
OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

To cite this version:
Ouni, Bassem and Gauffillet, Pierre and Cuenot, Philippe : TwIRTee
design exploration with Capella and IP-XAC (DVCon Europe (Design and
Verification Conference Exhibition), Munich, Allemagne 2016 (19 - 20
Octobre)

This is an author’s version published in: http://oatao.univ-toulouse.fr/n° 18229

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/200764315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tech-oatao@listes-diff.inp-toulouse.fr

1

TwIRTee design exploration with Capella and

 IP-XACT

Bassem Ouni1, Pierre Gaufillet1, a, Philippe Cuenot1, b
1 : IRT Saint-Exupéry, 118 route de Narbonne, 31042 Toulouse, France

 Abstract— With the huge increase of embedded devices, model driven engineering becomes necesseray in order to
cover a large spectrum of multiple abstraction levels. System models are exploited for design specification, system
evaluation, verification and validation. Nowadays, no single modeling language and environment covers all these
aspects. While Capella tool fits well to the most early stages of the development process, IP-XACT standard provides
powerful capabilities to refine the design artifacts of the hardware point of view that appear during the latest phase
of the design. While using different modeling languages for different purpose is perfectly acceptable in a development
process, it is important to guarantee that information remains consistent across all models. This is why we build a
formalized bridge between Capella and IP-XACT. In this paper, the transformation Capella /IP-XACT is described.
The whole approach is illustrated by the design of TwIRTee – the robotic demonstrator of INGEQUIP – before
concluding.

 Keywords— Embedded systems, Model driven engineering, Model transformation , Capella, IP-XACT.

I. INTRODUCTION

 This work is achieved under the INGEQUIP project at the Toulouse Institut de Recherche Technologique (IRT)
Saint-Exupéry. IRTs are new research structures established under the auspices of the French Agence Nationale
de la Recherche (ANR). IRTs are aimed at favouring the transfer of innovation from laboratories to industries.
Towards this goal, IRTs gather engineers coming from small to large companies from various industrial
domains, and researchers from public universities and national research agencies. As an example, INGEQUIP
covers the space, aeronautics and automotive systems domains.

 INGEQUIP team targets to study and propose solutions for supporting closely integrated development of the
main technical domains involved in embedded equipment engineering – system, eleectronics and software
engineering. A key element for reaching such goal is to ensure the continuity and consistency of information in
the whole chain of activities. In INGEQUIP, the choice has been to obtain this property by relying on models
and model transformations. The set of requirements regarding an equipment is usually divided into two
categories: functional requirements and non functional requirements. Functional requirements include the
system’s behavior, capabilities and characteristics as specified by stakeholders whereas non-functional
properties or requirements define criteria that can be used to evaluate the operations of the system. In order to
design the system and associate to the design elements the realized functional and non functional requirements,
several modeling languages are available among which AADL [1] – Architecture and Analysis Design
Language, AUTOSAR [2], Capella [3], EAST-ADL [4], SysML [5] and UML [6] have been considered. While
Capella, EAST-ADL and SysML fit system engineering, AADL, AUTOSAR and UML are focused on software
and IP-XACT [7] refines the hardware architecture.
 The transformation Capella/IP-XACT is adapted in INGEQUIP in order to provide most viewpoints commonly
used by designers of embedded equipment at system and hardware levels: functional breakdown, logical and
physical architecture, hardware architecture, formal behavioral descriptions; they are supported by a number of
tools widely available: Capella and Eclipse Modeling Framework which allows to develop easily tools
extensions.
 Consistently with the orientation of INGEQUIP, a transformation has then been defined and developed for
ensuring a seamless transition from system engineering stage to hardware engineering stage.

a Seconded from Airbus, 316 route de Bayonne, 31000 Toulouse, France.
b Seconded from Continental Automotive France, 1 avenue Paul Ourliac, 31036 Toulouse France.

2

In this paper, we therefore begin in section 2 by introducing the state of the art of engineering models
transformation. Then, section 3 presents a first comparison between the semantics of Capella and IP-XACT and
describes the mapping of the transformation between Capella physical model and IP-XACT. The whole
approach is illustrated by some elements coming from the design of TwIRTee – the robotic demonstrator of
INGEQUIP – in section 4 before concluding in section 5.

II. RELATED WORKS

In order to achieve an early analysis of the specification, the verification of functional and non-functional
properties of the system, and even code generation for the targeted hardware platform, several studies have
proposed comparable transformations between high level models.

In [8], the UML-MARTE has been used to represent the various IP-XACT features. The authors focus only on
four top-level elements. This work allows possibility for IP-XACT to extend the formalism with timing aspects,
while MARTE provides graphical editing functionalities and a way to experiment on extensions.
In [9], AADL is used for modelling the properties of embedded system architecture, including the application’s
tasks, the hardware platform and the operating system services in order to characterize the energy overhead of
embedded operating system . The authors propose an AADL model transformation in order to be exploited by a
multiprocessor simulation tool named STORM (Simulation TOol for Real-time Multiprocessor scheduling).
AADL provides hardware and software architectures together with the scheduling policy; STORM simulates the
system behaviour using all the characteristics (task execution time, processor functioning conditions, etc.) in
order to obtain the chronological track of all the scheduling events that occurred at run time, and compute
various real-time metrics in order to analyse the system behaviour and performances from various point of
views.
In this paper, the transformation of Capella to IP-XACT models target to cover the various levels of abstraction
when modeling systems. We take into account the system behavior and the hardware/software mapping. Next
section will detail the transformation flow and how it exploits the complementarity of Capella and AADL in
order to cover various embedded system aspects at high level modeling step.

III. CAPELLA/IP-XACT TRANSFORMATION APPROACH

A. The proposed approach

As Capella and IP-XACT partially overlap, the first question that has to be answered before defining the
transformations from Capella to IP-XACT is the level at which this transformation should be performed.
Capella is clearly positioned on the most abstract part of the system development process with the Operational
Analysis, focusing on the capture of stakeholders’ needs, and the System analysis, focusing on the functional
definition of the system. As for IP-XACT, it doesn’t offer support for such kind of analysis. As they deal with
the system’s architecture, Capella’s physical models share lots of concepts with IP-XACT, in particular the
capability to express hardware architecture components. IP-XACT however goes further by delivering IP
descriptions of components to EDA tools, and for exchanging IP descriptions of designs between EDA tools.
Also, IP-XACT details the communication between components under the hardware architecture.

Capella provides system modeling capabilities at several layers of abstraction:

 At operational level, the customer needs, the actors, the missions and the activities are described.
 At system level, a Capella model defines how system can satisfy the former operational need.
 Capella logical level modeling starts from functional and non-functional analysis and builds one or

several decompositions of the system into logical components.
 The building of logical components is performed at physical level: the “final” architecture of the

system introducing architectural patterns, services and components, and it makes the logical
architecture evolve according to implementation, constraints and choices.

Figure 1 summarizes the relationship between functional, logical and physical architecture in a Capella model.
The Capella model’s physical architecture includes functional, logical and physical components. In this work,
we interest to parse the physical components of this physical architecture.
Whatever the abstraction level of the considered components is, IP-XACT also brings the capability to specify
additional information about the hardware components compared to Capella. Consequently, the simplest
articulation between the two languages is at the level physical architecture. Considering that Capella is well
adapted to describing the logical architecture and a first abstract level of physical architecture, and that it is a

3

good practice to limit the risk of data duplication and inconsistency between Capella and IP-XACT models, the
best solution is to delay as far as possible the transfer of information.
To transform Capella to IP-XACT models, Eclipse modeling framework tool (EMF) [10] is used, the input of
the proposed approach is the Capella graphical and Ecore model. Also, we generate from the XSD meta-model
of IP-XACT an Ecore reference meta-model. As shown in figure 2, the model transformation will therefore take
as input the most detailed physical architecture in Capella, and the design process will go on in IP-XACT.

Functional
components

Logical
components

Physical
components

Functional architecture

Logical architecture

Physical architecture

Refinement

Realization
Figure 1- Capella functional, logical and physical architectures

Functional
requirements

Platform
constraints

Capella
metamodels

IP‐XACT models

Capella Physical
level models

Transfer designs between
various design languages

Non‐functional
requirements

Provide a single description of
IP to partners regardless the
used languages and tools

IP‐XACT
metamodels

Capella Ecore
metamodels

IP‐XACT Ecore
metamodels

EMF Capella to IP‐XACT transformation

Figure 2- Capella/IP-XACT transformation methodology

System
Functional
breakdown

System Logical
architecture

System Physical
Architecture

Capella / Arcadia

allocation

allocation

HW Model DB

Virtual Platform

Preliminary
Hardware
architecture

Storage of
detailed model
And architecture

Component
Development

and test

export
Performance
and Tradeoff

Component
code skeletons

generation

manual
Implementation

generation

manual
annotation

Semi generation

Hardware
prototype

IP‐XACT

Synthesis

Refine

Figure 3: Equipment design process

4

The design process proposed in INGEQUIP project, summarized in Figure 3, depicts the engineering activities
to support the conception of an electronic control unit and highlighted relationship between tool environment
and modeling language. First Capella captures the system as introduced above, by taking care of modeling of
function breakdown of the system, and then allocating them into the desired logical architecture. The definition
of the physical architecture captures the hardware topology of the system on which the software components are
allocated for execution. The processing element can be a processor or a hardware accelerator such as FPGA or
ASIC. Moreover when electronic component architecture required to be detailed for the purpose of the future
hardware detailed design, the construction allow the capture structural decomposition of complex component
(can be processor, interconnect and specific hardware IP, etc...).
The hardware electronic architecture is then transformed into hardware domain interchange standard
respectively IP-XACT, to gain benefit of supported feature for elaboration of virtual platform built with
SystemC components. The relationship between a hardware physical component from Capella and an IP-XACT
component is straightforward. The main purpose of the transformation is to make possible the assembly of the
existing component and bus interface available from the SystemC library of virtual platform tool environment.
Typical component can be for example a complete model of a microcontroller or a core processor connected
with the required bus to specific hardware accelerator. When hardware accelerator need to be designed, its
respective interfaces can be capture in IP-XACT (for example register declaration, memory region, etc...). The
use of “template” feature of virtual platform tool permits to initiative the description of the hardware component
to then implement the behavioral part. The overall electronic architecture with hardware component
instantiation and binding is then performed according to relation and feature of IP-XACT import capabilities of
the simulation tool or with a specific model to text transformation to comply with tool syntax. The verification
and the validation of the complete electronic architecture are performed by simulation using the virtual platform.
The performance and possible tradeoff analysis can be completed too in order to ensure a robust and sound
design. It shall be noticed that all modification performed during simulation experimentation must re-imported
in IP-XACT to capitalize electronic architecture independent of any simulation formalism.

B. The transformation flow

To transform Capella to IP-XACT models, we explore the contents of a Capella physical model and generate the
appropriate IP-XACT code following the Capella/ IP-XACT concepts analogy proposed in Table 1. The
equivalent of an IP-XACT processor and component are Capella node physical components with respectively a
software execution unit and hardware kinds. A physical component with behavior nature and software
application kind is not considered till we interest to the physical architecture.
Physical buses components are not modeled in Capella meta-models. For this reason, using Capella ecore meta-
models, we generate Capella EMF code and exploit it using Java to extract physical buses from Capella model
and map them to IP-XACT bus definition and abstraction definition types. The determination of buses is
elaborated by exploring the Capella physical components, the physical links which are the
communication/transportation means linking node Physical components, and physical ports. As depicted in
figure 4, the physical links connected by physical ports are gathered in “AllconnectedLinks” list. For each
element of the list, a physical bus component, with a bus port, will be generated to bind the physical links. Then,
as showed in figure 5, buses are connected to external ports (tip ports) which are ports of physical components
having no subcomponents. This established link is called BusLink.
BusLinks are divided into segments that don't cross physical component boundaries. These segments represent
synthetic links. Synthetic ports includes the tipports and new ports which are generated at each intersection
between BusLinks and physical components. The algorithm describing buses extraction is detailed in algorithm
1. The output of this algorithm is the list of synthetic ports and links that will be mapped to IP-XACT elements.
We exploit EMF plugin to explore the contents of a Capella model and generate the appropriate IP-XACT code
following the Capella/AADL concepts analogy proposed in Table 1.

5

PC1

PC1.1

PC1.2

PC1.1.1
1

PC2

PC2.1

PL1

PL2

PL3

PP1

Bus 1

Bus 2

PC: Physical component
PL: Physical link
PP: Physical port

AllconnectedLinks(1)
AllconnectedLinks(2)

Figure 4 – Determination of connected physical links

PC1

PC1.1

PC1.2

PC1.1.1

PC2

PC2.1

PL1

PL2

PL3

PP1

Bus 1

Bus 2

1
2

3
4

6

5

7

8

9
10

Bus port
Synthetic port
Synthetic link

 Figure 5 – Generation of synthetic links and ports

IV. APPLICATION TO THE TWIRTEE ROVER

TwIRTee is a three-wheeled autonomous rover developed within the INGEQUIP project. Its operational role is
very simple: move itself on some predefined tracks from a point A to a point B (a "mission") while avoiding
other rovers. To achieve this mission, it is fitted with several sensors (camera, odometry sensors, global
positioning…) and two main actuators (motors).

The development of the rover is not an objective per se. Indeed, TwIRTee is designed so as to cover the major
topics addressed in the project namely: early validation, architecture exploration, performance prediction, and
formal verification. Furthermore, it is aimed at covering issues, and functional and architectural elements
specific to the three industrial domains. Accordingly, missions, functions and the architectural elements are
determined so as to tackle or exercise one or several issues: for instance, “the localization” function relies
partially on imaging so as to exercise hardware / software space exploration and co-design; the highly redundant
architecture provides the experimental setup to perform early performance evaluations (including
dependability), etc.

The computing platform of TwIRTee is composed of 2 COM/MON channels that host the main “mission”
functions and one channel dedicated to power supply generation and motor control. In order to cover issues
related to the development of safety-critical Man Machine Interfaces, the system also contains a remote operator
station. Figure 6, Figure 7 and figure 8 show the elements of TwIRTee design in Capella and their
corresponding elements in IP-XACT.

6

Algorithm 1 – Capella Bus generation algorithm

1. Get the physical architecture from Project in Capella model.
2. Extract the list of physical ports pps physical links pls and a cross reference between them.
3. Determinate the list allConnectedLinks including the sets of pls connected by pps.
4. for each element of allConnectedLinks

a. Get the category of the link
b. Create the list of external ports tipports
c. Create a bus instance having the same name of category
d. Associate the bus instances with tipports in a BiMap structure bus2TipPorts (key=bus instance, value=tipports).

5. end for
6. Initialize the list of synthetic ports with the tip ports and synthetic links.
7. for each element of bus2TipPorts

a. Search the closest common physical component ancestor PcCommonAncestor of tipPorts
b. Create the Physical component that will model physically the bus instance: PCBus
c. Add new properties to PCBus: isBus and Bustype property
d. Add a port BusPort to the PCBus
e. Add PCbus to PcCommonAncestor
f. for each port p of bus2TipPorts

i. Create a link from tip port p to BusPort
ii. Divide this link into segments that don't cross Physical Component boundaries

iii. Update the list of synthetic ports and links
g. end for

8. end for

Table I. Mapping of Capella – IP-XACT concepts

Case
 Capella

Condition
IP-XACT

A PhysicalComponent nature =PhysicaComponentNature::NODE and
kind=PhysicalComponentKind::SOFTWARE_EXECUTION_UNIT

CPU type

B PhysicalComponent other than above Component type (including VLNV
identifier, the model type, design
type, view type)

C PhysicalPort See Bus extraction algorithm (The generated buses)
C.1) Each physical port is parsed to a transactional port type

C.1) Transactional port type (Ports
type, port type)

D PhysicalLink See Bus extraction algorithm (The generated buses)

D.1) The Capella generated buses

D.2) For each link between a physical component and a
bus, we define a bus interface in the physical component with port
mapping between the component’s physical ports and the
abstraction definition’s logical ports

D.3) We search links between components within the same design
(friend component links), that will be transformed to
interconnections under the container component design with their
active interfaces.

D.4) We search hierarchical links between a component and its
container (component to container component links) that will be
transformed to interconnections under the container component
design with an active interface and hierarchical interface.

D.1) Abstraction definition/Bus
definition pair (with mandatory tags
and links between them).
D.2) Bus interface (including bus
type, abstraction types, abstraction
ref, port maps, VLNV)

D.3) Interconnection Type (active
interfaces referring bus types)

D.4) Interconnection Type (active
interface and hierarchical interface)

7

Figure 6 – Right channel design: Twirtee Capella model part

Figure 7 – Right channel IP-XACT component

V. CONCLUSION

In this paper, we presented a transformation from high level Capella physical architecture to a preliminary
hardware architecture in IP-XACT. The goal of this approach is to implement a seamless development process
from system definition to hardware components design. The approach has been applied and validated during the
design of the TwIRTee rover demonstrator. The resulting physical model has been used to evaluate system
performance and explore the design space.

ACKNOWLEDGMENT

The authors thank all people and industrial partners involved in the Ingequip project. This work is supported by
the French Research Agency (ANR) and by the industrial partners of IRT Saint-Exupéry Scientific Cooperation
Foundation (FCS): Actia Automotive, Airbus (a), Airbus Defense and Space, Continental Automotive (b),
SAGEM, Systerel, Thales Avionics, ASTC Design Partners, Space Codesign Systems.

8

Figure 8 – Right channel component’s design in IP-XACT

REFERENCES

[1] "Architecture Analysis and Design Langage (AADL), SAE standards," [Online]. http://standards.sae.org/as5506/.

[2] "AUTOSAR," [Online]. Available: http://www.autosar.org/.

[3] "Capella tool environement and Arcadia methodology," Thales group, 2015. https://www.polarsys.org/capella/arcadia.html.

[4] "EAST-ADL," [Online]. Available: http://www.east-adl.info/Specification.html.

[5] "SysML," [Online]. Available: http://www.omgsysml.org/.

[6] "UML," [Online]. Available: http://www.uml.org/.

[7] I. c. society, 1685-2014 - IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and Reusing IP within Tool
Flows, 2014.

[8] C. André, F. Mallet, A. Mehmood khan and R. De simone, "Modeling SPIRIT IP-XACT with UML MARTE," In Design Automation
and Test in Europe (DATE), MARTE Workshop, 2008.

[9] B. Ouni, C. Belleudy and E. Senn, "Accurate energy characterization of OS services in embedded systems," EURASIP Journal on
Embedded Systems, vol. 6, 2012.

[10] "Eclipse Modeling Framework," [Online]. Available: https://eclipse.org/modeling/emf/.

