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Look deep into nature, 

and then you will understand everything better. 

Albert Einstein 
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Summary 

 

Trees are impressive long-living organisms that continuously increase in size by many orders 

of magnitude during ontogeny by accumulating xylem biomass in stem, branches and roots. 

While growing taller, trees continuously adjust the xylem structure to achieve an optimal 

balance of carbon costs for the competing biomechanical and hydraulic requirements. 

One of the main function of the xylem structure is the delivery of the water from the roots up 

to the leaves. This must be maintained during the ontogeny, when the hydrodynamic resistance 

increase due to the increase in the xylem path length. However, by widening the diameter of 

xylem conduit (from the stem apex downwards), trees are able to minimize the negative effect 

of height growth. Additionally, this widening is stable during ontogeny, thus determining the 

radial change in conduit dimension with cambial age (from the pith outwards), implying a 

dependency between the variation of conduit-lumen diameter with cambial age and the rates 

of stem elongation.  

These adjustments in the xylem structure remain permanently fixed and chronologically 

archived in the secondary xylem, and, given the tight link between structures and functions, 

these provide a ‘time component’ to functional responses induced by xylem plasticity, thus 

allowing to reconstruct growth dynamics under different environmental conditions. 

However, there is a lack of detailed information and standardized procedures to explore, at the 

intra-specific level, the long-term modifications of xylem traits over the full life-span of trees, 

together with their variability along axial and radial profiles. Additionally, little is known about 

the relationships between the structures and functions in a view of exploring the future 

challenges in how a plant’s hydraulic architecture may respond to the ongoing climate change.  

This thesis, represent a set of studies based on dendro-anatomical and physiological 

approaches aimed to: 

- identify priorities and trade-offs among xylem functions; 

- determine the anatomical traits responsible for them;  

- retrospectively analyze how these relationships vary during ontogeny under different 

environmental condition;  

- analyze the functional response to xylem modifications occurring during ontogeny;  
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- investigate the possibility of retrospectively analyzed height growth based on hydraulic 

radial profiles.  

Furthermore, a guidance from sample collection to xylem anatomical data and a new approach 

to customize cell wall thickness measurements according to the specific aims of the study, were 

developed. 

This thesis has highlighted that the xylem anatomical structure of conifer trees (Larix decidua, 

Picea abies, Pinus cembra) showed a high priority and biophysical determination of traits linked 

to hydraulic efficiency, such as conduit size, to efficiently support assimilation necessary for 

tree growth. Besides, other functional traits linked to mechanical support and metabolic xylem 

functions showed more plastic responses to intrinsic and extrinsic factors. Due to the 

ontogenetic stability of axial patterns of conduit size, it was possible, based on radial profiles of 

xylem conduit diameter of tree rings, to estimate tree growth rate, even if species-site specific, 

and make comparison between trees living in different epochs. In addition, despite the risk of 

becoming more vulnerable to air seeding cavitation, trees showed to prioritize of hydraulic 

efficiency vs. safety during the ontogenetic development, as the increase in xylem conductance 

with tree height determined a contextual decrease in the hydraulic safety margin. 

This study showed the importance of taking into account the three dimensional anatomical 

trends to better understand of the trade-offs of hydraulic safety vs. efficiency shape up the tree 

architecture and affect its adjustments occurring during ontogeny to cope with the arising 

intrinsic (i.e., size-related) and extrinsic (i.e., environmental) constraints to growth. 
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Sommario 

 

Gli alberi sono organismi viventi che aumentano continuamente di dimensione (anche diversi 

ordini di grandezza) durante l'ontogenesi, accumulando biomassa nel fusto, nei rami e nelle 

radici. Durante la crescita, la struttura xilematica degli alberi continua ad adattarsi mantenendo 

un equilibrio nell’ottimizzazione del carbonio, garantendo contemporaneamente un’adeguata 

stabilità meccanica ed efficienza idrica della pianta. 

Il trasporto dell'acqua dalle radici fino alle foglie è una funzione fondamentale dello xilema e 

deve essere mantenuto efficiente durante tutte le fasi ontogenetiche. La resistenza idraulica del 

sistema infatti è fortemente influenzata dall’incremento della lunghezza del percorso idrico. 

Tuttavia, allargando la dimensione degli elementi di conduzione dello xilema (dall'apice alla la 

base del fusto), le piante sono in grado di minimizzare l'effetto negativo della crescita in altezza. 

Inoltre, data la stabilità di questo trend assiale durante l’ontogenesi, le dimensioni dei condotti 

xilematici aumentano anche in direzione radiale con l'età cambiale (dal midollo verso 

l'esterno), determinando una forte relazione tra la variazione del diametro dell’elemento 

conduttivo con l'età cambiale ed il tasso di allungamento del fusto. 

Le modifiche nella struttura xilematica, rimanendo impresse e cronologicamente archiviate nel 

legno, rappresentano un’importante fonte di informazioni che permette di aggiungere una 

componente temporale legata a meccanismi funzionali e di plasticità xilematica e, quindi, 

permetterebbe di ricostruire le dinamiche di crescita in diverse condizioni ambientali. 

Esiste tuttavia, una carenza di conoscenza e di procedure standard atte ad esplorare, a livello 

intra-specifico, le modificazioni a lungo termine dello xilema e la variabilità della sua struttura 

lungo profili assiali e radiali. Rimangono inoltre poco chiari i rapporti tra la struttura e la 

funzionalità, utili a prevedere in futuro eventuali adattamenti del sistema idraulico e 

metabolico al cambiamento climatico. 

Questa tesi riporta una serie di studi che si basano su un approccio dendro-anatomico e 

fisiologico, allo scopo di: 

- individuare priorità e compromessi tra le varie funzioni xilematiche; 

- determinarne i tratti anatomici responsabili; 

- analizzare in maniera retroattiva la loro variazione durante l'ontogenesi e in diverse 

condizioni ambientali; 

- analizzare risposte funzionali alle modifiche anatomiche che occorrono durante 

l’ontogenesi; 
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- esaminare la possibilità di ricostruire i trend di accrescimento in altezza basandosi su 

profili idraulici radiali.  

E’ stata definita una guida alla standardizzazione della procedura, dalla raccolta del campione 

al dato anatomico dei tratti xilematici. Inoltre è stato sviluppato un nuovo approccio di 

quantificazione dello spessore della parete cellulare al fine di soddisfare gli obiettivi specifici 

dello studio. 

La struttura xilematica delle conifere (Larix decidua, Picea abies, Pinus cembra) evidenzia 

priorità e determinazione biofisica di tratti legati all’efficienza idraulica, come le dimensioni 

delle tracheidi, al fine di sostenere l'assimilazione necessaria per la crescita degli alberi. Altri 

caratteri funzionali invece, legati al supporto meccanico ed all’attività metabolica, mostrano più 

plasticità a fattori intrinseci ed estrinseci. 

Grazie alla stabilità del trend assiale dei condotti idraulici durante l’ontogenesi è stato possibile, 

basandosi sul conseguente pattern radiale, stimare il tasso di accrescimento delle piante, anche 

se specie-sito specifico, e confrontare quindi i trend con le piante che sono vissute in epoche 

diverse. 

Nonostante il rischio di aumentare la vulnerabilità alla cavitazione, gli alberi tendono a 

priorizzare l’efficienza a discapito della sicurezza idraulica durante lo sviluppo ontogenetico, a 

causa dell’aumento della conduttanza e conseguente riduzione del margine di sicurezza 

idraulica. 

Questo studio dimostra l'importanza di considerare la tridimensionalità dei trend anatomici al 

fine di comprendere meglio i rapporti tra la sicurezza idraulica e l’efficienza che modella 

l’architettura della pianta, influenzandone le modifiche ontogenetiche e compensandone i 

vincoli di crescita intrinsechi (dimensione-dipendenti) ed estrinseci (ambiente-dipendenti).  
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1. General introduction 

1.1 State of the Art 

 

Trees are long-living organism that continuously increase in size during ontogeny by 

accumulating xylem biomass in stem, branches and roots, adjusting the xylem structure to 

achieve an optimal balance among the competing needs of support, storage and transport. 

At low temperatures, tree growth is particularly constrained. Two major mechanisms can 

explain the abrupt reduction in growth in cold environments (Rossi et al., 2008) and 

consequently the formation of an altitudinal/latitudinal treeline. According to the carbon 

source limitation hypothesis, low temperatures and short vegetation periods prevent a positive 

carbon balance of the tree burdened with a large proportion of non productive tissues with 

increasing altitude or latitude (Hattenschwiler 2002). In addition, at high altitude the CO2 

uptake by plants could be limited by the lower CO2 partial pressure (Tranquillini, 1979) due to 

the decreasing air density with altitude (La Marche, 1984)  

On the contrary, the carbon sink limitation hypothesis (Körner, 1998) proposed that a sink 

rather than a source limitation is affecting tree growth at low temperatures, asserting that the 

metabolic activity of fixing assimilated carbon into biomass is temperature limited, thus 

limiting the growth of both cambial and apical meristems, above and below the ground, and a 

global isotherm of 6-7°C set the limit to the tree growth form (Rossi et al., 2008, Korner, 2012). 

At the treeline, cambial growth is less constrained by the prevailing temperatures than apical 

growth. In fact, the diameter growth declines much slower than height growth towards the tree 

limit (Korner, 2012), and mean tree height decreases with increasing altitude or latitude (Hoch 

& Korner, 2005; Miyajima & Takahashi, 2007). In fact the stem apex is occupying a 

“colder”position (Korner, 2012), i.e., more coupled with the atmosphere and less protected 

during the winter when the crown protrudes from the snow becoming more vulnerable to ice 

blasting, wind desiccation (Baig & Tranquillini, 1980; Smith et al., 2003) and frost drought 

(Mayr et al., 2006, 2007). However, trees at the treeline evolved morphological and functional 

modification to cope with such severe climatic condition and environmental constraints (Petit 

et al., 2011). 

Hydraulic constraints have been demonstrated to be among the major determinants of the 

maximum height of the trees (Koch et al. 2004). According to optimal allometric models (West 
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et al. 1999) that predicts a quantitative relationship between plant growth and carbon 

allocation, the hydraulic diameter of xylem conduits (Dh) should vary in relation to the distance 

from the stem apex (L) to guarantee a constant leaf-specific conductivity that is independent 

from the tree height. This relationship follows a power (scaling) function (Dh ∝ Lb), with the 

exponent b often converging to the value of 0.2 (Anfodillo et al. 2006; Petit et al. 2007, Petit et 

al., 2009, Olson et al., 2014). This axial pattern (conduit widening) allows the maintenance of a 

functional hydraulic transport by minimizing the negative effect of path length on the total 

hydraulic resistance, while maintaining the safety against embolism formation at the apical 

level, where xylem smaller conduits are more resistant under higher xylem tensions (Hacke et 

al. 2016). A consequence of this strong mechanistic link between conduit lumen size, tree 

hydraulic architecture and height growth, is that the conduit-lumen diameter in a tree increases 

with cambial age at rates dependent on the rates of stem elongation during ontogeny (Carrer 

et al., 2015). A power-like trajectory can well describe the trend of time series of conduit size 

during ontogeny until tree maturity, where the leveling off of conduit time series should reflect 

the approaching to the maximum tree height, and any deviation from the curve may reflect a 

positive or negative pulse of height growth. 

Cavitation, i.e. the formation of air bubble inside the xylem conducts when exposed to highly 

negative water potential, can also occur in conduits following freeze-thaw events, where 

crystallization of liquid water forces dissolved gas out of solution (Brodersen and McElrone 

2013). This hydraulic dysfunction caused such a strong selective pressure that plants have 

evolved xylem anatomical properties to prevent cavitation (Brodribb and Holbrook 2005) and 

to restore the water transport capacity once embolisms have occurred (Brodersen and 

McElrone 2013). Recent studies suggested a potential role of xylem parenchyma in refilling 

conductive elements after embolism occurs (Salleo et al., 2009; Nardini et al., 2011).  

In vascular plants, hydraulic safety against cavitation and efficiency of water transport 

commonly trade off (Meinzer 2010). Many traits may contribute to the safety–efficiency trade-

off, but the interaction among these functional and anatomical traits has still to be fully 

understood (Gleason et al., 2015), maybe because the three dimensional patterns of xylem 

traits in a tree and their size-related modifications occurring during ontogeny are not always 

acknowledged. 

The continuing rise in temperature and CO2 concentration measured in the last decades has 

been hypothesized to stimulate the growth and this is probably the reason of the observed 

altitudinal and latitudinal treeline shift (La Marche 1984, Korner et al., 2012). 
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It has been argued that treeline trees may be particularly sensitive to CO2 enrichment and 

increasing temperature (Smith et al., 2009; Korner, 2012), as they are exposed to lower partial 

pressure of atmospheric CO2 (La Marche et al., 1984, Korner, 2003) and they grow close to their 

low temperature limit (Walther 2003, Dorrepaal et al., 2009).  

The use of manipulative experiment is crucial to understand the carbon source-sink balance 

under different conditions (Fatichi et al., 2013). Only few elevated CO2 experiments were 

applied to high latitude and high elevation vegetation in a relatively natural growth condition 

(Dawes et al., 2011). These studies broadly revealed that other variables, such as temperature 

and availability of nutrients or water, can influence CO2 effects (Niklaus et Korner, 2004; Dawes 

et al., 2011) and that initial growth stimulation often declines after a few years (Korner, 2006). 

In general, an increase in growth and biomass production was observed in several experiments, 

although responses were often small or transient and varied across species and study sites 

(Rustad et al., 2001; Walker et al., 2006). 

Only one long term study of simultaneously manipulating CO2 concentration and soil 

temperature was completed at an alpine treeline ecosystem. This experiment was performed 

at Stillberg (Davos, CH) from 2001 to 2012 (Hattenschwiler et al., 2002-Dawes et al, 2015). 

Little is known about how the xylem anatomical traits are adjusted to guarantee tree growth 

during the different phases of ontogeny, by providing the new requirements in terms of efficient 

and safe water transport, and biomechanical support under different environmental 

conditions. Specifically, there is a lack of studies at the intra-specific level, long-term 

modifications of xylem traits over the full life-span of trees, and variability along axial and radial 

profiles (Streit et al., 2014). Additionally, analysis of inter-annual variability in xylem 

parenchyma traits and their relationships with environmental variation has remained largely 

unexplored (Olano et al 2013). 

In order to better understand how “plastically” the trees respond to environmental changes, 

there is the need to revisit and further explore the structure-function relationships at different 

levels of investigation, from the individual cell to whole plant level, and from individual plants 

to populations. It is important to better understand how plants balance their hydraulic 

architecture to optimize growth performance while guaranteeing the safety and efficiency of 

the entire xylem transport system. 

The study of tree ring anatomy, that adds a ‘time component’ to the functional mechanisms of 

xylem plasticity, is emerging as a promising approach in tree biology and climate change 

research, particularly if complemented by physiological and ecological studies (Fonti et al., 
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2010). I used both an anatomical and physiological approach to study the dynamics of growth, 

by analyzing how the structure-function relationships may change during ontogeny and under 

different environmental conditions in different conifer species in the Alps. 

 

1.2 Aims of the study 

 

This thesis deals with the effect of ontogeny and increased temperature and CO2 concentration 

in the atmosphere on the dynamics of growth, through modifications of structural and 

functional scaling relationships in common conifer species in the Alps. The whole study is 

mainly based on a wood anatomical approach. 

The overall research focuses on: i) wood anatomical responses to ontogeny and environment 

in Larix decidua at the Alpine treeline, ii) conduit-size based comparison of present and past 

height growth rates at three treeline sites in the Alps, iii) size-related changes in structural 

xylem features affecting the vulnerability to cavitation of leader shoots.  

In addition I described the recent improvements in quantitative wood anatomy, to overcome 

the methodological limitations and time-consuming procedures of data collection and analysis.  

In particular, the specific aims of the different studies presented are: 

- To provide a guideline for quantitative wood anatomy (Article 1); 

- To explore new perspectives for investigating structure-function relationships, tree 

stress responses, carbon allocation patterns and climate effects on tree structures based 

on cell wall thickness measurements (Article 2); 

- To identify priorities and trade-offs among xylem functions and to retrospectively 

determine how these relationships varied during ontogeny and under different soil 

temperatures and atmospheric [CO2] (Article 3); 

- To evaluate a novel research perspectives on the use of quantitative wood anatomy to 

assess height growth patterns in conifer trees grown in different epochs at the treeline 

(Article 4); 

- To evaluate the variation of vulnerability to embolism with tree size and to identify the 

tree structure adjustments that can explain it (Article 5). 

 

1.3 Structure of the thesis 

This thesis consists of 5 articles coming out from my PhD activity (chapters 2 and 6). 
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The first paper (Chapter 2) has been published in Frontiers in Plant Science in 2016 and it is a 

Method paper that describes the different steps from wood sample collection to xylem 

anatomical data, provides guidance and identifies pitfalls, and presents different image-

analysis tools for the quantification of anatomical features, in particular of conducting cells. 

Following a rigid protocol and quality control as suggested in this paper, it is thus possible to 

obtain a large amount of quantitative data of xylem anatomical features that can be used as a 

powerful source of information for many research topics.  

The second Method paper (Chapter 3) has received a major revision in Tree Physiology. It 

describes new research perspective from a novel approach to quantify tracheid wall thickness 

(CTW). 

The approach to customize the CWT measurements according to the specific aims of the study, 

together with the high data production capacity, opens new perspectives for investigating 

structure-function relationships, tree stress responses, carbon allocation patterns of trees, and 

climate reconstruction based on intra-annual variability of wood density. 

The following three chapters are the research papers related to the three main projects carried 

out during this PhD. 

The third paper (Chapter 4) has been submitted to New Phytologist. It describes the axial 

allometry of different xylem anatomical structures in Larix decidua, and revealed a hierarchy in 

functional traits, showing a differential prioritization of hydraulic efficiency and safety to 

support the necessary carbon assimilation for tree growth. This work improved our 

mechanistic understanding on the interactions between tree growth and environmental 

conditions and thus on the responses of forests in cold environment to global change. 

The forth paper (Chapter 5) is a manuscript to be submitted soon to a peer-reviewed journal. 

This work described how the ontogenetically stable axial conduit widening (i.e., the increase in 

conduit diameter from the stem apex to base) can be used to obtain information on the height 

growth pattern occurring during ontogeny through the analysis of the radial pattern of xylem 

conduit size. In addition, it describes a conduit based comparison of height growth patterns of 

conifer trees (Larix decidua, Picea abies, Pinus cembra) differing in age from three Alpine 

treeline sites. 

The fifth paper (Chapter 6) is a manuscript to be submitted soon to a peer-reviewed journal. It 

describes the size-related trends in xylem anatomical features triggering the decrease in 

cavitation resistance of the leader shoots in taller Picea abies trees. 

The thesis ends with a chapter (Chapter 7) with general conclusions. 
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2.1 Abstract 

 

Quantitative wood anatomy analyzes the variability of xylem anatomical features in trees, 

shrubs and herbaceous species to address research questions related to plant functioning, 

growth and environment. Among the more frequently considered anatomical features are 

lumen dimensions and wall thickness of conducting cells, fibers and several ray properties. The 

structural properties of each xylem anatomical feature are mostly fixed once they are formed, 

and define to a large extent its functionality, including transport and storage of water, nutrients, 

sugars and hormones, and providing mechanical support. The anatomical features can often be 

localized within an annual growth ring, which allows to establish intra-annual past and present 

structure-function relationships and its sensitivity to environmental variability. However, 

there are many methodological obstacles to overcome when aiming at producing (large) data 

sets of xylem anatomical data. 

Here we describe the different steps from wood sample collection to xylem anatomical data, 

provide guidance and identify pitfalls, and present different image-analysis tools for the 

quantification of anatomical features, in particular conducting cells. We show that each data 

production step from sample collection in the field, microslide preparation in the lab, image 

capturing through an optical microscope and image analysis with specific tools can readily 

introduce measurement errors between 5 to 30% and more, whereby the magnitude usually 

increases the smaller the anatomical features. Such measurement errors – if not avoided or 

corrected – may make it impossible to extract meaningful xylem anatomical data in light of the 

rather small range of variability in many anatomical features as observed, for example, within 

time series of individual plants. Following a rigid protocol and quality control as proposed in 

this paper is thus mandatory to use quantitative data of xylem anatomical features as a 

powerful source for many research topics. 
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2.2 Introduction 

 

Quantitative wood anatomy as meant here investigates quantitatively how the variability in 

xylem anatomical features of trees, shrubs and herbaceous species is related to plant 

functioning, growth and environment, and often explores how these relationships change over 

time. Xylem performs a wide range of functions that are essential for plants to grow and survive. 

The xylem transports water, nutrients, sugars, and hormones; buffers water uptake and loss; 

supports the mass of the canopy plus loads from wind, snow, ice, fruits, and epiphytes; displays 

foliage and flowers to resources like light and pollinators. Many different ways have evolved to 

perform these functions, and in consequence, there is an enormous diversity of xylem 

anatomies that can be spotted through a microscope. Moreover, wood anatomical features 

represent a natural archive for growth-environment relationships and plant functioning with 

intra-annual resolution (Fonti et al., 2010). In fact, xylem cells can be localized at a certain 

position within a specific annual growth ring (e.g. earlywood or latewood), which is linked to 

the time of their formation. The xylem anatomical structure is influenced during its 

development by internal and external factors (e.g., Fonti et al., 2010; von Arx et al., 2012; Aloni, 

2013; Fonti et al., 2013; Carrer et al., 2015), and mal-adjusted xylem structure may even be 

responsible for tree mortality (e.g., Hereş et al., 2014; Pellizzari et al., 2016).  Quantitative wood 

anatomy capitalizes on the xylem anatomical structures mostly fixed in the stems once the cells 

are mature, and often focuses on a small number of cell types such as conduits (vessels or 

tracheids), parenchyma (axial and radial), and fibers.  

Xylem anatomical features in plants are numerous, and sometime concern very small and 

delicate details (IAWA Committee, 1989; 2004; Crivellaro and Schweingruber, 2015). This 

necessitates careful processing and high accuracy during quantification, but also analyzing a 

sufficiently large and representative subset of the wood sample (Arbellay et al., 2012; Scholz et 

al., 2013; Seo et al., 2014; von Arx et al., 2015a). In other words, quantitative wood anatomy  

requires high-quality, high-resolution, and often large images of properly collected and 

prepared anatomical samples. Improved sample preparation protocols for these needs have 

lately been developed (Gärtner and Schweingruber, 2013; Yeung et al., 2015). Furthermore, 

recent improvements in computer performance, automated image-analysis systems (von Arx 

and Dietz, 2005; Fonti et al., 2009; von Arx et al., 2013; von Arx and Carrer, 2014) and 

processing and interpretation of anatomical data (Carrer et al., 2015) nowadays allow to 
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significantly increase the number of measured anatomical features. Together, these 

advancements are providing the basis to create unprecedented datasets in terms of size and 

quality, thus also allowing to use quantitative wood anatomy for an increasing number of 

different research topics such as climate-growth interactions (Olano et al., 2013; Castagneri et 

al., 2015; Rita et al., 2015), stress responses (Fonti et al., 2013), tree functioning (Petit et al., 

2011; Olson et al., 2014; Guet et al., 2015; Pfautsch et al., 2016), functional anatomical 

properties to identify tree provenances most resistant to climate change impacts (Eilmann et 

al., 2014), and wood formation (Cuny et al., 2014; Pacheco et al., 2015) and production (Cuny 

et al., 2015) processes. However, the production of data meeting high quality requirements 

necessitates following a strict multi-step procedure, to avoid artifacts and mistakes that can 

significantly influence the measurements. This is critical considering the relatively small range 

of variability of many anatomical features, in time series often between 5 and 20% from year 

to year (Fonti et al., 2007; Olano et al., 2013; Fonti et al., 2015; von Arx et al., 2015a) as 

compared to even several fold in ring width.  

This paper shows all sequential steps from sample collection to anatomical sample preparation 

and high-quality data production, and presents guidance and pitfalls of quantifying anatomical 

features. As such, it is intended to reflect the current state of the art for quantitative wood 

anatomy, particularly for the quantification of the most commonly investigated water-

conducting xylem cells (conduits), but we anticipate that many aspects will be similar in other 

anatomical features of the xylem and even the phloem. 

 

2.3 From sample to anatomical data: guidance and pitfalls 

Step 1: Collecting samples in the field 

Quantitative wood anatomy aims to extract information from anatomical structures of stems, 

shoots, branches, roots, rhizomes and even needles and leaf petioles of monocots and dicots. In 

many cases samples used for quantitative wood anatomy are taken with an increment borer. 

This tool was originally developed to collect samples for forest mensuration and 

dendrochronological investigations. When collecting increment cores for anatomical analyses, 

it is even more crucial than for other purposes to check the sharpness of the cutting edge of the 

borer’s tip to avoid macro- and micro-cracks in the samples. This can be tested by punching out 

paper circles from a newspaper. Furthermore, it is very important to core in an exact radial 

direction, from the bark towards the pith, perpendicular to the axial direction of xylem cells, 

and keeping the borer in a fixed position while drilling. The use of a pusher is recommended 
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when collecting cores for anatomical analyses. Cores of 10-12 mm in diameter are preferable 

compared to the standard 5 mm or smaller, to have more material to work with and to minimize 

the risk of fractures and twisting. Wood samples can also be extracted from stem discs obtained 

with a chainsaw, whereas in branches and smaller plant stems and/or root collars the entire 

samples can be processed. For the storage of wood samples we refer to literature such as 

Gärtner and Schweingruber (2013). Collection of herbs requires to excavate the root collar, e.g. 

with common garden tools. When cutting small branches, twigs, and small stems from a plant 

with pruners, the first (squeezed) part of the sample needs to be removed with a small-jagged 

saw (in hard samples) or a razor blade (in soft samples) before preparing microsections to 

avoid cracks and fragmentation.  

 

Step 2: Preparing microsections 

General procedure 

Typically, sample preparation involves producing microsections of 10-20 µm thickness with a 

sledge or rotary microtome, staining of the pallid cell walls with an agent as safranin, astrablue, 

toluidine blue, cresyl violet acetate and their combinations to increase contrast in an anatomical 

slide (Gärtner and Schweingruber, 2013; Yeung et al., 2015). Boiling or just soaking the samples 

in water, embedding in paraffin, or using corn starch solution often helps to avoid damage to 

cell structures when cutting (Schneider and Gärtner, 2013; Yeung et al., 2015). For samples 

with very narrow cell lumina rice starch gives better results than corn starch because of the 

smaller grain size. When analyzing relatively large cells as the earlywood vessels in ring-porous 

species, it is usually sufficient and more efficient to smooth the wood surface by sanding or 

cutting (for instance with a core microtome, Gärtner and Nievergelt, 2010), removing sawdust 

and tyloses using high-pressure air or water blast, and increasing contrast of the wood surface 

with chalk powder and black marker (Fonti et al., 2009; Gärtner and Schweingruber, 2013). 

Microtome blades 

Microtome blades must be sharp and without defects to avoid disrupting the delicate 

anatomical structures. Damages due to dull blades are usually more pronounced in thinner 

sections (Figure 1). Frequent replacement or use of a previously unused part of the blade (often 

after cutting one sample, or after an even surface of the sample was prepared) can avoid this 

problem. Furthermore, using high-quality blades can significantly reduce cutting artifacts 

(Figure 2). For both conifer and angiosperm samples, good results were reported when using 

Leica DB80 LX and Leica 819 low-profile blades (Leica Biosystems, Wetzlar, Germany), and 
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Feather N35HR and N35 blades (Feather Safety Razor Co., Ltd., Osaka, Japan) (e.g., Prislan et al., 

2013; Gričar et al., 2014; Pacheco et al., 2015; Pellizzari et al., 2016), however the optimal blade 

depends on the microtome model and the sample properties (e.g., density of the material, 

part(s) of the stem, moisture content) and therefore requires lab-specific testing. Generally, for 

cutting xylem, blade types designed for hard tissues should be used.  

Sample orientation while cutting sections 

When analyzing cross-sections, the wood samples should be cut perpendicular to the axially 

oriented xylem cells to avoid over- and underestimation of the measured anatomical features 

(Figure 3). When cutting longitudinal (i.e. radial and tangential) sections wood samples should 

be cut parallel to the axially oriented xylem cells. This is important when analyzing, for instance, 

rays in tangential sections. Measurement errors due to improper sample orientation increase 

with cutting thickness.  

Section thickness 

A cutting thickness between 10 and 20 µm is usually optimal. Analyzing thick sections usually 

results in over- and underestimation of anatomical features such as cell wall thickness and cell 

lumen area (Figure 4). Thick sections also often appear out of focus. On the other hand, sections 

should not be too thin, since the tissue staining might be too weak to obtain target structures 

of sufficient contrast. Weak staining can be improved to a certain extent by prolonging the 

duration of the staining process or slightly increasing the concentration of the stain. In addition, 

sections from different species and even individuals can differ in staining intensity. However, 

as the example in Figure 4 shows, even in the optimal range the measured values can be 

influenced by different cutting thicknesses. It is therefore important to standardize cutting 

thickness for all samples of the same project. A good practice is also to record the thickness of 

each section, if not fully constant for all samples, thus allowing during data analysis to relate 

any outliers to potential cutting-thickness effects. It is also important to bear in mind that 

comparing absolute values among different projects could be biased if different cutting 

thicknesses were used.  

Making permanent slides 

Permanent slide preparation is recommended to make specimens last over a long time. The 

procedure requires to dehydrate sections after staining, and a mounting medium (e.g., Canada 

balsam, Euparal, Eukitt) to permanently fix the sections between two glass slides (Gärtner and 

Schweingruber, 2013). To avoid buckling of the section, which impairs a uniform focus when 

capturing an image, the slide with the cover slip is sandwiched between PVC strips with a small 
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magnet placed on the top of the slide on a metal plate to keep the sections flat and air bubbles 

out during drying in the oven. The oven is set at 60 °C for 12 h. Permanent slides, once prepared, 

can be used over and over again and can be stored for longer time periods than non-permanent 

slides. 

 

Step 3: Microslide digitizing 

Cleaning slides and cover glasses 

Pollution hampers automatic detection of anatomical features during image analysis and 

increases manual editing effort needed to obtain accurate data. Microslides should be cleaned 

carefully before capturing images to avoid obscured and low-contrast image parts (Figure 5). 

Frequent sources of pollution are, for instance excessive mounting medium (Gärtner and 

Schweingruber, 2013), fingerprints and dust particles. After drying, any hard mounting media 

on top of the cover slip can be scraped off with razor blades. 

Magnification 

High-resolution digital images of anatomical sections are most commonly captured with a 

camera mounted on a optical microscope. Cameras integrated in the microscope system or 

standard cameras mounted with an appropriate adapter can be used. To observe and analyze 

conifers 10× objectives are usually recommended, which, depending on the camera, can give a 

resolution of 1.7 to 2.5 pixels·µm-1. In angiosperms the 4× objectives giving a resolution of 0.7 

to 1.0 pixels·µm-1 are usually sufficient, especially for analyzing larger cells as vessels in trees, 

whereas smaller cells such as fibers also often require 10× objectives.  

Contrast and illumination settings 

Insufficient staining (due to too short staining time and/or old staining solutions) as well as 

wrong illumination, improper white balance and over-illumination lead to poor image contrast 

(Figure 6). Poor image contrast can significantly hamper the accurate automatic detection of 

anatomical structures during image analysis.  

The quality and accuracy of the image critically depend on proper microscope settings. In this 

respect, the Köhler illumination method represents a major step to improve image quality 

(McCrone, 1980) and should be applied as a standard. 

Focusing 

Careful focusing avoids obtaining blurred structures that can lead to measurement errors 

(Figure 7). Some systems offer automatic or semi-automatic focusing which contributes to 

consistently high image sharpness. When focusing manually, one should be aware that the live 
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view on the computer screen is often of reduced size; therefore one should use a 100% zooming 

window for focusing, if available. When not all regions of a microslide can be in focus because 

of buckling, z or focus stacking techniques, i.e. the combination of the focused image 

information from multiple images taken at different focal planes is a solution provided by some 

systems. Otherwise, the best and first solution would be to retry preparing a better microslide. 

In some wood samples this problem cannot be resolved even with careful microslide 

preparation. Then, excluding poorly focused regions from analysis is the best way to avoid 

measurement errors. Since the impact of poor focus depends on the size of the anatomical 

features (Figure 7), focusing the smaller target features (e.g., latewood lumina) is better than 

focusing larger target features (e.g., earlywood lumina).  

Scanning 

For analyzing relatively large anatomical features such as the earlywood vessels in ring-porous 

species, it is possible to capture an image directly from the prepared wood surface with a 

flatbed scanner using an optical resolution of 1500 to 2500 dpi (Fonti et al., 2009). For 

permanent anatomical slides, slide scanners are an efficient alternative to optical microscopes, 

because they can produce high-resolution (e.g., 2.0 pixels·µm-1) images of entire anatomical 

samples, which avoids time-consuming image capturing and stitching (see next paragraph). 

There are also several modifications of the aforementioned basic image capturing approaches, 

e.g. capturing images directly from the prepared wood surface with a dissecting microscope, 

thus combining efficient wood preparation with a higher optical resolution compared to flatbed 

scanners.  

Stitching composite images 

Quantification of anatomical structures requires high-resolution images in order to obtain 

accurate data. However, higher magnification goes along with smaller field of view. This means 

that the anatomical sample often does not fit into a single image frame captured with an optical 

microscope, particularly when working with larger samples as the ones used, for example, to 

build time series of anatomical features (tree-ring anatomy or dendro-anatomy). If no slide 

scanner is available (see above), this dilemma can be resolved by capturing several overlapping 

images and stitch them together (Figure 8).  

For image stitching, overlapping images are produced using a microscope stage and 

systematically moving through the sample while capturing images. Re-focusing should be 

performed after every single or every few images. The overlap between individual images in 

angiosperm samples should be about 20% (Figure 8a), while in conifers we recommend about 
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30-40% to facilitate the stitching process. Overlapping images of a sample are then merged to 

an overall composite or panorama image using stitching software (Figure 8b). We recommend 

using specialized tools such as PTGui (New House Internet Services B.V., Rotterdam, NL) and 

AutoPano Pro (Kolor SAS, Francin, F) since they offer full control and reproducibility while 

producing distortion-free composite images. In contrast, some of the widely used stitching 

systems can produce distortions and artifacts which would lead to inaccurate results. With 

sufficient overlap and focused images PTGui and AutoPano Pro are usually able to create the 

composite image automatically. If not, both software allow to manually add control points, i.e. 

identical structures in the overlapping image parts. If the software are configured correctly, 

they are even able to correct any image distortions introduced by the optical system (Figure 8c; 

see von Arx et al. (2015b)), e.g. when not using the recommended distortion-free ‘plan’ type 

lenses.  

 

Step 4: Quantifying anatomical features in anatomical images 

Image analysis tools  

Once the image is produced, image-analysis tools are used to quantify the anatomical features. 

While target structures can be outlined and measured manually, automated image analysis 

allows to quantify a larger number of anatomical features in a much shorter time, and in an 

objective and reproducible way. Several image-analysis tools are used for quantitative wood 

anatomy. They differ considerably in functionality, ranging from rather general image analysis 

software such as ImageJ (Rasband, 1997-2016) to very specialized tools such as WinCELL 

(Regent Instruments Inc., Québec, Canada) and ROXAS (von Arx, www.wsl.ch/roxas; Table 1). 

The choice of the most appropriate tool depends on the specific needs. For a general 

characterization of xylem anatomical features in rather small samples a general tool is 

sufficient. However, if the sample depth in terms of number of trees, years and anatomical 

features measured, but also the requirements in terms of specific and comprehensive output is 

important for the subsequent inferences, we recommend using specialized tools.  

Despite the diversity of tools offering different levels of automation, specialization and 

usability, using them for quantification of anatomical features follows the same basic steps that 

are explained in the following. 

Determining the spatial image resolution 

To obtain the measurements in metric units the pixel-to-micrometer resolution needs to be 

determined first. Some microscopic imaging systems provide this information directly, or add 
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a spatial scale bar to the image that can be used as a reference. Where such information is 

missing, the best way to obtain the spatial resolution is to take a microscopic image of a stage 

micrometer or graticule (slide with an engraved high-accuracy micrometer scale) in the target 

magnification and measure several times the distance between two tick marks in pixels using a 

line tool. The obtained line length in pixels is then divided by the known line length in 

micrometers to receive the pixel-to-micrometer resolution. Selecting remote and different tick 

marks in each line measurement increases the robustness. In images from a flatbed scanner, 

the same information can be derived from the known resolution in dpi: 

𝑥

25,400
  eq. 1 

Where x is the resolution of the scanned image in dpi. A resolution of 1500 dpi, for instance, 

corresponds to 0.059055 pixels·µm-1 

Image processing 

In images showing deficiencies, the next step is image processing, which helps to increase 

contrast and enhance edges of target anatomical structures. Some specialized image analysis 

tools do this automatically. The example in Figure 9 shows how an unremoved dust particle on 

a permanent slide (cf. Figure 5) is removed by contrast homogenization, thus resulting in a 

more complete recognition of tracheid lumina. In general, image processing should be used 

conservatively as it can change the dimensions of anatomical features in the image. Generally, 

the better the quality of the anatomical sample and image the less image processing is required 

to detect and quantify the targeted anatomical structures. 

Image segmentation 

The original or processed image usually needs to be converted into a black-and-white (binary) 

image that allows discrimination between target and non-target structures (Figure 10). In this 

step called ‘segmentation’ or ‘thresholding’ a color or intensity value that optimizes this 

separation is – depending on the image-analysis tool – manually or automatically defined. 

Inhomogeneous image brightness and contrast due to inappropriate light source, uneven 

sample flatness or thickness and sample pollutions (cf. Figure 9) make it difficult or impossible 

to find a segmentation threshold that accurately discriminates between target and non-target 

structures in the entire image; such artifacts should therefore be avoided or corrected. The 

incorrect selection of a segmentation threshold can easily influence the data by 5-10%, 

particularly when the anatomical features in the image are not well defined because of poor 

contrast and focus. The segmented image is the basis for quantifying the anatomical features. 
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Detecting and measuring anatomical features  

The segmented (binary) image is the basis for detecting and measuring anatomical features. 

Most image analysis tools represent the anatomical features as vectors instead of pixels (Table 

1), which is usually better because irregularities can be corrected more easily (Figure 11), and 

the results are given in sub-pixel resolution.  

Improving score and accuracy of anatomical feature detection using filters 

Most image-analysis tools include size filters to automatically exclude objects that are too small 

or too large. Moreover, specialized tools offer automatic filters based on color and shape (Table 

1). Some specialized tools such as ROXAS also include shape corrections, e.g. to correct for 

particles and ripped-off cell walls that protrude into the cell lumen (Figure 12), and context-

based filters that allow, for example, to filter out cells that strongly deviate from the closest 

neighboring cells. 

Manual editing  

To obtain quality results and deal with image deficiencies, final manual editing is often 

necessary after automated detection and filtering of anatomical features. Specialized image-

analysis tools offer efficient editing options for deleting, adjusting and adding anatomical 

features. However – and this cannot be stressed too much – it is generally several times more 

efficient to invest time into high-quality anatomical slides and images rather than to manually 

improve a suboptimal automated feature detection.  

Xylem anatomical metrics and data storing 

Specialized image-analysis tools automatically extract many metrics from the visual output and 

save them into data files, others offer manual export functions. Examples of primary, but also 

several derived anatomical metrics that are used to address many distinct research questions 

can be seen in the instruction film by von Arx et al. (2015b).  

Among the primary measurements are: width and calendar year of annual rings, number, 

position and dimensions of conduits, resin ducts and rays (globally / within annual rings), cell 

wall thickness (conduits, fibers). 

Among the many derived metrics calculated manually or automatically by some image analysis 

tools are: mean hydraulic diameter Dh (lumen diameter corresponding to the mean hydraulic 

conductivity of all conduits; Sperry et al., 1994), conduit and resin duct density (no./mm2; 

Scholz et al., 2013), vessel grouping indices (connectivity among vessels; von Arx et al., 2013), 

Mork’s index (an indicator for anatomical wood density in conifers; Denne, 1989), bending 
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resistance index (t/b)2 (cell implosion safety; Hacke et al., 2001), theoretical hydraulic 

conductance based on Poiseuille’s law (Tyree and Zimmermann, 2002). 

Quality control 

How much manual editing is needed? We recommend to define this by comparing the output of 

the target anatomical parameters after no, moderate and perfect manual editing for one to a 

few representative subset images (e.g. including 1000-2000 cells from both early- and 

latewood). If all previous steps were done properly the output with no or moderate editing will 

not deviate from the (near to perfect) output obtained after heavy-editing by more than 1-2%; 

this is an accuracy we deem sufficient for most purposes. 

 

2.4 Conclusions 

In this paper we provided some practical guidance and identified several pitfalls to successfully 

use quantitative wood anatomy in research. Producing xylem anatomical data is a challenging 

multi-step approach from sample collection to image analysis. As we showed with a few 

examples, potential measurement errors in many steps are between 5 to 20 or even 30%, which 

is in the same range as the variability of the anatomical metrics of interest, at least when 

excluding partly much stronger interspecific and ontogenetic variability. This is exacerbated by 

the fact that deficiencies in one step propagate to the next step, sometimes scaling up. The 

neglect of following a rigid and standardized procedure in terms of cutting thickness, staining, 

and illumination settings can therefore introduce considerable measurement errors and reduce 

the quality of the xylem anatomical dataset. While the specific measurement errors due to 

sample and image deficiencies can differ significantly within the smallest and the largest 

anatomical features, sometimes even changing from over- to underestimation, they are usually 

strongest in the smaller features such as latewood cell lumina and cell wall thickness. This is of 

particular relevance if the research goals are oriented towards, for example, intra-annual 

density profiles including maximum latewood density, or mechanical strength of cells. Although 

during image analysis the presented measurement errors can be reduced by defining specific 

settings for each image and manual editing, this is subjective, often very time-consuming, and 

generally still produces less accurate data than minimizing problems beforehand. The 

importance of producing high-quality anatomical slides and images can therefore not be 

stressed too much in terms of efficiency and accuracy. Then, quantitative wood anatomy is a 

very powerful tool that can give novel and mechanistic insights into the relationships between 

tree growth and environment over decades and even centuries.  
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Tables 

 

Table 1: Overview of some image-analysis tools used for quantifying anatomical features. 

  Tool Cell 

size 

Cell wall 

thickness 

Tree-ring 

analyses 

Cell 

filtering 

Object 

model 

Interactive 

editing 

Some Other features License 

S
p

e
ci

a
li

ze
d

 t
o

o
ls

 

ROXAS Yes Automatic Automatic Size, color, 

shape, 

context 

Vector Yes - Analyzing large images (up to 1,000,000 
cells) 

- Large set of anatomical output 
parameters 

- Automatic image processing 
- Batch processing options 
- Online library & customization of 

tailored configurations 

Free, but 

requires 

commercial 

Image-Pro Plus 

WinCELL Yes Automatic Manual Size, color, 

shape 

Pixel Yes - Large set of anatomical output 
parameters 

- Batch processing options  
- Customizing tailored configurations 
- Microscope & scanner control  

Commercial 

G
e

n
e

ra
l 

to
o

ls
 

ImageJ Yes Manual No Size, Shape Vector No - Large collection of plugins by 
community 

- Macro development tools 

Free 

CellProfiler Yes Manual No Size, color, 

shape 

Vector Yes - Batch analyzing large sets (>1000) of 
images 

- Automating workflow using modules 

Free 

Image-Pro Plus Yes Manual No Size, color, 

shape 

Vector Yes - Powerful image processing and analysis 
functions 

- Macro development tools 

Commercial 

NIS-Elements  Yes Manual No Size, shape Vector Yes - Macro development tools 
- Microscope control 

Commercial 

AxioVision  Yes Manual No Size, shape Vector Yes - Automating workflow & macro 
development tools  

- Microscope control 

Commercial 
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Figure captions 

 

Figure 1: Damage to cell walls due to dull blades in Pinus heldreichii cross-sections of (a) 

15 µm and (b) 30 µm thickness. In conifer samples, wall fragments rip off particularly 

easily at bordered pits. Such problems are aggravated in thinner sections as in panel (a). 

Scale bar = 100 µm. 

 

Figure 2: Pinus sylvestris cross-sections of 15 µm thicknesses from the same wood piece 

cut with (a) cutter and (b) high-quality blades. Problems with disrupted cell structures 

can often be significantly reduced by using high-quality blades. Scale bar = 100 µm. 

 

Figure 3: Cross-sections of Pinus heldreichii cut from a not properly oriented sample, i.e. 

cutting direction that is not perpendicular to the axial tracheid orientation. Non-

orthogonal cross-sections result in underestimation of lumen area and overestimation of 

cell wall thickness. These measurement errors are weaker in (a) thinner than in (b) 

thicker sections as revealed after analyzing the entire images (c. 2500 cells; only subset 

images shown here) with the image-analysis tool ROXAS (cf. Table 1): mean cell lumen 

area in (b) was 43% smaller and mean tangential cell wall thickness 46% larger than in 

(a). Scale bar = 100 µm. 

 

Figure 4: (a) Series of cross-sections of the same Pinus heldreichii wood piece using 

different cutting thicknesses from 10 to 40 µm (top row). The anatomical images are part 

of larger analyzed images containing each c. 4000 tracheids cells. The orientation of the 

samples is reasonably vertical, and images were produced keeping staining procedure 

and microscope settings standardized. Analyzing the images with the image-analysis tool 

ROXAS (cf. Table 1) using always the same settings reveals that the measured lumen area 

reduces markedly from the thinner to the thicker cross-sections (b). This effect is stronger 

for smaller cells with a 31% reduction in the lowest percentile of the cell lumen 

population (CA1) than for the largest cells with only 4-6% reduction (CA90, CA99). In 

contrast, the mean tangential cell wall thickness appears also for the thinnest walls 

(CWT1, belonging to the largest cells) up to 30% larger in thicker compared to thinner 

cross-sections. For the thickest cell walls (CWT99, belonging to the smallest cells) the 
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cutting-thickness error was up to 40%. Note that the quantification of the measurement 

errors is based on the shown example only. To a certain extent some of the cutting-

thickness errors can be alleviated by adjusting the settings of the image analyses, 

particularly the segmentation threshold (see paragraph “4.4 Image segmentation” and 

Figure 10). Scale bar = 100 µm. 

 

Figure 5: Image of a slide with some pollution as indicated by yellow arrows (a) before 

and (b) after cleaning (Pinus sylvestris). Scale bar = 100 µm. 

 

Figure 6: Anatomical images of the same Pinus sylvestris microslide illustrating how 

imporper microscope settings such as (a) wrong white balance and (b) over-illumination 

reduce image contrast compared to (c) optimal settings. Suboptimal microscope settings 

may impede automatic detection of anatomical features and result in under- and 

overestimation of anatomical features. Scale bar = 100 µm. 

 

Figure 7: The same anatomical microslide of Pinus sylvestris once captured (a) out of focus 

and (b) with optimal focus (only subset images shown). The entire images were analyzed 

with the image-analysis tool ROXAS (cf. Table 1) using always the same settings. In the 

out-of-focus image, 178 small tracheids out of totally 4240 (4.2%) were not detected, 

because lumina of very narrow tracheids were insufficiently defined. Accordingly, the 

lumen area corresponding to the smallest 1% of the measured values (CA1) were 69% 

larger in the poorly-focused than the well-focused image, while in the largest tracheids 

(CA99) the lumina appeared 1% smaller in the poorly -focused images. Similarly, the 

thickest tangential cell walls (CWT99, corresponding to the very small tracheids) were 

overestimated by 9% in the  poorly-focused compared to the well-focused image, while 

they were underestimated by 4% towards the thinnest walls (CWT1). Scale bar = 100 µm. 

 

Figure 8: (a) Overlapping high-resolution images stitched together using PTGui and (b) 

the obtained high-resolution image of an entire Verbascum thapsus root cross-section. The 

used overlap with neighboring images is visualized for one of the images with yellow 

dashed lines in (a). The input images contained distortions introduced by the used optical 

system, which were successfully removed by PTGui (verified by creating a composite 
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image of a stage micrometer and measuring the distances between tick marks, which 

yielded constant values throughout the image). Five randomly selected vessels along a 

transect (see labels in b) having an lumen area between 100 and 3500 µm2 were 

subsequently measured using ROXAS using always the same settings in images stitched 

with the software PTGui, AutoStitch, Microsoft Image Composite Editor and Photoshop 

(Automatic and Reposition settings). Panel (c) shows the percentage deviation of the 

obtained values compared to the PTGui reference values. The values in all used stitching 

tools and settings deviate from the PTGui reference, thus indicating distortions. In 

addition, the magnitude of the deviations varied along the transect often changing from 

over- to underestimation. Note that Photoshop Reposition setting also produces 

distortion-free images if input images are already distortion-free, while AutoStitch still 

introduces distortions. Scale bar = 1 mm.   

 

Figure 9: Top row shows how tracheid lumina obscured by a dust particle on the cover 

glass of a Pinus leucodermis sample remain undetected using ordinary image processing, 

bottom row shows how contrast homogenization technique (using the image analysis tool 

ROXAS in this case) allows to automatically detect all lumina. Scale bar = 100 µm. 

 

Figure 10: (a) Anatomical image of a Pinus sylvestris sample with (b) visualization of the 

segmentation threshold by a green mask and (c) the resulting binary image after 

performing the segmentation, which is the basis for quantifying the anatomical features. 

Depending on the image-analysis software the segmentation is applied to the original or 

processed color image, or a gray-scale image resulting from one to several image-

processing steps (cf. Figure 9). Scale bar = 100 µm. 

 

Figure 11: Defining the anatomical features in a (a) sub-optimal image of Quercus petrea 

(surface scan, 2400 dpi) as (b) vector instead of (c) pixel objects allows to correct some 

sample artifacts, e.g. by applying a convex outline filter. Panel (d) compares the percent 

deviation of vessel lumen area when representing the identical vessels in the selected 

image as pixels vs. vectors after analyzing the entire sample (>2500 vessels) with the 

image-analysis tool ROXAS. 20.2% of the measured values deviate by ≥5% from the 

supposedly more accurate vector object value, and 4.3% by ≥10%. While underestimation 
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of lumen area in the pixel representation can be very strong due to artifacts as highlighted 

by the yellow arrows in (a-c), pixel representation also resulted in slight overestimation 

(<5%) of 21.6% of all vessels because of pixel rounding effects. Note that some of these 

deviations can be significantly reduced by manual editing. Scale bar = 1 mm. 

 

Figure 12: (a) Cross-section of Pinus sylvestris showing ripped-off cell walls. (b) Same 

sample with overlay of detected lumen outlines (cyan) without any correction, resulting 

in measurement errors. (c) A convex outline filter can correct such artifacts, but may also 

cut off true concavities in the lumen outlines, e.g. due to pit inflections, while (d) a more 

powerful ‘protrusion filter’ (as implemented in the image-analysis tool ROXAS) better 

discriminates between artifacts and true concavities (Pinus sylvestris). Scale bar = 100 µm. 
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3.1 Abstract 

 

The analysis of xylem cell anatomical features in dated tree-rings provides insight into 

xylem functional responses and past growth conditions at intra-annual resolution. So far, 

special focus has been given to the lumen of the water-conducting cells, whereas the 

equally relevant cell wall thickness (CWT) has been less investigated due to 

methodological limitations. Here we present a novel approach to measure tracheid CWT 

in high-resolution images of wood cross-sections based on recognized tracheid lumina 

that is implemented within the specialized image-analysis tool ‘ROXAS’. Compared to the 

traditional manual line measurements along a selection of few radial files, this novel 

method: i) measures CWT of all tracheids in a tree ring, thus increasing the number of 

individual tracheid measurements by a factor of about ten to twenty; ii) measures 

separately the tangential and newly the radial walls; and iii) laterally expands the line 

measurements in a customizable way, thus integrating the wall thickening from the 

thinnest central part towards the corners of the tracheids. CWT measurements performed 

with this novel and the traditional manual approach showed comparable accuracy for 

several image resolutions, with an optimal accuracy-efficiency balance at 100× 

magnification. The configurable settings affected both the absolute and intra-annual 

patterns of CWT, in particular estimates of cell wall material resulted 10-13% larger with 

a higher level of wall integration. This versatility, together with the high data production 

capacity, thus allows to tailor the assessment of CWT to the goal of the study, which opens 

new research perspectives, e.g. for investigating structure-function relationships, tree 

stress responses and carbon allocation patterns, and for reconstructing climate based on 

intra- and interannual variability of wood density.  
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3.2 Introduction 

 

Tracheids, appearing earlier in evolution than vessels, are the primary anatomical units 

of plant growth and carbon sequestration in conifers. Tracheary elements are connected 

through large, circular bordered pits that are concentrated at the tapered ends (in the 

radial walls) of the cells (Myburg and Sederoff 2001). These mature elements are 

terminally differentiated, empty dead cells for water conduction that may also function in 

mechanical support by means of their lignified, thickened and strong secondary cell walls 

(Myburg et al. 2013). Earlywood tracheids are characterized by wide lumina and mainly 

responsible for water transport from roots to leaves. Latewood tracheids, with the 

reduced lumen size and thicker cell walls, in contrast provide most of the mechanical 

support for the upright posture and general architecture of the plant (Denne, 1988; 

Koubaa et al., 2002; Myburg et al. 2013). The structural properties of tracheids are 

strongly determined by genetic and hormonal control (Aloni, 2013) and functional needs 

(Carrer et al., 2015), but also with significant imprints from environmental conditions 

(Park and Spiecker 2005, Handa et al. 2006, Cuny and Rathgeber 2016). Retrospectively 

relating the intra- and inter-ring variability of structural tracheid properties along series 

of dated tree rings (‘quantitative wood anatomy’; see von Arx et al., 2016) can therefore 

be used to infer past environmental conditions or tree functional responses (Fonti et al., 

2010). However, until now investigations have mainly focused on the variability of 

conductive ability through tracheid lumen dimensions, while only few studies 

investigated the wall thickness (CWT) (Spiecker et al. 2000, Park and Spiecker 2005) and 

SilviScan papers. Despite the important role of CWT for mechanical support, hydraulic 

safety and carbon allocation, as seen in investigations of structure-function relationships 

(Rosner et al., 2016) and responses to extreme events inducing mortality (Heres et al., 

2014; Pellizzari et al., 2016), but also when considering that CWT is a key feature 

determining the intra- and interannual variability of wood density, one of the most used 

proxy for climate reconstructions (e.g., Briffa et al., 1998; Büntgen et al., 2010) and global 

carbon budget (e.g., Cuny et al., 2015).  

Several measurements constraints still represent the main obstacle for a wider use of 

CWT in environmental research. Currently, one of the most applied approaches is to 

manually measure the thickness of the cell walls in images of anatomical cross-sections 



53 
 

by using a line-measuring tool available in many imaging software. Usually, a few radial 

files (from bark to pith) with large tracheids are selected, and measurements are 

performed through the centre of the tangential double-cell wall connecting two 

neighbouring tracheids. This approach is very time consuming and subjective in terms of 

positioning and length of the measurement lines. The consequence is that studies using 

this approach can be limited in representativeness and statistical robustness by the low 

number of samples (trees), annual rings and radial files (e.g., Seo et al., 2014). In addition, 

the radial cell walls are usually not considered since earlywood tracheids frequently 

contain swollen walls around the pits, which in thinner sections appear with pit chamber, 

torus and margo (Baas et al., 2004). However, ignoring the radial cell walls, which are 

usually thicker than the tangential cell walls (Cuny & Rathgeber, 2016), will bias results 

with systematic under-estimations of the total cell wall material.  

Here we present how the latest version of the image analysis tool ‘ROXAS’ (von Arx & 

Dietz, 2005; von Arx & Carrer, 2014) helps to overcome methodological challenges of 

CWT measurements through a robust, comprehensive, and customizable approach. In 

particular, we i) explain how the novel measurements are automatically performed (thus 

increasing about ten to twenty fold the number of measured tracheids) and highlight the 

versatility of the measurements; ii) compare the proposed automatic approach for CWT 

measurement to the traditional manual line measurement and assess the influence of 

image resolution (e.g. magnifications), sample quality, and invested manual editing effort; 

and iii) evaluate the scientific relevance of our novel approach in terms of extracted 

information.  

 

 

3.3 Materials and Methods 

The image analysis tool ROXAS 

ROXAS v3.0 is the most updated version of an image analysis tool specifically designed to 

identify cell lumina in cross-sections of angiosperms and conifers to quantify xylem cell 

structures. It is built around the image processing and analysis capabilities of Image-Pro 

Plus ≥v6.1 (Media Cybernetics, USA) and provides comprehensive output files (von Arx 

and Carrer 2014). ROXAS automatically derives several cell anatomical structures and 

annual ring borders, but also allows the user to manually edit mis-identified lumina (von 
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Arx and Carrer 2014). In addition to the previous version, automatic detection of other 

anatomical features such as conduit wall reinforcement (t/b)2 and cell wall thickness 

(CWT) is now provided for each cell, as well as in summarized form for each annual ring. 

Numerous settings, saveable in configuration files, give the user the flexibility to optimize 

and customize the analysis and output for the characteristics of the species and/or image. 

The workflow does not differ from the previous version (von Arx and Carrer 2014). More 

specific information can be found in (von Arx & Dietz, 2005; Fonti et al., 2009; von Arx et 

al., 2013; Wegner et al. 2013; von Arx & Carrer, 2014), whereas for general information 

on output parameters, applications and availability we refer to www.wsl.ch/roxas. 

 

Specification on the measurement of tracheid cell wall thickness 

A new feature of ROXAS is that it measures CWT on each side of a tracheid (tangential 

walls: towards pith and bark, radial walls: left and right). The measurement assumes 

equal share of wall thickness between neighbouring tracheids, with a possible 

consequence of over-under estimation of radial cell wall thickness for early wood and late 

wood neighboring tracheids, overall when the transition is abrupt (Baas et al. 2004). 

Basically, watershed lines are added at equidistance between all neighbouring tracheid 

lumina that were previously identified, and the distance from each lumen to the centre of 

this watershed line is taken as the CWT value of a given tracheid (see Fig. 1 for further 

technical details). Since there is currently no option implemented to manually edit CWT 

in the image, the measurements depend on the accuracy of the identified tracheid lumina. 

Important to note is that suboptimal ROXAS configurations and/or too low image 

resolution can result in inaccurate quantifications of lumina and thus also inaccurate CWT 

output. Data produced with older versions of ROXAS (von Arx & Carrer, 2014) that only 

provided lumina-related output can easily be updated to include also CWT measurements.  

To improve the reliability of the measurements, the user can specify the maximum 

possible width of a CWT measurement depending on the lumen area of the tracheid, which 

is intended to reflect the fact that the large earlywood tracheids generally have thinner 

walls than the small latewood cells. In addition, to exclude wrong assessment for 

tracheids adjacent to xylem rays or resin ducts, an adjustable filter based on the ratio 

between the CWT on opposite sides of the tracheid (pith vs. bark and left vs. right side of 

the tracheid) automatically flags values that are larger than a specified ratio (e.g., 1.5). 

http://www.wsl.ch/roxas
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Moreover, by adjusting the sensitivity of a shape correction filter (‘protrusion filter’) 

designed to remove concavities in the recognized lumen outlines, the user can customize 

the relevance of the wall rounding caused by the pit structure in the radial walls. Another 

important customizable feature specific to ROXAS is related to the settings specifying the 

proportion of the lumen diameter that has to be considered for the assessment of CWT 

(Fig. 1a,d). Indeed, the cell walls can be measured at the centre of the tracheids, which is 

equivalent to manual line measurements, or can integrate the measurement over a 

defined portion of the lumen diameter (see parameter b in Fig. 1a). It is also possible to 

automatically create several datasets of CWT measurements with different integration 

parameter b based on a single tracheid lumen analysis. In addition, while we focused here 

on conifer tracheids, ROXAS can also be used to measure CWT in fibers of angiosperms. 

 

Evaluating the robustness of ROXAS CWT measurements 

For the comparative analysis among different ways to assess CWT we made use of 

anatomical micro-sections of a 40-years old individual of Larix decidua Miller (see Fig. 4a 

for an example) and of a mature Pinus sylvestris L. (see Fig. 5). The cross-sections were 

prepared following the protocol for cutting micro-sections and for collecting high-

resolution images proposed by (von Arx et al. 2016). In short, 10-12 μm thick sections 

were cut with a rotary microtome (Leica RM2245, Leica Biosystems, Nussloch, Germany), 

stained with safranin and astrablue, and permanently fixed with Eukitt (BiOptica, Milan, 

Italy). The images used for the analyses were captured using a light microscope connected 

to a digital camera (Nikon Eclipse 80i, Nikon, Tokyo, Japan) at different magnifications 

and then stitched using PTGui (version 8.3.3, New House Internet Services B.V., 

Rotterdam, NL).  

In a first comparison, we tested the correspondence between tangential CWT values using 

the line-measuring tool in Image-Pro Plus v6.1 and automatic ROXAS measurements 

without integration (i.e. 0% integration). This comparison was performed with two cross-

sections of L. decidua, from the stem base and apex, for which images were taken with 

three different magnifications (40×, 100× and 400×, corresponding to 0.833, 2.074 and 

8.296 pixels/µm, respectively). In a second trial, we quantified the effort necessary to 

improve the accuracy of CWT measurements for anatomical samples of different quality. 

Therefore, we selected three cross-sections of L. decidua of high, intermediate and low 
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quality (Table 1) and performed three levels of editing effort following the automatic 

ROXAS analysis, I: no editing; II: removing mis-identified cells in resin ducts and rays, 

splitting merged cells; III: as II, but in addition removing lumina of pit pores, adding 

missing cells, correcting inaccurate tracheid outlines. Thirdly, we evaluated the CWT 

values measured by ROXAS with different cell wall integration levels (see Fig. 1) using an 

image of a cross-section of L. decidua (containing 226 cells), taken with 100× 

magnification (2.074 pixels/µm). Finally, to illustrate a time series of cell wall thickness 

(CWT) measured with ROXAS we used images taken with 100× magnification (2.074 

pixels/µm) of cross-sections of a full core (from pith to bark) of a P. sylvestis. Statistical 

analyses were performed using R (version 3.1.1.; R Development Core Team, 2014). 

 

3.4 Results and Discussion 

The comparison between measurements performed manually and through automatic 

ROXAS analysis showed an almost perfect 1:1 correspondence between the 400× and 

100× magnification (Fig. 2), as also evidenced by ≥95% explained variation. With 40× 

magnification there was still a high correspondence for both analysed images, even 

though the data was more scattered (r2=0.78 and 0.86). CWT measured with 100× did 

also not deviate strongly from the one with 400× magnification independent from the 

different CWT dimensional classes – considered here as a proxy for the intra-annual 

variation from earlywood to latewood – whereas the values from the 40× magnification 

deviated markedly in both ROXAS and manual measurements (Fig. 3). However, an 

integration level b of 75% reduced the variability of CWT values considerably compared 

to manual line measurements, even at 40× (Fig. 3a, b vs. 3e, f). Overall, these results 

suggest that ROXAS and manual CWT measurements have a high correspondence, 

particularly for the 100× and 400× magnifications. The comparably weaker 

correspondence between the ROXAS and manual CWT values with 40× are due to ‘pixel 

effects’ (in our case, a wall of 3.6 µm was, for instance, represented by only 3 pixels) that 

led to more discrete and consequently over- or underestimated CWT values. However, 

such pixel effects due to relatively low image resolution on the level of individual cells 

likely average out by a larger number of cells and wood samples measured. On the other 

hand, the 100× magnification (corresponding to approx. 2 pixels/µm in most microscope 

systems) seems to generally best balance accuracy and efficiency.  



57 
 

The required editing effort to obtain accurate values were inversely linked with sample 

quality (Table 1). Moreover, independently from sample quality, the influence of editing 

effort varied among CWT values: the differences between no editing, intermediate editing 

and the near to perfect editing were larger for the smaller than the larger CWT percentiles. 

Overall, the deviation of no and intermediate editing from the near to perfect editing 

decreased from the poor to the good sample and image quality. These results highlight 

the importance of a careful sample preparation and image capturing (von Arx et al., 2016). 

On one hand, with high quality images almost no manual editing is required to get 

accurate results, on the other hand, standardize the sample thickness resulted important 

(von Arx et al., 2016). 

The comparative analysis of the different integration levels for the CWT measurements 

(parameter b in Fig. 1a) showed that all levels of integration differed significantly from 

each other (Tukey's Honest Significant Difference test, P<0.001) except for the 0% and 

25% levels (P=0.864; Fig. 4). This result demonstrates that the approach selected for 

assessing CWT affects the values by 5-10% and therefore we suggest selecting an 

integration level that fits the purpose of the study. For instance, for investigations of intra- 

and interannual wood density or estimations of biomass, where accurate absolute values 

of wall quantifications are important, a high level of integration (100%) should be 

preferred to avoid consistent underestimation as obtained with the line measurements 

(see Fig. 5b-e). In fact, underestimation of CWT by 10% would result in underestimation 

of cell wall material and therefore biomass by 13.1% in a tracheid of 10 µm2 lumen area 

and 9.8% in a tracheid of 1000 µm2 when assuming circular lumen shapes. In contrast, for 

investigations of mechanical cell strength (t/b)2 (Hacke et al. 2001) a low level of 

integration (e.g., 0% or 25%) may better take into consideration the thinnest and thus 

weakest point within the cell walls.  

As the example in Fig. 5 illustrates, different integration levels for the CWT measurements 

do not affect the intra-annual time series of CWT in a uniform way. Rather, the difference 

between the 0% and 100% integration level varies within and among tree rings. Similarly, 

averaging the tangential and radial CWT for latewood tracheids results in larger values 

than the ones obtained from tangential CWT only, but also here this difference varies 

considerably from year to year (Fig. 5b-d). This example thus demonstrates that different 

ways of measuring CWT might affect the information encoded in the cell wall properties.  
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The new versatility provides valuable access to a larger range of parameters to quantify 

the cell wall. Further study are certainly needed to better understand the radial or 

tangential CWT climate sensitivity. Maybe one could be associated with a superior 

summer temperature signal compared to the other. Hence by breaking down the, in this 

case, for dendroclimatologists very important “maximum latewood density” 

measurement (e.g., Briffa et al., 1998) into primary components, it may be possible to 

understand the origin of its temperature signal, and perhaps also further refine 

performance of climate reconstructions. Note that we here only list a few examples that 

profit from this explosion in replication of measured cells, potential parameters and 

customizable settings. 

 

Conclusions 

 

Our evaluation demonstrates that the CWT values obtained with ROXAS are not only 

comparable to manual measurements and due to the automatic modus of ROXAS, are 

much more efficient and increase ten- to twentyfold the number of measured tracheids. 

Furthermore, profiting from the customizable settings to quantify different cell wall 

features, our approach will further expand the knowledge about tracheids. This is 

exemplified by the contrasting results obtained for radial and tangential CWT with regard 

to temperature sensitivity, and the more accurate account of the non-uniform CWT 

around the cell lumen, that may influence estimates of wall material by 10% and more. 

This increased power and versatility allows to efficiently create comprehensive datasets 

of cell anatomical features, including CWT, customized for a wide range of novel research 

applications. 
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Tables 

 

Table 1. Effect of different editing effort (III – high, II – intermediate, I – none; see Material 

and Methods for further details) on cell wall thickness (CWT) measurements for 

anatomical samples and images of different quality captured with 100× magnification. 

Data for III refers to a given percentile from the measurement of a mean of n=1815 

tracheids in a single annual ring, II and I express the relative change (in %) to III. 

 Good * Intermediate † Poor ‡ 

 III II I III II I III II I 

CWT 

percentile 

[μm]  (%)  (%) [μm] (%)  (%) [μm] (%) (%) 

1%  1.56  3.43  2.51  1.64  5.49 3.99  1.79 3.87   4.34 

5%  1.75  1.00  1.00  1.88  6.38 7.82  2.00  3.71  4.00 

10%  1.86  2.18  2.31  1.98  4.04  7.58  2.16  2.69  2.69 

25%  2.07  2.70  3.28  2.19  5.02  6.85  2.59  2.66  3.38 

50%  2.74  2.35  2.56  2.54  5.12  7.78  4.69  4.01  5.47 

75%  3.78  0.58  0.58  3.68  6.25  10.46  5.60  1.32  1.06 

90%  4.30  0.16  0.16  4.51  0.22  1.69  6.16  0.23  0.47 

95%  4.50  0.38  0.54  4.87  0.69  0.13  6.51  0.91  1.96 

99%  5.16  0.14  0.11  5.51  2.90  0.38  6.78  4.94  8.19 

* optimal sample and image quality 

† not perfectly orthogonal cross-section, not optimal illumination, wrong white balance 

‡ damages of cell walls, light staining, slightly out of focus  
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Figure captions 

  

Figure 1: Illustration of how ROXAS measures cell wall thickness (CWT). (a) On each side 

of a tracheid (towards pith, bark, left and right) a measuring window of width b expressed 

as a percentage of the lumen diameter a (e.g., 75%) is positioned to define the wall section 

used for CWT assessment. (b) After automatic and, if required, manually improved 

identification of tracheid lumina, ROXAS creates a distance map (i.e. each pixel outside of 

the lumina gets a grey-scale intensity corresponding to its Euclidean distance to the 

closest lumen). (c) The distance map is combined with a watershed image to obtain a 1-

pixel thick line at equidistance to the closest tracheid lumina; each pixel of the lines in the 

resulting image contains its Euclidean distance to the closest tracheid lumen. The mean 

grey-scale intensity of the line segment within a given measuring window (here 

highlighted in red) is taken as the CWT value of the given side of the target tracheid. CWT 

is therefore integrated over a defined wall section, which is in contrast to the commonly 

used measurements through the centre of each tracheid side (see blue line in panel a). (d) 

Zoomed-in region of panel (c) illustrating how the different CWT values over different 

wall sections are integrated; the blue arrows and numbers above the watershed line 

indicate the CWT value at specific points of the cell wall, the red values below the 

watershed line indicate the integrated CWT values for different integration levels.  

 

Figure 2: Comparison of cell wall thickness (CWT) measurements with ROXAS and 

manual line measurement at different magnifications for a wood sample from (a) the stem 

base and (b) apex of a 3-m tall Larix decidua tree. Lines and envelopes indicate linear 

regression lines and 95% confidence envelopes, statistics refer to the corresponding 

linear regression analyses (a: intercept, b: slope). All linear regressions are significant at 

P<0.001. For the ROXAS analyses the 0% cell wall integration setting was used, which 

corresponds to a line measurement (see Fig. 1). Image resolution: 40× – 0.833 pixel/ µm, 

100× – 2.074 pixel/µm, 400× – 8.296 pixel/µm. 

 

Figure 3: Variability of relative cell wall thickness (CWT) obtained with 100× and 40× 

compared to the 400× reference measurements for different CWT classes. (a,b) Manual 

line measurement, (c,d) ROXAS measurements using 0% cell wall integration setting 
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corresponding to line measurements (see Fig. 1), (e,f) ROXAS measurements using 75% 

cell wall integration. Identical tracheids were measured in all trials. 

 

Figure 4: Variability of cell wall thickness (CWT) depending on the ROXAS integration 

setting b. (a) Analysed wood sample from the stem base of a 3-m tall Larix decidua tree 

captured at a magnification of 100× corresponding to a resolution of 2.074 pixel/µm. (b) 

Absolute and (c) relative CWT values with increasing integration level. Different subscript 

letters in (c) indicate significant differences of relative CWT based on Tukey's Honest 

Significant Difference test (using 0% integration level as the reference). 

  

Figure 5: Illustrative time series of cell wall thickness (CWT) measured with ROXAS in an 

anatomical image taken with 100× magnification (2.361 pixel/µm) from a mature Pinus 

sylvestris L. tree. (a) Entire series, (b-d) cutout regions of panel (a) magnified threefold. 

Mean values at 10-µm steps were calculated (33.3 ± 0.5 (mean ± SE) cells per step) based 

on totally 30,359 measured cells and used for plotting. Black lines in all panels indicate 

values obtained with 100% cell wall integration setting based on tangential CWT (CWTTAN 

100%) , green lines in (b-d) show the tangential CWT values obtained with 0% cell wall 

integration (CWTTAN 0%), which corresponds to line measurement (see Fig. 1). The cyan 

lines in (b-d) are also based on 100% integration, but taking the average of radial and 

tangential CWT for the latewood cells (CWTMOD 100%). (e) Difference of CWTTAN 100% 

and CWTTAN 0% for earlywood (EW) and latewood (LW) for the data from (a); the 

difference depending on the cell wall integration level was significantly larger in the EW 

than the LW (t=5.2, P<0.001). Manual editing in ROXAS took 15 minutes in this high-

quality sample. Scale bar in (a) corresponds to 500 µm. 
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4.1 Abstract 

 

Trees continuously adjust their axial xylem structure to meet changing needs imposed by 

ontogenetic and environmental changes. These axial structure-function responses need 

to be coordinated among competing biophysical constraints to avoid failure of the xylem 

system. Here, we assessed axial variability of anatomical traits related to distinct xylem 

functions to identify priorities under different environmental conditions.  

We performed detailed xylem cell anatomical quantification along the axis of 40-year-old 

Larix decidua trees planted at the Swiss treeline and exposed to a combination of CO2 

enrichment (+200 ppm) and soil warming (+4 °C) between 2001 and 2012.  

The hydraulic efficiency, estimated by the mean hydraulic diameter (Dh), increased from 

the stem apex to base in a remarkably confined way, independent from experimental 

treatments and ontogeny. In contrast, axial trends of the other functional traits (hydraulic 

safety, mechanical support) showed greater flexibility in both respects or no axial trend 

(metabolic xylem function). Additionally, larger Dh at the stem apex promoted primary 

and secondary growth.  

The xylem anatomical structure of Larix trees shows a high priority and biophysical 

determination of hydraulic efficiency to support assimilation necessary for tree growth, 

while the other traits respond more plastically to intrinsic and extrinsic factors. 
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4.2 Introduction 

 

Plants have developed different mechanisms to continuously adjust to environmental 

variability and changing needs and priorities. Short-term responses of physiological 

processes at different organizational levels are common to all plant types (Larcher, 2003; 

Martorell et al., 2015). However, especially for long-living trees that continuously increase 

in size and biomass (Chave et al., 2009), adjustments involve profound structural changes 

in order to meet changing requirements for transport, support and storage. Indeed, many 

of these structural adjustments allow trees to acclimate to environmental changes and 

therefore to live for centuries or even millennia. On the other hand, the legacy of past 

structural adjustments can constrain future responses of physiological processes 

(Meinzer et al., 2011; Anderegg et al., 2013). Thus, investigating how tree structures and 

their associated functions change over time and in relation to environmental variability 

provides a deeper understanding of how tree growth interacts with the environment and 

helps to improve predictions of how forest ecosystems might be affected under different 

scenarios of climate change.  

Dendro-anatomy is an emerging field that specifically focuses on the quantitative 

assessment of xylem tissues, cells and derived metrics or traits linked to specific 

functional roles. The approach is based on the fact that the xylem structural adjustments 

are permanently recorded and chronologically archived in the structure of the tree rings 

(Fonti et al., 2010), thus allowing retrospective analysis of the structure-function 

responses of trees to climate variability (Fonti & Jansen, 2012). In conifers, the xylem is 

mainly composed of tracheids and parenchyma cells, both of which have multiple 

functional roles. Tracheids are axially-oriented, dead cells; in the earlywood they are 

characterized by wide lumina and thus represent ‘highways’ for axial water transport, 

while in the latewood their reduced lumen size and thicker cell walls provide mechanical 

support (Koubaa et al., 2002; Baas et al., 2004; Antony et al., 2012). In contrast, 

parenchyma cells are living cells predominantly organized into rays running radially from 

the bark towards the pith, and thus they physiologically integrate the xylem with the 

phloem (Spicer, 2014; Pfautsch et al. 2015). Collectively, parenchyma cells act as a 

metabolically active tissue for transport and storage of carbon assimilates and water 

(Olano et al., 2013; Fonti et al., 2015; von Arx et al., 2015) and contribute to regulate the 
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xylem hydraulics, e.g. through the osmo-regulation of axial and radial gradients of water 

potential (Brodersen & McElrone, 2013; Lintunen et al., 2016) or by refilling embolized 

conductive elements (Salleo et al., 2009; Nardini et al., 2011). Studying how tracheids and 

parenchyma cells change within trees and in response to both increasing tree size and 

environmental variability might thus provide important insights into the plasticity of 

xylem functioning.  

Currently, we only have a fragmentary understanding of the variability of relevant cell 

anatomical traits within the tree stem and roots. Theoretical models predict that the 

different anatomical traits should vary according to strict allometric axial scaling defined 

by biophysical constraints that are related to tree size (Savage et al., 2010; West et al., 

1999). However, detailed empirical studies of within-plant patterns have mostly been 

limited to only the description of axial variability of the lumen size of xylem conduits (but 

see Lazzarin et al., 2016). Both models and observations show that conduit lumen 

diameter increases from the stem apex to the base following a power-like trajectory 

(y=a·xb), with a scaling exponent generally converging towards a value of ~0.2 

irrespective of species, environment or ontogenetic stage (Anfodillo et al., 2013; Olson et 

al., 2014). This pattern is explained by the biophysical law by Hagen and Poiseuille, 

according to which the hydraulic efficiency increases with conduit lumen diameter to the 

fourth power (Tyree & Zimmermann, 2002). Relatively small changes in conduit size 

therefore have a strong impact on hydraulic efficiency. Consequently, the progressively 

wider conduits from the apex to the stem base buffer the effect of increased path length 

on the accumulated axial hydraulic resistance, making it largely independent from tree 

height (West et al., 1999; Petit & Anfodillo, 2009). In contrast, there is still little knowledge 

about the axial trend of other important xylem structure-function relationships, for 

example the hydraulic (cell implosion) safety, which can be estimated by the ‘bending 

resistance index’ ([t/b]2, Hacke et al., 2001), the mechanical support, or the abundance of 

metabolically active tissue. A few empirical studies have reported an increase in cell wall 

thickness – related to mechanical support for the tree body (e.g., Myburg et al., 2013 – 

with increasing cambial age (Larson, 1963; Mitchell & Denne, 1997; Wimmer, 2002), 

while only limited information is available on within-tree variability in the abundance of 

ray parenchyma tissue (Bannan, 1937; Gartner et al., 2000) and its sensitivity to 

environmental conditions (Eckstein, 2013; Olano et al., 2013). Further, there is still a lack 
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of observations of how these and other functional traits co-vary both within the tree and 

over time, and thus we have only a limited understanding of how competing biophysical 

constraints, functional priorities, and trade-offs are modulated by ontogenetic 

development and environmental conditions (Gleason et al., 2016; Bittencourt et al., 2016).  

In this study, we used a dendro-anatomical approach to retrospectively analyze the 

plasticity of functionally relevant xylem anatomical traits along the tree axis. As a study 

framework, we selected a treeline experimental site. This temperature-limited ecotone is 

expected to be one of the terrestrial areas that is most sensitive to climate change, and it 

has therefore become a focus of recent research (Harsch et al., 2009; Körner, 2012; Dawes 

et al., 2015). Treelines are also particularly suitable for investigating the mechanisms of 

xylem growth responses to environmental changes (e.g., Petit et al., 2011; Fatichi et al., 

2013; Fatichi et al., 2014). The treeline trees selected for this study were exposed to a 

long-term experimental manipulation combining free air CO2 enrichment (FACE) and soil 

warming (Hattenschwiler et al., 2002; Dawes et al., 2015). Prior assessments of L. decidua 

responses showed a stimulation of primary and secondary growth in stems and roots by 

the CO2 enrichment (Hattenschwiler et al., 2002; Handa et al., 2005, 2006; Dawes et al., 

2011), which was partially explained by a larger leaf canopy resulting in increased 

photosynthetic carbon assimilation (Streit et al., 2014), while the experimental soil 

warming did not stimulate above- or below-ground growth of L. decidua (Dawes et al., 

2015). Building upon this knowledge from previous studies at this site, we compared how 

the axial trends of four xylem functional traits in relation to hydraulic, biomechanical and 

metabolic requirements vary within dated annual rings from the stem apex to the roots. 

In doing so, we specifically aimed (1) to identify priorities and trade-offs among different 

xylem functions and (2) to determine if different environmental conditions and ontogeny 

influence these relationships.  

 

4.3 Material and methods 

4.3.1 Study site, experimental setup and tree selection  

The study included trees from a long-term manipulation experiment performed within a 

40-year-old afforestation of Larix decidua Miller and Pinus mugo subsp. uncinata 

(Ramond) located in the Swiss Alps at the Stillberg site near Davos (9°52'E, 46°46'N), just 
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above the current treeline at an altitude of 2180 m a.s.l. The manipulation experiment was 

performed between 2001 and 2012 and included different combinations of free air CO2 

enrichment (FACE) and soil warming (Table 1). CO2 enrichment (+200 ppm higher than 

ambient CO2 concentration) was performed from 2001 to 2009 and soil warming (+4 °C 

at 5 cm depth) was applied using heating cables on the soil surface (see Hattenschwiler et 

al., 2002; Hagedorn et al. 2010; Dawes et al., 2015 for details about the experimental 

setup).  

We used eight L. decidua trees, with a minimum of two individuals per treatment 

combination: A2001, A, EC, SW, ECSW, PECSW and PEC (Table 1). The study trees were 

selected based on the presence of a leader shoot, lack of mechanical and/or herbivore 

damage, lack of snow mold, and similar tree height at the beginning of the experiment.  

 

4.3.2 Reconstruction of axial and radial growth  

In order to capture the temporal variability of xylem anatomical traits along the stem axis, 

we reconstructed the apex-to-root axial trend within each tree ring layer to provide an 

annual resolution. Thus, for each selected tree, we extracted a total of 20 discs along the 

stem (14) and the main root (6) for the reconstruction of both the axial and radial growth. 

The average distance between neighboring discs was 11 cm. Tree-ring widths were 

measured along 8 equally spaced radii per disc and cross-dated to assign each ring to its 

year of formation. Annual stem and root elongation (ΔH) was obtained by linear 

interpolation of the inter-disc distance divided by the age difference between neighboring 

discs: 

 

𝛥𝐻 =
𝐻𝑖−𝐻𝑖−1

𝑅𝑁𝑖−1−𝑅𝑁𝑖
  eq. 1 

 

where Hi and RNi are the height from the ground and the ring number of the ith-disc, 

respectively. The average age difference between neighboring discs varied from 1 to 14 

years (with a median of 3 years) depending on the sample, thus giving reasonable 

confidence in the estimated annual stem elongation data. Finally, to reconstruct the axial 

position at the time of ring formation, for each annual ring within a given disc, we 

calculated the distance from the stem apex (L) as the difference between the 



74 
 

reconstructed tree height and the distance from the ground (for root discs L was 

calculated as the sum of tree height and axial distance from the ground).  

 

4.3.4 Cell anatomical measurements  

Xylem cell anatomical measurements were performed with image analysis for a subset of 

the stem discs. In total we selected ten axially well-distributed discs per tree, six from the 

stem and four from the roots. We followed the standard protocol for cutting micro-

sections and collecting high-resolution images proposed by von Arx et al. (2016). From 

each disc, we extracted radial wood samples from opposite radii and produced 10-15 μm 

thick cross-sections using a rotary microtome (Leica RM2245, Leica Biosystems, 

Nussloch, Germany). In addition, for ray parenchyma quantification (see below), we cut 

three tangential sections from each wood sample within the annual rings formed in 2000, 

2006 and 2011 to include years from all the different treatment combinations (Table 1). 

All sections were stained with safranin and astrablue and permanently fixed with Eukitt 

(BiOptica, Milan, Italy). Overlapping images of the cross-sections and tangential sections 

were captured at 100× magnification using a light microscope connected to a digital 

camera (Nikon Eclipse 80i,Nikon, Tokyo, Japan), and then stitched using PTGui (version 

8.3.3, New House Internet Services B.V., Rotterdam, NL) to obtain high-resolution images 

(2.07 pixels/µm). Image analysis was performed with ROXAS version 2.1 ( von Arx & 

Dietz, 2005; von Arx & Carrer, 2014), which provided measurements of cell anatomical 

features, such as tracheid lumen area and wall thickness from cross-sections and ray cell 

lumen area from tangential sections. In total, we analyzed the anatomical traits for ~4000 

rings using measurements from >5 million tracheids. 

 

4.3.5 Functional anatomical traits 

For each annual ring on each disc, we derived xylem functional traits using the 

aforementioned basic anatomical measurements (Table 2). Since earlywood (EW) and 

latewood (LW) tracheids provide different functions, the tracheids were assigned to each 

tissue based on Mork’s index (Denne, 1988). As a proxy for the hydraulic efficiency, we 

used the mean hydraulic diameter (Dh) (Kolb & Sperry, 1999), calculated as:  
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𝐷ℎ =
∑𝑑𝑛5

∑𝑑𝑛4
  eq. 2 

 

where dn is the lumen diameter of the nth-conduit, assumed to be circular. As an indicator 

of the hydraulic safety from cell implosion, we used the ‘bending resistance index’ of 

earlywood tracheids (BIEW; Hacke et al., 2001), calculated as: 

 

𝐵𝐼EW = (
𝑑𝐶𝑊𝑇

𝑑
)
2

  eq. 3 

    

where dCWT is the double cell wall thickness and d is the lumen diameter measured 

perpendicularly to CWT. This produced two values per tracheid, one with radial and one 

with tangential orientation of lumen diameter. For each tracheid, the smaller of the two 

values was used to better reflect the risk of cell implosion. The mechanical support 

function of the xylem was estimated as the mean cell wall thickness of latewood tracheids 

(CWTLW), whereas the percent area of ray parenchyma (RPD) was used as a measure of 

the metabolically active tissue.  

Additionally, we determined the ‘hydraulic carbon use efficiency’ index (HCUE) to express 

the hydraulic return for a given carbon investment. HCUE was calculated for each ring as 

the ratio of the accumulated conductance of all tracheids (Kh according to Poiseuille’s law) 

to the accumulated wall area of all tracheids (CWARING). Finally, as a proxy for growth, the 

ring area (RA) of each ring in each disc was estimated assuming a circular stem cross-

section. 

 

4.3.6 Estimation of axial scaling and treatment effects 

For each functional trait, we fitted linear, power and exponential functions to identify 

which function best described the axial scaling. Fitting was performed only for stem 

annual rings from control trees (treatments A2001 and A) to avoid potential confounding 

treatment effects. In addition, to check for ontogenetic trends, we computed the scaling 

exponents (‘slope’) and allometric constants (‘intercept’) throughout the life of each tree 

using a model type II regression analysis with the reduced major axis (RMA) protocol in 

the lmodel2 R package (Legendre, 2014). When necessary to obtain significant fits, we 

based this analysis on data from a moving window of three neighboring annual rings to 
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increase the number of axial points (BIEW and CWTLW). This analysis could only be 

performed with data from 2001 to 2012, thus not covering the first 30 years of tree 

growth. Similarly, we established the relationships among functional traits (Dh, BIEW, 

CWTLW and RPD) in terms of axial scaling and trade-offs by identifying the function (linear, 

power or exponential) that provided the highest R2. In addition, we tested the relationship 

between each functional trait (Dh, BIEW, CWTLW and RPD) and each growth parameter (ΔH 

and RAI).  

Treatment effects on the axial patterns were tested using linear mixed-effects models 

fitted with restricted maximum likelihood. We established a model for each explanatory 

variable (DhROOT, BIEW, CWTLW, RPD and HCUE), where distance from the apex (L), 

treatment combinations (see Table 1) and their interactions were included as fixed 

effects, and tree identity and disc height along the tree axis were included as random 

factors in all initial models, reflecting the experimental design and the sample collection. 

Data were log10-transformed to comply with assumptions of normality and 

homoscedasticity (Zar, 1999). For the DhSTEM model, we additionally included DhAPEX as a 

fixed effect to account for its strong influence on DhSTEM, as found in a previous study (Petit 

et al., 2011). For this model, we only considered annual rings for which apical data 

(defined as ≤1 cm from tree top) were available. The best model was chosen based on 

AICc using the maximum likelihood method (Zuur et al., 2009). When several models 

showed similar AICc values (AICc < 2, Burnham & Anderson, 2002), they were refitted 

with the REML method to obtain estimates and significance values of effects, and the 

simplest model with significant fixed effects was chosen as the ‘optimal’ model. The 

significance of the fixed effects was tested with F tests (Pinheiro & Bates, 2000). When the 

target functional trait did not exhibit a significant axial trend, the difference between 

treatment combinations was tested with Tukey's Honest Significance test based on 

ANOVA. All analyses were performed using R (version 3.1.1.; R Development Core Team, 

2014), and linear mixed-effects models were run using the lme4 (Bates et al., 2015) and 

MUMIN packages (Barton & Barton, 2013). 

 

file:///C:/DESKTOP/Dottorato/STILLBERG/ARTICOLO/Prendin_et_al_NP.docx%23_ENREF_41
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4.4 Results 

4.4.1 Axial allometry  

The analysis of the functional trait variability along the whole tree axis using different 

parametric functions (Fig. 1a-d) revealed that the power function provided the best fit to 

the data, with R2 values ranging from 0.81 (Dh) to 0.16 (CWTLW) (Table 3). However, for 

CWTLW the power fitting performed only slightly better than the linear and exponential 

ones. Tracheid hydraulic diameter (Dh) increased continuously down the stem and 

further along the roots (e.g., see the whole stem-root axial profile for the xylem produced 

in the year 2011 for the tree E3L1 shown in Fig. 1a). This widening pattern was narrowly 

confined for the stem, thus indicating only small differences among individuals and no 

significant changes throughout ontogeny (P=0.08). For each year of growth, Dh in the 

roots was larger than in the stem, generally increased with L at faster rates than in the 

stem, and showed more variation in the data (R2=0.10) (Fig. 1a). The bending resistance 

index of earlywood tracheids (BIEW) decreased continuously from the stem apex to the 

stem base and further below ground along the roots. In the stem, L explained 46% of the 

total variance in BIEW (Table 3), while in the roots this relationship was not significant 

(P=0.31) (Fig. 1 b). Additionally, the scaling exponent (b) of the relationship of BIEW vs. 

distance from the apex (L) progressively decreased with age (R2=0.48, P<0.001). The cell 

wall thickness of the latewood tracheids (CWTLW) increased continuously from the stem 

apex to the base and further along the roots. The inter-annual variability was substantial 

in this trait, as shown by the low R2 of 0.16 for the stem (Table 3) and the non-significant 

relationship for the roots (P=0.90) (Fig. 1c). Furthermore, the scaling exponent (b) of the 

relationship of CWTLW vs. L progressively increased with age (R2=0.46, P=0.013). 

However, this ontogenetic trend was only significant when a power function was used but 

not when linear or exponential fitting was applied (P=0.71 and P=0.11, respectively). The 

percent area of ray parenchyma (RPD) did not change significantly along the stem 

(P=0.53) or root (P=0.83) (Fig. 1d). 

 

4.4.2 Trait trade-offs, cost for hydraulic efficiency and effect on growth 

Pairwise comparisons between functional traits revealed a significant trade-off between 

hydraulic efficiency and safety (Dh vs. BIEW). This relationship applied to both tree organs 
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but was stronger in the stem (R2=0.56) than in the roots (R2=0.44). Furthermore, stem 

hydraulic efficiency was weakly but positively linked (R2=0.17, Fig. 2, Table 3) to 

mechanical support (Dh vs. CWTLW).  

The analyses of HCUE, the ratio between hydraulic conductance and structural costs, 

indicated that, per unit of conductance, construction costs increase with height along the 

stem (Fig. 3, Table 3).  

Of all the considered functional traits, only the hydraulic diameter at the stem apex 

(DhAPEX) had a significant effect on growth (Fig. 4; other data not shown). Indeed, DhAPEX 

explained 31% and 46% of the total variance in ΔH and RAI, respectively. 

 

4.4.3 Treatment effects on axial allometry  

The linear mixed-effect models used to test for the importance of treatments for the axial 

scaling of DhSTEM did not reveal any significant effects (Table 4, Fig. 1e). Along the roots, 

Dh was in general wider before 2001, whereas all treatment combinations except EC 

(elevated CO2) showed a significant overall reduction in DhROOT (Table 4, Fig. 1f). 

Treatment effects on BIEW were found for the combination of soil warming and elevated 

CO2 (ECSW), also after CO2 fumigation ceased in 2009 (PECSW), as shown by a steeper 

increase in BIEW with increasing distance from the apex. The model results for CWTLW 

were analogous to the ones for BIEW (Table 4, Fig. 1g). Similarly, the axial scaling of HCUE 

was influenced by the same treatment combinations as BIEW and CWTLW, but with inversed 

relationships. In addition, HCUE for A2001 was smaller at the stem apex (i.e., smaller 

intercept a) but increased along the stem at a faster rate (larger b) than for the same trees 

after having grown taller, irrespective of treatments. RPD showed no significant axial 

variation, and the one-way ANOVA performed instead to test for treatment effects 

revealed that only soil warming (SW) had a significant negative effect on the production 

of ray parenchyma (P=0.035). 
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4.5 Discussion 

4.5.1 Axial scaling of functional traits are linked to biophysical principles 

Our description of xylem anatomical traits showed characteristic axial scaling that can be 

attributed to different biophysical principles. As expected, the hydraulic efficiency (Dh) 

scaled along the stem following a power function with a scaling exponent (b=0.17) very 

similar to values reported in other studies (Anfodillo et al., 2013; Olson et al., 2014), thus 

supporting the remarkable universality of the axial conduit widening in vascular plants 

(West et al., 1999; Olson et al., 2014). Furthermore, in all trees and under all treatment 

combinations, xylem tracheids in the roots were wider than along the stem, in agreement 

with previous studies (McElrone et al., 2004; Petit et al., 2009; Petit et al., 2010). This strict 

axial configuration characterized by the downwards conduit widening represents a 

biophysical optimization to buffer the increasing hydraulic resistance due to a longer path 

length as trees grow taller (West et al., 1999; Petit et al., 2009). Instead, the earlywood 

hydraulic safety (BIEW) increased towards the apex, i.e. in parallel with the decrease in the 

water potential towards the apex (Domec et al., 2005). The observed axial pattern of 

latewood cell wall thickness (Fig. 1c) revealed an increasing allocation of cell wall material 

with increasing distance from the apex, thus indicating an increasing need for mechanical 

support. However, this increase was relatively small compared to, for example, the 

increase in accumulated biomass to the power of three to four when moving down the 

stem, as reconstructed for an individual of Abies procera (King, 2011), thus suggesting a 

complex relationship between cell wall thickness and the mechanical support provided.  

 In contrast to the other functional traits, we did not find a consistent or clearly defined 

axial trend for the percent area of ray parenchyma (RPD). The variability along the stem 

axis was very large both between and within trees (ranging from 0.12 to 2.55%). This 

finding confirms previous observations that the ray proportion of conifers varies widely, 

both among individuals (Fonti et al., 2015) and within the stem (DeSmidt, 1922; Baker et 

al., 2000; von Arx et al., 2015), with only a relatively weak influence of environmental 

conditions (Esteban et al., 2012; Olano et al., 2013) and/or functional needs such as 

storage space requirements (von Arx et al., pers. comm.).  

Generally, the trends observed in the roots were consistent with those observed in the 

stem but were much weaker. This increased variability might be because, compared to 
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stems, roots perform more tasks (e.g., flexibility, stiffness, anchorage) within a less 

homogeneous medium (different soil texture and depth) (Gärtner et al., 2001).  

 

4.5.2 Hydraulic efficiency shows no ontogenetic trend but trades off with hydraulic 

safety  

During ontogeny, adjustments of the xylem structure are necessary to meet the changing 

functional needs as tree size increases. Despite these expected modifications, the power 

fitting observed for the hydraulic efficiency (Dh) appeared to be very stable and 

independent from the ontogenetic tree development, suggesting a very strong biophysical 

control over the axial design of hydraulic efficiency. In contrast, the hydraulic safety 

(BIEW) showed a slight change in the axial scaling that suggests a decrease in safety with 

increasing age/size. A possible explanation for this ontogenetic trend is that larger trees 

have a deeper root system with better access to soil water. Similarly, at least when using 

power fitting, the axial scaling of the mechanical support (cell wall thickness) changed in 

a way that suggested an increase during the course of a tree’s life for a given distance from 

the apex. This may reflect size-related changes in tree architecture, since many trees 

invest increasingly into lateral structures as they grow taller, which requires stronger 

wood to support it (King, 2011). 

Limited resources to form wood and differing biophysical constraints inherently imply 

trade-offs between the xylem functional needs, as demonstrated by the observed 

competing axial structural adjustments observed in our study (Fig. 2). Specifically, we 

confirmed the presence of a trade-off between hydraulic efficiency and safety (Sperry et 

al., 2008). In contrast, the positive relationship we observed between mechanical stability 

and hydraulic efficiency is an example of co-variation of different functional needs along 

the tree axis. The observed hydraulic efficiency vs. safety trade-off is related to the fact 

that tracheids with narrow lumina are less efficient in transporting water but more 

resistant to implosion and xylem cavitation (Gleason et al., 2016). Our results suggest that 

this relationship changes along the stem axis in order to prioritize safety towards the stem 

apex and efficiency toward the stem base (Fig. 2). This result is supported by the fact that 

the construction costs for the hydraulic system (HCUE , i.e. the hydraulic conductance per 

unit of cell wall area ) were higher towards the stem apex (Fig. 3, Table 3). This could be 

explained by the importance of an undamaged apex to sustain height growth and compete 
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with neighboring trees, particularly in a conifer with clear apical dominance such as L. 

decidua. In fact, especially in winter, the apex protrudes from the snow and may be 

particularly vulnerable to ice blasting, wind desiccation (Baig & Tranquillini, 1980; Smith 

et al., 2003) and frost drought (Mayr et al., 2006a; Mayr et al., 2006b). 

 

4.5.3 Environmental conditions have little influence on the axial scaling of 

functional traits  

Our results suggest that altered environmental conditions, in this case warmer soil and 

CO2 enrichment, do not strongly influence the scaling of the analyzed functional traits 

along the stem (Table 3). Effects of environmental conditions emerged only in the 

functional traits that did not show a very strong biophysical determination, for example 

the mean hydraulic diameter in the roots and the percent area of ray parenchyma. 

Specifically, the soil warming treatment had only a local effect restricted to root xylem 

anatomy. The significant decrease in lumen size of root tracheids (DhROOT) under soil 

warming implies reduced overall root conductance because no significant compensating 

increase in root biomass was observed (Dawes et al., 2015). However, due to the 

comparably minimal hydraulic resistance of the large root tracheids, this decrease in 

lumen size has almost no effect on overall pathway length resistance and therefore likely 

no functional relevance for whole plant conductance, transpiration and photosynthesis. 

Soil warming also reduced the percent area of ray parenchyma along the stem (RPDSTEM) 

but not in the roots (RPDROOT). However, treeline trees are usually relatively rich in NSCs 

and starch reserves (Hoch & Körner, 2012), and the different warming effects on RPD in 

the stem and roots may reflect an osmotic adjustment of the root-to-leaf gradient of water 

potential that effectively influences the translocation of sugars within the plant (Hölttä et 

al., 2006; Dawes et al., 2014). 

Furthermore, our results showed a weak increase in BIEW and CWTLW with increasing 

distance from apex (L) under ECSW and PECSW, meaning that trees could profit from the 

larger amount of photosynthates available under elevated CO2 by improving the 

mechanical stability (Fig. 1f, Fig. 1g). At the same time, the significantly lower values of 

BIEW and CWTLW close to the stem apex under CO2 enrichment could explain the increase 

in freezing sensitivity of trees exposed to elevated CO2, particularly in taller trees, as 

previously observed for the period 2005-2010 (Martin et al., 2010; Rixen et al., 2012). 
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4.5.4 Mean hydraulic diameter at the apex promotes growth  

The observed within-tree variability of anatomical traits and its influence on tree 

functioning lead to the obvious question about the relevance for growth. Of all the 

functional traits analyzed in this respect, only the mean hydraulic diameter at the stem 

apex (DhAPEX) was important, explaining 31% and 46% of the variability in stem 

elongation and ring area at the stem base, respectively (Fig. 4). Our result thus support 

the hypothesis that an increase in the conductivity of the stem apex (i.e., the plant’s 

hydraulic bottleneck, where most of the path length resistance is located) releases the 

hydraulic constraints on water transport, thus favoring gas exchange and ultimately 

growth (Petit et al., 2011). 

 

4.5.5 Conclusions 

With this study, we tested a novel approach to retrospectively analyze the axial variability 

of different xylem functional traits in response to ontogenetic development and 

environmental variability, represented here by experimental manipulation of CO2 and 

temperature.  

The observed low plasticity driven by a strong biophysical constraint on the axial pattern 

of Dh strongly suggests that trees generally prioritize hydraulic efficiency over other 

xylem functions. The higher axial variability of the other functional traits (hydraulic 

safety, mechanical support, metabolic functions) potentially indicates a greater ability or 

need of the trees to respond to the environment or to ontogenetic development, although 

these effects seem rather weak. The functional priority of hydraulic efficiency, as 

demonstrated by the very confined axial patterns, was also apparent at the tree apex, 

which represents the hydraulic bottleneck: there, a small increase in Dh significantly 

enhances water transport, thus fueling photosynthesis, which provides the necessary 

resources for growth. Moreover, our findings indicate that carbon allocation along the 

stem axis is adjusted in order to supply the locally and temporally most important 

functional need. In particular, higher priority to hydraulic safety is given towards the stem 

apex, while conductance and mechanical support gain relatively more importance 

towards the stem base. In conclusion, our study suggests that prioritized xylem functional 
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traits show a very strong biophysical determination, while subordinate traits respond 

more plastically to intrinsic and extrinsic factors. 
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Tables 

 

Table 1: Timeline of the treatments and treatment combinations during the FACE and soil 

warming experiment at Stillberg (Davos, Switzerland). A2001: ambient conditions before 

the beginning of the experiment; A: ambient conditions (control); EC: elevated CO2; SW: 

soil warming, ECSW: elevated CO2 and soil warming, PECSW: post elevated CO2 and soil 

warming; PEC: post elevated CO2 at ambient conditions. Each row of the timeline 

corresponds to n=2 trees. 

 

 n 
1983-

2000 
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Combined 

treatments 

2 A2001 EC ECSW PECSW 

2 A2001 EC PEC 

2 A2001 A SW 

2 A2001 A 
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Table 2: Acronyms and descriptions of variables used in this study. 

 

Variable Description Function Reference 

Descriptive 

L Distance from the apex -  

H Tree height -  

Functional traits 

Dh Tracheid hydraulic diameter Hydraulic efficiency Kolb & Sperry, 1999 

BIEW 
Bending resistance index of 

earlywood tracheids 
Hydraulic safety Hacke et al., 2001 

CWTLW  
Cell wall thickness of latewood 

tracheids (proxy for density) 
Mechanical support Myburg et al., 2013 

CWA Cell wall area  Mechanical support  

RA Ring area 
Hydraulic efficiency & 

mechanical support 
 

RPD 
Percentage area of ray parenchyma 

cells on tangential section 

Metabolic functions, e.g., 

capacity of carbon & water 

storage and radial 

transport  

Spicer et al., 2014; von 

Arx et al., 2015 

Kh Total conductivity Hydraulic efficiency 
Tyree & Zimmermann, 

2002 

Economics HCUE 
Hydraulic carbon use efficiency: 

Kh/CWARING 
-  

Growth 

ΔH Annual stem elongation -  

RAI 

Annual ring area index (RA 

standardized to remove the 

general axial pattern) 
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Table 3: Linear, power and exponential fitting parameters (mean ± 1 Standard error) a: y-intercept, b: slope), coefficient of 

determination (R2) and significance (P) of the relationships assessed for the different trait variables. Relationships were only assessed 

for control trees not undergoing any CO2 enrichment or soil warming treatment (A2001 and A; n=8 trees until 2001, n=4 from 2001 to 

2006, n=2 from 2007 to 2012). See Table 2 for explanations of acronyms. 

 
 

 Linear (y = a + b×L  Power (Log10(y) = a + b ×  Log10(L) Exponential (y = a + Lb) 

  a b R2 P a b R2 P a b R2 P 

 

Variation in 

functional trait  

Dh vs L 14.90 ± 0.21 0.07 ± 2.25×10-3 0.72 <0.001 1.00 ± 0.01 0.17 ± 0.01 0.81 <0.001 2.86 ± 0.02 2.18×10-3 ± 1.28×10-4 0.66 <0.001 

BIEW vs L 0.02 ± 4.17×10-4 -5.63×10-5 ± 4.5×10-6 0.31 <0.001 -1.50 ± 0.02 -0.15 ± 0.01 0.46 <0.001 -3.81 ± 0.04 -2.62×10-3 ± 3.35×10-4 0.28 <0.001 

CWTLW vs L 3.35 ± 0.05 4.09×10-3 ± 5.35×10-4 0.15 <0.001 0.47 ± 0.01 0.05 ± 0.01 0.16 <0.001 1.22 ± 0.03 1.02×10-3 ± 1.38×10-4 0.15 <0.001 

Trade-off DhSTEM vs BIEW 0.04 ± 9.13×10-4  -0.001 ± 4.51×10-5 0.55 <0.001 -0.64 ± 0.05 -0.86 ± 0.04 0.56 <0.001 -2.97 ± 0.04 -0.05 ± 2.12×10-3 0.60 <0.001 

DhROOT vs BIEW 0.003 ± 9.44×10-4 -4.73×10-4 ± 2.54×10-5 0.40 <0.001 -0.01 ± 0.09 -1.19 ± 0.06 0.44 <0.001 -2.98 ± 0.06 -0.03 ± 1.19×10-3 0.43 <0.001 

Relationship DhSTEM vs CWTLW 2.5 ± 0.13 0.06 ± 0.01 0.19 <0.001 0.19 ± 0.04 0.28 ± 0.03 0.17 <0.001 0.98 ± 0.04 0.02 ± 1.81×10-3 0.14 <0.001 

Economics HCUE vs L 1.64×10-15 ± 2.24×10-16 2.52×10-17 ± 2.42×10-18 0.25 <0.001 -15.22 ± 0.04 0.46 ± 0.02 0.44 <0.001 -2.99 ± 0.06 -0.03 ± 1.78×10-3 0.21 <0.001 

Growth ΔH vs DhAPEX -0.06 ± 0.25 0.09 ± 0.02 0.28 <0.001 -1.57 ± 0.56 2.44 ± 0.53 0.31 <0.001 -0.99 ± 0.28 0.08 ± 0.02 0.28 0.007 

RAI vs DhAPEX 0.60 ± 0.06 0.03 ± 0.01 0.42 <0.001 0.10 ± 0.13 0.80 ± 0.12 0.46 <0.001 -0.41 ± 0.07 0.03 ± 5.41×10-3 0.43 <0.001 
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Table 4: Results of the optimal linear mixed-effect models predicting the treatment 

effects on the different functional (A) and cost (B) traits and the interaction between 

treatment and Log10L (see methods for details). Numbers indicate the estimates ± 1 SE. 

See Table 1 and 2 for explanations of acronyms. * P< 0.05, ** P< 0.01 and *** P< 0.001.  

 

 
(A) FUNCTIONAL TRAITS (B) CARBON 

COST 

Fixed effects Log10DhSTEM Log10DhROOT Log10BIEW Log10CWTLW Log10HCUE 

Intercept (A) 0.82 ± 0.06*** 1.45 ± 0.05*** -1.52 ± 0.04*** 0.49 ± 0.02*** -18.34 ± 0.07*** 

Log10L (A) 0.18 ± 0.01*** 0.04±0.02* -0.13 ± 0.01*** 0.04 ± 0.01 *** 0.3 ± 0.02*** 

Log10DhAPEX (A) 0.15 ±0.06** - - - - 

      

A2001 - 0.03 ± 0.01** 0.03 ± 0.03 -0.04 ± 0.02 -0.09 ± 0.05* 

EC - 0.00 ± 0.01 0.05 ± 0.04 -0.04 ± 0.03 0.08 ± 0.06 

ECSW - -0.06 ± 0.02*** -0.28 ± 0.06*** -0.15 ± 0.05** 0.52 ± 0.11** 

SW - -0.04 ± 0.01*** -0.05 ± 0.04 0.02 ± 0.03 -0.11 ± 0.07 

PECSW - -0.03 ± 0.02* -0.38 ± 0.09*** -0.25 ± 0.07*** 0.75 ± 0.17*** 

PEC - -0.04 ± 0.02* 0.07 ± 0.12 -0.16 ± 0.09 0.06 ± 0.2 

      

Log10L × A2001 -  -0.01 ± 0.02 0.02 ± 0.01 0.06 ± 0.03* 

Log10L × EC -  -0.03 ± 0.02 0.02 ± 0.01 -0.02 ± 0.03 

Log10L × ECSW -  0.13 ± 0.03*** 0.08 ± 0.02*** -0.23 ± 0.05*** 

Log10L × SW -  0.01 ± 0.02 0.01 ± 0.02 0.04 ± 0.03 

Log10L × PECSW -  0.15 ± 0.04*** 0.10 ± 0.03*** -0.26 ± 0.08** 

Log10L × PEC -  -0.06 ± 0.05 0.05 ± 0.04 0.08± 0.09 
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Figures captions  

 

Fig. 1: Axial variability of functional traits as a function of distance from the apex (L) along 

the stem and root of the investigated Larix decidua trees. Left panels show the axial trends 

of (a) hydraulic diameter (Dh), (b) bending resistance index of earlywood tracheids 

(BIEW), (c) cell wall thickness of latewood tracheids (CWTLW) and (d) density area of ray 

parenchyma (RDP). Filled and open grey circles represent the stem and root data, 

respectively. As an arbitrary example, red circles represent the axial variability (stem and 

root combined) in the year 2011 for a single tree (E3L1). Solid lines show the best fitting 

curves, whose details are reported in Table 3. In the right panels (e-g), the black lines 

denote the linear regression lines of the log10-log10 transformed variables for each 

selected functional trait ((e): Dh; (f): BIEW; (g): CWTLW) of control trees (A2001, A). Colored 

lines indicate the significant treatment effects (see Table 4 for details). (h) Mean ± 1 SE of 

RPD grouped per treatment for stem (filled circles) and root (open squares). See Tables 1 

and 2 for explanations of acronyms. 

 

Fig. 2: Reciprocal relationships between functional traits (Dh, BIEW, CTWLW and RPD) in 

the stem (upper right plots) and root (lower left plots). Solid lines indicate the significant 

power curves that fit the data best (see Table 3). 

 

Fig. 3: Variability of hydraulic carbon use efficiency (HCUE) with increasing distance from 

the apex (L), based on log10-transformed data. The black line refers to the HCUE trend of 

control trees only, whereas colored lines indicate the significant treatment effects (see 

Table 3 for details). 

 

Fig. 4: Relationship between the mean hydraulic diameter of apical tracheids (DhAPEX: Dh 

at L≤1 cm) and (a) ΔH (annual stem elongation rate) and (b) RAI (ring area index, i.e., the 

ring area (RA) at the stem base standardized to remove the general axial pattern of RA vs. 

L, see Table 2). Solid lines represent the fitted linear regressions. 
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5.1 Abstract  

 

The lumen diameter of xylem conduits is reported to increase from the stem apex to base 

according to a supposedly universal scaling pattern (axial widening). While empirical data 

seemed to support this hypothesis, yet a thorough analysis to test whether the pattern is 

maintained throughout ontogeny is still missing. However, it had been argued that, if the 

axial widening is stable during ontogeny, then conduit diameter at the stem base in the 

last annual ring should depend primarily on the tree height achieved in that given year. 

We tested whether the comparison of the radial pattern of the hydraulic conduit diameter 

(Dh) could be used to test for differences in height growth between trees. 

We measured the (Dh) from pith to bark (i) on 17 discs along the stem of a mature spruce 

tree to reconstruct the variation of axial widening during ontogeny, and (ii) on several 

tree cores from Larix decidua (Mill.), Picea abies (L.) Karst. and Pinus cembra (L.) trees 

differing in age from three high altitude sites in the Alps. 

We found that axial widening did not significantly vary during the ontogeny of our 220 

year old spruce (P=0.09). 

We found that the radial Dh profiles of young living trees of each species are in most cases 

steeper than those of older ones, thus suggesting a faster height growth. 

We conclude that axial conduit widening is substantially stable during ontogeny. This 

allows us to state that, in our high altitude sites, those younger trees showing a steeper 

Dh radial profile are increasing in height at faster rates than older trees did at the same 

age, likely a consequence of the effects of global warming in stimulating the physiological 

processes in trees from cold environments. 
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5.2 Introduction  

Trees are long-living organisms that continuously increase in size during ontogeny by 

accumulating xylem biomass in stem, branches and roots. Being sessile organisms, 

evolution favoured different mechanisms of adaptation and acclimation to survive a 

certain degree of climate variability. Woody plants, and trees in particular, need to 

continuously adjust the xylem structure to overcome the mechanical and hydraulic 

limitations while growing taller (Domec & Gartner, 2002; Fonti et al., 2010; von Arx et al., 

2012; Aloni, 2013; Carrer et al., 2015; Petit et al., 2016). Indeed, xylem is a functional 

adaptive structure designed to safely and efficiently conduct water from roots to leaves 

to sustain transpiration by keeping stomata open and thus enable carbon uptake 

(Zimmermann, 1983; Sperry, 2003; Franks, P. J. & Brodribb, 2005). 

For a tree, plastic adjustments of wood-anatomical features represent a key strategy to 

optimally balance the competing needs of support, storage and transport, which may vary 

during ontogeny and under changing environmental conditions (Chave et al., 2009). 

Wider conduits contribute to enhance the hydraulic conductance  (Brodribb & Feild, 

2000), thus stimulating leaf-level photosynthesis and faster growth (Meinzer et al., 2011; 

Petit et al., 2011). However, wider conduits are also reported to increase the risk of 

embolism formation, with negative consequences on the total xylem conductance, thus 

limiting water transport and carbon assimilation (Tyree & Sperry, 1989). Throughout the 

life of a tree, different plastic adjustments in the xylem structures can respond to different 

requirements in terms of hydraulic efficiency or safety occurring at different temporal 

scales (Meinzer et al., 2011). These adjustments in the xylem structure remain 

permanently fixed and chronologically archived in the different anatomical traits. 

Therefore, dendro-anatomy, i.e. the study of anatomical features of tree rings, is emerging 

as an important field of plant science to retrospectively analyze the functional responses 

of trees to climate variability (Fonti et al., 2010). Anyway, there is still a lack of studies at 

the intraspecific level (Martin et al., 2010) investigating on the long term xylem 

modifications occurring over the full life-span of a tree, and how these changes are 

imprinted along the axial and radial profiles of a tree (Sala et al., 2012; Streit et al., 2014). 

As a tree gets taller, the distance between leaves and roots becomes longer and the tensile 

strength of ‘pulling’ water to the transpiring leaves increases accordingly (Koch et al., 

2004). Plant species have evolved anatomical adjustments to compensate for the 
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hydraulic limitation imposed by the increased tree height. According to the Hagen-

Poiseuille law, the hydraulic resistance of a cylindrical tube is directly proportional to its 

length and inversely proportional to the fourth power of its diameter (Tyree & Ewers, 

1991). This implies that taller trees have to lower the leaf water potential to maintain leaf 

transpiration (Koch et al., 2004), thus making the xylem system more vulnerable to 

cavitation through air seeding, occurring when air bubbles are aspirated into the water-

filled conduits (Zimmermann, 1983; Tyree & Sperry, 1989). To overcome these 

ontogenetic-related hydraulic constraints of maintaining xylem safety and efficiency, the 

xylem system is constituted of small conduits close to the stem apex, where they can 

provide a higher safety (Hacke et al., 2016) in a portion of the hydraulic pathway where 

the tension is highest. Below, xylem conduits increase in lumen area with increasing 

distance from the apex, following a power trajectory with the exponent generally 

converging to the value of around 0.18-0.20 (Anfodillo et al., 2013; Olson et al., 2014). 

With this axial configuration, most of the resistance is confined at the apex (Yang & Tyree, 

1993; Becker et al., 2000; Petit et al., 2009, 2011), with conduit widening effectively 

minimize the effect of the increased height on the total hydraulic resistance. Empirical 

studies suggested that xylem widening is a universal feature in trees, independent of 

environmental conditions. Given the consistency of the pattern, it was reasonable to 

deduct that widening is also stable during ontogeny, although in this respect confirmatory 

studies are rare (Weitz et al., 2006; Riondato, 2009). 

Consequently, the tree hydraulic architecture is build up according to a strong 

mechanistic link between conduit lumen size and height growth, making the patterns of 

conduit dimension within a tree dependent to the stem elongation occurred during the 

different ontogenetic phases (Carrer et al., 2015). Since the axial widening of xylem 

conduits seemed to be actually stable during ontogeny (Weitz et al., 2006; Riondato, 

2009), it follows that conduit lumen diameter increases radially with cambial age (i.e from 

pith to bark) at rates dependent on the rates of stem elongation occurred during ontogeny 

(Carrer et al., 2015). Carrer et al. hypothesised that for a constant annual height growth 

from seedling to maturity, the pattern of conduit-diameter vs cambial age would reflect 

the stable power scaling of conduit widening, implying that any actual deviation from this 

radial pattern would reflect a positive or negative pulse of height growth during different 

periods (Carrer et al., 2015). Therefore, the information imprinted in the radial patterns 
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of xylem anatomical features represent a strong link between the tree structures and the 

physiological responses to environmental variability and size-related constraints faced by 

trees during their ontogenetic development. For instance, comparing the steepness of the 

radial pattern of xylem conduit dimension of trees differing in age should provide 

information on the mean rate of height growth during different periods. In this respect, it 

would be ideal to test such a hypothesis in cold environments, where current climate 

changes, such as the increase in temperature and CO2 concentration are more or less 

quickly releasing the local growth constraints. 

Primary and secondary growth at the treeline is determined by co-occurring 

environmental constraints preventing a positive carbon balance in trees burdened with 

large proportions of non productive tissues (Hättenschwiler et al., 2002), with 

atmospheric CO2 concentration and temperatures playing a major role in influencing the 

rate of carbon availability for structural growth (Dawes et al., 2010).  

During the recent decades, a trend of shifting treeline position towards higher altitudes 

and latitudes has been observed at global scale (Körner, 1998; Harsch et al., 2009), and 

attributed to the effects of increasing anthropogenic greenhouse gas emissions on global 

temperatures, atmospheric CO2 concentration (Cannone et al., 2007; Körner, 2012) and 

nitrogen deposition (Schlesinger, 2009). Global warming was supposed to reduce the 

temperature constraints of different metabolic activities, in particular the enzymatic 

fixation of non structural carbon compounds (NSCs) into xylem biomass (sink limitation 

hypothesis – SLH) (Li et al., 2002; Körner, 2003a; Danby & Hik, 2007; Dawes et al., 2015). 

The increase in CO2 concentration would promote tree growth, especially at high altitude 

treelines of low-mid latitudes (Smith et al., 2009), by reducing the negative effect of 

reduced CO2 partial pressure with altitude (La Marche et al., 1984; Körner, 2003a,b). 

Additionally, the recent levels of nitrogen deposition are altering the nitrogen cycle and 

soil nitrogen availability, thus stimulating the tree physiological responses and the overall 

forest carbon cycle (Magnani et al., 2007; Leonardi et al., 2012). 

In this study, we present a comprehensive framework aimed to explore whether it is 

possible to extract information of ontogenetic growth from the radial patterns on xylem 

conduit dimension of tree rings.  

First, we thoroughly tested the fundamental hypothesis of the ontogenetic stability of the 

axial xylem conduit widening. We used a dendro-anatomical approach to analyse the 
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radial profiles of xylem conduit diameter of tree rings at every 1 m along the stem of a 

single mature tree, and thus reconstruct at annual resolution the variation of the stem 

apex to base pattern of conduit widening during ontogeny (from seedling to maturity). 

Additionally, we analysed the radial pattern of xylem conduit diameter in trees of 

different coniferous species and widely differing at different alpine treeline locations, to 

test whether younger trees, taking advantage from the current climate changes are 

growing faster than older trees did during their juvenile stage. 

 

5.3 Material and methods 

5.3.1 Study sites and plant material 

For the test for the ontogenetic stability of conduit widening we used plant material 

already available in our lab. In 2007, a dominant 26 m tall Norway spruce (Picea abies 

Karst.) tree of around 220 years and a 20 m tall Stone pine (Pinus cembra L.) of around 

175 years were felled from a mixed montane forest at 1400 m in the Dolimites, Italian 

Alps (Obereggen, Bolzano). Additionally, two European larch (Larix decidua Mill.) trees (4 

m tall and about 40 years) collected in Stillberg reseach area, Davos (Switzerland). Stem 

disks were cut every 1 m (P. abies and P. cembra) or 15 cm (L. decidua) from the stem base 

to the treetop and then transported and stored in our lab. 

For each disc, we extracted a radial segment from pith to bark, smoothly sanded the cross 

sectional surface, and measured the ring with (see below). We then reconstructed the 

total tree height achieved in the different years according to the different ring number 

between two successive discs. Consequently, we could attribute the corresponding 

distance from the apex (L) to each dated ring, calculated as the difference between the 

reconstructed tree height and the distance from the ground. 

The comparative analysis of growth response assessed by radial patterns of xylem 

conduit dimension, we selected three different treeline locations across the Alps. 

The three study sites are located in the Lötschental (46°23′N, 7°45′E, Central Swiss Alps), 

in Croda da Lago (46°27’N; 12°08’E, Eastern Italian Alps), and in valle Ventina (45°26’N, 

28°33’E, Central Italian Alps). 
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Lötschental is a South-West-to-North-East oriented inner Alpine valley. The selected site 

was established at around 2200 m a.s.l., in an forested area with prevalence of Norway 

spruce and European larch. 

Lötschental valley has a cold, dry climate with a mean annual temperature of 6° C, ranging 

from -3 (January) to 15° (July) and a mean annual precipitation exceeding 1000 (Schmidt 

et al., 2009). 

Croda da Lago site has a North-East aspect and is located at 2100 m a.s.l., in a L. decidua, 

P. abies and P. cembra subalpine forest. The air temperature, measured by the nearest 

meteorological station in Cortina d’Ampezzo, spans from -25 °C (January) to 30 °C (July) 

with an annual mean of 6.7 °C (Rossi et al., 2006a,b), while the total annual precipitation 

is on average 1100 mm (Urbinati et al., 1997). 

Valle Ventina is oriented North-South and is an inner valley characterized by a continental 

climate. The sampling site was located at 2200 m a.s.l., where L. decidua is the dominant 

tree species with P. abies, P. cembra and mountain pine (Pinus mugo subsp. Uncinata 

Ramond ex DC) as co-dominant species throughout. Annual precipitation from 1921 to 

1990 varied from 668 mm to 1551 mm, averaging 974.9 mm (Lanzada, 1000 m a.s.l.) 

(Garbarino et al., 2010) and mean annual temperature of 3.4°C, varying between -4.5 °C 

(January) to 11.5 °C (July) (Harris et al., 2014). 

From each site, we extracted cores from breast height of trees widely differing in age. For 

Lötschental and Croda da Lago we sampled old (>150 years) vs. young (<50 years) trees. 

Sampled species were Larix decidua in all sites, Picea abies and P. cembra only in Croda da 

Lago. Selected trees did not show any damage of terminal leading shoot or signs of serious 

herbivory and/or diseases. 

 

5.3.2 Measurements 

Standard dendrochronological techniques were used to collect and prepare samples for 

tree-ring width (TRW) measurement (Schweingruber, 1996). All the 57 cores were 

prepared by sanding with a belt sander or by cutting with a the core-microtome (Gärtner 

& Nievergelt, 2010). Ring-widths (RW) were measured to the nearest 0.001 mm with a 

LINTAB tree-ring measuring system or with WinDENDRO (Regent Instruments Canada 

Inc. 2004) after scanning at 1900 dpi (Epson Expression 10000XL). Time series were then 

cross-dated with TSAP (RINNTECH Inc. Heidelberg, Germany). A minimum of two radii 
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per tree were measured in all but a few cases. Cross-dating accuracy was verified with 

COFECHA (Holmes, 1983). 

In those cores not reaching the pith in their innermost part, the number of missing rings 

was estimated with standard techniques (i.e., by comparing the ring curvature against 

concentric circles to estimate the distance to the pith, divided by the average ring width 

of the youngest ten rings) (Sperry, 2010). 

Cross sections of 57 tree cores (Tab. 1) and of radial segments of 44 discs were cut at 10-

15 µm using a rotary microtome (RM2245, Leica, Heidelberg, Germany). The micro 

sections were stained with a solution of safranin (1% in distilled water) and Astrablue 

(0.5% in distilled water) and permanently fixed with Eukitt (BiOptica, Milan) following 

standard a standard protocol (von Arx et al., 2016). Slides were photographed at 40X 

magnifications using a digital camera mounted on a light microscope (Nikon Eclipse 80i, 

Nikon, Tokyo, Japan) to get height resolution images (0.833 pixel/ µm) of the entire/or 

partial thin section. Multiple digital images (overlapping ca. 25%) were stitched together 

using PTGui v8.3 (New House Internet Service B.V., The Netherlands). 

Stitched images of cross sections were automatically analysed using ROXAS v2.1 (von Arx 

& Dietz, 2005; von Arx & Carrer, 2014) for the measurement of several parameters 

performed at the cell level, such as ring width (RW) and single xylem conduit area (CA). 

Definitive analysis output required a previous manual editing to draw ring borders and 

cancel/draw wrong/missing tracheids (Carrer et al., 2015).  

Overall, more than 13000 rings and 20 millions of cells (with a mean of 1844 cells per 

ring) were processed.  

For each ring of each core, ROXAS calculated the hydraulically weighted diameter (Dh) as 

(Kolb & Sperry, 1999): 

 

𝐷ℎ =
∑𝑑𝑛5

∑𝑑𝑛4
  eq. 1 

where dn is the diameter of the n-conduit, assumed to be circular and estimated as: 

𝑑𝑛 = 2 ∙ (
𝐴𝑛

π
)
1
2⁄

  eq.2 

with An being the lumen area of the n-conduit. 

 

 



106 
 

5.3.3 Statistical analysis 

Data were log10-transformed to comply with assumptions of normality and 

homoscedasticity (Zar, 1999). The ontogenetic effects on the relationship of Dh vs L and 

cambial age (CAGE) were tested the linear regression model on log10-transformed 

variables.  

Age and site effects on the axial patterns were tested using linear mixed-effects models 

fitted with restricted maximum likelihood. We established a models for Dh where CAGE, 

growth period (GP), site (see Table 2) and their interactions were included as fixed effects, 

and tree identity as random factor in all initial models, reflecting the sample collection. 

Linear models were run using lme4 (Bates et al., 2015) and MUMIN packages (Barton & 

Barton, 2015) with R v3.1.1. (R Development Core Team, 2014). 

 

5.4 Results  

5.4.1 Variation of axial conduit widening during ontogeny 

We analyzed the variation of the hydraulic mean diameter (Dh) with the distance from 

the apex (L) for 220, 170 and 30 reconstructed annual apex-to-base profiles along the 

stem respectively for the P. abies, P. cembra and L. decidua trees. The patterns were 

remarkably univocal, with a steep increase in Dh until around 4-10 m from the apex, and 

further below Dh leveled off until the stem base. Although the patterns were not clearly 

following a pure power function (see the log10-transformed date not aligned on a straight 

line Fig.1c), yet the power fitting was best fitting the data (R2=0.78) (Fig. 1c). We then 

tested whether this axial pattern remained stable during ontogeny, and found that the 

scaling exponents b averaged the value of 0.13 and did not significantly vary with age 

(P=0.20,P=0.27 and P=0.13, respectively for P. abies, P. cembra and L. decidua) (Fig. 2). In 

parallel, we found that the radial variation of Dh with cambial age (CAGE) was similar for 

all the stem disc (Fig. 1b). In particular we found that the scaling exponent of the power 

equation fitting the data relative to the second basal discs (at 2 m from the ground, to 

avoid compression wood) and the first 60 years of growth was respectively b=0.28 

(R2=0.87) (Fig. 1d). 
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5.4.2 Comparative analysis of radial widening  

Similarly to the radial profiles of Dh reported for the different stem collected at different 

height along the stem of our Norway spruce tree, in all the tree cores or discs sampled at 

the different high altitude sites across the Alps, we found that Dh increased from the pith 

to the bark. A more pronounced variation was found during the first phases of ontogenetic 

growth (50-100 years) (fig. 3). Our tests performed with linear mixed effects models on 

the influence of GP, species and site on the radial scaling of the Dh with the CAGE (restricted 

to the first 60 years) showed several significant effects (Tab. 2 and Tab. 3). 

L. decidua young (age < 100 years) living trees from Lötschental and Ventina showed a 

steeper increase in Dh with cambial age (CAGE) compared to the other older trees. On the 

contrary, the radial trend of Dh vs. CAGE showed a significant flattening in young trees at 

Croda da Lago (Tab. 2). 

In Croda da Lago, P. abies and P. cembra young trees showed a steeper increase in Dh with 

CAGE compared to older individuals (Tab. 2). 

We then tested potential site differences in the radial Dh profiles (restricted to the first 60 

years) of trees growing in different GP. In L. decidua, the radial Dh pattern was 

significantly steeper in Lötschental and Ventina compared to Croda da Lago, whereas the 

opposite trend was found for the older trees (Tab. 3). 

 

5.5 Discussion 

 

Our analyses confirmed that the whole xylem hydraulic architecture is build-up during 

the ontogenetic development according to a strong mechanistic link between conduit 

lumen size and height growth (Carrer et al., 2015). We found that the hydraulic diameter 

of xylem conduits (Dh) increased from the stem apex downwards along the stem axis until 

the base following a pattern that was substantially maintained during all the 220 years of 

ontogenetic development of the analyzed tree. Dh steeply increased until 5-10 m from the 

apex, whereas further below it leveled off, i.e., not increasing much further until the stem 

base (Fig. 1a). This result strongly supported the hypothesis that the axial conduit 

widening is an ontogenetically stable feature of the whole xylem transport system (Weitz 

et al., 2006; Riondato, 2009). As expected, the power function was the best fitting for the 
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measured values, and the obtained scaling exponent (b=0.13) was very similar to those 

reported in literature (e.g., Anfodillo et al., 2013; Olson et al., 2014), thus supporting also 

the remarkable universality of the axial conduit widening in vascular plants (West et al., 

1999; Anfodillo et al., 2006; Olson et al., 2014). This strict axial configuration of basal 

conduit widening represents a biophysical optimization to buffer the negative effect of 

path length on the total hydraulic resistance (West et al., 1999; Petit et al., 2009, 2010). In 

this way, most of the total resistance is confined close to the stem apex, thus allowing the 

adjustments of the whole transport system required during ontogeny to meet the 

changing functional and structural needs as the tree size increases. We demonstrated that 

the stability of the axial conduit widening configuration implies that, while growing taller, 

a tree compensate for the negative effect of the increased hydraulic path length simply by 

enlarging the xylem conduits at the stem base (Anfodillo et al., 2006). 

As consequence of the ontogenetic stability of the axial widening, we found that the 

conduit lumen diameter (Dh) increases radially with cambial age (CAGE) (i.e from pith to 

bark) and thus supported the hypothesis that this patter is dependent on the rate of stem 

elongation occurred during ontogeny (Carrer et al., 2015). This finding provided a solid 

theoretical basis for our following case study of comparing the height growth 

development of trees of different age, species and sites, based on the analysis of radial 

pattern of xylem conduit dimension at the stem base. However, it must be highlighted that 

this approach has some limitations due to the fact that the increase in conduit dimension 

strongly levels off after a certain distance from the apex, as also previously found 

(Mencuccini et al., 2007; Petit et al., 2010). However, the comparative analysis of height 

growth patterns by means of anatomical measurements of conduit dimension can be 

considered effective during the juvenile ontogenetic phase, as in our case. 

The analysis of the radial scaling of the hydraulic conduit diameter (Dh) with cambial age 

(CAGE), restricted to the first 60 years of tree development, overall showed that currently 

living young trees had a significantly steeper radial trend of Dh with CAGE, thus suggesting 

that they are growing in height at faster rates compared to the past. This result is in 

agreement with other observations that recent climate changes, and in particular the 

increase in air temperatures, are stimulated tree growth in cold environments in the last 

decade (Körner & Paulsen, 2004; Körner, 2012), leading to a latitudinal and longitudinal 

shift of natural treeline positions (Körner, 1998; Harsch et al., 2009). In addition, recent 
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studies reported that stem elongation is dependent from the “apical hydraulic 

bottleneck”, i.e. by the effect of the narrow apical conduits on the total hydraulic 

resistance (Petit et al., 2011). Increasing temperatures, together with an additional effect 

of increasing CO2 concenntration can stimulate small modifications at the apical level that 

can have a much greater impact on the total xylem conductance, thus favoring gas 

exchange and ultimately primary and secondary (Petit et al., 2011; Prendin et al., 2016 

under review) growth. 

In our case studies we found some species and site specific differences the radial pattern 

of young living trees and older trees. Most likely, these differences reflected the species 

specific response to the environmental conditions of the different sites. For instance, the 

historical forest management at the different sites might have favored one species over 

the others. At Croda da Lago, the forest is left to natural evolution since approximately 

200 years, whereas in former times the site was managed to favor pasture, with L. decidua 

trees being advantaged over the other species for its lighter crown allowing the 

development of herbaceous species (Garbarino et al., 2009, 2011, 2013). Indeed, tree 

growth of L. decidua profited of this type of management. In recent times the forest cover 

is progressively closing, thus determining a higher competitive pressure for the use of 

resources on this species. On the other hand, at Lötschental is likely that tree growth can 

be more strongly affected by physical disturbances such as winter snow cover and 

avalanches. L. decidua is certainly more adapted to supporting heavy snow loads because 

of its deciduousness and more elastic wood. In addition, the warming trend occurred over 

the last couple of decades has coincided with the reduction of the Larch budmoth [LBM; 

Zeiraphera diniana Gn. (Lepidoptera: Torticidae)] outbreaks across the European Alps 

(Johnson et al., 2010, Peters et al., 2016 in prep), with positive effects on the 

competitiveness of L. decidua, especially in the Central and Western Alps. 

At the Ventina site, we compared the radial trend of Dh in L. decidua trees divided in three 

different epochs according to their estimated year of birth. The three epochs referred to 

well known time windows characterized by particular climate conditions: the Little Ice 

Age (LIA: 1450-1850) and the Current Warm Period (CWP: 1900-present) (Buntgen et al., 

2005). We found that the living young trees (CWP) are growing faster than in the past, 

and notably even if compared to trees from the MWP, when temperatures were 

supposedly higher than nowadays (Buntgen et al., 2005). This suggested that the forest 
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dynamics at that specific site, which is not heavily affected by human activities, is 

proceeding at an unprecedented speed over the last centuries. 

 

Conclusions 

 

With this study we presented a novel approach based on xylem anatomy to study at 

different time and spatial scales the tree growth during the juvenile phase under different 

climatic conditions. We provided empirical evidence that the assumption of this 

methodology, i.e. that the axial pattern of conduit widening is stable during ontogeny, 

holds true, thus allowing the possibility to provide the third dimensional component to 

the dendro-ecological analyses. However, further study are certainly needed to better 

understand the limitations and strengths of this novel approach to better interpret the 

tree responses to climate change. 
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Tables 

Table 1: Height (H), diameter at breast height (DBH) and Age (mean ± SE) of the sampled trees growing in different epochs (Growth 

Period).  

 

Specie Growth 
Period 

Croda da Lago Lötschental Ventina 

cores Height  DBH  Age cores Height  DBH  Age cores Height  DBH  Age 

Larix decidua 1900-2015 5 11.42±0.15 17.89±0.16 43.1±1.25 5 8.88±0.12 18.32±0.27 27.64±1.38 4 - - 31.14±1.68 

1500-2015 6 22.08±0.08 63.76±0.20 203.34±2.64 5 17.71±0.13 62.62±0.55 161.07±2.99 5 - - 257.5±3.73 

Picea abies 1900-2015 11 8.56±0.14 16.19±0.24 27.03±0.63 - - - - - - - - 

 1500-2015 6 20.24±0.09 53.62±0.30 145.20±2.25 - - - - - - - - 

Pinus cembra 1900-2015 5 8.72±0.09 18.86±0.13 25.61±0.99 - - - - - - - - 

 1500-2015 5 14±0.00 52.00±0.00 236.91±3.74 - - - - - - - - 
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Table 2:  Results of the optimal linear mixed-effect model predicting the period effects on the relationship between Log10Dh and 

Log10CAGE (on y-intercept and slope, i.e., the interaction between period and Log10 CAGE) for the different species, sites and growth period 

(see methods for details). Numbers indicate the estimates ± SE. Levels of significance are: * P< 0.05, ** P< 0.01 and *** P< 0.001. 

 

 

 

 

 

 

 

 Croda da Lago Lötschental Ventina 

Fixed effect Larix decidua Picea abies Pinus cembra Larix decidua Picea abies Larix decidua 

Log10 Dh 

Intercept (1500-2015) 1.01±0.02*** 1.22±0.02*** 1.13±0.02*** 1.19±0.03*** 0.74±0.05*** 1.16±0.05*** 

Log10CAGE(1500-2015) 0.31±9.52x10-3*** 0.12±0.01*** 0.19±9.67x10-3*** 0.17±0.01*** 0.41±0.02*** 0.21±0.01*** 

1900-2015 0.11±0.03*** -0.23±0.03*** 0.02±0.03 -0.21±0.05*** 0.10±0.07 -0.30±0.06** 

Log10 CAGE :1900-2015 -0.07±0.01*** 0.20±0.01*** 0.03±0.01. 0.19±0.02*** -0.06±0.03* 0.15±0.02*** 
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Table 3: Results of the optimal linear mixed-effect models predicting the site effects on 

the relationship between Log10Dh and Log10CAGE (on y-intercept and slope, i.e., the 

interaction between period and Log10CAGE) for the different species and sites (see methods 

for details). Numbers indicate the estimates ± SE. Levels of significance are: * P< 0.05, ** 

P< 0.01 and *** P< 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Larix decidua Picea abies 

Fixed effect 1900-2015 1500-2015 1900-2015 1500-2015 

Log10 Dh 

Intercept (Croda da Lago) 1.13±0.03*** 1.02±0.03*** 0.99±0.02*** 1.22±0.03*** 

Log10 CAGE : Croda da Lago 0.24±0.01*** 0.31±0.01*** 0.31±9.25x10-

3*** 

0.12±0.01*** 

Lötschental -0.15±0.04** 0.17±0.04** 
  

Log10 CAGE : Lötschental 0.12±0.02*** -0.14±0.02*** 
  

Ventina -0.27±0.04*** 0.14±0.04**   

Log10 CAGE : Ventina 0.11±0.02*** -0.11±0.02***   
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Figure captions 

 

Figure 1: Variation of the xylem hydraulic diameter (Dh) with (a) the distance from the 

apex (L) and (b) cambial age (CAGE). Log10-transformed data, describe the axial scaling (Dh 

~ L) (c) and radial scaling (Dh ~ CAGE, restricted to the first 60 years) (d), solid lines 

represent the fitted linear regressions. The different colors refer to the data belonging to 

the P. abies, P. cembra and L. decidua trees analyzed. 

 

 

Figure 2: Ontogenetic variation of the scaling exponent (b) of the power function fitting 

the axial profile of the xylem hydraulic diameter (Dh) vs. the distance from the apex (L) 

calculated for each year of growth of P. abies, P. cembra and L. decidua trees. 

 

 

Figure 3: Radial variation of the xylem hydraulic diameter (Dh) with cambial age (CAGE) 

for the different species, sites and reference growth period (GP). Colors represent the 

different growth periods: 1900-2015 (red) and 1500-2015 (light blue). In the insets, data 

are Log10-transformed and solid lines represent the fitted linear regressions limited to the 

juvenile phase (i.e., CAGE ≤60 years). 
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Figures 

Figure 1: 

 



116 
 

Figure 2: 
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Figure 3: 
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6.1 Abstract  

 

In trees, water transport from roots to leaves can be limited by size related safety and 

efficiency constraints due to the combined negative effects of tree height i) on leaf and 

xylem water potential due to gravity, and ii) on the total xylem resistance due to increased 

frictional forces. However, how these conflicting requirements of hydraulic safety and 

efficiency are managed in taller trees is still unknown. 

We assessed the vulnerability curves (VCs) and performed detailed xylem cell anatomical 

quantification of the leader shoots of Picea abies trees of different height (from 2 to 37 m) 

from two different sites. We found significant trends of hydraulic and anatomical traits 

with tree height. The xylem water potential triggering 50% of loss of conductivity ranged 

from -5.86 MPa in small to -3.40 MPa  in tall trees (P=0.007), the hydraulic conductivity 

from 3.34·10-13 to 9.10·10-12 ((kg·m·MPa-1·s-1)10-15/m) (P<0.001), the hydraulic diameter 

from 10.92 to 14.88 μm (P=0.007) and the total number of xylem conduits from 7.65·103  

to 1.02·105  (P=0.005). We found a strong trade off between efficiency vs. safety, with 

conduit number being the best anatomical predictor of the 50% of loss of conductivity 

(R2=0.63, P<0.001).  

In conclusion, taller trees are then more vulnerable to drought induced cavitation, and 

thus are more exposed to the risk of hydraulic failure under extreme drought events, 

which are predicted to more frequently occur with climate change. 
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6.2 Introduction 

One of the major current challenges in plant sciences is to gain a better understanding 

tree species acclimation to current and forecasted climate changes (Sala, Piper & Hoch 

2010). In recent years, widespread  natural tree mortality followed extreme episodes of 

drought (Allen et al. 2010). Moreover, it has been observed that these events more 

strongly attempt to the survival of big sized trees, often leading to  more or less 

pronounced top dieback or even complete plant death (Nepstad et al. 2007; McDowell et 

al. 2008; Lewis et al. 2011; Rowland et al. 2015). While several studies already shed light 

on the biophysical limitations imposed by tree height on the plant physiology and growth, 

yet a comprehensive understanding of the actual chain of physiologic events leading to 

tree top dieback or even death of big trees after drought events still requires some solid 

bricks of knowledge (Hartmann et al. 2015). 

Trees are long-living organisms that continuously increase in size during ontogeny, with 

some tree species growing up to more than 100 m in height (Koch et al. 2004). Increased 

size per se ultimately reduces vigor in big trees (Mencuccini et al. 2005; Martínez-Vilalta, 

Vanderklein & Mencuccini 2007) because it triggers a number of constraints to 

physiological processes. On one hand, the whole carbon balance is affected by the 

increased maintenance cost of having a larger body biomass (Meinzer, Lachenbruch & 

Dawson 2011). On the other, the increased stature imposes stronger limitations to water 

flow (Ryan & Yoder 1997). The gravitational pressure gradient of 0.01 MPa·m-1 

determines higher xylem tensions with increasing tree height. in addition, the water flow 

through xylem conduits over a longer roots-to-leaves path is negatively affected by the 

increased frictional forces imposed by the cell wall surfaces, in agreement with Hagen-

Poiseuille law predicting the hydraulic resistance of a capillary tube to be linearly 

proportional to its length and inversely proportional to the fourth power of its diameter 

(Tyree & Ewers 1991). In the xylem, if conduit number did not change axially (Shinozaki 

et al. 1964), the total hydraulic resistance of a xylem pipe from roots to leaves would 

increase with tree height unless the diameter of chained conduits varies axially (Petit & 

Anfodillo 2009). Indeed, empirical studies demonstrated that the xylem architecture of 

vascular plants shares a common design (known as widening), according to which the 

conduit diameter increases from the apex downwards along the stem axis following a 

power-like trajectory (Anfodillo, Petit & Crivellaro 2013; Olson et al. 2014) that is 
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maintained throughout ontogeny (Prendin et al. 2017). In such a way, the negative effect 

of path length gets substantially buffered by conduit widening, and the total hydraulic 

resistance becomes nearly independent of tree height (Mäkelä & Valentine 2006; Petit & 

Anfodillo 2009; Petit et al. 2010). It follows that resistances increase towards the terminal 

twigs (Yang & Tyree 1993; Petit, Anfodillo & Mencuccini 2008), where the xylem tension 

is highest because of gravity and accumulated flow resistances. This results in conflicts 

between xylem efficiency and safety (Hacke & Sperry 2001) and has important 

consequences for the whole tree hydraulics and physiology. 

In addition, it is also linked to the carbon balance as, the carbon costs of building up a 

renewed xylem architecture in tall trees must account for the higher osmotic potential 

required for cell expansion under the effect of gravity (Woodruff et al. 2007), and for the 

higher biomass required to extend conduits over a longer path length. 

According to a recent report, under limited soil water resources Fraxinus ornus trees 

reduce the carbon investment into xylem by decreasing the number of vessels and slightly 

increasing their size in order not to compromize much the total conductance (Petit et al. 

2016). Under this perspective, it can be hypothesized that the optimal coordination 

between carbon balance and xylem hydraulics can be conditioned by the effect of tree 

height on xylem safety and efficiency. How carbon allocation into new xylem biomass can 

resolve these conflicts bewteen hydraulic safety and efficiency? Is there any modification 

to xylem anatomy that play a key role in this respect? In partucular, we hypotized that 

xylem adjustments are developed to maintain the efficiency of water transport, and thus 

allowing the vital processes of leaf transpiration and photosynthesis also in taller trees, 

but at the cost of increasing their vulnerability to drought induced cavitation.  

In this study we present a comparative analysis of the xylem anatomical adjustments of 

the leader shoots of Picea abies trees differing in tree height in relation to their 

vulnerability to drought induced xylem cavitation, and discussed the results in the context 

of sensitivity of big sized trees to the predicted climate change scenarios. 
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6.3 Material and methods  

6.3.1 Study site and selected trees 

We selected two study sites in the Dolomites, Eastern Italian Alps at approximately 1650 

m a.s.l.. At Cinque Torri (Cortina d’Ampezzo, BL: 46°27'N, 12° 08' E) the forest is 

characterized by a mixed and open clumps of Larix decidua Miller and Picea abies Karst. 

trees, on a south-facing and shallow calcareous soil. At Pian de Sire (Lorenzago di Cadore, 

BL: 46° 50' N, 12°59' E) the forest is a dense monospecific Norway spruce stand on a 

south-east facing and deep calcareous soil. The climate in both areas is the typical of the 

South-Eastern Alpine region. According to the nearest meteorological station of Cortina 

d’Ampezzo, mean annual temperature is 6.3°C and total annual precipitations around 

1200 mm, mostly occurring during summer and early autumn. 

At the end of September 2014, we collected the apical shoots (40 cm) of 36 P. abies 

individuals of different height (from 2 to 37 m) and measured the height (H) and the 

diameter at the breast height (DBH) (Fig. 1).Immediately after felling, apical shoots were 

cut under water, wrapped with a moist tissue and stored in a plastic bag in a cold box. 

Shoots were then transported to the laboratory and frozen. 

For each apical shoot, we used a segment of 10 cm starting from the apex for the 

anatomical analyses, and the consecutive segment between 10 and of 40 cm for hydraulic 

measurements.   

 

6.3.2 Vulnerability curves 

Frozen samples were left overnight in a cooling room at 4 °C to slowly melt xylem water. 

Samples were then immersed in cold water and cut for 1 cm at both ends. Stem twigs were 

fixed in a custom-built rotor designed by JS Sperry for a Sorvall RC-5 centrifuge (Thermo 

Fisher Scientific, Waltham, MA, USA; see Li et al., 2008, for details) and the method 

described in (Beikircher et al. 2010) was followed.  

Vulnerability curves (VCs) were elaborated using the Cavitron technique (Cochard 2002; 

Jacobsen & Pratt 2012; Cochard et al. 2013) with a 28cm rotor. VCs were assessed after 

repeated measurements of the sample’s hydraulic conductance (K) while exposed in their 

middle part to progressively more negative pressures produced by accelerated 

centrifugation. 
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The percentage loss of conductance (PLC) was calculated from the ratio of the actual (K) 

to the maximum conductance of the stem (KMAX)(Cochard 2002): 

 

𝑃𝐿𝐶 = 100 ∗ (1 −
𝐾

(𝐾max)
 ) eq. 1 

 

6.3.3 Anatomical analysis 

We carried out the anatomical analyses of the base of the 10-cm-long apical segments by 

following standard protocols (von Arx et al. 2016). Cross sections of the whole segment 

base were cut at 10-12 µm with a rotary microtome (RM2245, Leica, Heidelberg, 

Germany). Sections were stained with safranin and Astrablue (1% and 0.5% in distilled 

water, respectively), permanently fixed with Eukitt (BiOptica, Milan), and then 

photographed using a digital automated microscope (D-sight, Menarini Diagnostic, Italy). 

Images were analyzed using ROXAS v 3.0.31 (von Arx & Dietz 2005; von Arx & Carrer 

2014) for the measurement of xylem anatomical features. We focused our analyses on the 

total xylem area (XA), the number of tracheids (Cn) and their hydraulically weighted 

conduit diameter (Dh), assessed as (Kolb & Sperry 1999): 

 

𝐷ℎ =
∑𝑑𝑛5

∑𝑑𝑛4
  eq. 2 

 

where dn is the diameter of the n-conduit. 

We calculated the theoretical hydraulic conductivity (Khtheor) for the entire xylem area 

according to the Hagen-Poiseuille law (Tyree & Zimmermann 2002), and the index of 

bending resistance of earlywood tracheids (identified based on Mork’s index) (Denne 

1988) against implosion (BIEW), as (Hacke et. al 2001): 

 

𝐵𝐼EW = (
𝐷𝐶𝑊𝑇

𝑑𝑛
)
2

 eq.3 

    

where DCWT is the double-cell wall thickness and dn is the lumen diameter of the n-

conduit measured perpendicularly to  the double-cell wall.  

In total, we analyzed a total of more than 1.5 millions of tracheids. 
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6.3.4 Statistical analysis 

Vulnerability curves (VCs) were obtained by plotting the data of percent loss of hydraulic 

conductivity (PLC) against the applied negative xylem water potential (Ψ) and by using a 

sigmoidal fitting function (Pammenter & Van der Willigen 1998). Curves were fitted for 

each sample and Ψ corresponding to PLC=12 (P12), PLC=50 (P50) and PLC=88% (P88) 

extracted, accordingly to Domec & Gartner (2001) definition. 

Additionally, mean curves were fitted for the five tallest and five smallest P. abies of each 

side and the mean P12, P50 and P88 calculated.  

The relationships between tree height, P50 and several anatomical traits were assessed 

on log10-transformed data to comply with assumptions of normality and 

homoscedasticity (Zar 1999), and fitted with a linear regression model where the site was 

included as random factor. All the analysis were performed with R (v 3.1.1;R Development 

Core Team 2014). 

 

 

6.4 Results 

6.4.1 Vulnerability to xylem embolism 

The vulnerability curves of leader shoots slightly differed, depending on the height of 

trees (Fig. 2). P50 (i.e., the xylem water potential (Ψ) at which PLC=50 %) slightly but 

significantly increased (i.e., became less negative) with increasing tree height 

(approximately 0.07 MPa/m: Fig. 3a), ranging from a minimum of -5.86 MPa (H=1m) to a 

maximum of -3.40 MPa (H=36m). Significant differences were not found between sites 

(Tab. S1, supplementary material). 

 

6.4.2 Xylem anatomy 

The anatomical analyses revealed a rather narrow range of conduit size variation between 

samples. The mean hydraulic diameter (Dh) of the leader shoot (at 10 cm from the stem 

apex) varied between 10.92 and 14.88 µm. Overall, we found that both Dh and the conduit 

number (Cn) significantly increased with tree height, approximately 0.11 µm/m and 2610 

cells/m (Fig. 4). 
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The theoretical hydraulic conductivity (Khtheor) well correlated to the hydraulic 

conductivity at full saturation (KMAX) measured with the cavitron (Fig. S1), and 

significantly increased (approximately 1.36·10-13 (kg·m·MPa-1·s-1)10-15/m) with tree 

height (Fig. 3b).We found no significant relationships between the bending index of 

earlywood tracheids (BIEW) and tree height (H),  between BIEW and P50 (Fig. S2) and 

between the ratio of conduit number and xylem area (Cn/XA) and tree height (H) (Fig. S3). 

 

6.4.3 Trade-off of safety vs. efficiency 

We investigated the tradeoff between hydraulic safety and efficiency by analyzing the 

theoretical hydraulic conductivity (Khtheor) and its two related anatomical traits, i.e. 

tracheid hydraulic diameter (Dh) and number (Cn) against P50 (Fig. 5). Khtheor 

significantly increased with P50 (P<0.001). Of the two traits correlated with Khtheor, Dh 

was not significantly correlated with P50 (P=0.32), whereas 63% of the total variance of 

P50 could be explained by the variation in conduit number (P<0.001). 

 

6.5 Discussion 

Our hydraulic and anatomical analyses of the leader shoots of Norway spruce trees 

revealed a progressive modulation of conflicting requirements of hydraulic safety vs. 

efficiency with increasing individual height. The obtained results supported the 

hypothesis that taller trees prioritize the xylem efficiency (Fig. 3b) at the cost of being 

more vulnerable to drought induced cavitation (Fig. 3a). 

The problem of maintaining an efficient physiological performance under the 

constraining effects of the increased tree height had already been addressed by other 

plant ecologists. Size imposes strong biophysical constraints to leaf gas exchanges 

(Mencuccini et al. 2005). Leaf osmoregulation was reported to increase with tree height 

accordingly to the gravitational pressure drop of 0.01 MPa·m-1 (Koch et al. 2004; Burgess 

& Dawson 2007). Nevertheless, this strategy seemed not sufficient for maintaining 

homeostasis of leaf gas exchanges, as carbon assimilation was contextually reported to 

decrease with tree height, because of the supposedly stronger effect of the increasing path 

length resistance (Koch et al. 2004). According to the analyses of Domec et al. (2008), the 

requirements for taller trees of having higher xylem safety to resist their operational 
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lower xylem water potentials would determine substantial modifications in pit anatomy 

with the side effect of strongly reducing the total xylem conductance, and ultimately set 

the limit to tree height. Even though in our study we did not measure the world’s tallest 

trees as in Koch et al. (2004) and Domec et al. (2008), we could demonstrate height 

related changes in vulnerability to cavitation (Cochard, Cruiziat & Tyree 1992; Meinzer et 

al. 2009) and in anatomical characteristics of leader shoots by a comparison of trees 

between 2 and 37 m. In contrast to previous reports (Domec et al. 2008), we found a 

rather different indication on the strategical prioritization between the conflicting 

requirements of safety vs. efficiency occurring during the ontogenetic development of a 

tree. In fact, safety against drought induced cavitation was significantly lower in our 

tallest trees, with P50 varying more than 1 MPa across our size range from 2 to 37 m of 

height (Fig. 2). In agreement with Rosner (2013), small trees having shallow root system 

and less access to soil moisture, need to produce safer xylem. In parallel, xylem anatomical 

features, such as conduit size and number increased (Fig. 4), strongly suggesting that 

taller trees invested more to ensure sufficient xylem conductance, even if at cost of 

reduced hydraulic safety. Beside the slight increase in conduit lumen area, the anatomical 

adjustment that much affected both efficiency and safety was the increase in tracheid 

number (Fig. 5c). In terms of carbon costs, it is more expensive to increase the 

conductance by an increase in conduit number than by an increase in lumen area. So why 

not increasing conduit size rather than their number? Even though Dh significantly 

increased with height, the absolute variation is rather small. A likely explanation is that 

cell size can be strongly constrained by safety requirements under the high xylem tension 

close to the apex (Hacke & Sperry 2001) and because cell wall distension is more difficult 

(Woodruff et al. 2007). In conifers, vulnerability to cavitation is known to be related to 

the torus overlap in the pit chamber (Delzon et al. 2010), and a higher number of conduits 

corresponds to a higher number of pits and a thus a higher probability of occurrence of 

leaky pits (Christman, Sperry & Adler 2009). The increased conduit number, as expected, 

caused an increase in P50 and thus in hydraulic vulnerability (Fig. 5). 

Since leaf and xylem water potential become more negative with increasing tree height 

(Koch et al. 2004; Burgess & Dawson 2007), our results would suggest that taller trees 

operate at a reduced margin of hydraulic safety (Fig. 6), defined as the water potential 

interval separating the stomatal closure, occurring approximately at seasonal minimum 
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leaf water potential (ΨMIN), from embolism formation (by convention P50, or more 

realistically P12 in conifers) (hydraulic safety margin: HSM=ΨMIN-P50) (Choat et al. 2012). 

According to our empirical evidence that taller trees are not only more vulnerable to 

drought induced cavitation, but also likely operate with a reduced margin of hydraulic 

safety, we provided a mechanistic explanation of why taller trees are more exposed to the 

negative consequences of drought events, such as top dieback or even complete death 

(Nepstad et al. 2007; McDowell et al. 2008; Lewis et al. 2011; Hentschel et al. 2014; 

Rowland et al. 2015; Rosner et al. 2016). 

Viewed in the context of climate change, the predicted increase in extreme drought events 

(IPCC 2014) will likely expose big sized trees to higher risks of survival.  
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Figure captions 

 

Figure 1: Variation of diameter at the breast height (DBH) and height (H) ofthe sampled 

Picea abies trees from both Cinque Torri (open circles) and Pian de Sire (filled circles). 

Point size refers to the estimated elongation rate (ΔH, in cm·year-1) estimated according 

to the number of rings (Cn) at the base of the apical segment of 10 cm. 

 

Figure 2: Mean vulnerability curves (percent loss of conductivity (PLC) vs. xylem water 

potential (Ψ)) of the leader shoots of the 5 smaller (open red dots) and 5 taller (filled blue 

dots) Picea abies trees from both Cinque Torri (a) and Pian de Sire (b). Fitting curves were 

estimated according to a logistic function (Pammenter and Vander Willingen, 1998), 

where 50% of loss of conductivity (P50) is indicated by thick solid vertical lines (solid for 

tall and dashed for small trees), 12 (P12) and 88 percent of conductivity loss (P88) are 

represented thin solid lines (solid for tall and dashed for small trees). 

 

Figure 3: Relationships of (a) P50 and (b) hydraulic conductivity of the entire xylem area 

(Khtheor) with tree height (H). Data are log10-transformed. Filled and open circles represent 

Pian de Sire and Cinque Torri data, respectively. Solid lines represent the fitted linear 

regressions for Pian de Sire and Cinque Torri together.  

 

Figure 4: Relationships of (a) mean hydraulic diameter (Dh) and (b) conduit number (Cn), 

both relative to the entire xylem surface, with tree height (H). Data are log10 transformed. 

Filled and open circles represent Pian de Sire and Cinque Torri data, respectively. Solid 

lines represent the fitted linear regression for Pian de Sire and Cinque Torri together.  

 

Figure 5: Trade-off of hydraulic efficiency vs. safety. Relationships of (a) hydraulic 

conductivity (Khtheor) and (b) mean hydraulic diameter (Dh), and (c) conduit number (Cn) 

with P50. Filled and open circles represent Pian de Sire and Cinque Torri data, 

respectively. Solid lines represent the significant linear regression for Pian de Sire and 

Cinque Torri together. 
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Figure 6: Schematic representation of the estimated percent loss of conductivity (PLC) 

(blue) and idealized stomatal conductance (gS) (red) vs. xylem water potential (Ψ) of tall 

(solid line) and small trees (dashed line). Horizontal solid line represents the hydraulic 

safety margin (HSM=ΨMIN-P50) of tall (solid line) and small trees (dashed line). Vertical 

lines represent P50 values and ΨMIN, assumed equal to the point of stomatal closure, fixed 

at gS=12 %. 
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6.6 Supplementary material 

 

Method 

Site effect on the axial patterns were tested using linear mixed-effects models fitted with 

restricted maximum likelihood. We established a models for P50, Khtheor, Dh and Cn where 

height, site and their interactions were included as fixed effects, and site identity was 

included as random factors in all initial models, reflecting the sample collection. Data were 

log10-transformed to comply with assumptions of normality and homoscedasticity (Zar 

1999). Analyses were performed using lme4 package (Bates et al. 2015) with R version 

3.1.1. (R Development Core Team 2014) 

 

Table S1: Results of the optimal linear mixed-effect models predicting the site effects on 

the Log10 P50, Khtheor, Dh and Cn variation with Log10 H (see method above).  

Numbers indicate the estimates ± 1 SE. * P< 0.05, ** P< 0.01 and *** P< 0.001. 

 

Fixed effect Log10 (P50) Log10 (Khtheor) Log10 (Dh) Log10 (Cn) 

Intercept (Cinque Torri) 0.71±0.05 -8.60±0.25 1.02±0.03 4.25±0.23*** 

Log10 H (Cinque Torri) -0.09±0.04* 0.53±0.22* 0.09±0.02*** 0.23±0.21 

(Pian de Sire) 0.08±0.07 -2.29±0.40 0.09±0.04 -0.56±0.37 

Log10 H: Pian de Sire -0.02±0.06 0.22±0.32 -0.08±0.03* 0.45±0.30 
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Figure S1: Relationship of Khtheor with KMAX . Data are reported for Pian de Sire only, as 

measurements of KMAX (i.e., at full saturation) for Cinque Torri samples were likely 

affected by the higher amount of resin inside the wooden tissue. 
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Figure S2: Variation of BIEW with (a) tree height (H) and P50 (b). Data are log10-transformed. Filled and open circles represent Pian de 

Sire and Cinque Torri data, respectively.  
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Fig S3: Variation of the tradeoff between cell number and xylem area (Cn/XA) with tree 

height (H). Data are log10-transformed. Filled and open circles represent Pian de Sire and 

Cinque Torri data, respectively.  
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7. General conclusion 

With this study I presented a series of experiments on xylem anatomical and functional 

features that revealed how the developing fields of quantitative wood anatomy and 

dendro-anatomy can become very important tools to increase our understanding on the 

tree response to changing growing conditions.  

First, I contributed to the development and improvement the procedures to analyze a 

huge amount of anatomical data by using a specific software (ROXAS), and to increase the 

flexibility of obtaining output customized to the specific aims of the study, providing some 

practical guidance and identifying several pitfalls to successfully use quantitative wood 

anatomy in research. As a result, the accuracy of the analysis allows now to create reliable 

anatomical data even for intra-ring analysis (such as latewood or earlywood), by 

increasing the number of measurable cells from hundreds to hundreds of thousands (i.e., 

three orders of magnitude). This is of particular relevance if the research goals are 

oriented towards, for example, intra-annual density profiles including maximum 

latewood density, or mechanical strength of cells. The increased power and versatility 

allows to efficiently create comprehensive datasets of cell anatomical features, including 

CWT, customized for a wide range of novel research applications, e.g. for investigating 

structure-function relationships, tree stress responses and carbon allocation patterns, 

and for reconstructing climate based on intra- and interannual variability of wood 

density. 

I applied this new dendro-anatomical approach to investigate the environmental effect 

and biophysical constraints on xylem physiology and tree growth in high altitude conifers 

in the Alps. This high elevation environment is among the most sensitive to the effects of 

the ongoing climate change, as tree growth is primarily constrained by low temperatures.  

I found that the xylem transport system is subjected to strong biophysical constraints. The 

modifications of xylem anatomical parameters, such as conduit number, size and cell wall 

thickness, are primarily designed to guarantee the hydraulic efficiency of the xylem 

system over its safety against embolism formation during the entire ontogenetic 

development.  

These adjustments in the xylem structure remain permanently fixed and chronologically 

archived in the wood, and, given the tight link between structures and functions, provide 
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a ‘time component’ to functional responses induced by xylem plasticity, thus allowing to 

reconstruct growth dynamics under different environmental conditions. 

I showed that taller trees tend to prioritize efficiency against safety, enhancing the 

hydraulic conductivity (both conduits number and dimension), despite the higher cost of 

carbon investment and the increasing risk of becoming more vulnerable to cavitation. 

With this finding it is possible to better understand the mechanism behind the common 

phenomenon of decreasing tree vigor with tree height, and it is possible to explain the 

reason why the effects of extreme drought events are commonly more pronounced in 

dominant trees, leading to phenomena like top dieback or even tree mortality. This study 

provides a novel empirical evidence that the hydraulic efficiency prevail on safety in taller 

trees, at least in Norway spruce and likely in other conifer species, thus suggesting that 

the response to extreme drought events may differ with tree size.   

I tested a novel anatomical approach permitted to retrospectively analyze the axial 

variability of different xylem functional traits in response to the ontogenetic development 

and environmental variability. This approach is based on the assumption that the axial 

pattern of increasing conduit lumen diameter (Dh) with the distance from the apex (L) is 

stable during ontogeny. I found that this assumption holds true, supporting the 

remarkable universality of the axial conduit widening in vascular plants. The axial conduit 

widening showed a high prioritization and biophysical determination of hydraulic 

efficiency to support transpiration and carbon assimilation necessary for tree growth, 

while the other functional traits (mechanical support and metabolic functions) responded 

more plastically to intrinsic and extrinsic factors. 

The increase in hydraulic conductivity at the apex could have important consequences for 

the whole transport system with the final effect of promoting primary and even secondary 

growth. However, my results demonstrated that the cost of increasing the efficiency of the 

stem apex is the consequent reduction in the hydraulic safety margin, thus a narrower 

physiological limit to potential xylem dysfunction by air seeding. 

Finally, as a consequence of the ontogenetic stability of the axial widening, the conduit 

lumen diameter (Dh) increases radially with cambial age (CAGE) (i.e from pith to bark), 

supporting the hypothesis that this pattern is dependent on the rate of stem elongation 

occurred during ontogeny. 
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This provided a solid theoretical, almost practical, basis for comparing the height growth 

development of trees of different age, species and sites, based on the analysis of radial 

pattern of xylem conduit dimension at the stem base. The presented case studies 

confirmed the validity of this new approach that might provide the third dimensional 

component to the dendro-ecological analyses. This represents a completely new approach 

for retrospective tree growth and climate analyses, where radial patterns of conduit 

diameter can be used to assess the species-specific growth response to the environmental 

conditions in a given site at different epochs.  

In conclusion, this study represents an important contribution to increase the general 

understanding on the trade-off mechanisms determining the tree growth patterns and on 

the current and future vegetation dynamics occurring in ecosystems particularly sensitive 

to climate change, like the high altitude forests. 
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