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Abstract

In this paper, I propose a general framework for understanding
renormalization by drawing on the distinction between effective
and continuum Quantum Field Theories (QFTs), and offer a com-
prehensive account of perturbative renormalization on this basis.
My central claim is that the effective approach to renormalization
provides a more physically perspicuous, conceptually coherent and
widely applicable framework to construct perturbative QFTs than
the continuum approach. I also show how a careful comparison
between the two approaches: (i) helps to dispel the mystery sur-
rounding the success of the renormalization procedure; (ii) clari-
fies the various notions of renormalizability; and (iii) gives reasons
to temper Butterfield and Bouatta’s claim that some continuum
QFTs are ripe for metaphysical inquiry (Butterfield and Bouatta,
2014).

1 Introduction

Renormalization is one of those great success stories in physics that fly
in the face of philosophers’ ideals of scientific methodology. Quantum
Field Theories (QFTs) have been known to be plagued by mathematical
infinities since the 1930s and it was only in the late 1940s that physicists
had their first significant victory by developing appropriate renormaliza-
tion techniques. It could have been hoped that they would eventually
construct a realistic QFT from first principles without using these tech-
niques; but even after seventy years, this has not been the case. Our
best QFTs are still constructed by means of conceptually odd and ad
hoc renormalization techniques. One notable example is to isolate and
cancel infinite quantities by shifting the dimension of space-time by some
infinitesimal amount. Another one is to simply impose some arbitrary
restriction on the range of distance scales of the theory.

Among the philosophers who take the formulation of QFT most
widely adopted by physicists seriously, it has become standard to ap-
peal to the Renormalization Group (RG) theory in order to explain the
unlikely success of renormalization. For instance, Huggett and Weingard
(1995, sec. 2) emphasize that the RG provides the appropriate tools for
identifying the class of well-defined continuum QFTs and dispels the in-
terpretative worries related to cancellations of infinities in perturbation
theory. To give another example, although with a different understand-
ing of QFT this time, Wallace (2006, pp. 48-50; 2011, sec. 4) relies
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on RG-based considerations to dispel the interpretative worries related
to the crude and arbitrary implementation of a physically meaningful
cut-off.

Those philosophers are right to emphasize the role and the impor-
tance of the RG in contemporary physics. But there are reasons to be
dissatisfied. Of central importance is the failure to appreciate the exis-
tence of conceptually distinct modern formulations of renormalization,
RG included. Consider for instance Huggett and Weingard’s attempt at
clarifying renormalization in the case of continuum QFTs. If by ‘RG’
they mean the Gell-Mann & Low RG, then their account does not really
dissolve the methodological worries that physicists had in the 1940s. The
delicate fine-tuning of theories in the infinite cut-off limit is nothing but
the old-fashioned cancellation of infinities in a different guise. On the
other hand, if by ‘RG’ they mean the Wilsonian RG, then their account
does not properly deal with continuum QFTs. At least as we tradition-
ally understand it, the Wilsonian RG is built on the idea of integrating
out high energy degrees of freedom and restricting the applicability of
the resulting theories to sufficiently large distance scales (e.g., Weinberg,
1995, sec. 12.4; Schwartz, 2013, chap. 23).

To give another example, Cao and Schweber (1993) somewhat over-
state the triumph of the modern Wilsonian renormalization programme.
Many renormalization techniques conceptually akin to the approach of
the late 1940s are still the “industry standard” in high energy physics,
as Hollowood (2013, p. 3) felicitously puts it. These techniques in-
clude modern regularization methods such as dimensional regulariza-
tion in standard QFTs and regularization by dimensional reduction
in supersymmetric QFTs. More importantly perhaps, the Wilsonian
RG does not fully dispel the traditional mathematical, conceptual and
methodological worries associated with renormalization. With regard
to methodology, for instance, one might be concerned about the infinite
number of independent parameters typically required to compensate for
the uncertainty associated with the exact value of a physically meaning-
ful cut-off.

The main goal of this paper is to offer a more accurate and systematic
way of understanding the overall conceptual structure of renormaliza-
tion. For this purpose, I will distinguish between the “effective” and the
“continuum” approach to renormalization and show that all the impor-
tant features of perturbative renormalization can be understood along
this distinction. The idea is simple: current working QFTs in high en-
ergy physics are understood and formulated either as continuum QFTs
or as effective QFTs, and each of these two types of QFTs is associated
with a specific methodology of theory-construction—or at least, given
the diversity of renormalization techniques, each of them is most concep-
tually consistent with a specific methodology. In the effective approach,
the domain of applicability of the theory is restricted by a physically
meaningful short distance scale and the structure of the theory adjusted
by including the appropriate sensitivity to the physics beyond this scale.
Here, the goal is to focus on the appropriate low energy degrees of free-
dom. In the continuum approach, the theory is defined across all dis-
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tance scales and its structure adjusted according to the physical scale of
interest. Here, the goal is to define a putatively fundamental QFT and
resist the suggestion that realistic QFTs are ultimately to be understood
and formulated as phenomenological theories restricted to some limited
range of distance scales.

The central claim of this paper is that the effective approach provides
a more physically perspicuous, conceptually coherent and widely appli-
cable framework to construct perturbative QFTs than the continuum
approach. I will defend this claim by showing, in detail, how the steps
underlying the perturbative construction of an effective QFT are phys-
ically justified and how the resulting parts of the theory are physically
meaningful, unambiguously characterized and coherently related to one
another—and this independently of the particular local QFT considered.
And I will show how a careful comparison between the two approaches:
(i) helps to dispel the mystery surrounding the success of the renormal-
ization procedure discussed early on (e.g., Teller, 1988, 1989; Huggett
and Weingard, 1995, 1996) but never fully dispelled in my sense, not
even in the most recent literature (e.g., Butterfield and Bouatta, 2015;
Crowther and Linnemann, 2017; Fraser J., 2017; 2018); (ii) helps to
clarify the various notions of renormalizability; and (iii) gives reasons
to temper Butterfield and Bouatta’s claim that some continuum QFTs
are ripe for metaphysical inquiry (Butterfield and Bouatta, 2014; But-
terfield, 2014).

The paper is organized as follows. Section 2 introduces the QFT
framework and the problem of ultraviolet divergences. Section 3 com-
pares the effective and the continuum approach to the renormalization
procedure. Section 4 disentangles the effective and continuum notions
of perturbative renormalizability. Sections 5 and 6 briefly compare the
effective and the continuum approach to the RG and clarify the scope
of the continuum approach.1 Section 7 examines the implications of
the discussion in sections 3-6 for Butterfield and Bouatta’s defense of
continuum QFTs.

Three important clarifications before I begin. First, I do not think
that the methodological superiority of the effective approach to renor-
malization offers a sufficient reason to take effective QFTs to be the
correct way of understanding QFTs. It is a good step forward. But
it needs to be supplemented with a careful analysis of the theoretical
virtues of effective QFTs, and this goes beyond the scope of the present
paper. Second, I do not mean to claim that the distinction between the
effective and the continuum approach is absolutely perfect and exhaus-
tive. All I aim to capture is a set of salient conceptual differences that do
not reduce to mere practical differences (e.g., computational simplicity
and efficiency). Third, unless otherwise indicated, I will follow But-
terfield (2014, pp. 30-31) and understand ‘theory’ in its specific sense
throughout the paper, that is to say as given by a particular action, a
Lagrangian or a Hamiltonian.

1For two recent and insightful reviews of the Wilsonian RG, see Williams (2018)
and Fraser J. (2018).
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2 Relativistic QFT and the Problem of Ultra-
violet Divergences

Relativistic Quantum Field Theory (QFT) is the mathematical frame-
work developed by physicists since the late 1920s to extend the tools
of quantum mechanics to classical electromagnetism (and more) and to
overcome the failure of quantum mechanics to account (among other
phenomena) for the creation and annihilation of particles observed in
decay experiments.

As its name suggests, a QFT describes the quantum analogue of
classical fields, and the simplest way to think about a quantum field is
to treat it as a continuous physical system composed of one individual
quantum system at each space-time point. Each individual quantum
system is associated with at least one independent variable quantity
(a “degree of freedom”) determining the set of its possible states, and
the possible states of the quantum field over space-time are obtained
by combining the state spaces of these individual quantum systems to-
gether. From there, things work exactly as in quantum mechanics. A
sum of states of the field (a “state superposition”) also defines a possible
state of the field. Each state of the field is associated with a possible
configuration or “history” of the field specifying a set of values that the
field can take over space-time: for instance, one real number φ(x) at
each space-time point for a simple scalar field. The probability for the
quantum field to be found in the configuration state |φ(x)〉 is given by
the absolute square value of the wave functional ψ[φ(x)] (assuming that
we could measure the whole state of the field). And the possible energy
excitation states of the field are obtained by representing the possible
configuration states of the field in momentum space. One odd thing,
however, is that in this picture, a “particle” corresponds to a localized
pattern of energy excitations.

Quantum fields are also dynamical physical systems. They vary
smoothly over space-time and interact locally at space-time points with
other fields and often with themselves too. Physicists typically describe
the dynamics of fields by a Lagrangian functional density L and the
strength of interactions by coupling parameters gi. I will take the φ4-
theory as my main example in what follows:

L[φ(x)] = −1

2
∂µφ(x)∂µφ(x)− m2

2
φ2(x)− λ

4!
φ4(x) (1)

with φ(x) an arbitrary field configuration of a scalar field, m a mass
parameter, and λ a quartic self-interaction coupling (using the Eu-
clidean metric for simplicity). Of crucial importance are the action
S[φ] =

∫
d4xL and the path integral Z =

∫
d[φ(x)]eS[φ] which give us the

different weights eS[φ] associated with each possible field configuration
φ(x).2

Finally, the correlations between the states of the field at n different

2Of course, the difficulty is that we do not yet have a mathematically rigorous
definition of the path integral for realistic continuum QFTs in four dimensions, but I
will ignore this problem for now.
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space-time points are given by n-point correlation functions 〈φ(x1)...φ(xn)〉.
Roughly speaking, these correlation functions tell us the degree to which
the different “parts” of the field are sensitive to one another, i.e., here,
the probability (once these functions are squared) that the field is found
in a certain state at some space-time points x1, ..., xk given its state at
other space-time points xk+1, ..., xn (1 ≤ k ≤ n−1). We compute empir-
ical predictions—say, about the probability that two incoming particles
decay into two outgoing particles—by calculating the absolute square
value of the scattering amplitude Γ between the appropriate asymptotic
particle states of the field, with Γ obtained by taking into account all
the possible correlations between these states.

These are the basic tools to define and test any QFT. Unfortunately,
we face two immediate problems with this “naive” schematic construc-
tion if we want to make predictions. The least severe is that realistic
QFTs are highly non-linear interacting theories and therefore not ex-
actly solvable by current mathematical means. We can still work out
approximate solutions and predictions thanks to perturbation theory:
provided the (dimensionless) couplings are small (e.g., λ � 1), scatter-
ing amplitudes can be expanded perturbatively as follows:

Γ = λ+ λ2Γ2 + λ3Γ3 + ... (2)

where each sub-amplitude λnΓn represents field correlations between the
incoming and outgoing particles given n possible interaction points.3

The most severe, the so-called problem of “ultraviolet” (UV) diver-
gences, is that a large majority of the sub-amplitudes Γn actually diverge
when we attempt to compute them.4 This is clearly a disaster (at least
at this stage) since it means that most empirical predictions in QFT are
infinite. If we keep all the other assumptions of the theory in place (e.g.,
four space-time dimensions and standard types of fields, symmetries and
interactions), the problem naturally originates from what is known as
the continuum assumption:

Continuum assumption: For any extended region of space-
time no matter how small, quantum fields have infinitely
many interacting degrees of freedom.

In practice, the continuum assumption forces us to take into account
correlations over arbitrarily short distances (or, equivalently, over arbi-

3Here one might worry about two things. First, one should be wary not to inter-
pret too quickly these perturbative terms as representing distinct real sub-processes
(the so-called “virtual processes”) since they might be interpreted as mere mathe-
matical artifacts of the decomposition of Γ. Let me briefly offer one reason to resist
this worry: as we will see shortly, the renormalized coupling λ is a function of an ar-
bitrary mass scale Λ which can be interpreted as the experimental energy E at which
we probe the system. Since each λn(E)Γn(E) does not vary with the same rate with
respect to E, we can evaluate them separately by making successive measurements
at different experimental energy scales E. If this succeeds, each term receives inde-
pendent empirical confirmation. Second, the perturbative series diverges in realistic
cases for arbitrarily small but non-zero λ (see Helling, 2012, pp. 1-13, and Duncan,
2012, chap. 11, for more details, and Miller, 2016, for a philosophical discussion). I
will ignore this problem too.

4I will leave aside the problem of low energy or “infrared” (IR) divergences.
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trarily high energies) when calculating a correlation function between
any two states of the field. Consider for instance the scattering am-
plitude Γ(p1, .., p4) in φ4-theory describing the scattering event of two
incoming particles decaying into two outgoing particles. Then, for ex-
ample, the second order perturbative term λ2Γ2 describes a specific set
of correlations which diverge logarithmically in the high energy domain
of integration:

Γ2 ≈
∫ ∞

d4k/k4 (3)

with k a momentum variable. So the problem is that we have to take into
account the correlations of the field over arbitrarily short distances and
that the values of these correlations are small but sufficiently important
once summed up to make Γn diverge.5 What does it mean physically?
To give a rough analogy, it is as if two distinct macroscopic parts of a
table were sensitive enough to the individual particles constituting the
table for the slightest movement of a particle to significantly affect on
average the distance between these two parts. The sensitivity is even
more dramatic in the present case. The theory is not just empirically
inadequate but also inconsistent as it predicts measurement outcomes
with infinite probability (i.e., here, |Γ(p1, .., p4)|2 diverges).

The claim that the problem of UV divergences originates from the
continuum assumption is in fact controversial, and physicists have come
up with three main types of responses which I will respectively call
the “continuum”, the “effective” and the “axiomatic” approach to the
problem of UV divergences. According to the continuum approach, the
problem arises because we are not working with the correct type of
QFT or because we have not appropriately parametrized the QFT at
hand in the first place. The hope is that the continuum assumption
holds for a specific class of QFTs and that all that needs to be done
is to sensibly fine-tune their parameters with the tools of renormaliza-
tion theory. According to the effective approach, the problem arises
because the continuum assumption is false. The solution is to impose
explicit restrictions on the domain of energy scales of QFTs and adjust
the sensitivity to high energy phenomena with the tools of renormaliza-
tion theory.6 According to the axiomatic approach, the problem arises
because the mathematical structure of the QFT framework is ill-defined
in the first place. The solution is to develop a rigorous mathematical
formulation of QFTs with explicitly stated axioms—so that, if anything
goes wrong, we can at least clearly identify the origin of the problem.7

5Note that the problem does not arise in the case of non-interacting theories since
there is no non-trivial correlation between distinct states in this case (i.e., Γn = 0
for n ≥ 1). Note as well that in typical interacting QFTs, some contributions to the
perturbative expansion are finite (e.g., box diagram integrals).

6Here I will ignore the specific technicalities of Effective Field Theories (EFTs)
and lattice QFTs and regroup them under the category of effective QFTs together
with cut-off QFTs (see, e.g., Bain, 2013; Williams, 2015; Franklin, 2018 for recent
philosophical discussions about effective theories). Note, however, that lattice QFT
is often understood as a specific non-perturbative regularization framework and, in
this context, the goal is usually to take the continuum limit.

7In this context, the problem of UV divergences is usually associated with the
fact that the product of distributions at a point is ill-defined (see, e.g., Steinmann,
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The crucial point is that physicists have only been able to formulate
empirically successful and realistic QFTs by making extensive—if not
indispensable—use of renormalization theory. It is beyond the scope of
this paper to examine the axiomatic approach, but it is worth noting
here that, even after seven decades, there has not yet been any finite,
exact and mathematically rigorous formulation of a realistic continuum
QFT in four dimensional space-time. If we want to understand the
structure of our current best theories, a natural starting point is to look
carefully at the details of renormalization.

Before delving into the details, it is instructive to start with the gen-
eral idea of renormalization. Originally, renormalization was introduced
as a set of techniques in high energy physics to isolate the divergent
parts of scattering amplitudes and make them disappear from the final
predictions by absorbing them into the formal expression of the cou-
plings of the theory. In practice, the mathematical trick works because
we never directly measure the value of couplings and we can already see
a similar trick at work in the simpler and more vivid case of classical
electromagnetism.

Consider for instance the standard example of an electrostatic field
produced by an infinitely long and straight wire with uniform charge
density λ (per unit length), lying along the z axis of a three dimensional
Euclidean space. The measurable value of the field at some distance
r > 0 from the wire in the xy plane orthogonal to the z direction is fi-
nite (E ∝ λ/r). In contrast, the potential V (r) obtained by summing up
the contributions from each infinitesimal part of the wire diverges log-
arithmically (V (r) ∝ λ

∫ +∞
−∞ dz/

√
z2 + r2). But since we only measure

differences in the values of the potential (e.g., the field ~E(x) = −~∇V (x)),
it makes no physical difference to subtract or add some infinite quantity
in the formal expression of the potential and work with the resulting
finite “renormalized” expression. One way to make this precise and
well-defined is to limit ourselves to a finite portion of the wire of arbi-

trary length L0 (VL0(r) ∝ λ
∫ +L0/2
−L0/2

dz/
√
z2 + r2). Subtracting the value

of VL0(L) for some fixed constant L to VL0(r) leaves us with the finite
function −λ ln(r/L)/2π and a finite residue depending on L0 which van-
ishes if we take L0 to infinity. The resulting renormalized expression of
the potential is given by VR(r) = limL0→∞ VL0(r)− VL0(L).

More generally, the term ‘renormalization’ designates a set of tech-
niques used to transform the kinetic and the interacting structure of
theories. On the more practical side, one finds (among others) the
renormalization procedure where the main goal is to generate finite and
accurate predictions. On the more theoretical side, one finds the Renor-
malization Group (RG) theory where the main goal is to analyze the
scale-dependent structure of QFTs. As we will see in section 5, it is also

2000, p. 73). The axiomatic criterion of rigor typically demands that the theory
satisfies Wightman’s axioms (equivalently, Osterwalder-Schrader axioms) or Haag-
Kastler axioms. For instance, the former includes assumptions of relativistic quantum
theory, locally smeared fields, micro-causality, cyclicity and the existence of a unique
vacuum state (see Streater and Wightman, 2000). And these axioms are usually
considered to be significant to the extent that they are satisfied by toy-model theories.
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useful to distinguish between perturbative and non-perturbative renor-
malization methods, even if renormalization theory is, in large part, a
set of techniques specified and used in the context of perturbation the-
ory.8 And, finally, other areas in physics have specific renormalization
techniques that I will not discuss here, such as: (i) the discretized ver-
sions of the RG in condensed matter physics and (ii) the holographic
RG in the context of gauge/gravity dualities.

3 Understanding the Renormalization Procedure

I argue in this section that the effective approach to renormalization
offers a more physically perspicuous and conceptually coherent frame-
work for constructing perturbative QFTs. By ‘physically perspicuous’
and ‘conceptually coherent’, I mean that the steps involved in the pertur-
bative construction of the theory are physically justified, that the parts
of the theory have a clear physical meaning and that they are coherently
related to one another. I will focus on the renormalization procedure
since the main differences between the two approaches are most clearly
visible at this level. The upshot is, I believe, considerable: the contrast
helps dissolve the much-discussed mystery of renormalization, i.e., the
issue of explaining the unlikely success of the renormalization procedure
(e.g., Teller, 1988; 1989; Huggett and Weingard, 1995; 1996; Fraser J.,
2017). Here, again, I should emphasize that there are many different
ways to implement the renormalization procedure. I will present the
steps that are most conceptually consistent with the appropriate type
of perturbative QFT in each case.

3.1 The Effective Approach

The effective approach to the renormalization procedure is a two-step
maneuver.

(i) One first regularizes the divergent sub-amplitudes Γn by introduc-
ing a limiting high energy scale Λ0, called the “cut-off” or “regulator”. If
we look at Eq. 3 and disregard potential trouble in the IR (i.e., k → 0),

Γ2(Λ0) ≈
∫ Λ0 d4k/k4 is now a mathematically well-defined and manipu-

lable finite quantity. But one might worry about the arbitrary choice of
cut-off. A sharp cut-off separates low energy and high energy scales in a
crude way, and we do not have enough information at this stage to decide
whether an exponentially decreasing cut-off (e.g.,

∫ +∞
d4k e−k/Λ0/k4),

a Gaussian cut-off (e.g.,
∫ +∞

d4k e−k
2/Λ2

0/k4) or what have you is the
appropriate regulator.

(ii) The renormalization step compensates for this lack of constraint:
one renormalizes the sub-amplitudes Γn(Λ0) by analyzing the relevant
sensitivity to high energies and absorbing it into the couplings. The
best way of implementing this idea is to include contributions to Γn

8For (various versions of) the Non-Perturbative Renormalization Group (NPRG)
Theory, see Bagnuls and Bervillier (2001), Polonyi (2003) and Delamotte (2012) for
introductory reviews. Note also the existence of axiomatic renormalization methods
(e.g., Scharf, 1995).

8



from a specific layer of energy scales [Λ,Λ0] into a low energy theory
defined only up to Λ. Call the initial regularized theory the “bare”
theory L0(Λ0) and its parameters the “bare” parameters λ0 and m0.
The cut-off scale Λ0 is the physical scale at which the theory is believed
to become inapplicable and the “renormalization scale” Λ is the energy
scale specifying the physics of interest, with Λ � Λ0. In the example
above, the contribution from [Λ,Λ0] is equal to

λ2
0Γ2(Λ,Λ0) =

3

2
λ2

0

∫ Λ0

Λ

d4k

(2π)4

1

(k2 +m2
0)2

≈ 3

16π2
λ2

0 ln(
Λ0

Λ
) (4)

assuming that the bare parameters are small (λ0,m0/Λ� 1).9

The essential point now is that we can simulate the effect of this high
energy contribution in the expression of the bare theory L0(Λ) restricted
to the energy scale Λ (see Fig. 1).10 For that, we just need to include a
new interaction term δL0(Λ,Λ0, λ0) := −λct

4! φ
4, called a “counter-term”,

with λct = − 3
16π2λ

2
0 ln(Λ0

Λ ). Given Eq. 1, this amounts to shifting the
value of λ0 to λ0 + λct, i.e., to absorbing the contributions from [Λ,Λ0]
into the parameter of the theory L0(Λ). If we keep the details explicit
and restrict ourselves to the second order, the new “renormalized” scat-
tering amplitude derived from L0(Λ)+δL0(Λ,Λ0, λ0) takes the form (cf.
Eq. 2):

ΓR(Λ) = −(λ0 + λct) +
3

16π2
(λ0 + λct)

2
(

ln(
Λ

m0
)− 1

2

)
+ ...

= −λ0 +
3

16π2
λ2

0

(
ln(

Λ0

m0
)− 1

2

)
+O(λ3

0) . (5)

The renormalized effective theory LR(Λ) := L0(Λ) + δL0(Λ,Λ0, λ0) de-
fined up to Λ is obtained by defining “renormalized” parameters up to
the relevant order in perturbation theory:

λR(Λ) := λ0 + λct = λ0 −
3

16π2
λ2

0 ln(
Λ0

Λ
) . (6)

This calls for two comments. First, the regularization step violates
the continuum assumption only if we take the cut-off to eliminate high
energy states in the state space of the original theory. Note, however,
that there is a difference between restricting the possible states of a
quantum field and assuming that the quantum field is a discrete phys-
ical system composed of one individual quantum system at each point
of a space-time lattice. One way to see this is to look at the following
toy-model. Consider the infinite set of oscillating field configurations
φa(x) = exp(iax) parametrized by a > 0 over a one dimensional con-

9For simplicity, I will ignore terms in O(1/Λ) and O(1/Λ0) and any field renor-
malization of the bare field φ0 (“wavefunction renormalization factors”).

10At this stage, one way of understanding the dependence of the Lagrangian func-
tional density on the parameter Λ (or Λ0) is to take it to refer to a restriction imposed
on the Feynman rules used to compute scattering amplitudes in momentum space.
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Fig. 1: Schematic representation of the effective approach to the renor-
malization procedure.

tinuous space and the corresponding infinite set of energy excitations
φ̃a(k) = δ(k − a

2π ) obtained by Fourier transform. Suppose that the
state space of the theory is reduced by multiplying the energy excita-
tions by a step-function parametrized by a cut-off Λ0:

φ̃a,Λ0(k) = δ(k − a

2π
)θ(Λ0 − k) (7)

with θ(Λ0 − k) = 1 if k ≤ Λ0 and 0 otherwise. For a/2π ≤ Λ0 (i.e., for
sufficiently long wavelength oscillations), the function θ(Λ0−k) does not
affect the value of φ̃a,Λ0(k) and we obtain the original oscillating function
φa,Λ0(x) = exp(iax). Otherwise, φa,Λ0(x) vanishes for a > 2πΛ0. So
this toy-model shows that restricting the state space of the theory by a
sharp high energy cut-off implies that the possible field configurations
have a minimal periodicity pattern (of wavelength 1/Λ0 here)—but it
does not necessarily imply that the quantum field is discrete. To give a
classical analogy, it is as if we had ignored all the possible little ripples of
characteristic size smaller than 1/Λ0 in the ocean and restricted ourselves
to large enough waves in order to evaluate the correlations between the
oscillations of two corks floating at some macroscopic distance 1/Λ from
each other.

Second, the specific counter-term δL0 leaves the theory empirically
invariant, in the sense that L0(Λ0) and LR(Λ) := L0(Λ)+δL0(Λ,Λ0, λ0)
generate the same scattering amplitudes. The high energy contributions
to Γ(Λ0) are just parceled out among the lower order terms of ΓR(Λ) (see
Eq. 5). Had we chosen a different counter-term, say, δL0(Λ,Λ0, λ0) +C
with C some finite quantity, the original and modified renormalized theo-
ries would still be empirically equivalent since we only measure variations
of the same renormalized scattering amplitude at different energies (e.g.,
ΓR(E′) − ΓR(E) ∝ ln(E′/E)).11 So the renormalization step is really
a matter of reformulating the regularized theory L0(Λ0) in an epistem-
ically safer way, i.e., around the scales Λ � Λ0 where we can trust its
physical content. Inversely, if we fix the value of the renormalized pa-

11This is a particular case of “renormalization scheme dependence”. I will not
discuss this issue here.
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rameters at some specific scale, Eqs. 5 and 6 show that variations in
the value of the cut-off Λ0 can be absorbed by adjusting the value of the
bare parameters, at least for a finite range of energy scales.

3.2 The Continuum Approach

Let us now turn to the continuum approach. It is standard in this case
too to impose a regulator and split the initial regulator-dependent bare
Lagrangian into a renormalized and a counter-term Lagrangian.12 I will
proceed somewhat differently by subtracting counter-terms to the physi-
cal Lagrangian. The two methods are equivalent and, most importantly,
the conclusion that the continuum approach is physically ambiguous and
conceptually incoherent remains the same whether we use one method
or the other. The main reason for choosing the second method is that
it makes the conceptual differences between the effective and the con-
tinuum approach more explicit and allows us to follow more closely the
original motivation of the continuum approach.

The natural starting point, then, is to think that the original theory
L in Eq. 1 corresponds to the physical theory and that its parameters
are fixed by experiments. Upon finding that L yields divergent ampli-
tudes, we introduce a cut-off Λ0 (regularization) and the goal of the
renormalization procedure under the continuum approach is to elim-
inate the problematic Λ0-dependent terms and take Λ0 → ∞ at the
end. So, contrary to the effective approach, the physical theory of in-
terest is the regularized theory L(Λ0) with fixed physical parameters
λ and m and not a low energy effective theory defined only up to Λ.
Likewise, the problematic Λ0-dependent terms derived from L(Λ0) are
cancelled by adding counter-terms to that theory and not by adding
them to some low energy theory L0(Λ) as defined above. This means
that the counter-terms depend on λ instead of λ0 and that the bare
theory L0(Λ0) := L(Λ0) − δL(Λ,Λ0, λ), defined up to Λ0 as well, is an
intermediary construct under the continuum approach (see Fig. 2).13

Finally, the parameter Λ is an arbitrary mass scale introduced to ensure
that the physical expressions in the theory have a correct physical di-
mension, and it parametrizes the particular choice of counter-term: e.g.,
δL(Λ,Λ0, λ) = δL(Λ′,Λ0, λ)+C for C some finite quantity and Λ′ a new
definition of the arbitrary mass scale. I will label the renormalization
scale µ instead of Λ in the continuum approach in order to keep track
of the difference of interpretation.

Once all the divergent terms have been removed up to some order n in
the original expression of Γ, we can stop the renormalization procedure
and safely take the limit Λ0 → ∞ in the renormalized expression of Γ.
By assumption, the value of the physical parameters λ and m is fixed

12The method is often called “renormalized perturbation theory” because the per-
turbative analysis is done in terms of the physical renormalized parameters (e.g.,
Peskin and Schroeder, 1995, p. 326). See, e.g., Collins (1986, sec. 2.3; 2009, sec. 2)
and Schwartz (2013, part III) for different ways of implementing the renormalization
procedure.

13In renormalized perturbation theory, the bare Lagrangian corresponds to the
initial Lagrangian with the “wrong” parameters, i.e., with the parameters that we
split into a finite and an infinite part in order to cancel divergences.
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(e.g., to their experimental value measured at some energy scale E). So,
by taking the limit Λ0 → ∞, we are required to take the limit of the
bare parameters too. In our example, λ0 diverges:

lim
Λ0→∞

λ0 = lim
Λ0→∞

(
λ+

3

16π2
λ2 ln(

Λ0

µ
)
)

= +∞ (8)

In principle, the original scattering amplitude Γ can be made finite at
any order by repeating the procedure. And if we know the experimental
values of λ and m at the scale E, we can directly compute the quantum
corrections obtained at some higher energy scale E′.

Complications arise once we realize that the formal expression of
the finite renormalized scattering amplitude ΓR still depends on the
arbitrary value of the mass scale µ. Since this amplitude is supposed to
be a physical amplitude, we have to assume that its formal expression
does not depend on some arbitrary choice of µ. This has interesting
consequences.14 First, the value of the bare parameters does not depend
on µ while the value of the original parameters depends on µ, as it can
be easily seen from the expression of ΓR:

ΓR = −λ+
3

16π2
λ2
(

ln(
µ

m
)− 1

2

)
+ ...

= −λ0 +
3

16π2
λ2

0

(
ln(

Λ0

m
)− 1

2

)
+O(λ3

0) (9)

This means that the original theory is a particular case of a more general
renormalized theory LR(µ), defined in terms of renormalized parameters
λ(µ) and m(µ). Second, in the absence of experimental measurement,
we can give an explicit perturbative definition of the renormalized pa-
rameters by redefining them order by order in terms of the “fixed” (i.e.,
µ-independent) bare parameters (i.e., λ0 = λ(µ) +O(λ2(µ)) −→ λ(µ) =
λ0 −O(λ2(µ))). As a result, the general renormalized theory is defined
perturbatively by fine-tuning the expression of the Λ0-dependent bare
theory with the help of counter-terms:

LR(µ) := lim
Λ0→∞

L0(Λ0) + δL(µ,Λ0, λ0) (10)

Note that the correction δL takes the form of the original counter-term
as defined in the effective approach in this simple case.

Let me make one crucial comment. The finite renormalized ampli-
tude ΓR := limΛ0→∞(Γ − Γct) obtained by subtracting the appropri-
ate Λ0-dependent terms Γct in the original expansion Γ is derived from
the expression of the bare Lagrangian L0(Λ0).15 Both the original and
the general renormalized theory yield divergent amplitudes Γ(Λ0, λ) and
Γ(Λ0, λ(µ)) in the limit Λ0 →∞ if we do not restrict the state space of
the theory. Similarly, in the method where the bare Lagrangian is split

14Note that if we choose to fix the value of µ at some energy scale E, the result-
ing amplitude still depends on the arbitrary choice of counter-term, which we can
parametrize by introducing some µ′.

15To see this, note that the expression Γ−Γct at second order in λ is obtained from
Γ0 by expressing λ0 in terms of λ at each order.
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Fig. 2: Schematic representation of the continuum approach to the
renormalization procedure.

into a renormalized and a counter-term Lagrangian, the finite renor-
malized amplitude is derived from the initial bare Lagrangian with the
wrong parameters, and the physical renormalized theory yields divergent
amplitudes in the limit Λ0 →∞.

3.3 Comparing the Effective and the Continuum Approach

Let me now explain why the effective approach offers a more physically
perspicuous and conceptually coherent formulation of renormalization.
To begin with, in the somewhat naive approach taken so far, the bare
theory of most QFTs makes no physical sense under the continuum ap-
proach. The reason is that most QFTs, including Quantum Chromody-
namics (QCD) and Quantum Electrodynamics (QED), are plagued with
UV divergences and these divergences are cancelled by choosing the bare
couplings to diverge exactly in the same way. Even in QCD, the naive
perturbative expression of the bare coupling parameter between quarks
and gluons takes the form of a series in the physical coupling parame-
ter with increasingly divergent Λ0-dependent terms at each order (see,
e.g., Collins, 2011, sec. 3.3). So if we take the limit Λ0 → ∞ at this
level, the bare coupling diverges and the resulting bare Lagrangian is
ill-defined (e.g., as in our example, limΛ0→∞ λ0 = ±∞).16 This means
that the bare theory used in the renormalization procedure under the
continuum approach is nothing more than a physically meaningless in-
termediary mathematical tool to generate finite renormalized scattering
amplitudes. Therefore, we cannot explain the empirical success of the
renormalized amplitudes by pointing at their successful derivation by
means of some more general law and additional conditions since the
bare Lagrangian, i.e., what plays the role of the general law here, has no
physical meaning. Appealing to the renormalized Lagrangian does not
help either since it generates divergent amplitudes.

A somewhat less naive approach is to realize that the perturbative
expression of the bare parameters does not depend on the renormaliza-
tion scale µ. If we take µ = Λ0 before taking the infinite cut-off limit,

16More generally, all the cases where the perturbative assumption λ0 � 1 breaks
down are pathological.
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the bare parameters are equal to the renormalized parameters defined at
the cut-off scale Λ0. As we will see in sections 5 and 6, the appropriate
perturbative expression of the renormalized parameters is obtained by
means of RG methods. And we will see that even from the perspective
of the RG, it turns out that there are still many QFTs for which the
bare parameters diverge. There are even QFTs for which it is impossible
to take the infinite cut-off limit without affecting the expression of the
renormalized parameters (because of the existence of a so-called “Landau
pole”, see section 6). At any rate, all of these cases leave us in exactly
the same situation as above. But perhaps the continuum approach of-
fers a physically perspicuous and conceptually coherent formulation of
renormalization only in well-behaved cases (i.e., 0 ≤ limΛ0→∞ λ0 � 1).
For instance, when we take µ = Λ0, the expression of the bare coupling
in QCD converges to zero in the infinite cut-off limit and so the bare
theory does not seem to be plagued with the same issues as the bare
theory in the φ4-theory example.

Still, it turns out that the continuum approach faces important in-
terpretative difficulties and suffers from severe conceptual ambiguities
even in well-behaved cases. First, the renormalized theory yields di-
vergent perturbative amplitudes if we do not restrict the state space of
the theory. This should at the very least refrain us from taking this
theory at face value too quickly (see section 7). Second, the conceptual
status of counter-terms is ambiguous under the continuum approach,
and this is independent of the value of the bare parameters. Recall
that, whether we add the counter-terms to the original theory or obtain
them by splitting the initial bare parameters into two pieces, the main
role of the counter-terms is to make the original amplitude finite. We
might attempt to clarify their conceptual status in two different ways.
(i) Counter-terms correspond to surplus component parts of the bare
theory which cancel out with other divergent parts of the bare theory
when we calculate amplitudes. That is, by adding counter-terms to the
physical theory, we simply re-arrange the structure of the bare theory
in such a way that its superfluous divergent parts cancel each other.
(ii) Counter-terms correspond to scaling factors relating the parameters
of the bare and physical theories. That is, by adding counter-terms to
the physical theory, we simply reparametrize the original parameters
in such a way that the resulting theory, i.e., the bare theory, yields fi-
nite predictions. In both cases, however, the counter-terms cancel out
precisely because we choose the component parts of the bare theory
or the scaling factors of the physical theory in such a way that they
cancel the divergent parts of the original amplitudes. That is, in both
cases, it seems difficult to escape the conclusion that counter-terms are
introduced just for the purpose of canceling divergences, which makes
the whole renormalization procedure look ad-hoc. Moreover, it is hard
to see how one could possibly interpret the counter-terms in physical
terms, including those relating the original field variable and the bare
field variable (which I ignored for simplicity), and therefore to make
sense of the relationship between the bare and the renormalized theory.
The counter-terms are, as it were, intrinsically meaningless formal tools
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to derive finite predictions.
The contrast with the effective approach is striking. First, recall

that on this approach, we start with the assumption that the bare the-
ory breaks down at some physically meaningful scale Λ0. The structure
of the theory may give us very good internal reasons to believe that it
becomes inconsistent at some point beyond this scale, or we may have
very good external reasons to believe that the theory starts to make em-
pirically inaccurate predictions around this scale. Either way, we take
the domain of applicability of the theory to be restricted by some lim-
ited range of energy scales. On this assumption, L0(Λ0) is naturally
interpreted as the most fundamental formulation of the theory, i.e., the
theory defined up to the scale Λ0 where it is supposed to break down.
The renormalized theory LR is naturally interpreted as a more physi-
cally reliable low energy effective version of the bare theory. If we take
Λ = Λ0, the physical renormalized theory LR(Λ) simply corresponds to
the bare theory L0(Λ0) for some appropriate choice of counter-terms.
And insofar as Λ0 is kept fixed, both theories yield finite predictions,
are mathematically well-defined (at least according to physicists’ stan-
dards), and even yield exactly the same scattering amplitudes if we
choose the counter-terms appropriately. Second, the effective approach
offers a physically salient interpretation of counter-terms: whether we
fix the parameters of the bare theory or those of the renormalized the-
ory, the counter-terms are naturally interpreted as standing for high
energy effects described by the bare theory. Moreover, the introduc-
tion of counter-terms is physically justified on the grounds that the low
energy scales are not completely insensitive to the high energy ones.

All of this should help to clarify the mystery surrounding the renor-
malization procedure discussed in the literature (e.g., Teller, 1988; 1989;
Huggett and Weingard, 1995; 1996; Fraser J., 2017). The mystery, if
anything, is a mystery about the continuum approach: it arises because
the meaning and the status of the bare theory, the renormalized theory,
and the counter-terms are ambiguous, and because the method used for
deriving the renormalized theory and the finite renormalized scattering
amplitudes is physically unjustified. By contrast, the effective approach
relies on well-specified physical concepts and offers a clear physical pic-
ture of inter-scale sensitivity. The effective approach also offers a better
rationale for each step of the renormalization procedure: while there
are good reasons to expect a physical theory to break down at short
distances (regularization step), it does not mean that it automatically
fails to provide physically relevant and empirically accurate descriptions
at larger distances if the relevant sensitivity to short distances is taken
into account (renormalization step).

Now, the mystery surrounding the continuum approach is not as
mysterious as it might seem, at least in this simple case.17 It is a stan-
dard principle in physics that physical expressions must have the same
physical dimension upon mathematical transformation for them to re-
main physically meaningful. This principle requires us to introduce the

17More generally, the following explanation works for QFTs displaying logarithmic
divergences (e.g., QED, QCD).

15



new arbitrary parameter µ with the introduction of the regulator Λ0

(e.g., to use λ2 ln(Λ0/µ) instead of λ2 ln(Λ0) as a counter-term). In this
specific example, this principle also ensures that the arbitrary parameter
µ captures exactly the sensitivity to high energies as parametrized by the
regulator Λ0, as it can be seen from the expression of the counter-term.
The continuum approach therefore successfully offers a measure of the
sensitivity of the low energy physics to the high energy physics, and this
is in fact all that is needed to explain the empirical success of the theory.
Had we chosen a different counter-term, say, λ2 ln(Λ0/µ) + C, with C
some finite quantity, the same sensitivity would be captured by some
appropriate redefinition of µ. Hence, even if the continuum approach
offers a highly formalistic and instrumental framework, it remains at
least possible to identify the reasons for its empirical success. Needless
to say, the effective approach offers a more physically perspicuous and
conceptually clear explanation.

Let me conclude this section by responding to two potential concerns.
First, taking the limit Λ0 → ∞ under the effective approach does not
turn the situation around. Agreed, there is nothing problematic if the
goal is to probe the mathematical structure of the theory, or if we add by
hand a high energy cut-off afterwards. But, strictly speaking, taking the
limit Λ0 → ∞ is conceptually incoherent since the introduction of the
cut-off Λ0 is justified on the grounds that it marks the physical scale at
which the theory is supposed to break down. Another option is that, by
taking Λ0 →∞, we are actually making the approximation that the low
energy physics is largely insensitive to the high energy physics beyond
Λ0. But in this case, it is implicitly assumed that the theory is restricted
to low energies and that it should not be used to make predictions at
arbitrarily high energies.

Second, the distinction between the effective and the continuum ap-
proach does not crucially depend on the specific regularization method
we choose and on the specific way we subtract divergences or absorb
the appropriate sensitivity to high energies (although I will emphasize
in section 5 that each approach is most conceptually consistent with
its own specific type of regularization and renormalization method). In
particular, the distinction between the effective and the continuum ap-
proach does not reduce to the distinction that Georgi (1992, 1993) and
Bain (2013) draw between Wilsonian and continuum EFTs. This dis-
tinction is mainly based on whether the split between the low energy and
high energy physics depends on the mass parameter of the theory (see
Georgi, 1993, sec. 1.2; Bain, 2013, sec. 4). And continuum EFTs are
called “continuum” because the most famous mass-independent regular-
ization method, namely, dimensional regularization, does not eliminate
high energy states in the state space of the theory. This, however, does
not mean that continuum EFTs are meant to be used to make predic-
tions across all energy scales. In particular, they are restricted by the
energy scale characterizing the matching conditions.
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4 (Perturbative) Renormalizability Yes... But
Which One?

We have seen that the continuum approach to the renormalization pro-
cedure offers a highly formalistic and instrumental perturbative frame-
work to derive consistent and empirically relevant predictions. It turns
out that the situation is even worse for the continuum approach since
the procedure only works at every order in perturbation theory for the
restricted class of “perturbatively renormalizable” QFTs. After distin-
guishing between two distinct notions, one for the continuum approach
and the other for the effective approach, I argue in this section that the
continuum approach is all the less attractive as it fails to apply to a large
number of successful and physically significant theories. We will see in
sections 5 and 6 that the RG does not substantially affect this claim.

First consider the continuum approach. Here the notion of pertur-
bative renormalizability is best introduced by noting that the φ4-theory
example used so far is extremely fortunate. All the divergent terms de-
pending on positive powers of Λ0 or log(Λ0) that appear in the pertur-
bative expansion of Γ(p1, .., p4) can be absorbed by introducing counter-
terms that depend only on the coupling λ. All the finite terms depending
on positive powers of 1/Λ0 vanish as we take Λ0 →∞. More generally,
all the divergences that appear in any sub-amplitude can be cancelled
by using only λ and m in the φ4-theory. There are many theories, how-
ever, for which infinitely many new couplings need to be introduced—
the 4-Fermi theory is one such example (see, e.g., Schwartz, 2013, chap.
22)—and the difference between this example and the φ4-theory can be
captured as follows:

A theory is perturbatively renormalizable iff we only need to intro-
duce a finite number of independent couplings in order to eliminate
divergences and define LR(µ) at any order in perturbation theory
in the limit Λ0 →∞.

A theory is perturbatively non-renormalizable iff we need to intro-
duce an infinite number of independent couplings.

This characterization is of course somewhat superficial. According to
Dyson’s criterion, what makes a theory perturbatively non-renormalizable
is that it contains at least one “non-renormalizable” individual interac-
tion term, i.e., an interaction term parametrized by a coupling gi with
strictly negative mass dimension ∆i.

18 These types of interactions gen-
erate an infinite number of sub-amplitudes with an increasing degree of
divergence, and each of the resulting types of divergent quantities usu-
ally requires the introduction of a new counter-term. In contrast, the so-
called “renormalizable” (∆i = 0) and “super-renormalizable” (∆i > 0)
interaction terms generate only a finite number of different types of
divergences.19 Having said that, perturbative non-renormalizability is

18The mass dimension ∆ of a physical quantity is the power of that quantity ex-
pressed in terms of some energy variable (i.e., energy∆) with natural units c = ~ = 1.

19The longer explanation is based on the so-called “power-counting” argument (e.g.,
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not a dead end. In general, both perturbatively renormalizable and non-
renormalizable theories are “renormalizable” in the sense that the struc-
ture of the theory is such that it is possible to construct a counter-term
to cancel any type of divergence at any order in perturbation theory.
I will call this notion “renormalizabilityRT ” to avoid confusion as it is
sometimes referred to as the “Renormalization Theorem” (e.g., Osborn,
2016, sec. 4.3).20 We can even take the limit Λ0 → ∞ in a number of
expressions obtained from perturbatively non-renormalizable theories at
each finite order in perturbation theory if the theory is not too exotic
(i.e., if limΛ0→∞ g0 formally exists for each bare coupling g0 given some
fixed finite order in perturbation theory).

At first sight, it seems that the distinction between perturbatively
renormalizable and non-renormalizable theories captures the amount of
work needed in order to renormalize a theory—and the amount is of
course infinite if we want to define the parameters of a non-renormalizable
theory at every order in perturbation theory. In fact, the notion of per-
turbative renormalizability provides a much stronger criterion of theory-
selection under the continuum approach. If the perturbative expression
of a non-renormalizable theory is defined by introducing an infinite num-
ber of new parameters, it means that quantum corrections to scattering
amplitudes depend on the specification of an infinite number of con-
stants and that we therefore need an infinite number of experiments in
order to fix their value. Since this is impossible in practice, the perturba-
tive formulation of non-renormalizable theories obtained by applying the
renormalization procedure at every order in perturbation theory turns
out to be empirically useless. We should therefore restrict the class of
empirically relevant theories to perturbatively renormalizable theories
under the continuum approach.

So far, the analysis only applies to the continuum approach and one
might wonder whether there is any equivalent notion of perturbative

Weinberg, 1995, sec. 12.1). A divergent integral I =
∫∞

dkkD−1 is characterized
by the value of its superficial degree of divergence D (the integral diverges in the
UV if D ≥ 0) and D can be expressed in terms of the mass dimensions ∆i of the
interactions involved in the scattering process described by I: schematically, D =
positive number−

∑
i ni∆i, with ni the number of times we need to use the interaction

i to define the integral. Then, if there is at least one non-renormalizable interaction in
the theory (∆i < 0), it is possible to find infinitely many different types of divergent
integrals (D ≥ 0) by considering more and more complex sub-amplitudes at higher
orders in the perturbative expansion. By contrast, D has a positive upper bound
for (super-) renormalizable theories, i.e., there is only a finite number of different
types of divergent integrals. Note, however, that the superficial degree of divergence
is not always reliable: there are cases where D < 0 and the integral diverges (notably
because of the so-called “sub-divergence” problem), and cases where D ≥ 0 and the
integral is finite (usually the divergence cancels because of symmetry constraints).
Perturbatively renormalizable theories are sometimes called “renormalizable in the
power-counting sense” or “renormalizable in Dyson’s sense”.

20In contrast, the term ‘non-renormalization theorem’ usually refers to a specific
result to the effect that a parameter or an interaction term does not need to be renor-
malized at all at any order in perturbation theory, as it is common in supersymmetric
QFTs (see, e.g., Weinberg, 2000, sec. 27.6). Of course, in practice, the interesting
question is whether a theory is renormalizableRT given a set of constraints imposed
on the construction of counter-terms (e.g., that they leave the resulting Lagrangian
invariant under the action of a given symmetry group).
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renormalizability under the effective approach and, if so, whether it
plays the same role. Let me suggest the following notion of “perturbative
renormalizabilityE”, to be distinguished from the traditional notion and
the notion of renormalizabilityRT :

A theory is perturbatively renormalizableE iff for any p ∈ Z, all
the possible contributions to predictions up to order O((Λ/Λ0)p)
obtained from L0(Λ0) can be absorbed in LR(Λ) by introducing
only a finite number of new parameters. (mutatis mutandis for
perturbatively non-renormalizableE .)

The basic idea is the following: a theory is perturbatively renormalizableE
if we can always simulate high energy effects up to a specific accu-
racy ε with only a finite number of couplings, and perturbatively non-
renormalizableE if we cannot. It is not entirely clear what perturbatively
non-renormalizableE theories would look like. Presumably, these types
of theories would have to include exotic interaction terms such that the
contributions of these terms vary too rapidly between Λ0 and Λ to be
approximated by the contributions of a finite number of independent
polynomial interaction terms in the field variables and their derivatives
given some accuracy ε. For instance, we can imagine a theory with an
exotic non-local interaction term including some non-analytic function
F (φ(x), φ(y)) of field variables specified at distinct space-time points x
and y such that the contributions of F vary too abruptly between Λ0

and Λ to be approximated by the contributions of a finite number of
independent polynomial interaction terms.

Be that as it may, the notion of perturbative renormalizabilityE is
much less constraining than the traditional notion of perturbative renor-
malizability. Perturbative renormalizabilityE is satisfied if the interac-
tion terms of the theory are local polynomials in the field variables and
their derivatives and if the theory has a finite number of independent in-
teraction terms with the same dimension ∆i. Most crucially, the notion
of perturbative renormalizabilityE does not prevent the theory from in-
cluding non-renormalizable interaction terms. Quite the contrary: under
the effective approach, we often need to introduce non-renormalizable
terms into the effective theory if we want to absorb contributions in
O((Λ/Λ0)p) (p > 0) obtained—say—from the renormalizable interac-
tion terms of the bare theory.21 There is no specific reason to worry
about these contributions in the continuum approach since they cancel
out in the limit Λ0 → ∞. But to the extent that we keep the cut-off
fixed, we usually need to include non-renormalizable terms in the effec-
tive theory if we want to maximize the match between the effective and
the bare theory.

As a corollary, if we keep the cut-off fixed, perturbatively non-renormalizable
theories remain perfectly predictive and empirically relevant. Typically,
it is sufficient to consider interaction terms with dimension larger or

21Lepage (1989, sec. 2.3) provides a concise explanation of this pattern. If we
consider again the superficial degree of divergence of integrals (see footnote 19), it
is possible for any renormalizable interaction to generate infinitely different types of
finite integrals with negative superficial degrees of divergences, i.e., with contributions
in O((Λ/Λ0)p) (p > 0). For some examples, see Schwartz (2013, chap. 21).
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equal to ∆ε = − ln(ε)/ ln(Λ/Λ0) in order to make predictions at the
energy scale Λ with accuracy ε (e.g., Georgi, 1993, p. 214). The total
number of interaction terms with ∆ ≥ ∆ε is finite in standard QFTs
and we can increase the empirical accuracy of the theory by adding
non-renormalizable interaction terms with ∆ < ∆ε (keeping in mind
that the mass dimension of non-renormalizable interaction terms is neg-
ative). In general, the most empirically successful and physically infor-
mative version of an effective theory (the so-called “Wilsonian” effective
Lagrangian) includes all the possible interaction terms compatible with
the assumption of the theory—in particular, its symmetries.22 To give an
example, the effective Lagrangian LW generalizing the φ4-theory takes
the following form:

LW = −1

2
(∂φ)2 − m2

2
φ2(x)− λ

4!
φ4(x)−

∑
n≥3

g2nφ
2n

−
∑
n≥2

g′2n(∂φ)2n −
∑
n,m≥1

g′′2n,2m(∂φ)2nφ2m
(11)

Non-renormalizable interaction terms are those associated with the cou-
plings g2n with n ≥ 3, g′2n with n ≥ 2 and g′′2n,2m with n,m ≥ 1 in this
example.

Perturbatively non-renormalizable theories have been much appraised
in the recent physical and philosophical literature (e.g., Lepage, 1989;
Cao and Schweber, 1993; Butterfield and Bouatta, 2015; Williams, 2018).
I do not have much to add here, except the following four important
points. First, for any approach, the restriction to a finite number of
independent couplings is necessary in practice if we want to make em-
pirical predictions. Second, the effective approach provides a clear phys-
ical justification for the introduction of an infinite number of additional
non-renormalizable interaction terms: they capture the full sensitivity
of the low energy physics to high energies, even the most insignificant
parts of it. Third, perturbative renormalizability remains a decisive
criterion of theory-selection for the perturbative formulation of con-
tinuum theories insofar as it is possible to define (at least formally)
perturbatively non-renormalizable theories at every order in perturba-
tion theory in the Λ0 → ∞ limit. Fourth, the notion of perturbative
renormalizabilityE under the effective approach offers a highly inclusive
criterion of theory-selection and, as far as I can tell, all the traditional
perturbatively renormalizable and non-renormalizable QFTs are pertur-
batively renormalizableE . In a way, perturbative renormalizabilityE is
as non-constraining as the notion of renormalizabilityRT discussed above
(but less general, though).

Now, it is a matter of fact that perturbatively non-renormalizable
theories have proven to be extremely useful in deriving successful em-
pirical predictions and describing physically relevant patterns at differ-
ent energy scales, from low energy effective phenomenological models to

22A complication comes from anomalies: i.e., the renormalization procedure might
require new terms which explicitly break the symmetries of the theory. This is called
“anomalous” or “quantum” symmetry breaking, but I will ignore this problem here.
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extensions of QFTs beyond the Standard Model. This success, however,
requires us to explicitly restrict the domain of applicability of these the-
ories by means of some finite cut-off. For if we attempt to define the
perturbative formulation of these theories across all scales and derive
exact predictions without making any approximation, we will find that
these theories lose their predictive power and empirical relevance. Of
course, if we have empirical inputs and restrict ourselves to some finite
order in perturbation theory, we may take the limit Λ0 → ∞ at this
order and use the perturbatively non-renormalizable theory to make
predictions. For instance, if we know the value of the Fermi constant
GF ∼ 10−5 GeV−2, we can use the 4-Fermi theory to make tree-level
predictions. However, if we endorse the continuum approach and intend
to renormalize theories at every order in perturbation theory, we will be
forced to rule out a large class of empirically and physically relevant the-
ories. And so insofar as we want to praise a framework for constructing
perturbative QFTs that proves to be (sufficiently) universal, the effective
approach looks more attractive than the continuum approach.

5 The Renormalization Group Theory

What has been at the center stage of the renormalization procedure so
far is the attempt to address the problem of UV divergences:

(1) How can finite and accurate predictions be obtained if the original
theory is inconsistent?

We have seen that in both the effective and the continuum approach, the
introduction of an arbitrary mass scale Λ (or µ) is forced upon us if we
want to derive the expression of renormalized quantities. The genius of
the physicists who developed the Renormalization Group (RG) theory
was to use this seemingly idle and arbitrary parameter as a lever to
address the (new) questions:

(2) What is the scaling behavior of the theory?

(3) Does the theory make consistent predictions in the continuum
limit?

The goal of this section is to show how the RG theory clarifies the notion
of renormalizability and therefore complicates the argument of section 4.
Of crucial importance is the possibility that a theory both includes non-
renormalizable interaction terms and makes consistent predictions in the
continuum limit. At the same time, some perturbatively renormalizable
theories such as the Standard Model of particle physics are likely to make
inconsistent predictions at very high energies. This suggests that the
scope of the continuum approach might not be as restricted as initially
thought—and yet still restricted in important ways.

5.1 The Effective and the Continuum RG

What, exactly, is the RG? Strictly speaking, the RG refers to the struc-
ture of invariance of theories under rescaling by the renormalization
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scale Λ (or µ). It is helpful, though, to distinguish between three
types of RG equations. First, at the level of theories, the RG describes
how the path integral, the action and the Lagrangian transform un-
der rescaling. In a way, the renormalization procedure already gives
us a rudimentary RG transformation: e.g., in the effective approach,
L0(Λ0)→ LR(Λ) = L0(Λ)+δL0(Λ,Λ0) for Λ0 → Λ. Second, at the level
of scattering amplitudes and correlation functions, the RG describes the
specific trade-off between the kinetic and interacting parts of the the-
ory required for the scattering amplitudes to remain invariant under
rescaling. The so-called “Callan-Symanzik” equation for a N-particle
amplitude with one renormalized coupling g is given by:(

Λ
∂

∂Λ
+ β

∂

∂g
+Nγφ

)
ΓR(p1, ..., pN ; g(Λ)) = 0 (12)

where β(g) = Λ ∂g
∂Λ is the “beta-function” of the coupling g and γφ is

the “anomalous dimension” of the field. Eq. 12 describes how much we
need to shift the value of the coupling (β ∂

∂g ) and the size of the field

configurations (Nγφ) in order to absorb an infinitesimal rescaling (Λ ∂
∂Λ)

and leave the amplitude ΓR invariant. Third, at the level of couplings
and local operators, the RG describes how the strength of an interaction
varies across scales in accordance with the sign of its beta-function. For
instance, the quartic interaction in the φ4-theory becomes increasingly
strong at high energies:

Λ
∂λR
∂Λ

= β(λR) =
3

16π2
λ2
R + O(λ3

R) (13)

Note, however, that this perturbative RG equation remains only valid
for λR � 1.

The effective (or Wilsonian) RG and the continuum (or Gell-Mann &
Low) RG have a relatively similar formal structure overall. But again,
there are significant conceptual differences between the two.23 Most
crucially, the effective renormalized theory is obtained by integrating out
high energy field configurations in the path integral, while the continuum
renormalized theory is obtained by fine-tuning the expression of the bare
theory. Schematically,

Effective theory:

∫
d[φ<Λ]eSeff(Λ,Λ0) =

∫
d[φ<Λ0 ]eS0(Λ0)

Continuum theory:

∫
d[φ]eS(µ) = lim

Λ0→∞

∫
d[φ]eS0(Λ0)+δS(µ,Λ0) (14)

with the same conventions as before (φ<Λ refers to field configurations
with energy lower than Λ). The effective RG transformation obtained
by decreasing Λ is irreversible since it eliminates high energy degrees of
freedom, while the continuum RG transformation obtained by varying

23For more technical details, see, e.g., Weinberg (1995, sec. 12.4; 1996, chap.
18); Zinn-Justin (2007); Schwartz (2013, chap. 23). Here I rely on the standard
understanding of the Wilsonian RG. For a formal interpretation, see Rosaler and
Harlander (2019).
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µ is reversible since it merely amounts to subtracting or adding some
finite quantity in the action (i.e., to imposing a different renormalization
condition).24

Next, the most conceptually consistent interpretation of the cut-off
and of the renormalization scale is not the same in the two cases. In
the effective approach, the idea of integrating out all the high energy
degrees of freedom makes sense only if we use a sharp cut-off (e.g., a
lattice or a momentum cut-off). If we use a smooth cut-off, the path
integral measure is still defined by summing over arbitrarily high energy
states. Similarly, if we have good reasons to think that the high energy
states close to the sharp cut-off Λ0 misrepresent, in some way or another,
the correct state of matter, we should make sure that we exclude them.
One conceptually simple and clear way of ignoring these high energy
states is to integrate out all the high energy degrees of freedom between
Λ and Λ0. In contrast, the continuum approach is based on the idea that
all the degrees of freedom in the original theory L are relevant in some
respect. One way of making sure that the continuum assumption holds
is to use a regularization method that gives weight to the physical states
of interest without eliminating the others. In the method of dimensional
regularization, for instance, the divergences are analyzed by shifting the
dimension of space-time by ±ε, and the state space of the theory is
smoothly distorted in the UV in a way that keeps all the possible energy
states but significantly lowers the weight of the states above the scale
µ.25

Agreed, one important lesson of the modern understanding of renor-
malization is that the specific value of the cut-off and the specific details
of the regularization method do not really matter. They can always be
absorbed in the formal expression of the renormalized parameters and,
overall, the predictions obtained with different regularization methods
are empirically equivalent.26 Yet, this does not mean that all regulariza-
tion methods are on the same footing. If the goal is to define a theory
across all energy scales, for instance, it appears somewhat conceptually
inconsistent to construct the theory by first eliminating all the high en-
ergy degrees of freedom beyond some fixed scale. Similarly, if the goal is
to offer a restricted description of low energy degrees of freedom, it ap-
pears somewhat conceptually inconsistent to include the contributions
from arbitrarily high energy degrees of freedom when calculating low en-
ergy predictions. At the very least, some regularization methods make

24Note the difference between active and passive transformation in both cases. An
active RG transformation corresponds to a genuine change of scales (and hence to
integrating out degrees of freedom in the effective case). A passive RG transformation
corresponds to a conventional redefinition of energy units (in which case no degree of
freedom is integrated out in the effective case).

25In more detail, if we take d = 4 ± ε, we have to rescale each coupling by some
power of the renormalization scale µ for dimensional consistency (e.g., replace λ by
λµε) and modify the dimension of the divergent integrals. Integrating out the extra
ε dimension in those integrals leaves an additional damping factor in the integrand
that depends on both ε and µ. If we ignore potential trouble in the IR, this damping
factor smoothly vanishes for momenta much larger than µ with ε small and µ fixed
(Georgi, 1992, p. 4; 1993, sec. 2.4, provides a very helpful and concise explanation).

26I would like to thank a referee for pressing me on this point.
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these specific goals more explicit and provide a conceptually simpler and
clearer way of achieving those goals. In the case of the effective approach,
for instance, a deformation that eliminates all the high energy degrees
of freedom appears to be more natural than a deformation that merely
lowers the weight of UV contributions. For if we believe that the theory
literally breaks down at high energies, we should rather avoid using those
high energy degrees of freedom altogether instead misrepresenting their
properties and using them to compute low energy predictions. Likewise,
a sharp cut-off introduces a conceptually simple and clear classification
of low energy and high energy field configurations, while a smooth cut-
off makes the boundary between them somewhat fuzzier. Agreed again,
both a sharp and a smooth cut-off offer a highly idealized representation
of the boundary between the low energy and high energy regimes of the
theory. But we do not need to take the exact form of the cut-off to be
physically meaningful in order to grant that those differences between a
sharp and a smooth cut-off regularization method are significant. And of
course, if our primary goal is simply to compute low energy predictions,
we should probably select the regularization method which allows us to
achieve this goal in the simplest, most efficient and appropriate way.

5.2 RG and Renormalizability

Now, let us look at the implications of the RG for the notion of renor-
malizability and for the scope of the continuum approach. Before we
do that, it is necessary to spend some time clarifying: (i) the notion of
RG space or theory space; (ii) the notion of fixed point; and (iii) the
different types of local behaviors in the vicinity of fixed points.27

(i) Consider first the infinite set of renormalized couplings gn(Λ),
including both couplings from renormalizable and non-renormalizable
interactions, which can be used to define any sort of renormalized (lo-
cal) QFT in four dimensions for a specific set of fields and symmetries.
The infinite set of RG equations span an infinite dimensional space, the
so-called “RG space”, where each coupling stands for an independent
coordinate and where each point in the space represents a theory de-
fined at some energy scale Λ (see Fig. 3). The RG transformations of
the couplings induce trajectories in this space, the so-called “RG flows”,
either towards the IR or the UV as we respectively decrease or increase
the value of Λ.28

(ii) Fixed points g∗ are defined by the points in theory space where
the RG flow terminates. The fixed point is either IR or UV depending
on whether the RG flow converges to the fixed point in the low energy
or high energy limit. In each case, the β-function β(g∗n) of each coupling
vanishes at the fixed point, which means that each coupling gn(Λ) = g∗n
remains constant whether the value of Λ is increased or decreased and
that the theory specified by the couplings g∗n is scale-invariant. It turns

27The analysis does not depend on the type of RG used since the effective and the
continuum RG are formally equivalent at the level of couplings.

28Typically, an effective theory is defined by a finite segment of the RG flow with
an upper bound while a (well-defined) continuum theory is defined by a complete
segment specified by the values of gn(µ) for any µ.
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out that we can distinguish between two kinds of fixed points. A Gaus-
sian fixed point g∗ = 0 defines a non-interacting theory, and theories
converging towards a Gaussian fixed point are called “asymptotically
free”. A Wilson-Fisher fixed point g∗ 6= 0 defines a non-trivial scale-
invariant dynamics, and theories converging towards a Wilson-Fisher
fixed point are called “asymptotically safe”. As we can already antici-
pate, the existence of a UV fixed point indicates that the corresponding
continuum theory behaves well at high energies, i.e., that the value of
its couplings remains finite at high energies.29

(iii) The infinite set of RG equations determine local topological
properties of the RG flow on theory space. To see that, we need to
examine first the behavior of couplings in the vicinity of a fixed point. In
the simple case of a Gaussian fixed point, the perturbative RG equation
for a coupling g looks like:

Λ
∂g

∂Λ
= β(g) ≈ (−∆ + γ)g + bg2 + cg3 + O(g4) (15)

where γ, b and c are constants. Assuming that γ is negligible, the
solution at lowest order is given by:

g(Λ) = (
Λ

Λ0
)−∆g(Λ0) (16)

Three types of behaviors can be distinguished from this elementary per-
turbative equation, and each of them clarifies the scale-dependence of
the non-renormalizable, renormalizable and super-renormalizable indi-
vidual interaction terms defined in section 4 (here with the flow directed
towards the IR):

(a) Super-renormalizable interaction: If ∆ > 0, the coupling g(Λ)
becomes large at small scales Λ� Λ0 and negligible near the cut-
off Λ . Λ0. The coupling and the corresponding operator are said
to be “relevant” at low energies.

(b) Non-renormalizable interaction: If ∆ < 0, the coupling g(Λ) be-
comes negligible at small scales Λ� Λ0 and large near the cut-off
Λ . Λ0. The coupling and the corresponding operator are said to
be “irrelevant” at low energies.

(c) Renormalizable interaction: If ∆ = 0, dimensional analysis is inef-
fective. The sign of the next dominant term in Eq. 15 determines
whether the coupling is “marginally” relevant or irrelevant. For in-
stance, the (dimensionless) λR coupling in φ4-theory is marginally
irrelevant (see Eq. 13).

With these three properties in hand, we can specify the distinct lo-
cal topological features of the RG flow in theory space (see Fig. 3).

29More precisely, there are three conditions for asymptotic safety/freedom in both
the IR and the UV case: (a) the vanishing of the β-function; (b) the existence of a
finite-dimensional surface in the vicinity of the fixed point if we want the theory to be
predictive; and (c) the existence of a well-behaved RG flow on the way to and at the
fixed point. In the IR case, for instance, condition (c) obtains if supΛ≤Λ′ g(Λ) < ∞
for some Λ′ and limΛ→0 g(Λ) = g∗ <∞.
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The “critical surface” is defined by the set of couplings whose trajec-
tory ends on the fixed point and the “unstable manifold” is defined by
the set of couplings whose trajectory departs from the fixed point. In
general, trajectories can be extremely varied: the flow might seemingly
converge toward a fixed point and quickly diverge away as it comes
too close to it, or the flow might seemingly diverge away from a fixed
point and suddenly converge extremely fast towards it. Some RG flows
even display periodic behaviors (see Wilson, 1971, and Bulycheva and
Gorsky, 2014, for a discussion and examples of cyclic flows). In typical
cases, the critical surface corresponds to the subspace spanned by the
set of irrelevant couplings while the unstable surface corresponds to the
subspace spanned by the set of relevant couplings, and most trajecto-
ries converge towards the fixed point and suddenly diverge away as the
relevant couplings become too important (as depicted in Fig. 3). The
analysis applies both to IR and UV fixed points, and we may speak
similarly of IR/UV relevant, irrelevant and marginal operators.

Fig. 3: Theory space in three dimensions, with a two dimensional crit-
ical surface and a one dimensional unstable manifold. The possible
trajectories towards the IR are denoted by the lines with arrows.

This analysis has three important implications.30 First, it shows
that the pathological high energy behavior of non-renormalizable in-
teractions (i.e., IR-irrelevant/UV-relevant interactions) is closely linked
to the fact that they generate increasingly divergent integrals in per-
turbation theory. Consider for instance a scalar theory in four dimen-
sions with one non-renormalizable interaction term g6φ

6. The 6-particle
physical amplitude Γ(p1, ..., p6) is just equal to g6 at first order. On
dimensional grounds, the total amplitude Γ and any of the higher order
sub-amplitudes gn6 Γn (n > 1) have mass dimension −2. As I briefly

30Note that this analysis also explains why typical realistic QFTs are likely to
be only approximately perturbatively renormalizable since they might contain IR
irrelevant interactions that we have not detected yet (e.g., Butterfield and Bouatta,
2015; Williams, 2018).
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indicated above, the amplitudes at some order n have in general the
schematic form gn6

∫
dkkDn−1. On dimensional grounds, we can there-

fore infer from the mass dimension of gn6 (namely, −2n) that the number
Dn increases with n (Dn = 2n− 2), which shows that the sensitivity of
non-renormalizable interactions to high energies is closely linked to the
pathological perturbative behavior of the theory.

Second, the RG theory suggests a general non-perturbative charac-
terization of renormalizability. In the continuum approach, the notion
can be defined as follows (I drop the label “non-perturbative” for sim-
plicity):

A theory is renormalizableRG iff there is some µ′ such that the RG
flow remains on the same finite dimensional surface as the theory
is rescaled toward the UV (i.e., for any µ > µ′). (mutatis mutandis
for non-renormalizableRG.)

In other words, the theory is renormalizableRG if it can be expressed in
terms of a finite number of independent couplings as the theory flows
towards high energies and non-renormalizableRG if it is impossible to
constrain the RG flow to stay on a finite subspace. If we add the addi-
tional requirement that the theory converges toward a UV fixed point g∗

as µ is increased, we obtain Weinberg’s characterization of renormaliz-
ability as asymptotic safety (Weinberg, 1979, p. 802). The couplings of
a theory satisfying this more sophisticated criterion of renormalizability,
call it renormalizabilityAS , remain finite at arbitrarily high energies. As
we will see in section 6, this is a good sign that the predictions of the
theory remain under good mathematical control at high energies.31

Third, the RG theory implies that the scope of the continuum ap-
proach is not as restricted as initially considered. The definition of rele-
vant, irrelevant and marginal operators by means of dimensional analysis
in Eq. 16 is only valid near a fixed point. In general, this is a good rule
of thumb. But it is perfectly possible that some non-perturbative effects
come into play either at low or high energies. In particular, it is perfectly
possible that a coupling which looks UV-relevant at low energies actually
happens to be well-behaved at high energies because of fortuitous non-
perturbative quantum corrections. That is, a theory can both converge
towards a UV Wilson-Fisher fixed point and include non-renormalizable
interactions, as some physicists expect for the quantum field theoretic
approach to quantum gravity.32 Likewise, we might attempt to tame
the pathological UV behavior of a given theory by embedding it into a
larger theory displaying a UV fixed point. Overall, this suggests that the
continuum approach is suitable for a larger class of physically relevant
theories than initially expected. Yet, there still remains a large number
of theories ill-handled under this approach, namely those which fail to
converge towards a UV fixed point. As we will see in the next section,

31We can also speak of degrees of renormalizabilityAS or “approximate”
renormalizabilityAS in the case of a renormalizableAS theory with additional UV-
relevant interaction terms diverging at high energies if the contributions of these
UV-relevant interactions are negligible compared to the contributions of the other
interactions at low energies.

32See Niedermaier and Reuter (2006) for a review of the asymptotic safety scenario.
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if we take the current perturbatively renormalizable formulation of the
Standard Model by itself for instance, there are very good reasons to
believe that it exhibits a Landau pole singularity and therefore makes
inconsistent predictions at very high energies.

6 The infinite cut-off limit and the continuum
limit

The goal of this section is to distinguish between different types of QFTs
on the basis of their behavior in the continuum limit. For the sake of the
argument, I will assume that the theory at hand has been renormalized
under the continuum approach, except that we have kept the parame-
ter Λ0 fixed and not yet attempted to take the limit Λ0 → ∞. I will
also assume that the analysis applies both to the perturbative and the
non-perturbative case (with specific provisos when needed and with the
speculative assumption that the non-perturbative notion of continuum
QFT makes sense in realistic cases).

The first thing to note is that the notion of “continuum limit” is
ambiguous. It may refer either to the infinite cut-off limit (Λ0 →∞) or
to the continuum limit (µ→∞), properly speaking.33 Note, moreover,
that the distinction is robust under different regularization methods. For
instance, the infinite cut-off and continuum limits correspond respec-
tively to ε → 0 and µ → +∞ for dimensional regularization. Likewise,
using this terminology, taking the lattice spacing to zero in a lattice
QFT amounts to taking the infinite cut-off limit, except in cases where
the lattice spacing also plays the role of the renormalization scale (in
which case there is only one type of limit).

Accordingly, the notion of “good behavior” in the limit should be
understood in two distinct ways:

(1) The low energy predictions of the theory at µ are unaffected by
taking the infinite cut-off limit Λ0 →∞.

(2) The theory makes consistent predictions at arbitrarily high ener-
gies (µ→∞).

(1) corresponds to cases where the low energy physics described by the
theory is sufficiently insensitive to the high energy physics described
by the theory, while (2) corresponds to cases where the high energy
predictions of the theory do not violate typical assumptions such as
unitarity.34 So (2) is not about empirical adequacy, properly speaking.
After all, the theory might turn out to be empirically inaccurate at very
high energies. But we should at least require that it makes consistent
predictions, say, by making sure that the values of the couplings remain
sufficiently small for unitarity to hold.

33For a slightly different understanding of this distinction emphasizing the difference
between the removal of a perturbative regulator and the removal of a non-perturbative
regulator, see Delamotte (2012, sec. 2.6; esp. 2.6.3).

34Unitarity is the assumption that the total sum of probabilities for the possible
measurement outcomes of some specific physical process add up to unity.
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How should we discriminate between well-behaved and ill-behaved
theories in the two cases then? Consider first the case of the infinite cut-
off limit. Let us bracket any issue about the violation of the perturbative
assumption in the case of the bare theory, and simplify the discussion by
looking at the following toy-model theory LR(µ) with two renormalized
couplings (g0 and g′0 correspond to the bare couplings):


g(µ) = ( µ

Λ0
)−∆g0(Λ0)

g′(µ) = ( µ
Λ0

)∆g′0(Λ0)

∆ > 0

(17)

Fig. 4: Theory space in two dimensions with one IR-relevant/UV-
irrelevant coupling g and one IR-irrelevant/UV-relevant coupling g′.

The condition ∆ > 0 implies that g is super-renormalizable and g′ non-
renormalizable or, equivalently, that g and g′ are respectively relevant
and irrelevant near the IR Gaussian fixed point, and irrelevant and rel-
evant near the UV Gaussian fixed point. In general, RG equations de-
fine families of solutions parametrized by different boundary conditions
and, in the present case, each solution (g(µ), g′(µ)) of the two dimen-
sional RG equation is uniquely determined by specifying a single point
(g0(Λ0), g′0(Λ0)) for some Λ0 (see Fig. 4). Inversely, if the value of the
renormalized couplings at µ is fixed by means of experiments, we can
analyze the behavior of the bare theory in the infinite cut-off limit.

This toy-model is interesting because it displays two common types
of behaviors. (i) g′(µ) = 0 and g(µ) 6= 0: that is, we do not detect non-
renormalizable effects at low energies and take the liberty to fine-tune
g′0(Λ0) to zero, which implies g′(µ) = 0. In this case, the RG flow lies
on what is called the “renormalized trajectory” (see Fig. 3 and the g(µ)
axis in Fig. 4) and we can take the infinite cut-off limit by assuming
that the relevant bare coupling appropriately vanishes at infinity (i.e.,
such that limΛ0→∞ Λ∆

0 g0(Λ0) is finite). It is therefore possible to take
the infinite cut-off limit without affecting the low energy predictions of
the theory.
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(ii) The most likely case is that both g(µ) and g′(µ) are non-zero,
i.e., that the theory contains UV-relevant couplings. The toy-model in-
dicates that the constraints we need to impose on these couplings are
relatively minimal: the infinite cut-off limit leaves the low energy pre-
dictions intact with the appropriate limits g0(∞) = 0 and g′0(∞) = +∞.
Of course, in general, taking the limit LR(µ) = limΛ0→∞(L0 +δL) might
require some delicate fine-tuning with the bare theory; and, as already
emphasized, the perturbative assumption is explicitly violated in the
case of the bare theory. But, overall, the RG theory is highly permissive
since it is possible to take the infinite cut-off limit (at least formally)
even if the theory contains pathological UV-relevant couplings. As we
will see shortly, this fails to be the case if the renormalized coupling
diverges at some finite energy scale ΛM on the way to the limit.

Consider now the case of the continuum limit. RG flows towards the
UV fall under four main types (e.g., Weinberg, 1996, sec. 18.3).35 (i)
Asymptotic freedom (g∗ = 0) and (ii) asymptotic safety (g∗ 6= 0) are
the best case scenarios. In both cases, the values of the renormalized
couplings remain finite in the continuum limit, which is a good sign
that the theory makes consistent predictions at high energies since the
main source of violations of (perturbative) unitarity comes from arbi-
trarily large values of the renormalized couplings in the expression of
the scattering amplitudes. Of course, in those two cases as much as in
the two cases below, our confidence in the behavior of couplings across
energy scales depends on the reliability of the methods used to derive
their expression. Asymptotic freedom is a special case in that respect.
It is firmly based on perturbation theory like many of the results usu-
ally obtained from renormalization theory. But the fact that the values
of the couplings become arbitrarily small at very high energies justifies
the use of perturbation theory in the first place and suggests that non-
perturbative results do not spoil the asymptotic behavior of the theory
(e.g., a non-perturbative contribution to a scattering amplitude depend-
ing on some factor e−1/g(µ) becomes arbitrarily negligible for µ → ∞ if
limµ→∞ g(µ) = 0).

(iii) Let me call “asymptotic UV instability” the type of limiting
behavior characteristic of theories containing divergent UV-relevant in-
teractions as µ tends to ∞ (e.g., g′ in the toy-model above). This case
is problematic because, in general, these divergent UV-relevant inter-
actions lead to violations of (perturbative) unitarity at high energies.
These interactions even contain explicit information about the energy
scale where those violations of unitarity arise. That being said, it is still
possible to define the perturbative expression of the renormalized theory
in the infinite cut-off limit Λ0 → ∞ if we restrict the range of the pa-
rameter µ to low energies. Moreover, if we use a smooth regularization
method, the renormalized theory still includes negligible contributions
from arbitrarily high energy excitation states (compared to contribu-
tions from low energy states). Hence, even though the theory behaves
badly in the continuum limit, the continuum assumption holds in this

35Other cases include scale-invariance (β(g) = 0), in which case the RG does not
flow, strictly speaking, and the cyclic behaviors mentioned above.
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case for processes probed at sufficiently low energies.
(iv) Let me call “finite UV instability” the type of limiting behavior

characteristic of theories containing a Landau pole, i.e., a finite energy
scale ΛM at which at least one of the couplings g(ΛM ) diverges. As the
φ4-theory shows, finite UV instability is the worst case scenario. The
solution to the perturbative RG equation of the quartic coupling λR(µ)
is given by (cf. Eq. 13):

λR(µ) =
λR(µ′)

1− 3λR(µ′)
16π2 ln( µµ′ )

(18)

Given a fixed experimental value λR(E) at the energy scale E, the cou-
pling λR diverges at ΛM = E exp(16π2/3λR(E)). Similarly, if we eval-
uate the expression of the bare coupling at the scale µ = Λ0, the bare
coupling diverges at the same finite scale ΛM . And if we do not make
any low energy measurement and decide to take λR(µ) = 0, we have
to give up the initial assumption that the theory is an interacting the-
ory. So, overall, the theory cannot be consistently defined in the infinite
cut-off and continuum limits.36 Now, the framework of the continuum
approach is such that it is possible to take the infinite cut-off limit at
the level of perturbative scattering amplitudes if we restrict ourselves to
the first few orders in perturbation theory (see Eq. 8). However, the RG
reveals that the partial perturbative relationship between the bare and
the renormalized coupling obtained from the renormalization procedure
is only superficially well-defined in the infinite cut-off limit: if we include
the leading logarithms at higher orders in perturbation theory (as the
derivation of the RG automatically does), we find a Landau pole.

In sum, continuum QFTs are likely to make consistent predictions
at high energies when they are known with confidence to have a fixed
point. The most reliable property of QFTs that we can typically find
by means of perturbative methods is asymptotic freedom. And, for the
large majority of continuum QFTs, there are good reasons to believe that
they are not only conceptually incoherent and physically dubious but
also that they make inconsistent predictions at high energies—or, at the
very least, that standard perturbative techniques cannot be used in those
cases. Table 1 below summarizes the main interpretative differences
between the effective and the continuum approach, including the results
from section 6.

36Of course, it might be the case that the Landau pole turns out to be an artifact
of the perturbative analysis. For a discussion about the existence of a Landau pole
and triviality in the case of QED, see, e.g., Gockeler et al. (1998a,b); Gies and Jaeckel
(2004).
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Effective approach Continuum approach

The continuum as-
sumption

False True

Goal
Select the appropriate low
energy degrees of freedom

Define the theory across all
length scales

Bare theory Physical theory
Intermediary/initial math-
ematical tool

Renormalized the-
ory

Effective theory Physical theory

Regulator Λ0
The scale at which the the-
ory breaks down

Intermediary mathemati-
cal tool

Regularization
and renormal-
ization method
(most conceptually
consistent)

Sharp cut-off (Λ) Smooth cut-off (µ)

Infinite cut-off
limit

Physically irrelevant Mandatory

Continuum limit Physically irrelevant
Consistent for a restricted
class of well-behaved theo-
ries

Perturbative
renormalizability

Perturbative predictions
within ε with a finite
number of parameters

Exact perturbative predic-
tions with a finite number
of parameters

Non-perturbative
renormalizability

Finite dimensional RG sur-
face within ε + IR fixed
point

Finite dimensional RG sur-
face + UV fixed point

Table 1: Main interpretative differences between the effective and the
continuum approach.

7 Butterfield and Bouatta on continuum QFTs

An advocate of the axiomatic approach might raise the following ob-
jection at this point: why should we take the differences between the
effective and the continuum approach seriously if both fail to meet satis-
fying standards of mathematical rigor in the first place? And why should
we attach any importance to the good behavior of asymptotically safe
QFTs as opposed to finitely unstable QFTs if there is a chance that
they are both mathematically inconsistent and a fortiori physically in-
coherent?37 Wallace (2006, sec. 3-4; 2011, sec. 6-9) has rightly argued,
I believe, that effective Lagrangian QFTs are as well-defined as any of
the past theories that we usually take to be mathematically well-defined,
and therefore should be considered fit for foundational and philosophical
scrutiny. Butterfield and Bouatta (2014) recently extended this claim
to continuum QFTs (see also Butterfield, 2014, pp. 8-9, sec. II.2-3, p.
31). They argue that even if the path integral formulation of realistic
continuum QFTs has not yet received a precise mathematical definition

37One might see these objections as particular cases of the general objection that
the conventional mathematical apparatus of QFTs is ill-defined (e.g., Halvorson, 2007,
p. 731; Fraser D., 2008, p. 550; Kuhlmann, 2010; Baker, 2016, p. 5; Summers, 2016).
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according to the standards exhibited in the axiomatic, algebraic and
constructive programs, some of these theories appear to be sufficiently
mathematically well-defined according to physicists’ common standards
to be fit for philosophical scrutiny. Hence, by endorsing less stringent
criteria of mathematical rigor, they claim, we should feel confident to
draw world pictures for the heuristic formulation of some continuum
QFTs. I will argue that the methodological and conceptual differences
between the effective and the continuum approach discussed in sections
3-6 suggest reasons to temper Butterfield and Bouatta’s claim.

Let me begin by making two friendly amendments to their discus-
sion of continuum QFTs. (i) They contend that the contrast between
theories likely to be (A) mathematically well-defined and (B) mathe-
matically ill-defined depend, broadly speaking, “on the type of fields in
the theory concerned” (Butterfield and Bouatta, 2014, p. 65). Agreed:
as Butterfield and Bouatta rightly emphasize, in four dimensions, QFTs
including only non-abelian gauge fields fall under case (A) while QFTs
including only scalar or fermionic fields typically fall under case (B). In
general, however, the field content of a QFT does not provide a reliable
guide to assess whether the QFT is mathematically well-defined or not.
Examples of asymptotically free scalar and fermionic QFTs in two and
three dimensions show that the mathematical well-definedness of a QFT
is not simply determined by the type of its quantum field operators.38

In contrast, the scaling behaviors of QFTs exhibited by means of RG
methods offer a more systematic way of distinguishing between (A) and
(B), and Butterfield and Bouatta’s diagnosis somewhat obscures the re-
markable fact that this criterion does not depend on the content of the
theory. Agreed, the definition of a particular RG space depends on the
specification of a set of couplings and therefore on the specification of a
set of (local) interactions—which, in turn, depends on the specification
of a set of fields (e.g., scalar, fermionic, gauge, etc.), symmetries, and a
space-time dimension. However, the possible types of RG trajectories,
i.e., the possible types of behaviors of theories across energy scales, do
not depend on these constraints. And so what it means for a theory
to be mathematically well-defined is independent of the specific QFT
model considered.

(ii) Butterfield and Bouatta’s classification of QFTs under (A) and
(B) is also incomplete. They argue that we should group asymptotically
free, safe and conformal theories under (A) and theories presenting a
Landau pole under (B). Agreed, this provides a good rule of thumb for
the high energy limit of continuum theories; and, for the perturbative
theories we have so far, there are, in general, good reasons to expect
that Landau poles in the IR (“infrared slavery”) are perturbative ar-
tifacts, as it seems for perturbative QCD. However, it is worth being
more systematic here since the non-perturbative definition of a theory
might display, say, a Landau pole in the IR and asymptotic freedom in

38See, e.g., Weinberg (1996, sec. 18.3); Gross (1999, lecture 3, sec. 3.2; lecture
4). Examples of asymptotically safe theories in lower dimensions involving scalar or
fermionic fields include: the Gross-Neveu model, the nonlinear σ-model with dimen-
sion 2 < d < 4, and the 2d sine-Gordon model.
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the UV. I distinguished in section 6 between (a) finite instability (i.e.,
existence of a Landau pole), (b) asymptotic instability (i.e., asymptoti-
cally divergent couplings), (c) asymptotic freedom (i.e., convergence to
a zero fixed point), and (d) asymptotic safety (i.e., convergence to a
non-zero fixed point), to which we might add the two additional cases of
(e) non-convergent cyclic scaling behavior (i.e., non-convergent oscillat-
ing couplings) and (f) scale-invariant theories (i.e., theories defined at a
fixed point). It is perfectly possible that the non-perturbative definition
of a theory displays two properties out of the five (a)-(e).

We should therefore only include under (A) theories defined by a con-
tinuous RG flow between two distinct fixed points and theories defined
at a fixed point (ignoring (e)). The first class of theories corresponds
to the class of IR/UV asymptotically safe/free theories, i.e., theories
that continuously connect two conformal theories in the RG space.39

For instance, the RG equation µdg/dµ = Ag − Bg2 for some coupling
g with A,B > 0 describes the behavior of a theory asymptotically free
in the IR (flowing towards the fixed point g∗ = 0) and asymptotically
safe in the UV (flowing towards the fixed point g∗ = A/B). The second
class of theories corresponds to the class of scale-invariant theories (i.e.,
dg/dµ = 0). Although this has not been proven for models in dimen-
sion d > 2, these scale-invariant theories can typically be formulated
as conformal field theories (CFTs).40 Moreover, since our confidence in
the existence of the properties (c), (d) and (f) is usually based on per-
turbative methods (as Butterfield and Bouatta rightly recognize), we
should add the further constraint g∗ � 1 for perturbation theory to be
reliable.41

Let us now turn to Butterfield and Bouatta’s claim that some contin-
uum QFTs are ripe for metaphysical inquiry. At least as I understand
them, Butterfield and Bouatta’s claim relies on two key ideas. First,
physics exhibits various standards of mathematical well-definedness and
mathematical existence, and the heuristic standard commonly used in
physics’ practice provides a perfectly reasonable standard for interpre-
tative purposes. In the context of QFT, the heuristic standard requires
the theory to have a finite UV scaling behavior. By contrast, a theory
is mathematically well-defined according to the axiomatic standard if it
is axiomatizable and has a consistent model (Butterfield and Bouatta,
2014, p. 69). Second, the current perturbative formulation of some
realistic continuum Lagrangian QFTs displays a UV fixed point and
therefore satisfies the heuristic standard. QCD is one such example. Of
course, the finite behavior of the theory at high energies does not mean
that the functional integral resulting from the path integral quantiza-
tion of the classical Lagrangian density is mathematically well-defined
according to more stringent criteria of rigor. But the lack of a mathemat-
ically well-defined formulation should not prevent us from interpreting

39For reference to the existence of well-defined and non-trivial RG flows from IR to
UV fixed points, see, e.g., Caswell (1974); Banks and Zaks (1982); Bond and Litim
(2017).

40For references and discussions, see Polchinski (1988); Dymarsky et al. (2015).
41Here it is worth mentioning the efforts made to formulate non-perturbative the-

ories in the asymptotic safety scenario programme briefly mentioned in section 5.2.
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the heuristic formulation of our best continuum QFTs (Butterfield, 2014,
p. 15). I take it that when Butterfield and Bouatta speak of the “heuris-
tic” formulation of QFTs (Butterfield and Bouatta, 2014, p. 64, p. 68;
Butterfield, 2014, p. 15), they refer to the current perturbative formu-
lation that we have of these theories. And by ‘perturbative formulation’
I mean the formal expression of the path integral and the perturbative
expression of the renormalized action and Lagrangian together with the
set of perturbative techniques used to compute correlation functions.

Now, even if we accept to endorse less stringent criteria of mathe-
matical rigor and philosophically assess the heuristic formulation of some
continuum QFTs, it does not mean that we are warranted in attempt-
ing to draw “ontological claims” or “world-pictures” for these continuum
QFTs (e.g., Butterfield and Bouatta, 2014, p. 68). It was central to the
argument of section 3 that the structure of a physical theory does not
only need to be under good mathematical control but also needs to make
physical sense. Even if a QFT has a finite behavior at all energy scales,
it is no indication that the theory has a physically coherent interpreta-
tion. Agreed, we do not need to demand that all the component parts
of the theory make physical sense in order to dive into the metaphysical
interpretation of a theory. But we should at least require that the core
component parts of the theory do. Section 3 suggests that the pertur-
bative formulation of our best continuum QFTs does not even meet this
requirement in contrast to effective QFTs.

The argument goes as follows. To simplify the discussion and as al-
ready emphasized, I will follow Butterfield’s usage of the term ‘theory’
in its specific sense and identify the perturbative formulation of a QFT
with the perturbative formulation of its Lagrangian (Butterfield, 2014,
p. 31). Then, we may either interpret the renormalized Lagrangian or
the bare Lagrangian (or both) in order to extract dynamical information.
Consider first the renormalized Lagrangian. However we construct it,
the renormalized Lagrangian together with the standard rules for deriv-
ing amplitudes yields divergent quantities if we do not restrict the state
space of the theory. Hence, if the goal is to interpret empirically success-
ful theories, we have no reason to even attempt to draw a world picture
out of the renormalized theory or to take the renormalized Lagrangian
to give us reliable dynamical information about the target system. At
the very least, we should show some degree of caution.

Let us look at the bare Lagrangian. In the least naive perturbative
construction of a renormalized continuum QFT, we start with some ini-
tial bare Lagrangian with the “wrong” parameters and we split it into a
physical Lagrangian and a counter-term Lagrangian. The split is made
in such a way that the counter-terms cancel the original divergences
in the scattering amplitudes derived from the bare Lagrangian. And,
by re-expressing the parameters of the bare Lagrangian, we find that
the original bare amplitude is actually finite. The problem, however,
is that the parameters of the bare Lagrangian diverge in the infinite
cut-off limit. We precisely use the freedom that we have in defining
the original bare parameters to absorb the UV divergences that we find
in the original perturbative expansion. So, at least at this level, the
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original expression of the bare theory makes little physical sense. How
about the “true” bare theory, i.e., the theory defined by the renormal-
ized parameters evaluated at the cut-off Λ0 (see section 3.2)? As already
emphasized in section 3.3, there are concrete examples of theories where
these bare parameters converge to a finite value in the infinite cut-off
limit. However, if we choose to identify the bare parameters in this
way, the resulting bare Lagrangian yields, once again, divergent pre-
dictions. Finite amplitudes are always derived from the theory which
has the “wrong” parameters, as it were, since we always need to re-
express the original couplings of the divergent amplitudes in order to
absorb the divergences. And so whether we look at the renormalized or
the bare Lagrangian, it does not appear that we can justifiably draw a
world picture out of the perturbative formulation of a continuum QFT
constructed under the continuum approach.

8 Conclusion

The aim of this paper has been twofold: (i) to propose a general con-
ceptual framework to understand the various aspects of renormalization
theory based on the distinction between effective and continuum QFTs;
and (ii) to show that the effective approach to renormalization offers a
more physically perspicuous, conceptually coherent and widely applica-
ble way to construct perturbative QFTs in comparison to the continuum
approach. The oddities of the continuum approach are best illustrated
by the absence of physical justification for the introduction of counter-
terms, the instrumental status of the bare theory, and the fact that,
strictly speaking, the renormalized theory yields divergent amplitudes
if we do not restrict the state space of the theory. Evaluating the lim-
iting behavior of continuum QFTs also provides important conceptual
and classificatory insights into the scope of the continuum approach:
only asymptotically safe and free theories are likely to make consistent
predictions at high energies in contrast to asymptotically and finitely
unstable theories. In comparison, the effective approach is applicable to
any local QFT model (as far as I am aware). The paper concluded with
some lessons for the debate over the interpretation of QFTs in response
to Butterfield and Bouatta’s paper (2014): the distinction between the
effective and the continuum approach gives reasons to doubt that per-
turbative continuum QFTs are yet ripe for metaphysical analysis.
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