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Abstract. Trianto A, Radjasa OK, Sabdono A, Muchlissin SI, Afriyanto R, Sulistiowati, Radjasa SK, Crews P, Mccauley E. 2019. 

Exploration culturable bacterial symbionts of sponges from Ternate Islands, Indonesia. Biodiversitas 20: 776-782. Multidrug resistance, 

(MDR) bacteria seriously threaten human health which causes a more difficult and extends the treatment period, and increases the risk of 

death. Sponges-associated bacteria, a well known for their rich in chemical classes and bioactivities, are the prolific producers of 

bioactive compounds. In order to search new sources of antibacterial compounds, we collected a total of 55 sponges from Ternate Island 

that provided 324 bacterial isolates. The data showed that sponges-isolates ratio in the anthropogenic area was relatively higher than the 

other collection sites. The isolates were screened for the antibacterial activity against Klebsiella pneumoniae-RSDK, K. pneumoniae-UI, 

Pseudomonas aeruginosa A-UI, P. aeruginosa B-UI, Staphylococcus aureus-UI, MRSA-UI, MRPA-UI, Bacillus subtilis-RSDK, B. 

subtilis-UI, Salmonella typhi-UI, and MDR E. coli. The isolates were able to inhibit 0-7 the pathogenic bacteria on 24 h and 48 h. The 

most active bacteria were identified as B. clausii, V. chiguensis, B. tropicus, P. marcusii, B. tropicus, V. parahaemolyticus, B. 

paramycoides, and V. dokdonensis. In conclusion, the sponges in the anthropogenic affected area have higher bacterial symbionts than 

that of in the pristine area. In this study, the results of isolation of the symbiont bacteria from sponge samples were obtained and 

morphologically observed for these bacterial isolates. The number of bacteria that were isolated were 133 bacterial isolates and ten 

isolates including producing active secondary metabolites 

Keywords:  Anthropogenic, bacteria, bioactive compounds, sponges, symbiont  

INTRODUCTION 

Multidrug resistance (MDR) bacteria are the pathogen 

that resistance to classical drugs by drug-inactivation or 

degradation and drug-target modification  (Zwama and 

Yamaguchi 2018). The rising of MDR pathogen has been 

triggered by the unwise use of antibiotic by individual, 

physician, or hospital. The pathogenic MDR infection has 

been raising around the globe and became a serious threat to 

human health, which may incorporate with other diseases 

causes the more difficult treatment, extend the treatment 

period, and increases the risk of death  (Yousefi et al. 2017). 

The marine environment is the largest habitat 

representing more than 70% of the earth surface. Most part 

of the marine environments remains unexplored and 

underexploited in comparison with terrestrial ecosystems  

(Joint et al. 2010). Indonesia is the global epicenter of 

marine biodiversity with the megadiverse organisms that 

harbor the major of the Earth's species. Geographically, 

Ternate waters located in the meeting point of Australian 

and Indonesian plates rich the marine organisms diversity. 

Marine organisms and their micro-symbionts are the 

potential producers of bioactive secondary metabolites 

against pathogenic bacteria. Several bioactive compounds 

produced by invertebrates have been assumed produced by 

an associated microorganism of their host. Previous 

evidence (Burgess et al. 2003; Radjasa et al. 2011) revealed 

that microorganism which associated with marine 

organisms would synthesize the secondary metabolites that 

mimic produced by the host. Many researches have been 

focused on bacterial isolation derived from marine 

invertebrates, especially sponges which assumed to have 

secondary metabolites that have the ability against clinical 

pathogens or marine pathogens (Bell 2008). Among the 

unusual niches for novel microbes are sponges, which host 

hundreds of different bacterial groups and contain diverse 

symbionts. Studies have shed light on sponge-microbial 

relationships and provided evidence that sponges harbor 

diverse and biotechnologically valuable symbionts  

(Simister et al. 2012). 

Sponges are one of the most potential marine biotic as 

the antibacterial compound resources. Sponge’s bioactive 

compound has been used as drug resources such as 

antibacterial, antitumor, anticancer, antifungal, anti-
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inflammatory, cytotoxic, antimicrobial, antivirus, 

antimalarial, antifouling, and immunosuppressive  (Mayer 

et al. 2010). As a whole, phylum Porifera possesses a 

striking level of taxonomic, genetic, and functional 

biodiversity. The taxonomic biodiversity of marine sponges 

and microbial symbionts is vast and only a small 

percentage of this biodiversity, i.e., relatively few case 

examples in proportion to the number of overall species of 

marine sponges in the world's oceans, has been described 

(Taylor et al. 2007). Overall, there is much to be learned 

from understanding nature's biodiversity. A deeper 

understanding of the groups of microorganisms is an 

important frontier for the discovery of new marine-derived 

small molecule scaffolds that will unveil new fields of 

discovery. It is therefore important to know the existence of 

sponge-associated bacteria and their potential, especially to 

prevent diseases caused by pathogenic bacteria  

(Wewengkang et al. 2014). The paper specifically reports 

the potential of marine bacteria derived from sponges with 

pharmacological potential against clinical pathogens. 

The rising number of infection by MDR pathogens urge 

to the discovery of a new drug that led intensive 

exploration of bioactive compounds from the sea. 

However, most of the bioactive compounds available in a 

small concentration in the marine organisms that become 

an obstacle in drug development for decades  (Pan et al. 

2008; Raghukumar 2008; Schultz et al. 2008). Symbiotic 

systems in which there is a strong likelihood of bioactive 

microbial metabolite synthesis offer attractive alternatives 

to chemical synthesis or extraction from natural sources. 

Some microsymbionts such as bacteria and fungi, able to 

maintain their ability in the production of bioactive 

compounds in an artificial system. The microorganisms can 

be used in a fermentation system to produce the targeted 

compound in large scale continuously (Hildebrand et al. 

2004).  

MATERIALS AND METHODS 

Sponges collection and bacteria isolation 

The sponge specimens were collected on April 21-24 

2018 in Ternate waters, North Maluku, Indonesia with 

SCUBA Diving from a depth of approximately 3-30 m. 

The collection sites were in Falajava beach, Taman Nukila, 

Big O1, Big O2, Tanjung Holl, and Taman Jikomolalo 

(Figure 1). The sponge specimen was kept in a coolbox 

with ice a until isolation of the bacteria process. A small 

part of each sponge was kept in 70% ethanol as a voucher 

for identification (Trianto et al. 2011).  

 

 

 

 

 

 

 
 

 
 

 

Figure 1. Research site in Ternate and Hiri Island, North Maluku (Moluccas) Province of Indonesia 
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Isolation, purification, morphological identification, and 

bacterial screening were conducted in Tropical Marine 

Biotechnology, Integrated Central Laboratory of Diponegoro 

University, Semarang, Indonesia. The sponge specimens 

were washed using sterile seawater three times, to separate 

the impurities attached on the sponges surface. Bacterial 

isolation was done using the dilution method (10-1, 10-2, 

10-3, 10-4 and 10-5). The bacteria were inoculated on the 

Zobell 2216E agar media from serial dilutions of 10-2, 10-

3, 10-4 and 10-5 and were incubated at 26C for seven 

days. Each bacterial colonies grew on the plate was separated 

according to shape, elevation, and color. The pure colonies 

were kept in slant cultures at-20 0C (Radjasa et al. 2007). 

Gram test 

Gram tests were carried out by using a KOH 3% string 

test and Gram staining test. KOH 3% string test was done 

according to Ali et al. (2016); Dash and Payyappilli (2016), 

a loopful of a bacterial colony from the culture plate was 

emulsified over glass slide in suspension of 3% KOH. 

Gram staining test was done according to Ayuningrum 

(2017), using gram’s staining solution A (crystal violet), 

solution B (lugol iodine), solution C (alcohol) and solution 

D (safranin). 

Antibacterial assay 

The sponge isolates were screened for the antibacterial 

activity against Klebsiella pneumoniae-RSDK, K. 

pneumoniae-UI, P. aeruginosa A-UI, P. aeruginosa B-UI, 

Staphylococcus aureus-UI, MRSA-UI, MRPA-UI, Bacillus 

subtilis-RSDK, B. subtilis-UI, Salmonella typhi-UI, and 

MDR E. coli. The pathogenic bacteria were obtained from 

the General Hospital Dr. Kariadi, Semarang, Central Java 

(RSDK) and from The Clinical Microbiology Laboratory, 

University of Indonesia (UI). All pathogenic strains were 

refreshed onto Zobell 2216E for 24 H at 32°C before 

bioassay. The antibacterial assay was performed using two 

different methods, namely overlay, and disc diffusion 

methods (Sabdono and Radjasa 2006).  

The antibacterial test was conducted using the overlay 

method on Zobell 2216E agar media and incubation at 

37oC for 24 h. The antibacterial test was conducted by 

mixing each test strain in soft agar media and pouring into 

the Petri dishes containing the bacterial colonies previously 

inoculated. The bacterial density was standardized using 

with a 0.5 McFarland. The test was performed in 

triplicates. The antibacterial activity was indicated by a 

clear zone around the isolated colony. The inhibition zones 

were observed at 24 h, 48 h, and 72 h.  

Furthermore, the disc diffusion method was used for 

confirmation the bacterial isolates showed biological 

activity. At a glance, the method was conducted as follow:  

the pathogenic bacteria were cultured on 2216E Zobell agar 

media with streak method. By using a tweezer, the sterile 

paper disc was placed on the surface media that contains 

pathogenic bacteria. The bacterial isolates cultured in the 

2216E Zobel liquid media for 1-2 days were taken as much 

as10 μL and dropped on paper disk (6 mm). The inhibition 

zone was observed every 24 hours during 2-day incubation.  

Bacteria identification 

The active bacteria isolates were cultured on 2216E 

Zobell media agar and incubated for two days at room 

temperature. DNA extraction was performed using Zymo 

bacteria/fungal DNA mini prepTM  (Vesty et al. 2017). 

Primers used for PCR 16S rDNA amplification based on 

Lee, Jung et al. (2006); Susilowati (2015) were universal 

primer 27F (5’-AGAGTTTGATCMTGGCTCAG-3’) and 

specific primer eubacteria 1492R (5’-

TACGGYTACCTTGTTACGACTT-3’). PCR condition 

was the following:  denaturation at 95oC for 3 minutes, 

annealing at 53,9oC for 1 minute, extension 72oC for 1 

minute, all followed by 30 cycles. The PCR products were 

examined using 1% agarose gel electrophoresis and the 

result was visualized by using UVIDoc HD5 (UVITEC 

Cambridge). 

DNA sequencing and phylogenetic analysis 

The DNA sequencing was carried out in the PT. 

Genetika Science (Jakarta, Indonesia). The gene sequences 

were analyzed using the Basic Local Alignment Search 

Tool (BLAST)  (Altschul et al. 1990). To identify different 

species, phylogenetic trees were constructed using the 

MEGA 7 with the 1000x bootstrap test. The results of 

BLAST Homology were deposited to the DNA Data Bank 

of Japan (DDBJ, www.ddbj.nig.ac.jp) in order to obtain the 

accession number. The phylogenetic tree was reconstructed 

using the MEGA 7 software package with the neighbor-

joining method and 1000 number of bootstrap replication  

(Tamura et al. 2011). 

RESULTS AND DISCUSSION 

The sponges and isolates 

A total of 53 sponges were collected from 6 locations, 

i.e., Falajava Beach waters; Nukila Park; Big O and Bio O2 

west of Hiri Island; Cape Holl; and Tanjung. In the Ternate 

water. The highest number sponges were obtained from the 

Falajava Beach, while Taman Nukila contributed the 

smallest number of the sponges. The number of culturable 

bacteria isolated were 324 from whole sponges where the 

Falajava Beach give the highest number of isolated 

followed by Big O1, Big O2, Taman Jikomolalo, Tanjung 

Hol, and Taman Nukila, respectively. However, Taman 

Nukila showed the highest isolates to sponges (I/S) ratio, 

while the Big O1 has the lowest I/S ratio (Table 1).  

Sponges are well known to associate with a remarkable 

number of different microorganisms phyla including 

Gamma and Alpha-proteobacteria, Actinobacteria, 

Chloroflexi, Nitrospirae, Cyanobacteria, Entotheonella the 

candidate phylum “Poribacteria,” “Thaumarchaea,” and 

“Tectobacteria”  (Schmitt et al. 2012; Taylor et al. 2013; 

Reveillaud et al. 2014; Wilson et al. 2014; Webster and 

Thomas 2016; Steinert et al. 2017). The levels of richness 

and diversity of these symbiont communities vary widely 

between sponge species, most of which are considered 

metabolically active  (Kamke et al. 2010; Webster and 

Thomas 2016). Some microorganisms that live associated 

with sponge identified as marine sponge body provides a 
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suitable habitat for the microbes by giving space, nutrient, 

and chemical substances. Some sponge has specific 

associate bacteria; however, most of the sponges have 

abundance of associated bacteria (Mehbub et al. 2014). The 

sponge has a higher effect on shaping or bacterial 

composition than the environment (Fabio et al. 2017).  

Screening to the antibacterial activities 

Overlay test of 133 out of 324 the bacterial isolates 

from the Ternate waters showed that each pathogen strain 

has different susceptibility to the isolates. S aureus was the 

most vulnerable to the isolates that 31 of them able to 

inhibit it on 24 h and 48 h. On the other hand, MRSA, an 

MDR S. aureus strain, was less susceptible, which only 13 

and 12 isolates able to inhibit it on 24 h and 48 h. 

Interestingly, E. coli was resistant to the whole isolates. 

Most of the pathogen acquire the resistance to the isolates 

on 72 h of incubation. However, few of the pathogen have 

unable to develop the resistance to the isolates. K. 

pneumoniae-RSDK Staphylococcus aureus-UI, and 

MRSA-UI were the best example of the resistance 

development by the pathogenic bacteria (Table 2). Even in 

the case of S. typhi the longer incubation time the more 

susceptible to isolates. Surprisingly, the source or strain of 

the pathogen has a high consequence on the resistance to 

the isolates that indicated the different level of resistance to 

bioactive compounds. 

The ability of bacteria to adaptation or neutralize the 

drug or other chemical effects highly depend on the 

presence of the resistance gene. For example; the ermB 

gene in Clostridium difficile play an important role in 

confers resistance to macrolides, lincosamides and 

streptogramin B (MLSB) antibiotics. Another gene, the 

tetM encoding resistance to tetracyclines  (Spigaglia 2016). 

Other study showed that C. difficile bears the gyrA and 

gyrB genes responsible for mediating the mutations for 

fluoroquinolone resistance  (Chatedaki et al. 2019). Further 

research revealed that bacteria and bacterial genes often 

could move between all three compartments, in any 

direction (Woolhouse et al. 2015; Martinez 2018).  

Base on screening result, we obtained the best 10 of the 

isolates that had a strong activity to the MDR bacterial 

pathogens. Three isolates, TE-TN-01.3 TE-TN-01.6, and 

TE-TN-02.5, isolated from the sponges collected in Taman 

Nukila water had a strong activity to 2, 3, and 4 pathogens, 

respectively. Four other isolates obtained from the Big O1 

and O2 waters, TE-BO-11, TE-BO-15.2, TE-BO2-01.7 and 

TE-BO2-04.2, had the highest bioactivity in the first 24 

hours, both isolates could inhibit seven types of pathogenic 

bacteria (MRPA, MRSA, P. aeruginosa, Salmonella typhi, 

Bacillus subtilis, and Klebsiella pneumoniae). The TE-PF-

08.7 and TE-TJ-01.5 that isolated from sponges collected 

from Pantai Falajava and Taman Jikomolalo, respectively, 

also had a strong activity to the 3 and 2 pathogens, 

respectively (Table 3). This study incorporated with 

another study on soil bacteria alluded that the bacteria 

isolate able to inhibited between 0-4 antagonistic bacteria  

(Gislin et al. 2018). Another study on sponge-associated 

bacteria has also indicated that the isolates have different 

ability to inhibit the antagonistic bacteria  (Cita et al. 2017). 

The finding of a new source of antibiotic agents that kill 

resistant bacteria is urgently required due to the rising of 

MDR pathogenic bacteria  (Lee et al. 2019). 

 
Table 1. The number of sponges collected from various locations 

in Ternate and the number of bacteria isolates isolated from the 

sponge 

 

Collection site 
Sponge 

number 

Isolates 

number 

Isolates/ 

sponges ratio 

Falajava Beach 15 95 6.3 

Taman Nukila 2 21 10.5 

Big O1 15 73 4.9 

Big O2 8 52 6.5 

Tanjung Hol 8 41 5.1 

Taman Jikomolalo 7 42 6.0 

Total/average 55 324 5.9 

 

 
 

Table 2. The active isolates against various pathogenic bacteria 

 

Pathogenic bacteria 
Number of active isolates 

24 H 48 H 72 H 

K. pneumoniae-RSDK 7 7 3 

K. pneumoniae-UI 2 2 2 

P. aeruginosa A-UI 0 0 1 

P. aeruginosa B-UI 4 6 3 

Staphylococcus aureus-UI 31 31 14 

MRSA-UI 13 12 5 

MRPA-UI 13 11 3 

B. subtilis-RSDK 12 1 0 

B. subtilis-UI 10 12 12 

Salmonella typhi-UI 5 13 17 

E. coli  0 0 0 

Note:  Escherichia coli, Klebsiella pneumoniae, MRPA, MRSA, 

P. aeruginosa, Salmonella typhi, Staphylococcus aureus, Bacillus 

subtilis are pathogenic bacteria used for screening bacterial 

isolates. The code in the sign " ()" is the variety or origin of the 

pathogenic bacteria. 

 

 
Table 3. Best isolates against pathogen bacteria 

 

Isolates code 
Activity against the pathogenic bacteria Pathogen 

inhibited A B C D E F G H I J K 

TE-TN-01.3 - - + - - - - + - - - 2 

TE-TN-01.6 - + + + - - - - - - - 3 

TE-TN-02.5 - + + - - - - + - + - 4 

TE-BO-11.4 - - - + - - - - - - - 1 

TE-BO-15.2 - - + + - + + + - + - 6 

TE-PF-08.7 - - - - - - + - + + - 3 

TE-BO2-01.7 - - + + - + + - - + + 6 

TE-BO2-01.10 - + + + - + + - - + - 6 

TE-BO2-04.2 - + + - - + + - - + + 6 

TE-TJ-01.5 - - + - - - - + - - - 2 

Note:  Symbion Sponge isolates bacteria code, TE-TN:  Sponge 

sample from Taman Nukila waters, TE-PF:  Sponge sample from 

Falajava beach, TE-BO:  Sponge sample from Big O waters, TE-

BO2:  Sponge sample from Big O2 waters, TE-TJ:  Sponge 

sample from Taman Jikomalamo.waters. Pathogen bacteria:  A. E. 

coli, B. Klebsiella pneumoniae A, C. MRPA, D. MRSA E. P. 

aeruginosa A, F. P. aeruginosa B, G. Salmonella typhi, H. 

Staphylococcus aureus, I. Bacillus subtilis A J. Bacillus subtilis 

B, K. Klebsiella pneumoniae B. 
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Figure 2. The phylogenic relationship of potential endophytic and nearest species of bacteria on 16R sRNA sequences by using 

Neighbor-Joining (NJ) methods. 

 

 
Table 1. The similarity of the 16S rRNA gene sequences of potential endophytic bacteria from sponges using BLAST-N at NCBI 

 

Isolate code 
Basepairs 

length 
Nearest species 

Percentage 

cover 

Percentage 

similarity 

Access no. 

TE-TN-01.3 1142 bp Bacillus clausii strain DSM 8716 97% 97% NR_026140.1 

TE-TN-01.6 1434 bp Virgibacillus chiguensis strain NTU-101 100% 99% NR_044086.1 

TE-TN-02.5 690 bp Bacillus tropicus strain MCCC 1A01406 100% 99% NR_157736.1 

TE-PF-08.7 1224 bp Paracoccus marcusii strain MH1 98% 86% NR_044922.1 

TE-TJ-01.5 804 bp Bacillus tropicus strain MCCC 1A01406 100% 99% NR_157736.1 

TE-BO-15.2 1391 bp Vibrio parahaemolyticus strain ATCC 17802 100% 99% NR_041838.1 

TE-BO-11.4 1309 bp Bacillus paramycoides strain MCCC 1A04098 100% 99% NR_157734.1 

TE-BO2-01.7 1439 bp Virgibacillus dokdonensis strain DSW-10 100% 99% NR_043206.1 

TE-BO2-01.10 1438 bp Virgibacillus dokdonensis strain DSW-10 100% 99% NR_043206.1 

TE-BO2-04.2 1413 bp Virgibacillus dokdonensis strain DSW-10 100% 99% NR_043206.1 

 TE-BO-15.2 
 NR_122050.1 Vibrio alginolyticus strain NBRC 15630 
 NR_121709.1 Vibrio alginolyticus strain NBRC 15630 
 NR_118258.1 Vibrio alginolyticus strain ATCC 17749  
 NR_041838.1 Vibrio parahaemolyticus strain ATCC 17802 
 NR_113604.1 Vibrio parahaemolyticus strain NBRC 12711  
 NR_157668.1 Paracoccus hibiscisoli strain THG-T2.31  
 NR_044922.1 Paracoccus marcusii strain MH1  
 NR_024658.1 Paracoccus carotinifaciens strain E-396  
 NR_025714.1 Paracoccus haeundaensis strain BC74171  
 NR_133980.1 Bacillus shacheensis strain HNA-14  
 NR_026140.1 Bacillus clausii strain DSM 8716  
 NR_108311.1 Bacillus rhizosphaerae strain SC-N012  
 NR_029304.1 Halobacillus litoralis strain SL-4 
 DQ888316.1 Halobacillus mangrovi strain MS10 
 JN791304.1 Bacillaceae sp. BM04 16S 
 NR_157736.1 Bacillus tropicus strain MCCC 1A01406  
 NR_157729.1 Bacillus albus strain MCCC 1A02146  
 NR_112630.1 Bacillus cereus strain NBRC 15305  
 NR_157734.1 Bacillus paramycoides strain MCCC 1A04098  
 TE-TJ-01.5 
 NR_074540.1 Bacillus cereus strain ATCC 14579  
 NR_157730.1 Bacillus luti strain MCCC 1A00359  
 NR_157732.1 Bacillus nitratireducens strain MCCC 1A00732  
 TE-TN-02.5 
 NR_157729.1 Bacillus albus strain MCCC 1A02146  
 TE-BO-11.4 
 NR_043402.1 Virgibacillus pantothenticus strain IAM 11061  
 NR_114091.1 Virgibacillus pantothenticus strain NBRC 102447  
 NR_115602.1 Virgibacillus pantothenticus strain IAM11061  
 NR_028873.1 Virgibacillus marismortui strain 123  
 TE-BO2-04.2 
 TE-BO2-01.10 
 NR_044086.1 Virgibacillus chiguensis strain NTU-101  
 TE-TN-01.6 
 TE-BO2-01.7 
 NR_043206.1 Virgibacillus dokdonensis strain DSW-10 
 NR_043572.1 Virgibacillus olivae strain E308  
 NR_025308.1 Virgibacillus proomii strain LMG 12370  
 NR_144700.1 Virgibacillus massiliensis strain Vm-5  
 NZ_JWIQ02000160.1 Bacillaceae bacterium MTCC 10057 
 TE-TN-01.3 
 TE-PF-08.7 
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Identification of the active isolates based on 16S rRNA 

Marine sponges are known to be important sources of 

novel marine natural products. Sponge-associated 

microorganisms represent a treasure house of biodiversity 

for the discovery of marine natural products with 

biotechnological potential (Mohan et al. 2016). The isolate 

of 16S rRNA gene was analyzed by electrophoresis (Clever 

Scientific) of agarose gel 1% (c/v) and used DNA Ladder 

(Geneaid®) to know that 16S rRNA gene fragment size is 

± 1300 bp. The Identification of potential endophytic 

bacteria is based on 16S rRNA gene sequences similarity 

percentage < 95% indicates same family, similarity 

percentage ≥95% to < 99% indicates the same genus, and 

similarity percentage≥99% indicates same species 

(Bosshard et al. 2003) Based on those criteria, that one of 

ten isolated bacteria has a low similarity (TE-PF-08.7). 

Moreover, eight isolates of potential endophytic bacteria 

having high similarity ≥99% they are TE-TN-01.6, TE-TN-

02.6, TE-TJ-01.5, TE-BO-15.2, TE-BO2-01.7, TE-BO2-

01.10, TE-BO2-04.2, TE-BO-11.4, and one isolate has 

criteria indicated the same genus with percentage ≥95% to 

< 99% (TE-TN-01.3) (Figure 2). 

According to Pangastuti (2006), if the similarity degree 

of the sequencing of 16 rRNA gene less than 97%, it can be 

considered as a new species. Moreover, TE-PF-08.7 isolate 

has a similarity with the bacteria family Rhodobacteraceae. 

The genus Paracoccus belongs to Gram-negative bacteria, 

cocci or short rods that show substantial metabolic 

versatility. Representatives are able to grow aerobically on 

a wide range of organic compounds. Some species can also 

grow anaerobically, using nitrate as electron acceptor, and 

some representatives can use hydrogen as an electron donor 

for chemoautotrophic growth. Phylogenetically, the genus 

belongs to the a-3 subclass of the Proteobacteria. Cocci to 

short rods, 1-2 by 1.0-13 pm in size, growing in pairs or 

short chains. Non-motile. Colonies on agar are flat, smooth 

and bright orange, due to the accumulation of carotenoids, 

including astaxanthin (Herker et al. 1998). 

TE-BO-15.2 isolate has a similarity with bacteria V. 

parahaemolyticus from a marine sponge. According to by 

(Ulitzur 1974; Molitoris 1985) Vibrio parahaemolyticus 

and several species occur in estuarine or coastal 

environment zone of the oceans, mainly as contaminants of 

different shellfish and absolutely to become dominant 

species in environments. TE-BO2-01.7, TE-BO2-01.10, 

TE-BO2-04.2 isolate have a similarity with V. dokdonensis. 

Genus Virgibacillus, which was first reported by 

(Heyndrickx et al. 1998) as originally designated from 

Bacillus spp. Huang et al. 2018 reported Virgibacillus 

dokdonensis from deep sea water in the East Pacific Ocean 

had produced bioactive secondary metabolites inhibiting 

pathogens Xanthomonas oryzae. 

In conclusion, a total of 324 bacteria were isolated from 

55 sponge specimens collected from six stations in Ternate 

Water. The isolates showed activity against of MDR 

pathogenic bacteria including Klebsiella pneumoniae-

RSDK, K. pneumoniae-UI, P. aeruginosa A-UI, P. 

aeruginosa B-UI, Staphylococcus aureus-UI, MRSA-UI, 

MRPA-UI, Bacillus subtilis-RSDK, B. subtilis-UI, 

Salmonella typhi-UI, and MDR E. coli. The best ten 

isolates, TE-TN-01.3, TE-TN-01.6, TE-TN-02.5, TE-PF-

08.7, TE-TJ-01.5, TE-BO-15.2, TE-BO-11.4, TE-BO2-

01.7, TE-BO2-01.10, TE-BO2-04.2 identified as B. clausii, 

V. chiguensis, B. tropicus, P. marcusii, B. tropicus, V. 

parahaemolyticus, B. paramycoides, and V. dokdonensis, 

respectively. 
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