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TwIRTee design exploration with Capella and 

 IP-XACT 

Bassem Ouni1, Pierre Gaufillet1, a, Philippe Cuenot1, b 
1 : IRT Saint-Exupéry, 118 route de Narbonne, 31042 Toulouse, France 

 Abstract— With the huge increase of embedded devices, model driven engineering becomes necesseray in order to 
cover a large spectrum of multiple abstraction levels. System models are exploited for design specification, system 
evaluation, verification and validation. Nowadays, no single modeling language and environment covers all these 
aspects. While Capella tool fits well to the most early stages of the development process, IP-XACT standard provides 
powerful capabilities to refine the design artifacts of the hardware point of view that appear during the latest phase 
of the design. While using different modeling languages for different purpose is perfectly acceptable in a development 
process, it is important to guarantee that information remains consistent across all models. This is why we build a 
formalized bridge between Capella and IP-XACT. In this paper, the transformation Capella /IP-XACT is described. 
The whole approach is illustrated by the design of TwIRTee – the robotic demonstrator of INGEQUIP – before 
concluding. 
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I.  INTRODUCTION 

 This work is achieved under the INGEQUIP project at the Toulouse Institut de Recherche Technologique (IRT) 
Saint-Exupéry. IRTs are new research structures established under the auspices of the French Agence Nationale 
de la Recherche (ANR). IRTs are aimed at favouring the transfer of innovation from laboratories to industries. 
Towards this goal, IRTs gather engineers coming from small to large companies from various industrial 
domains, and researchers from public universities and national research agencies. As an example, INGEQUIP 
covers the space, aeronautics and automotive systems domains.  

 INGEQUIP team targets to study and propose solutions for supporting closely integrated development of the 
main technical domains involved in embedded equipment engineering – system, eleectronics and software 
engineering. A key element for reaching such goal is to ensure the continuity and consistency of information in 
the whole chain of activities. In INGEQUIP, the choice has been to obtain this property by relying on models 
and model transformations. The set of requirements regarding an equipment is usually divided into two 
categories: functional requirements and non functional requirements. Functional requirements include the 
system’s behavior, capabilities and characteristics as specified by stakeholders whereas non-functional 
properties or requirements define criteria that can be used to evaluate the operations of the system. In order to 
design the system and associate to the design elements the realized functional and non functional requirements, 
several modeling languages are available among which AADL [1] – Architecture and Analysis Design 
Language, AUTOSAR [2], Capella [3], EAST-ADL [4], SysML [5] and UML [6]  have been considered. While 
Capella, EAST-ADL and SysML fit system engineering, AADL, AUTOSAR and UML are focused on software 
and IP-XACT [7] refines the hardware architecture. 
 The transformation Capella/IP-XACT is adapted in INGEQUIP in order to provide most viewpoints commonly 
used by designers of embedded equipment at system and hardware levels: functional breakdown, logical and 
physical architecture, hardware architecture, formal behavioral descriptions; they are supported by a number of 
tools widely available: Capella and Eclipse Modeling Framework which allows to develop easily tools 
extensions.  
 Consistently with the orientation of INGEQUIP, a transformation has then been defined and developed for 
ensuring a seamless transition from system engineering stage to hardware engineering stage. 
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In this paper, we therefore begin in section 2 by introducing the state of the art of engineering models 
transformation. Then, section 3 presents a first comparison between the semantics of Capella and IP-XACT and 
describes the mapping of the transformation between Capella physical model and IP-XACT. The whole 
approach is illustrated by some elements coming from the design of TwIRTee – the robotic demonstrator of 
INGEQUIP – in section 4 before concluding in section 5. 

II. RELATED WORKS 

In order to achieve an early analysis of the specification, the verification of functional and non-functional 
properties of the system, and even code generation for the targeted hardware platform, several studies have 
proposed comparable transformations between high level models.  
 
In [8], the UML-MARTE has been used to represent the various IP-XACT features. The authors focus only on 
four top-level elements. This work allows possibility for IP-XACT to extend the formalism with timing aspects, 
while MARTE provides graphical editing functionalities and a way to experiment on extensions. 
In [9], AADL is used for modelling the properties of embedded  system architecture, including the application’s 
tasks, the hardware platform and the operating system services in order to characterize the energy overhead of 
embedded operating system . The authors propose an AADL model transformation in order to be exploited by a 
multiprocessor simulation tool named STORM (Simulation TOol for Real-time Multiprocessor scheduling). 
AADL provides hardware and software architectures together with the scheduling policy; STORM simulates the 
system behaviour using all the characteristics (task execution time, processor functioning conditions, etc.) in 
order to obtain the chronological track of all the scheduling events that occurred at run time, and compute 
various real-time metrics in order to analyse the system behaviour and performances from various point of 
views.  
In this paper, the transformation of Capella to IP-XACT models target to cover the various levels of abstraction 
when modeling systems. We take into account the system behavior and the hardware/software mapping. Next 
section will detail the transformation flow and how it exploits the complementarity of Capella and AADL in 
order to cover various embedded system aspects at high level modeling step. 

III. CAPELLA/IP-XACT TRANSFORMATION APPROACH 

A. The proposed approach 

As Capella and IP-XACT partially overlap, the first question that has to be answered before defining the 
transformations from Capella to IP-XACT is the level at which this transformation should be performed. 
Capella is clearly positioned on the most abstract part of the system development process with the Operational 
Analysis, focusing on the capture of stakeholders’ needs, and the System analysis, focusing on the functional 
definition of the system. As for IP-XACT, it doesn’t offer support for such kind of analysis. As they deal with 
the system’s architecture, Capella’s physical models share lots of concepts with IP-XACT, in particular the 
capability to express hardware architecture components. IP-XACT however goes further by delivering IP 
descriptions of components to EDA tools, and for exchanging IP descriptions of designs between EDA tools. 
Also, IP-XACT details the communication between components under the hardware architecture. 
 
Capella provides system modeling capabilities at several layers of abstraction:  

 At operational level, the customer needs, the actors, the missions and the activities are described.  
 At system level, a Capella model defines how system can satisfy the former operational need. 
 Capella logical level modeling starts from functional and non-functional analysis and builds one or 

several decompositions of the system into logical components.  
 The building of logical components is performed at physical level: the “final” architecture of the 

system introducing architectural patterns, services and components, and it makes the logical 
architecture evolve according to implementation, constraints and choices.  

Figure 1 summarizes the relationship between functional, logical and physical architecture in a Capella model. 
The Capella model’s physical architecture includes functional, logical and physical components. In this work, 
we interest to parse the physical components of this physical architecture. 
Whatever the abstraction level of the considered components is, IP-XACT also brings the capability to specify 
additional information about the hardware components compared to Capella. Consequently, the simplest 
articulation between the two languages is at the level physical architecture. Considering that Capella is well 
adapted to describing the logical architecture and a first abstract level of physical architecture, and that it is a 
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good practice to limit the risk of data duplication and inconsistency between Capella and IP-XACT models, the 
best solution is to delay as far as possible the transfer of information. 
To transform Capella to IP-XACT models, Eclipse modeling framework tool (EMF) [10] is used, the input of 
the proposed approach is the Capella graphical and Ecore model. Also, we generate from the XSD meta-model 
of IP-XACT an Ecore reference meta-model. As shown in figure 2, the model transformation will therefore take 
as input the most detailed physical architecture in Capella, and the design process will go on in IP-XACT.  
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Figure 1- Capella functional, logical and physical architectures 
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Figure 2- Capella/IP-XACT transformation methodology 
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Figure 3: Equipment design process  
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The design process proposed in INGEQUIP project, summarized in Figure 3, depicts the engineering activities 
to support the conception of an electronic control unit and highlighted relationship between tool environment 
and modeling language. First Capella captures the system as introduced above, by taking care of modeling of 
function breakdown of the system, and then allocating them into the desired logical architecture. The definition 
of the physical architecture captures the hardware topology of the system on which the software components are 
allocated for execution. The processing element can be a processor or a hardware accelerator such as FPGA or 
ASIC. Moreover when electronic component architecture required to be detailed for the purpose of the future 
hardware detailed design, the construction allow the capture structural decomposition of complex component 
(can be processor, interconnect and specific hardware IP, etc...). 
The hardware electronic architecture is then transformed into hardware domain interchange standard 
respectively IP-XACT, to gain benefit of supported feature for elaboration of virtual platform built with 
SystemC components. The relationship between a hardware physical component from Capella and an IP-XACT 
component is straightforward. The main purpose of the transformation is to make possible the assembly of the 
existing component and bus interface available from the SystemC library of virtual platform tool environment. 
Typical component can be for example a complete model of a microcontroller or a core processor connected 
with the required bus to specific hardware accelerator. When hardware accelerator need to be designed, its 
respective interfaces can be capture in IP-XACT (for example register declaration, memory region, etc...). The 
use of “template” feature of virtual platform tool permits to initiative the description of the hardware component 
to then implement the behavioral part. The overall electronic architecture with hardware component 
instantiation and binding is then performed according to relation and feature of IP-XACT import capabilities of 
the simulation tool or with a specific model to text transformation to comply with tool syntax.  The verification 
and the validation of the complete electronic architecture are performed by simulation using the virtual platform. 
The performance and possible tradeoff analysis can be completed too in order to ensure a robust and sound 
design. It shall be noticed that all modification performed during simulation experimentation must re-imported 
in IP-XACT to capitalize electronic architecture independent of any simulation formalism. 

B. The transformation flow 

To transform Capella to IP-XACT models, we explore the contents of a Capella physical model and generate the 
appropriate IP-XACT code following the Capella/ IP-XACT concepts analogy proposed in Table 1. The 
equivalent of an IP-XACT processor and component are Capella node physical components with respectively a 
software execution unit and hardware kinds. A physical component with behavior nature and software 
application kind is not considered till we interest to the physical architecture. 
Physical buses components are not modeled in Capella meta-models. For this reason, using Capella ecore meta-
models, we generate Capella EMF code and exploit it using Java to extract physical buses from Capella model 
and map them to IP-XACT bus definition and abstraction definition types. The determination of buses is 
elaborated by exploring the Capella physical components, the physical links which are the 
communication/transportation means linking node Physical components, and physical ports. As depicted in 
figure 4, the physical links connected by physical ports are gathered in “AllconnectedLinks” list. For each 
element of the list, a physical bus component, with a bus port, will be generated to bind the physical links. Then, 
as showed in figure 5, buses are connected to external ports (tip ports) which are ports of physical components 
having no subcomponents. This established link is called BusLink. 
BusLinks are divided into segments that don't cross physical component boundaries. These segments represent 
synthetic links. Synthetic ports includes the tipports and new ports which are generated at each intersection 
between BusLinks and physical components. The algorithm describing buses extraction is detailed in algorithm 
1. The output of this algorithm is the list of synthetic ports and links that will be mapped to IP-XACT elements. 
We exploit EMF plugin to explore the contents of a Capella model and generate the appropriate IP-XACT code 
following the Capella/AADL concepts analogy proposed in Table 1. 
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Figure 4 – Determination of connected physical links  
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 Figure 5 – Generation of synthetic links and ports 

IV. APPLICATION TO THE TWIRTEE ROVER 

TwIRTee is a three-wheeled autonomous rover developed within the INGEQUIP project. Its operational role is 
very simple: move itself on some predefined tracks from a point A to a point B (a "mission") while avoiding 
other rovers. To achieve this mission, it is fitted with several sensors (camera, odometry sensors, global 
positioning…) and two main actuators (motors). 

The development of the rover is not an objective per se. Indeed, TwIRTee is designed so as to cover the major 
topics addressed in the project namely: early validation, architecture exploration, performance prediction, and 
formal verification. Furthermore, it is aimed at covering issues, and functional and architectural elements 
specific to the three industrial domains. Accordingly, missions, functions and the architectural elements are 
determined so as to tackle or exercise one or several issues: for instance, “the localization” function relies 
partially on imaging so as to exercise hardware / software space exploration and co-design; the highly redundant 
architecture provides the experimental setup to perform early performance evaluations (including 
dependability), etc. 

The computing platform of TwIRTee is composed of 2 COM/MON channels that host the main “mission” 
functions and one channel dedicated to power supply generation and motor control. In order to cover issues 
related to the development of safety-critical Man Machine Interfaces, the system also contains a remote operator 
station. Figure 6, Figure 7 and figure 8 show the elements of TwIRTee design in Capella and their 
corresponding elements in IP-XACT. 
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Algorithm 1 – Capella Bus generation algorithm 
 

1. Get the physical architecture from Project in Capella model. 
2. Extract the list of physical ports pps physical links pls and a cross reference between them. 
3. Determinate the list allConnectedLinks including the sets of pls connected by pps.  
4. for each element of allConnectedLinks 

a. Get the category of the link 
b. Create the list of external ports tipports 
c. Create a bus instance having the same name of category 
d. Associate the bus instances with tipports in a BiMap structure bus2TipPorts (key=bus instance, value=tipports). 

5. end for 
6. Initialize the list of synthetic ports with the tip ports and synthetic links. 
7. for each element of bus2TipPorts 

a. Search the closest common physical component ancestor PcCommonAncestor of tipPorts 
b. Create the Physical component that will model physically the bus instance: PCBus 
c. Add new properties to PCBus: isBus and Bustype property 
d. Add a port BusPort to the PCBus 
e. Add PCbus to PcCommonAncestor 
f. for each port p of bus2TipPorts 

i. Create a link from tip port p to BusPort 
ii. Divide this link into segments that don't cross Physical Component boundaries 

iii. Update the list of synthetic ports and links 
g. end for 

8. end for 

 
 

Table I. Mapping of Capella – IP-XACT concepts 

Case 
         Capella 

Condition 
IP-XACT 

A PhysicalComponent nature =PhysicaComponentNature::NODE and 
kind=PhysicalComponentKind::SOFTWARE_EXECUTION_UNIT

CPU type 

B PhysicalComponent other than above Component type (including  VLNV 
identifier, the model type, design 
type, view type) 

C PhysicalPort See Bus extraction algorithm (The generated buses) 
C.1) Each physical port is parsed to a transactional port type 

C.1) Transactional port type (Ports 
type, port type)   
  

D PhysicalLink See Bus extraction algorithm (The generated buses) 
 
D.1) The Capella generated buses 
 
 
D.2) For each link between a physical component and a 
bus, we define a bus interface in the physical component with port 
mapping between the component’s physical ports and the 
abstraction definition’s logical ports 
 
D.3) We search links between components within the same design 
(friend component links), that will be transformed to 
interconnections under the container component design with their 
active interfaces. 
 
D.4) We search hierarchical links between a component and its 
container (component to container component links) that will be 
transformed to interconnections under the container component 
design with an active interface and hierarchical interface. 

 
 
D.1) Abstraction definition/Bus 
definition pair (with mandatory tags 
and links between them). 
D.2)  Bus interface ( including bus 
type, abstraction types, abstraction 
ref, port maps, VLNV)   
 
 
D.3) Interconnection Type (active 
interfaces referring bus types) 
 
 
 
D.4) Interconnection Type (active 
interface and hierarchical interface) 
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Figure 6 – Right channel design: Twirtee Capella model part   

 

 
 

Figure 7 – Right channel IP-XACT component   

V. CONCLUSION 

In this paper, we presented a transformation from high level Capella physical architecture to a preliminary 
hardware architecture in IP-XACT. The goal of this approach is to implement a seamless development process 
from system definition to hardware components design. The approach has been applied and validated during the 
design of the TwIRTee rover demonstrator. The resulting physical model has been used to evaluate system 
performance and explore the design space. 
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Figure 8 – Right channel component’s design in IP-XACT   
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