plain beliefs).
– L� is the propositional language based on A� with usual connectives ∧,∨,¬.

In this language not only can we state that p is believed, but also that the agent
ignores p, the latter being expressed by the formula ¬�p∧¬�¬p, or equivalently



♦p ∧ ♦¬p, where the formula ♦p is short for ¬�¬p. L� can be viewed as the
minimal language to express partial knowledge about the truth of propositions.

We define an epistemic semantics for the formulas φ, ψ in L� by adapting
the epistemic semantics of propositional logic with formulas in L:

– E |= �p if and only if E ⊆ [p] (p is certainly true in the epistemic state E);
– E |= φ ∧ ψ if E |= φ and E |= ψ;
– E |= ¬φ if E |= φ is false.

A logic called MEL (Minimal Epistemic Logic) has been defined by Banerjee
and Dubois [10] for reasoning about incomplete knowledge in L�. Axioms are
as follows:

(PL) Axioms of propositional logic for L�-formulas
(K) �(p → q) → (�p → �q)
(D) �p → ♦p

(Nec) �p, for each p ∈ L that is a PL tautology, i.e. if [p] = S.

The inference rule is modus ponens. In other words, this is a two-tiered
propositional logic with additional axioms, and we define the syntactic inference
as B ⊢MEL φ if and only if B ∪ {K,D,Nec} ⊢ φ, where B ⊂ L� is a MEL
base. This logic is sound and complete with respect to the epistemic semantics,
defining as usual B |=MEL φ if and only if E |= ψ,∀ψ ∈ B implies E |= φ.

Note that the subjective language L� is disjoint from the objective language
L. However, there is a clear embedding of propositional logic in MEL: Given a
belief base K in PL, define the MEL base K� = {�p : p ∈ K}. Then we have
that K� ⊢MEL �q if and only if K ⊢ q.

3.2 Unifying Approaches to Reasoning with Incomplete Information

We are now in a position to reconcile the three traditions for reasoning with
incomplete information.

Set Functions Underlying MEL. We have seen that at the semantic level
incomplete information is represented by epistemic states E ⊆ S representing
mutually exclusive states of affairs, one of which is considered to be the real one
by the agent with epistemic state E. Its characteristic function is a possibility

distribution with values on {0, 1} defined by π(s) =

{

1 if s ∈ E;

0 otherwise.

This representation leads us to build 2 set-functions (e.g., [5]):

– A possibility function Π(A) = 1 if and only if E ∩ A �= ∅ and 0 otherwise
– A necessity function N(A) = 1 if and only if E ⊆ A and 0 otherwise.

Possibility and necessity functions are examples of confidence functions like prob-
abilities, except that they are 2-valued. Their characteristic properties on finite
sets are maxitivity for Π (Π(A ∪ B) = max(Π(A),Π(B)) and minitivity for N



(N(A∩B) = max(N(A), N(B)), which encodes the adjunction law), along with
N(S) = Π(S) = 1, N(∅) = Π(∅) = 0.

It is clear that in a finite setting, an epistemic state is equivalent to a neces-
sity function or to a possibility function, so that the semantics of MEL can be
equivalently expressed in terms of these set functions. In particular, �p means
N(p) = 1 for some necessity function N , while ♦p means Π(p) = 1 for some
possibility function Π, and we have that N(A) = 1−Π(Ac), where Ac is the com-
plement of A. Axiom Nec in MEL corresponds to N(S) = 1. Axiom D expresses
the inequality Π(A) ≥ N(A). Axioms K and D ensure the minitivity axiom. So
we can claim that MEL is the logic of all-or-nothing possibility theory.

MEL vs. Doxastic Logic. The close connection between MEL and modal
epistemic logic S5 and doxastic logic KD45 is very clear, as MEL uses a fragment
of their language. Moreover, all inferences that can be made in MEL can equally
be made in KD45 as proved in [11]. However there are noticeable differences,
reflecting the fact that MEL is in some sense a minimal uncertainty logic:

– MEL allows neither nested modalities nor plain (non-modal) propositional
formulas.

– In MEL, formulas are evaluated on epistemic states while in KD45 formu-
las are evaluated on possible worlds (it makes sense to write s |= �p) via
accessibility relations R on S (as R(s) ⊆ [p]).

– KD45 allows for very complex modal formulas that can be simplified using
additional axioms (4: �φ → ��φ; 5: ¬�φ → �¬�φ), while MEL minimally
augments the expressive power of PL. These additional introspection axioms
4 and 5 cannot be written in MEL.

– MEL has the deduction theorem because it is a two-tiered propositional logic.
Modal logics often do not because axiom (Nec) in MEL is expressed by means
of the necessitation rule p ⊢ �p (that cannot be written in MEL).

So MEL can be viewed as the poor man’s epistemic or doxastic logic; we cannot
see the difference here because axiom T: �p → p cannot be written in MEL (but
we can include it by extending MEL to allow for objective formulas, see [11]).

While KD45 is supposed to model an agent reflecting on its own beliefs, MEL
is rather dedicated to represent what an agent knows about the epistemic state
of another agent. For instance ♦p ∧ ♦¬p should be read: the agent knows that
the other agent ignores the truth value of p. Likewise, having �p∨�¬p without
having �p nor �¬p means that the first agent knows that the other agent knows
the truth value of p, while this first agent does not know what the second one
believes. Note that this formula would be hard to interpret if it concerns one’s
own beliefs, as pointed out quite early in [12].

Regarding introspection, even if axioms 4 and 5 are absent from MEL, it is
implicitly assumed in MEL that an agent can always say whether (s)he believes
p, (s)he believes ¬p or is ignorant about p (the formula �p∨�¬p∨(♦p∧♦¬p) is a
MEL tautology). In other words, an agent is supposed to know its own epistemic
state (it can be described by a complete MEL base), which is how introspection
is handled in MEL.



MEL vs. Three-Valued Logics. The 3-valued logic approach to reasoning
with incomplete information can be captured in MEL [13]. For the sake of sim-
plicity we restrict to Kleene logic, often used in incomplete databases, or logic
programming. It has 3 truth values forming the set V3 = {0 < 1

2
< 1}, the same

syntax as PL, with the same connectives semantically characterized as follows:

– Negation: t(¬p) = 1 − t(p);
– Conjunction: t(p ∧ q) = min(t(p), t(q));
– Disjunction: t(p ∨ q) = max(t(p), t(q)), by De Morgan laws;
– Implication: t(p →K q) = max(1 − t(p), t(q)) (using p →K q ≡ ¬p ∨ q).

This logic has no tautologies, e.g., t(p ∧ ¬p) = t(p ∨ ¬p) = 1

2
when t(p) = 1

2
.

In practice, the truth-value 1

2
is often used to model the idea that the truth-

value of an otherwise Boolean proposition is unknown. But Unknown is in oppo-
sition with Known to be true and Known to be false, not with true and false.
The three-valued t(p) thus informs about the state of knowledge concerning the
plain truth value t(p) ∈ {0, 1} of a Boolean proposition. In this view, the lack
of tautologies in Kleene logic may look paradoxical since p ∧ ¬p is known to
be false regardless of our knowledge about p. The epistemic nature of Kleene
truth-values led us to translate this logic into MEL [13]. Let T (t(a) ∈ T ) denote
the translation into MEL of the atomic assertion t(a) ∈ T ⊆ V3. We define, in
agreement with the intended meaning of Kleene truth-values:

T (t(a) = 1) = �a (certainty of a); T (t(a) = 0) = �¬a = T (t(¬a) = 1);

T (t(a) = 1
2 ) = ♦a ∧ ♦¬a (ignorance);

T (t(a) ≥ 1
2 ) = ♦a (possibility of a); T (t(a) ≤ 1

2 ) = ♦¬a.

The translation of composite formulas in Kleene logic can be done recursively. In
particular, for conjunction and disjunction we just have T (t(a∨b) = 1) = �a∨�b
and T (t(a ∧ b) = 1) = �a ∧ �b.

Asserting a formula p in Kleene logic comes down to the statement t(p) = 1.
A knowledge base K in Kleene logic can be put in conjunctive normal form
(without simplifying the terms a ∨ ¬a). The translation T (t(K) = 1) into MEL
consists in the same conjunction of clauses with modality � in front of literals.
As a consequence, the translation process reaches a small fragment of the MEL
language, namely LK

�
:= �a|�¬a|φ ∨ ψ|φ ∧ ψ where � only appears in front of

literals and no negation is allowed to prefix the � symbol. This result clarifies
the limited expressive power of Kleene logic.

– Knowledge can be expressed about atomic variables only. In particular, truth-
functionality is a trivial matter as it just says that a ∨ b means �a ∨ �b. We
can never express �(a ∨ b) using Kleene logic.

– The lack of tautologies in Kleene logic is explained, as �a∨�¬a (translation
of t(a ∨ ¬a) = 1) is not a tautology! More generally, replacing literals ℓ by
�ℓ in a tautology of propositional logic does not yield a tautology in MEL.

– In LK
�

, only partial models can be expressed by conjunctions of plain beliefs,
that is “rectangular” subsets of S of the form [∧a∈A+a ∧ ∧a∈A−¬a], where
A+ and A− are disjoint subsets of atomic formulas.



These results extend to many three-valued logics where the third truth-value
refers to ignorance (like �Lukasiewicz 3-valued logic). They can be translated into
MEL and these translations are theorem-preserving; see [13].

4 Gradual Beliefs in Possibility Theory

In this section, we consider beliefs can be a matter of degree. We first show that
in order to satisfy the adjunction law, we must rely on the graded version of pos-
sibility theory. Then we describe possibilistic logic, that augments propositional
logic with certainty weights attached to formulas. We generalize this approach
by extending the MEL framework with certainty and possibility weights. We
then survey the applications of these formalisms.

4.1 Degrees of Accepted Belief

In order to relate accepted beliefs to graded beliefs, one should extract accepted
beliefs from a confidence function g. A natural way of proceeding is to define a
belief as a proposition in which an agent has enough confidence. So we should
be in a position to define a positive belief threshold β such that A is a belief
if and only if g(A) ≥ β > 0. However the adjunction law (accepted beliefs are
closed under conjunction) leads to enforce the following property

Accepted belief postulate: If g(A) ≥ β and g(B) ≥ β then g(A ∩ B) ≥ β.

This requirement is very strong as (along with the monotonicity of g) it
enforces the equality g(A∩B) = min(g(A), g(B)), that is g is a graded necessity
measure, still denoted by N . Letting ι : S → [0, 1] be the function defined by
ι(s) = N(S \ {s}) (the degree of belief that the actual state of affairs is not s),
it is clear that

N(A) = min
s�∈A

ι(s).

The value 1− ι(s) can be interpreted as the degree of plausibility π(s) of state s,
where π is the membership function of a fuzzy epistemic state Ẽ that represents
a possibility distribution [5]. The set function Π : 2S → [0, 1] such that

Π(A) = 1 − N(Ac) = max
s∈A

π(s)

represents the degree of plausibility of A, measuring to what extent A is not
totally ruled out by the agent. This setting is the one of possibility theory that
seems to be the only one that accounts for the notion of accepted belief.

Possibility theory was proposed by L.A. Zadeh in the late 1970’s for repre-
senting uncertain pieces of information expressed by fuzzy linguistic statements
[4], and later developed in an artificial intelligence perspective [5]. Formally
speaking, the proposal is quite similar to the one made some thirty years before
by the economist Shackle [2], who had considered a non probabilistic view of



uncertainty based on the idea of degree of potential surprise, which can be mod-
elled as N(Ac). Namely the more you believe in Ac, the more surprising you find
the occurrence of A. The degree N(A) was explicitly used by Cohen [3] under
the name “Baconian probability” capturing the idea of provability. Especially if
you can prove A with some confidence, you cannot at the same time prove its
negation, which makes condition min(N(A), N(Ac)) = 0 natural. So, condition
N(A) > 0 expresses that A is prima facie an accepted belief, its absolute value
expressing the strength of acceptance. Such Baconian probabilities, viewed as
shades of certainty, are claimed to be more natural than probabilities in legal
matters. Deciding whether someone is guilty cannot be based on statistics, nor
on subjective probabilities: you must prove guilt using convincing arguments.
About a decade later, Spohn [7] introduced ordinal conditional functions, now
called ranking functions, as a basis for a dynamic theory of epistemic states.
Ranking functions κ are a variant of potential surprize, taking values on the
non-negative integers, that is gκ(A) = 2−κ(Ac) is a degree of necessity. The the-
ory of ranking functions and possibility theory can be developed in parallel, even
if they were independently devised [14].

4.2 Graded Possibilistic Logic

Possibilistic logic, PosLog for short, has been developed for about thirty years
[6,15]. Basic possibilistic logic has been first introduced in AI as a tool for the
logical handling of uncertainty in a qualitative way. A basic possibilistic logic
formula is a pair (p, α) made of a classical logic formula p associated with a
certainty level α ∈ (0, 1], viewed as a lower bound of a necessity measure, i.e.,
(p, α) is understood as N(p) ≥ α. A Poslog base is a conjunction of weighted
formulas in PosLog. Formulas of the form (p, 0) do not contain any information
and are not part of the language. The interval [0, 1] can be replaced by any
linearly ordered scale.

The axioms of PosLog [6] are those of propositional logic where each axiom
schema is now supposed to hold with maximal certainty, i.e., is assigned level 1.
PosLog has two inference rules:

– if β ≤ α then (p, α) ⊢ (p, β) (certainty weakening);
– (¬p ∨ q, α), (p, α) ⊢ (q, α), ∀α ∈ (0, 1] (modus ponens).

We may equivalently use certainty weakening with the PosLog counterpart of
the resolution rule: (¬p ∨ q, α), (p ∨ r, α) ⊢ (q ∨ r, α), ∀α ∈ (0, 1].

Using certainty weakening, the following inference rule is valid:

(¬p ∨ q, α), (p ∨ r, β) ⊢ (q ∨ r,min(α, β)) (weakest link resolution).

The idea that in a reasoning chain, the certainty level of the conclusion is the
smallest of the certainty levels of the formulas involved in the premises is at the
basis of the syntactic approach proposed by Rescher [16] for plausible reasoning,
and would date back to Theophrastus, an Aristotle’s follower.



An interesting feature of possibilistic logic is its ability to deal with incon-
sistency. Indeed a PosLog base Γ has an inconsistency level incl(Γ ) defined as
the least degree such that the set of formulas with a strictly greater weight is
consistent. When incl(Γ ) > 0, the propositional part of Γ is inconsistent but the
consequences of the (consistent) maximal subset of formulas above the inconsis-
tency level are said to be non-trivial.

A possibilistic logic base is semantically equivalent to a possibility distribu-
tion that restricts the set of interpretations (w.r.t. the propositional language)
that are more or less compatible with the base. Instead of an ordinary subset of
models as in classical logic, we have a fuzzy set of models, since the violation of
a formula by an interpretation becomes a matter of degree. A PosLog formula
(p, α) encodes the statement N(p) ≥ α. Its semantics is given by the possibility
distribution π(p,α) defined by:

π(p,α)(s) = 1 if s � p and π(p,α)(s) = 1 − α if s � ¬p

The underlying idea is that any model of p should be fully possible, and that a
counter-model of p is all the less possible as p is more certain, i.e., as α is higher.
It can be easily checked that π(p,α) is the least informative (i.e., maximizing
possibility degrees) possibility distribution whose associated necessity measure
N satisfies N(p) ≥ N(p,α)(p) = α. We write π |= (p, α) instead of N(p) ≥ α to
denote the satisfaction by epistemic models.

A PosLog knowledge base Γ = {(pi, αi), i = 1, . . . , m}, corresponding to the
conjunction of PosLog formulas (pi, αi), is semantically associated with the pos-
sibility distribution: πΓ (s) = minm

i=1 π(pi,αi)(s). Thus, πΓ is the least informative
possibility distribution that is a model of each weighted formula (pi, αi) in Γ . Due
to the min-decomposability of necessity measures, N(

∧

i pi) ≥ α ⇔ ∀i,N(pi) ≥
α, and then any possibilistic propositional base can be put in clausal form. Pos-
sibilistic logic with the inference rules recalled above is sound and complete with
respect to this semantics.

4.3 Generalized Possibilistic Logic

In basic possibilistic logic, only conjunctions of possibilistic logic formulas are
allowed. But since (p, α) is semantically interpreted as N(p) ≥ α, a possibilistic
formula can be manipulated as a propositional formula that is true (if N(p) ≥ α)
or false (if N(p) < α). Then possibilistic formulas can be combined with all
propositional connectives, including disjunction and negation. This is generalized

possibilistic logic (GPL) [17]. GPL is a two-tiered propositional logic, in which
propositional formulas are encapsulated by weighted modal operators interpreted
in terms of uncertainty measures from possibility theory. Let Λk = {0, 1

k
, 2
k
,...,1}

with k ∈ N \ {0} be a finite set of certainty degrees, and let Λ+
k = Λk \ {0}.

The language of GPL, Lk
N

, with k + 1 certainty levels is built on top of the
propositional language L as follows:

– If p ∈ L and α ∈ Λ+
k , then Nα(p) ∈ Lk

N
.

– If ϕ ∈ Lk
N

and ψ ∈ Lk
N

, then ¬ϕ and ϕ ∧ ψ are also in Lk
N

.



Here we use the notation Nα(p), instead of (p, α), emphasizing the closeness
with modal logic. So, an agent asserting Nα(p) has an epistemic state π such
that N(p) ≥ α > 0. Hence ¬Nα(p) stands for N(p) < α, which, given the
finiteness of the set of considered certainty degrees, means N(p) ≤ α − 1

k
and

thus Π(¬p) ≥ 1−α+ 1
k
. Let ν(α) = 1−α+ 1

k
. Then, ν(α) ∈ Λ+

k iff α ∈ Λ+
k , and

ν(ν(α)) = α,∀α ∈ Λ+
k . Thus, we can write Πα(p) ≡ ¬Nν(α)(¬p). So, in GPL,

like in MEL (retrieved by identifying �p with N1(p) and ♦p with Π1(p)) one can
distinguish between the absence of sufficient certainty that p is true (¬Nα(p))
and the stronger statement that p is somewhat certainly false (Nα(¬p)).

The semantics of GPL is as in Poslog defined in terms of normalized possi-
bility distributions over propositional interpretations, where possibility degrees
are limited to Λk. A model of a GPL formula Nα(p) is any Λk-valued possibility
distribution π such that N(p) ≥ α, where N is the necessity measure induced
by π, and then the standard definition for π |= ϕ1 ∧ ϕ2 and π |= ¬ϕ. As
usual, π is called a model of a set of GPL formulas Γ , written π |= Γ , if π is
a model of each formula in Γ . We write Γ |= φ, for Γ a set of GPL formulas
and φ a GPL formula, iff every model of Γ is also a model of φ. Note that a
formula in GPL will not always have one least specific possibility distribution
that satisfies it. For instance, the set of possibility distributions satisfying the
disjunction ‘Nα(p) ∨ Nα(q)’ no longer has a unique least informative model as
it is the case for conjunctions in PosLog. In fact, there are two of them: π(p,α)

and π(q,α). The soundness and completeness of the following axiomatization of
GPL holds with respect to the above semantics [17]:

(PL) Axioms of propositional logic for Lk
N

-formulas
(K) Nα(p → q) → (Nα(p) → Nα(q))
(N) N1(⊤)
(D) Nα(p) → Π1(p)
(W) Nα1

(p) → Nα2
(p), if α1 ≥ α2

with modus ponens as the only inference rule.
Note in particular that when α is fixed we get a fragment of the modal

logic KD. See [11] for a survey of previous studies on the links between modal
logics and possibility theory. When k = 1, GPL with a value scale Λ1 coincides
with MEL. Figure 1 recaps the links between propositional logic, its extensions
PosLog and MEL, and GPL that generalizes both. Note that in MEL, we have
Π1(p) ≡ ¬N1(¬p), whereas in GPL we only have Π1(p) ≡ ¬N 1

k

(¬p) if k > 1.
GPL and MEL are suitable for reasoning about the revealed beliefs of an

external agent (and not introspection). It captures the idea that while a consis-
tent epistemic state of an agent about the world is represented by a normalized
possibility distribution over possible worlds, the meta-epistemic state of another
agent about the former’s epistemic state is a family of possibility distributions.
Standard inference in GPL is co-NP complete, but other kinds of inference (e.g.,
using specificity criterion) can be more complex; see [17] for a detailed study.



Fig. 1. Comparison of belief logics in possibility theory

5 Applications to Reasoning and Decision

PosLog and GPL proved to be useful for modeling some forms of commonsense
reasoning [15].

Reasoning with Exceptions. A rule having exceptions “if p then q, generally”,
denoted by p � q, is understood formally in possibility theory as the constraint
Π(p∧q) > Π(p∧¬q) on a possibility distribution π describing the normal course
of things. Any finite set ∆ = {pi � qi, i = 1, · · · , n} of conditional statements is
represented by a set constraints of the form Π(pi ∧qi) > Π(pi ∧¬qi). The family
of possibility distributions on S compatible with these constraints, if not empty,
possesses a maximal element according to the principle of minimal specificity,
e.g., [18]. This principle assigns to each interpretation s the highest possibility
level (yielding a well-ordered partition of S) without violating the constraints.
This defines a unique complete plausibility preorder on S. Let E1, . . . , Ek be
the obtained partition. A possibility distribution π∆ can be defined on S by
π∆(s) = k+1−i

k
if s ∈ Ei, i = 1, . . . , k. Note that this numerical scale is arbitrary.

Namely the range of π is used as an ordinal scale.
Each default pi � qi ∈ ∆ can be turned into a possibilistic clause of the

form (¬pi ∨ qi, N(¬pi ∨ qi)), where N is computed from π∆ induced by the set
of constraints corresponding to the conditional knowledge base. We thus obtain
a possibilistic logic base Γ∆ encoding the generic knowledge embedded in ∆. As
shown in [19], non trivial inference of q from Γ∆ ∪ {p} using possibilistic logic
turns out to be equivalent to inferring p � q from ∆ using rational closure in the
sense of Lehmann and Magidor [20]. As for preferential inference [21], it can be
captured in GPL since its semantics in terms of possibilistic logic reads: ∆ implies
p � q if and only if ∀π, for which Π(pi ∧qi) > Π(pi ∧¬qi),∀i = 1, . . . , k, we have
that Π(p ∧ q) > Π(p ∧ ¬q). It just needs a proper encoding of such statements

in GPL. In [17], we encode this constraint as
∨k

i=1 N i

k

(¬p ∨ q) ∧ ¬N i

k

(¬p ∨ ¬q).



Prioritized Constraints. Basic possibilistic logic can also be used for repre-
senting preferences. Then, each logic formula (p, α) represents a goal p to be
reached with some priority level α (rather than a statement that is more or less
believed) [22]. Beyond PosLog, interpretations (corresponding to the different
alternatives) can be compared in terms of vectors acknowledging the satisfaction
or the violation of the formulas associated with the different goals, using suitable
order relations. Thus, partial orderings of interpretations can be obtained [23].

Non-monotonic Logic Programming. Another remarkable application of
GPL is its capability to encode answer set programs, adopting a three-valued
scale Λ2 = {0, 1/2, 1}. In this case, we can discriminate between propositions we
are fully certain of and propositions we consider only more plausible than not.
This is sufficient to encode non-monotonic ASP rules (with negation as failure)
within GPL and lay bare their epistemic semantics. For instance, an ASP rule
of the form a ← b ∧ not c, where “not ” denotes negation as failure, is encoded
as N1(b)∧Π1(¬c) → N1(a) in GPL. See [17] for theoretical results, and [24] for
the GPL encoding of Pearce equilibrium logic [25].

Reasoning About Ignorance. All that is known is p means that p is known
but no q such that q |= p is known. This can be expressed in MEL by the formula
OKp ≡ �p ∧

∧

w|=p ♦pw where pw is a propositional formula whose only ontic

model is w [10]. It is clear that E |=
∧

w|=p ♦pw if and only if [p] ⊆ E, so that the

only epistemic model of OKp is [p]. In terms of set-functions it corresponds to
the guaranteed possibility ∆(A) = minw∈A π(A) [5]. The expression of OKp can
be related to the Moebius transform of a belief function in the sense of Shafer
[10]. In GPL, one can similarly define a formula whose only epistemic model is
a possibility distribution π [17].

6 Perspectives Beyond GPL

As per the above discussions, GPL is a rather versatile tool for knowledge rep-
resentation and reasoning that has simpler and more natural semantics than
epistemic logic, and can handle degrees of belief. On this basis, several lines of
research can be envisaged, some of which were already investigated in the recent
past

– Comparative certainty logic. Rather than using weighted formulas, one might
wish to represent at a syntactic level statements of the form “p is more certain

than q”. This kind of statements can be to some extent captured by GPL. The
idea is to define a partial certainty ordering on a propositional belief base,
and to induce a partial order on the propositional language that completes
it, via suitable inference (see [17,26] for examples of such logics). This topic
is related to Lewis logics of comparative possibility [27].

– Symbolic possibilistic logic. Instead of using weights from a totally ordered
scale, one may use pairs (p, x) where x is a symbolic entity that stands for
an unknown weight. Then we can model the situation where only a partial



ordering between ill-known weights is known. See [28] for this approach. It
differs from comparative certainty logic [26], because the latter does not rely
on the principle of minimal specificity at work in possibilistic logic.

– The logic of capacities. The connection between epistemic logic and possibil-
ity theory can be extended to general capacities (monotonic set-functions).
The corresponding modal logics are then non-normal, only classical, and the
semantics in terms of capacities is close to neighborhood semantics. This
enlarged logical framework seems to capture some inconsistency-tolerant log-
ics (like Belnap logic [8]). See for instance [29].

– Multisource logic. Not only can we attach certainty weights to propositional
formulas, but we can attach to them sources (agents) that supply this infor-
mation. So we can extend possibilistic formulas with labels describing groups
of agents, and extend the corresponding inference machinery [30], so as to
compute for each proposition which agents believe it and to what extent.

– Multiagent epistemic reasoning. Finally, it would be of interest to apply GPL
to problems where an agent’s decisions are based on what agents mutually
know about each other’s knowledge. It would mean extending GPL to nested
modalities labelled by agents, and compare to the state of the art in multia-
gent modal logics [9]. A question to address is whether accessibility relations
of usual epistemic logics are needed or not to solve such problems. This is a
topic of interest, not explored yet.

References

1. Dubois, D., Prade, H.: Formal representations of uncertainty. In: Bouyssou, D.E.
(ed.) Decision-Making - Concepts and Methods, pp. 85–156. Wiley, Hoboken
(2009). Chapter 3

2. Shackle, G.: Expectation in Economics. Cambridge University Press, Cambridge
(1949)

3. Cohen, L.: The Probable and the Provable. Clarendon Press, Oxford (1977)
4. Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28

(1978)
5. Dubois, D., Prade, H.: Possibility theory: qualitative and quantitative aspects. In:

Gabbay, D., Smets, P. (eds.) Handbook of Defeasible Reasoning and Uncertainty
Management Systems, vol. 1, pp. 169–226. Kluwer Academic, Dordrecht (1998)

6. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Gabbay, C.D., Hogger,
J., Robinson, D.N. (eds.) Handbook of Logic in Artificial Intelligence and Logic
Programming, vol. 3, pp. 439–513. Oxford University Press, Oxford (1994)

7. Spohn, W.: The Laws of Belief. Oxford University Press, Oxford (2012)
8. Belnap, N.D.: A useful four-valued logic. In: Epstein, G. (ed.) Modern Uses of

Multiple-Valued Logic, pp. 8–37. Reidel, Dordrecht (1977)
9. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT

Press, Cambridge (1995)
10. Banerjee, M., Dubois, D.: A simple logic for reasoning about incomplete knowledge.

Int. J. Approx. Reason. 55(2), 639–653 (2014)
11. Banerjee, M., Dubois, D., Godo, L., Prade, H.: On the relation between possibilistic

logic and modal logics of belief and knowledge. J. Appl. Non Class. Log. 27(3–4),
206–224 (2017)



12. Halpern, J.Y., Moses, Y.: Toward a theory of knowledge and ignorance: preliminary 
report. In: Apt, K. (ed.) Logics and Models of Concurrent Systems, vol. 13, pp. 
459–476. Springer, Heidelberg (1985). 
https://doi.org/10.1007/978-3-642-82453-1 16

13. Ciucci, D., Dubois, D.: A modal theorem-preserving translation of a class of three-
valued logics of incomplete information. J. Appl. Non Class. Log. 23, 321–352 
(2013)

14. Dubois, D., Prade, H.: Qualitative and semi-quantitative modeling of uncertain 
knowledge - a discussion. In: Beierle, C., Brewka, G., Thimm, M. (eds.) Computa-
tional Models of Rationality, Essays Dedicated to Gabriele Kern-Isberner on the 
Occasion of her 60th Birthday, pp. 280–296. College Publications (2016)

15. Dubois, D., Prade, H.: Possibilistic logic - an overview. In: Siekmann, J.H. (ed.) 
Computational Logic. Handbook of the History of Logic, vol. 9, pp. 283–342. Else-
vier, Amsterdam (2014)

16. Rescher, N.: Plausible Reasoning. Van Gorcum, Amsterdam (1976)
17. Dubois, D., Prade, H., Schockaert, S.: Generalized possibilistic logic: foundations 

and applications to qualitative reasoning about uncertainty. Artif. Intell. 252, 139–
174 (2017)

18. Benferhat, S., Dubois, D., Prade, H.: Possibilistic and standard probabilistic 
semantics of conditional knowledge bases. J. Log. Comput. 9(6), 873–895 (1999)

19. Benferhat, S., Dubois, D., Prade, H.: Practical handling of exception-tainted rules 
and independence information in possibilistic logic. Appl. Intell. 9(2), 101–127 
(1998)

20. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif. 
Intell. 55(1), 1–60 (1992)

21. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)

22. Lang, J.: Possibilistic logic as a logical framework for min-max discrete optimisation 
problems and prioritized constraints. In: Jorrand, P., Kelemen, J. (eds.) FAIR 1991. 
LNCS, vol. 535, pp. 112–126. Springer, Heidelberg (1991). https://doi.org/10.1007/

3-540-54507-7 10
23. Ben Amor, N., Dubois, D., Gouider, H., Prade, H.: Preference modeling with pos-

sibilistic networks and symbolic weights: a theoretical study. In: Proceedings of 
ECAI 2016, pp. 1203–1211 (2016)

24. Dubois, D., Prade, H., Schockaert, S.: Stable models in generalized possibilistic 
logic. In: Proceedings of KR 2012, pp. 519–529 (2012)

25. Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47, 3–41 (2006)
26. Touazi, F., Cayrol, C., Dubois, D.: Possibilistic reasoning with partially ordered 

beliefs. J. Appl. Log. 13(4), 770–798 (2015)

27. Lewis, D.: Counterfactuals. Blackwell Publishers, Worcester (1986)
28. Cayrol, C., Dubois, D., Touazi, F.: Symbolic possibilistic logic: completeness and 

inference methods. J. Log. Comput. 28(1), 219–244 (2018)
29. Ciucci, D., Dubois, D.: A two-tiered propositional framework for handling multi-

source inconsistent information. In: Antonucci, A., Cholvy, L., Papini, O. (eds.) 
ECSQARU 2017. LNCS (LNAI), vol. 10369, pp. 398–408. Springer, Cham (2017). 
https://doi.org/10.1007/978-3-319-61581-3 36

30. Belhadi, A., Dubois, D., Khellaf-Haned, F., Prade, H.: Multiple agent possibilistic 
logic. J. Appl. Non Class. Log. 23(4), 299–320 (2013)


