
The 11th

Hungarian-Japanese Symposium

on Discrete Mathematics
and Its Applications

May 27-30, 2019

Tokyo, Japan

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repository of the Academy's Library

https://core.ac.uk/display/200763839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proceedings of the 11th Hungarian-Japanese Symposium

on Discrete Mathematics and Its Applications

May 27-30, 2019, Tokyo, Japan

Editors:

Hiroshi Hirai
Department of Mathematical Informatics
University of Tokyo
hirai@mist.i.u-tokyo.ac.jp

Satoru Iwata
Department of Mathematical Informatics
University of Tokyo
iwata@mist.i.u-tokyo.ac.jp

Shin-ichi Tanigawa
Department of Mathematical Informatics
University of Tokyo
tanigawa@mist.i.u-tokyo.ac.jp

Cover deign: Kazuhiko Shiozaki, 1999

Optimality of the Greedy Algorithm in Greedoids

Dávid Szeszlér∗

Department of Computer Science and
Information Theory

Budapest University of Technology and
Economics

Magyar Tudósok krt. 2., Budapest, 1117,
Hungary

szeszler@cs.bme.hu

Abstract: Greedoids were introduced by Korte and Lovász at the beginning of the 1980s as
a generalization of matroids. One of the basic motivations of the notion was to extend the
theoretical background behind greedy algorithms beyond the well-known results on matroids.
Indeed, many well-known algorithms of a greedy nature that cannot be interpreted in a
matroid-theoretical context are special cases of the greedy algorithm on greedoids. On the
other hand, no general theorem is known that explains the optimality of the greedy algorithm
in all these cases. In this paper we generalize a result of Korte and Lovász and thus we obtain
a sufficient condition for the optimality of the greedy algorithm that covers a much wider
range of known applications than the original one.

Keywords: greedoid, greedy algorithm, matroid

1 Introduction

The term greedoid comes from “a synthetic blending of the words greedy and matroid” [4] which indicates
that one of the basic motivations of Korte and Lovász when introducing this notion at the beginning
of the 1980s was to extend the theoretical background behind greedy algorithms beyond the well-known
results on matroids. Their definition was a result of the observation that in the proofs of various results on
matroids subclusiveness (that is, the property that all subsets of independent sets are also independent)
is not needed. Therefore the definition of greedoids arises from that of matroids by relaxing this condition
(see Definition 1).

Although the research of greedoids was very active until the mid-1990s, the topic seems to have faded
away since then. Most of the known results on greedoids are already included in the comprehensive book
of Korte, Lovász and Schrader [4] published in 1991. The fact that the notion of greedoids has not gained
as much importance within combinatorial optimization as matroids is probably due to the fact that the
class of greedoids is much more diverse than that of matroids and classic concepts and results on matroids
do not seem to generalize easily to greedoids.

One of the most classic results in the theory of matroids is Edmonds’ matroid polytope theorem
[1] that gives a description of the polytope spanned by the incidence vectors of all independent sets of
a matroid. Most recently in [7] a generalization of an equivalent formulation of the matroid polytope
theorem was proved to a class of greedoids, local forest greedoids, that contains matroids as well as
branching greedoids (that is, edge sets of subtrees of a graph rooted at a given node; see Section 2 for a
precise definition). This result was then used to generalize some results of [6] in the field of measuring
the reliability of networks by game-theoretical tools.

∗Research is supported by the grant No. OTKA 108947 of the Hungarian National Research, Development and Innovation
Office (NKFIH).

438

As it was the case with Edmonds’ result, the greedy algorithm turned out to be a fundamental tool
for proving the generalization presented in [7] too (although Edmonds’ original proof did not seem to
extend to the greedoid case). While working on the result of [7] it became apparent that, although many
well-known algorithms of a greedy nature are special cases of the greedy algorithm defined on greedoids
by Lovász and Korte (see Section 3), no general result is known that would imply the optimality of all
these algorithms. Instead, various sufficient conditions on the optimality of the greedy algorithm are
known that together cover some of these applications and individual proofs exist for the rest of the cases.
Even more surprisingly, it turned out that Lovász and Korte overlooked a detail in [2] and [4] that led
them to some false claims concerning this question (see Section 3 for the details). To the best of our
knowledge, these mistakes remained hidden for three decades until they were pointed out and corrections
were proposed in [7].

The main result of the present paper is a sufficient condition on the optimality of the greedy algorithm
in greedoids that generalizes a result of Lovász and Korte [2]. Although this result will still not be able
to explain the optimality of the greedy algorithm for all of the above mentioned applications, it will be
strong enough to cover important examples beyond the ones covered by the original result.

The structure of this paper is as follows. We summarize the necessary background on greedoids
in Section 2. Then preliminaries on the greedy algorithm in greedoids together with various known
applications are given in Section 3. Finally, Section 4 is dedicated to the main result of the paper.

2 Preliminaries on Greedoids

Definition 1 A greedoid G = (S,F) is a pair consisting of a finite ground set S and a collection of its
subsets F ⊆ 2S such that the following properties are fulfilled:

(2.1) ∅ ∈ F

(2.2) If X,Y ∈ F and |X| < |Y | then there exists a y ∈ Y −X such that X + y ∈ F .

Members of F are called feasible sets.

Property (2.2) immediately implies that every X ∈ F has a feasible ordering : the sequence x1x2 . . . xk
is a feasible ordering of X if X = {x1, x2, . . . , xk} and {x1, x2, . . . , xi} ∈ F holds for every 1 ≤ i ≤ k. The
existence of a feasible ordering, in turn, implies the accessible property of greedoids: for every ∅ 6= X ∈ F
there exists an x ∈ X such that X − x ∈ F .

In this paper, the following notations will be (and have been) used: for a subset X ⊆ S and an element
x ∈ S we will write X + x and X − x instead of X ∪ {x} and X − {x}, respectively. Furthermore, given
any function c : S → R and a subset X ⊆ S, c(X) will stand for

∑{c(x) : x ∈ X}.
There are many known examples of greedoids beyond matroids and they arise in diverse areas of

mathematics, see [4] for an extensive list. For the purposes of this paper, branching greedoids will be of
importance. Let H = (V,Eu, Ed) be a mixed graph (that is, it can contain both directed and undirected
edges) with V , Eu and Ed being its set of nodes, undirected edges and directed edges, respectively.
Furthermore, let r ∈ V be a given root node. The ground set of the branching greedoid on H is Eu ∪Ed
and F consists of all subsets A ⊆ Eu ∪ Ed such that disregarding the directions of the arcs in A ∩ Ed,
A is the edge set of a tree containing r and for every path P in A starting in r all edges of P ∩ Ed are
directed away from r. It is straightforward to check that G = (Eu ∪ Ed,F) is indeed a greedoid. G is
called an undirected branching greedoid or a directed branching greedoid if H is an undirected graph (that
is, Ed = ∅) or a directed graph (that is, Eu = ∅), respectively.

Another simple example is the poset greedoid. Let P = (S,≤) be a partially ordered set. An ideal of
P is a subset I ⊆ S such that x, y ∈ S, x ≤ y and y ∈ I imply x ∈ I. Then it is easy to to check that
if F consists of all the ideals of P then G = (S,F) is a greedoid. The same can also be expressed in
a graph-theoretical setting: if H = (S,D) is an acyclic digraph and F consists of all subsets of S with
in-degree zero then G = (S,F) is the poset greedoid induced by the poset in which x ≤ y holds if and
only if y is reachable from x via a directed path.

439

There is an alternative way to define greedoids in terms of languages which is of utmost importance.
Denote by S∗ the set of all finite sequences x1x2 . . . xk of the finite ground set S. Elements of S and
S∗ are referred to as letters and words, respectively and a set L ⊆ S∗ is referred to as a language. The
empty word is denoted by ∅. The set of letters of a word α is denoted by α̃ and the length of a word α is
denoted by |α|. L is a simple language if no letter of S appears more than once in any word of L. The
concatenation of two words α, β ∈ S∗ is simply denoted by αβ. Single letter words are identified with
the corresponding element of S (and hence αx denotes the word α followed by the letter x).

Definition 2 Let S be a finite ground set and L a simple language on S. Then G = (S,L) is a greedoid
language if the following properties hold:

(2.3) ∅ ∈ L
(2.4) αβ ∈ L implies α ∈ L
(2.5) If α, β ∈ L and |α| > |β| then there exists an x ∈ α̃ such that βx ∈ L.

Obviously, the above definition can be viewed as a language equivalent of the definition of matroids.
On the other hand, there is a one-to-one correspondence between greedoids and greedoid languages. For
a greedoid G = (S,F) let the language L(F) consist of all feasible orderings of all feasible sets of F .
Conversely, for a greedoid language G = (S,L) let F(L) = {α̃ : α ∈ L}. Then it is easy to show (see
[4, Theorem IV.1.2]) that for every greedoid (S,F), (S,L(F)) is a greedoid language and conversely,
for every greedoid language (S,L), (S,F(L)) is a greedoid; moreover, in both cases we get the unique
greedoid language and greedoid, respectively, for which F(L(F)) = F and L(F(L)) = L holds. This
relation between greedoids and greedoid languages justifies the above claim that greedoid languages can
be thought of as an alternative way to define greedoids.

Some of the well-known terminology on matroids can be applied to greedoids without any modification.
In particular, a base of a greedoid G = (S,F) is a feasible set X ∈ F of maximum size. This, by
property (2.2), is equivalent to saying that X + y /∈ F for every y ∈ S −X. Analogously, a basic word of
a greedoid language G = (S,L) is a word α ∈ L of maximum length; or, equivalently by property (2.5),
a word α ∈ L for which αx /∈ L for every x ∈ S− α̃. Both the set of bases and the set of basic words will
be denoted by B.

3 Preliminaries on the Greedy Algorithm on Greedoids

Let G = (S,L) be a greedoid language and w : L → R an objective function. Assume that we are
interested in finding a basic word β ∈ B that minimizes w(β) across all basic words of G.

For every α ∈ L the set of continuations of α is defined as Γ(α) = {x ∈ S − α̃ : αx ∈ L}. Then the
greedoid greedy algorithm for the above problem can be described as follows [2, 4]:

Step 1. Set α = ∅.
Step 2. If Γ(α) = ∅ then stop and output α.

Step 3. Choose an x ∈ Γ(α) such that w(αx) ≤ w(αy) for every y ∈ Γ(α).

Step 4. Replace α by αx and continue at Step 2.

Obviously, if the task is to maximize w(β) across all basic words then, since this is equivalent to
minimizing −w(β), w(αx) ≥ w(αy) is to be required for every y ∈ Γ(α) in Step 3.

Many of the well-known, elementary algorithms in graph theory fall under this framework as shown
by the following examples.

Example 3 (Matroid greedy algorithm) If M is a matroid and w is linear (meaning that w(A) =
c(A) for some weight function c : S → R) then the greedoid greedy algorithm is nothing but the well-known
greedy algorithm on matroids. In particular, we get Kruskal’s algorithm for finding a minimum weight
spanning tree in case of the cycle matroid.

440

Example 4 (Prim’s algorithm) Let G be the branching greedoid of the undirected, connected graph H
and w a linear objective function. Then the greedoid greedy algorithm translates to Prim’s well-known
algorithm for finding a minimum weight spanning tree. (Note that this algorithm cannot be interpreted
in a matroid-theoretical context.)

Example 5 (Dijkstra’s shortest path algorithm) Let G be the branching greedoid of the mixed graph
H = (V,Eu, Ed) with root node r and let c : Eu ∪ Ed → R+ be a non-negative valued weight function.
For every feasible set A and e ∈ A let PAe denote the unique path in A starting at r and ending in e.
Then let w(A) =

∑{c(PAe) : e ∈ A} for every A ∈ F . Korte and Lovász observed in [2] that in this
case the greedoid greedy algorithm for minimizing w(B) translates to Dijkstra’s well-known shortest path
algorithm. Indeed, Dijkstra’s algorithm constructs a spanning tree on the set of nodes reachable from r
such that the unique path from r to every other node in this tree is a shortest path and hence it clearly
minimizes w.

Example 6 (Dijkstra’s widest path algorithm) Given a graph with weights on its edges, the widest
path problem is the problem of finding a path between two given vertices that maximizes the weight of
the minimum-weight edge on the path. It is well-known (and it seems to belong to graph theory folklore)
that a trivial modification of Dijkstra’s shortest path algorithm solves this problem too. This is again a
special case of the greedoid greedy algorithm: let c : Eu ∪ Ed → R be a (real valued) weight function on
the edge set of the mixed graph H = (V,Eu, Ed) with root node r, let µ(PAe) = min{c(z) : z ∈ PAe } for
every path of H starting at r and let w(A) =

∑{µ(PAe) : e ∈ A} for every feasible set A of the branching
greedoid of H. Then, analogously to the above example, the greedoid greedy algorithm for maximizing
w(B) translates to the above mentioned modified version of Dijkstra’s algorithm (and hence it is optimal)
and it constructs a spanning tree on the set of nodes reachable from r such that the unique path from r
to every other node in this tree is a widest path.

Example 7 (Lawler’s single machine scheduling algorithm) Let D = (V,A) be an acyclic digraph
whose vertices represent jobs to be scheduled on a single machine (with no interruptions) and arcs of D
represent precedence constraints to be respected by the schedule. Furthermore, a processing time a(v) ∈ N
is also given for every job v ∈ V . Finally, a monotone non-decreasing cost function cv : {0, . . . , N} → R
is also given for every job v ∈ V , where N =

∑
v∈V a(v) such that cv(t) represents the cost incurred by

job v if it is completed at time t. The problem is to find a schedule (that is, a topological ordering of
the jobs with respect to D) such that the maximum of the costs incurred is minimized. Lawler [5] gave a
simple greedy algorithm for this problem: it builds up the schedule in a reverse order always choosing out
of the currently possible jobs one with the lowest cost at the current completion time. As it was pointed
out in [2], this algorithm is also a special case of the greedoid greedy algorithm if the underlying greedoid
is the poset greedoid induced by the digraph obtained from D by reversing all its arcs. (More precisely:
each legal running of Lawler’s algorithm is a legal running of the greedoid greedy algorithm, but not vice
versa. On the other hand, the optimality of both is easily proved by the method of [5].)

Although the greedy algorithm is optimal in the above examples, it is obviously not to be expected
that this is true in general. The first sufficient condition on the optimality of the greedy algorithm was
given by Korte and Lovász in [2].

Theorem 8 ([2],[4, Theorem XI.1.3]) Let G = (S,L) be a greedoid language and w : L → R an
objective function. Assume that for every αx ∈ L such that w(αx) ≤ w(αy) for every y ∈ Γ(α) the
following conditions hold:

(3.1) w(αβxγ) ≤ w(αβzγ), if αβxγ, αβzγ ∈ L;

(3.2) w(αxβzγ) ≤ w(αzβxγ), if αxβzγ, αzβxγ ∈ L.

Then the greedoid greedy algorithm finds a basic word of minimum weight with respect to w.

441

Unfortunately, Theorem 8 does not imply the optimality of the greedy algorithm for all of the above
listed examples; in fact, it is only Example 3 that it completely covers. Indeed, it is easy to verify that the
conditions of Theorem 8 are fulfilled by linear objective functions on matroids and hence Theorem 8 is a
generalization of the Edmonds-Rado theorem. However, this verification strongly relies on the property
of matroids that all subsets of independent sets are also independent and therefore it is not a surprise
that (3.1) is violated in case of Example 4 (as shown by trivial examples). In case of Examples 5 and
6 it is easy to verify that the conditions of Theorem 8 are fulfilled if the underlying graph is directed
(that is, the greedoid is a directed branching greedoid). However, although the same is also claimed for
Example 5 in the undirected case in [4, page 156], condition (3.1) is not necessarily fulfilled either for
Example 5 or for 6 in case of undirected graphs (that is, undirected branching greedoids) as shown by
the following simple examples. In case of Example 5 consider the graph of Figure 1 with edge weights
c1(e); then although x is the best continuation of ∅, 11 = w(xba) > w(zba) = 10, hence w violates (3.1)
with α = β = ∅ and γ = ba. Similarly, the same graph with edge weights c2(e) shows that (−w) violates
(3.1) in case of Example 6 since again x is the best continuation of ∅, but 6 = w(xba) < w(zba) = 7.

z

x

a

br

e x z a b

c1(e) 1 2 0 4

c2(e) 4 3 3 1

Figure 1:

Finally, in case of Example 7 it is again easy to verify that conditions (3.1) and (3.2) are fulfilled if all
processing times a(v) are equal (and hence the cost incurred by a job only depends on its position in the
seqence and not on the processing times of previously completed jobs). Therefore Theorem 8 implies the
optimality of the greedy algorithm in this special case. However, as opposed to what is claimed in [2],
the same is not true in the general case. To simplify the description of a counterexample, we define the
“reverse-Lawler scheduling problem”: it is identical to the one described in Example 7 with the difference
being that the cost functions cv are monotone non-increasing and cv(t) represents the cost incurred by
job v if it is started at time t. Obviously, this problem is equivalent to the original one by reversing
all possible schedules, however, in this version the basic words of the corresponding poset greedoid are
identical to the possible schedules (and not the reverses of those). Then consider the following example:
let S = {x, y, z}, let D be the empty graph (meaning that there are no precedence constraints), let
a(x) = a(y) = 1 and a(z) = 2, and finally let the cost functions cv be as in the table below.

t 0 1 2 3 4

cx(t) 0 0 0 0 0

cy(t) 2 2 1 0 0

cz(t) 1 0 0 0 0

Then x is the best continuation of ∅, but w(xy) = max{0, 2} = 2 and w(zy) = max{1, 1} = 1 which
shows that (3.1) is violated with α = β = ∅ and γ = y.

As it was the case in Examples 3–6, in most applications the objective function only depends on the
feasible sets themselves and not on their orderings; in other words, it is a greedoid G = (S,F) that the
objective function w : F → R is defined on. Therefore one would want to formulate the corresponding
corollary of Theorem 8. Obviously, (3.2) is automatically fulfilled in these cases, however, it is not at
all straightforward to specialize (3.1) to such objective functions. Both in [2] and [4, Chapter XI] it is
claimed that (3.1) is equivalent to the following for objective functions w : F → R:

(3.3) If A,B,A+ x,B + x ∈ F hold for some sets A ⊆ B and x ∈ S −B, and w(A+ x) ≤ w(A+ y) for
every y ∈ Γ(A) then w(B + x) ≤ w(B + z) for every z ∈ Γ(B).

442

However, as it was pointed out in [7], this reformulation clearly disregards the fact that B = α̃ ∪ β̃ ∪ γ̃
need not be a feasible set. In actual fact, (3.3) does not guarantee the optimality of the greedy algorithm
as shown by the trivial example of Figure 2: consider the undirected branching greedoid of the graph on
the left hand side and let the objective function be defined as in the table on the right hand side. It is
easy to check that (3.3) is fulfilled, however, the greedy algorithm gives {a, c} instead of {b, c}. On the
other hand, (3.1) is clearly violated with α = β = ∅, γ = c, x = a and z = b: a is the best continuation
of ∅ but w(ac) > w(bc).

b

c
r

a

X ∅ {a} {b} {a, c} {b, c}
w(X) 0 3 4 2 1

Figure 2:

Unfortunately, as innocuous as the above mistake might look, it led the authors of [4] to some further
false claims (including the above mentioned one that Example 5 is covered by Theorem 8 for all graphs);
see [7] for the details.

In case of linear objective functions, the following was proved in [3].

Theorem 9 ([3],[4, Theorem XI.2.2]) Let G = (S,F) be a greedoid. Then the greedoid greedy al-
gorithm finds a minimum weight base for every linear objective function c : S → R if and only if the
following condition holds:

(3.4) If A,A + x ∈ F , B ∈ B hold for some sets A ⊆ B and x ∈ S − B then there exists a y ∈ B − A
such that A+ y ∈ F and B − y + x ∈ B.

It is easy to verify that (3.4) is fulfilled by the undirected branching greedoid and hence Theorem 9
implies the optimality of the greedy algorithm in case of Example 4 above.

A generalization of the sufficiency of (3.4) to arbitrary order-independent objective functions was
given in [7].

Theorem 10 ([7]) Let G = (S,F) be a greedoid and w : F → R an objective function that fulfills the
following property:

(3.5) If for some A ⊆ B, A,A + x ∈ F , B ∈ B and x ∈ S − B it holds that w(A + x) ≤ w(A + u) for
every u ∈ Γ(A) then there exists a y ∈ B −A such that B − y + x ∈ B and w(B − y + x) ≤ w(B).

Then the greedy algorithm gives a minimum base with respect to w.

A certain necessity of (3.5) was also proved in [7]: if (3.5) is violated then the greedy algorithm can
give a suboptimal base in a minor of the greedoid; see [7] for the details. So Theorem 10 seems to
be the best possible that can be said about the optimality of the greedoid greedy algorithm in case of
order-independent objective functions (in spite of the fact that its proof is short and simple and it is an
adaptation of the proof of Theorem 9). It can also be easily verified that it implies the optimality of the
greedy algorithm in all Examples 3-6 above.

4 Main Result

We aim at proving a generalization of Theorem 8: we will give a sufficient condition on the optimality
of the greedoid greedy algorithm for (possibly) order-dependent objective functions that is weaker than
requiring (3.1) and (3.2) and which, besides other examples, will completely cover Example 7 above.
Claiming the theorem needs some preparation.

443

Definition 11 Let G = (S,L) be a greedoid language, α ∈ L, x ∈ S, y ∈ α̃ and α = α0yα1. Then y is
said to be an entry point of x in α if α0x ∈ L.

Note that x ∈ α̃ is possible and in that case x is an entry point of itself in α by (2.4).

Definition 12 Let G = (S,L) be a greedoid language, α ∈ L and x ∈ S that has at least one entry point
in α. Assume that y1, y2, . . . , yr ∈ α̃ is the list of all entry points of x in α appearing in this order and
for every 1 ≤ i ≤ r let αyix denote the word obtained from α by replacing yi with x and yj with yj−1 for
every i < j ≤ r. That is, if α = α0y1α1y2α2 . . . yrαr then

αyix = α0y1α1 . . . yi−1αi−1xαiyiαi+1yi+1 . . . yr−1αr.

Obviously, if x ∈ α̃ then x = yr is the last entry point of itself in α and αxx = α. The following lemma
is a generalization of a lemma proved in [2]; its proof is also a refinement of the one given in [2], but it is
simpler than that.

Lemma 13 Assume that G = (S,L) is a greedoid language, α ∈ L, x ∈ S and y ∈ α̃ is an entry point
of x in α. Then αyx ∈ L.

Proof: We proceed by induction on |α|. If |α| = 1 then the claim is trivial, so assume |α| > 1. Let the
last letter of α be z, α = ᾱz and let u denote the last entry point of x in ᾱ if it exists.

Assume first that z is an entry point of x in α. Then αzx = ᾱx, so αzx ∈ L (since z is an entry point).
For all other entry points y 6= z of x in α, αyx = ᾱyxu. We have ᾱyx by induction. Then applying (2.5) on
ᾱyx and ᾱx we get αyx = ᾱyxu ∈ L as claimed.

So assume now that z is not an entry point of x, that is, ᾱx /∈ L. We again have ᾱyx by induction.
Applying (2.5) on ᾱyx and α we get that either ᾱyxz ∈ L or ᾱyxu ∈ L. The latter is clearly impossible if
x ∈ α̃ (since in that case u = x must be true). However, even in the x /∈ α̃ case if ᾱyxu ∈ L were true then
applying (2.5) on ᾱ and ᾱyxu would imply ᾱx ∈ L contradicting our assumption. Therefore αyx = ᾱyxz ∈ L
as claimed. �

Now we are ready for the main result of this paper. Again, its proof follows that of Theorem 8, but
it is shorter and simpler than that.

Theorem 14 Let G = (S,L) be a greedoid language and w : L → R an objective function. Assume that
the following condition holds:

(4.1) If αx ∈ L such that w(αx) ≤ w(αy) for every y ∈ Γ(α) and γ = αzβ ∈ B is a basic word then
w(γzx) ≤ w(γ).

Then the greedoid greedy algorithm finds a basic word of minimum weight with respect to w.

Proof: Assume by way of contradiction that the greedy algorithm gives the basic word δ that is not
optimal with respect to w. Let γ be a minimum weight basic word with respect to w and choose γ such
that its common prefix with δ is the longest possible among all optimal basic words. Let this common
prefix be α and let δ = αxδ′ and γ = αzβ. Then w(αx) ≤ w(αy) for every y ∈ Γ(α) follows from the
operation of the greedy algorithm. Therefore w(γzx) ≤ w(γ) holds by (4.1). Hence γzx is also a minimum
weight basic word with respect to w, but it has a longer common prefix with δ than γ contradicting the
choice of γ. �

Proposition 15 Conditions (3.1) and (3.2) together imply condition (4.1) (and therefore Theorem 14
is a generalization of Theorem 8).

444

Proof: Let γ = αzβ ∈ B be a basic word and αx ∈ L such that w(αx) ≤ w(αy) for every y ∈ Γ(α). Let
the entry points of x in γ that do not belong to α̃ be z = y1, y2, . . . , yr in this order. Then (3.1) implies
w(γ) ≥ w(γyrx). Furthermore, applying the combination of (3.1) and (3.2) consecutively r − 1 times we
get w(γyrx) ≥ w(γ

yr−1
x) ≥ . . . ≥ w(γy2x) ≥ w(γzx). These together give w(γ) ≥ w(γzx) as claimed. �

The proof of the following proposition follows the proof given in [5].

Proposition 16 Condition (4.1) is fulfilled by the objective function of Example 7 (and therefore the
optimality of Lawler’s scheduling algorithm follows from Theorem 14).

Proof: For the sake of simplicity, we will give the proof for the equivalent “reverse-Lawler” problem
described after Theorem 8. So assume that the set of jobs V with the precedence digraph D = (V,A),
processing times a(v) ∈ N and non-increasing cost functions cv are given.

Assume that γ = αzβ ∈ B is a basic word of the poset greedoid (V,L), that is, a topological ordering
of all the jobs. Assume further that x is the best continuation of α. If x = z then there is nothing to
prove by γxx = γ, so assume the opposite. Then x ∈ β̃ (since γ lists all the jobs) so let β = β1xβ2.
Obviously, every v ∈ β̃1 is an entry point of x in γ by αx, γ ∈ L and the definition of the poset greedoid.
Therefore γzx = αxzβ1β2. This shows that for every job v 6= x the starting time of v in γzx is at least as
big as in γ and hence the cost incurred by v in γzx is at most the one as in γ. Let t =

∑
v∈α̃ a(v). Then

w(αx) ≤ w(αz) implies that either cx(t) ≤ cz(t) or there is a job v ∈ α̃ such that the cost incurred by v
in γ is at least as big as cx(t). In both cases we get w(γzx) ≤ w(γ) as claimed. �

It is also worth noting that, besides Example 7, Theorem 14 implies the optimality of the greedy
algorithm in all the examples listed in Section 3 except for Example 4. However, it remains an open
problem to find a common generalization of Theorems 10 and 14 that covers all of these examples.

References

[1] J. Edmonds, Matroids and the greedy algorithm, Mathematical Programming 1(1), pp. 127-136
(1971).

[2] B. Korte and L. Lovász, Greedoids – a structural framework for the greedy algorithm, in:
W. Pulleyblank (ed.), Progress in combinatorial optimization, Academic Press, London, pp. 221-243
(1984).

[3] B. Korte and L. Lovász, Greedoids And Linear Objective Functions, SIAM Journal on Algebraic
Discrete Methods 5(2), pp. 229-238 (1984).

[4] B. Korte, L. Lovász and R. Schrader, Greedoids, 211 pages, Springer-Verlag, Berlin (1991).

[5] Lawler E. L., Optimal sequencing of a single machine subject to precedence constraints, Manage-
ment science 19(5), pp. 544-546 (1973).

[6] D. Szeszlér, Security games on matroids, Mathematical Programming 161(1), pp. 347-364, (2017).

[7] D. Szeszlér, A Generalization of the Matroid Polytope Theorem to Local Forest Greedoids, sub-
mitted. https://arxiv.org/abs/1811.04690

445

