White-Box and Asymmetrically

SIT

securityandtrust.lu

Hard Crypto Design

Alex Biryukov

University of Luxembourg

18-May-2019

slides from Whibox’19 workshop

UNIVERSITE DU
LUXEMBOURG

Plan of the talk

* The ASASA story

e Resource Hardness Framework
e Other ideas

Structural cryptanalysis of SASAS*

LUCICEEE, WLDEIERILL, WG LML

S 1, S 1, Sy | sreeeeeeeeeens 8
A,

S ., S S,y | weeeeeeeennnns 8
A,

S S B | iR S

T T T TTTTTT]

* Scheme with unknown keyed S-boxes and Affine mappings
* For 128-bit block, 8-bit S-boxes, secret key-size is 2/ bits

*Biryukov, Shamir, Structural Cryptanalysis of SASAS, Eurocrypt’2001

https://link.springer.com/chapter/10.1007/3-540-44987-6_24

Structural cryptanalysis of SASAS*

LUCICEEE, WLDEIERILL, WG LML

S 1, S 1, Sy | sreeeeeeeeeens 8
A,

S ., S S,y | weeeeeeeennnns 8
A,

S S B | iR S

T T T TTTTTT]

* For 128-bit block, 8-bit S-boxes, secret key-size is 21/ bits
* Multiset attack complexity is 21¢ chosen texts and 222 time

*Biryukov, Shamir, Structural Cryptanalysis of SASAS, Eurocrypt’2001

https://link.springer.com/chapter/10.1007/3-540-44987-6_24

Structural cryptanalysis of SASAS

e What this has to do with WBC?

Structural cryptanalysis of SASAS

 Many early obfuscations were broken because
SASAS and shorter ciphers are structurally
very weak (and simple ASA was used in many
WBC schemes)

* Strong diffusion in ciphers prevents from
building tables with more rounds since lookup

tables explode

The ASASA attempt™

* One scheme we couldn’t break in 2001 was ASASA (with bijective S-boxes)

* (ASASA with non-bij. S-boxes was proposed as PK scheme by
PatarinGoubin’97 and broken by Ding-Feng’99, Biham’00)

— —— — — ——— — — — — —

I Ll
' A | affine
| |
| s S ir, R e |
: S i | nonlinear
......... R S T L T e I
| @
| A) : affine
| |
| [ET RS e T y
| S : nonlinear
| R I R, |
|
| [A) : affine
| — P

*Biryukov, Bouillaguet,Khovratovich, Cryptographic Schemes based on ASASA.., AC’2014

https://link.springer.com/chapter/10.1007/3-540-44987-6_24

The ASASA attempt™

* Defined strong and weak white box crypto in [BBK’14] a la [Wyseur’09]

(Strong WBC=PK, i.e. no ability to decrypt, was the main goal of the paper,
also now called one-wayness (OW))

e Built strong and weak WBC from ASASA
* Strong WBC was based on multivariate crypto, expanding S-boxes+noise

(

] S sparse. degree 2d

degree d

degree d

SN AT PRI BN

Fig. 2. Small perturbations to defeat decomposition
attacks as injection of sparse high-degree polynomials

*Biryukov, Bouillaguet,Khovratovich, Cryptographic Schemes based on ASASA.., AC’'2014

https://link.springer.com/chapter/10.1007/3-540-44987-6_24

The ASASA attempt™

e Built strong and weak WBC from ASASA
e Strong WBC was based on multivariate crypto, expanding S-boxes+noise

* Strong and some weak WBC broken in 3 nice cryptanalytic papers
[GPT’15,DDKL’15,MDFK’15]

*Biryukov, Bouillaguet,Khovratovich, Cryptographic Schemes based on ASASA.., AC’2014

https://link.springer.com/chapter/10.1007/3-540-44987-6_24

The ASASA attempt

A few more details on our weak WBC scheme

* SPN, recursive approach, assuming ASASA or
ASASASA mini-ciphers are secure against
decomposition

Ll |2 |le @ ELE

[-) O

R iterat & B (.................... S . J
A)

ERL| |ER ERI [e]

................. (7)

The ASASA attempt

e ASASASA instances still unbroken

e Overall approach is valid, just needs more rounds r,
description size grows linearly with r.

Ll |2 |le @ ELE

. -) ' A)

o ¢ ¢ N
(A)

I B s)

AAAAAAAA (=)

The ASASA attempt

e ASASASA instances still unbroken

* Overall approach is valid, just needs more rounds.

* Motivated more reseach on weak-WBC and nice constructions
SPACE [BI15], PuppyCipher [FKKM16], SPNBox [BIT16]

R subciphers

9 1R
Elil El._’ ® o Ehh

—— o o sl)
- A)

Bl |BR2 ERR N}

................. 4)

Weak white-box

* "We note that a white-box implementation
can be useful as it forces the user to use the
software at hand”, -Marc Joye’08

Weak white-box

* Incompressibility = Space-hardness = Code-hardness
* Generalize: Resource R-hardness

Force to use implementation with special properties:
* |nefficient in resource R

* Password-protected (access control)

* Tagged/watermarked (tracing)

Resource Hardness Framework*

Efficiency metrics for crypto algorithms:

* Speed (Time complexity, parallel or sequential)
 Code-size (ROM)

* Memory complexity (RAM)

Sometimes inefficiency of algorithms in these metrics is
required

*Biryukov, Perrin, “Symmetrically and Asymmetrically Hard Cryptography, Asiacrypt’17

Resource Hardness Framework

Sometimes inefficiency of crypto algorithms in these
metrics is required (several research areas that do not
always talk to each other)

* Weak whitebox-crypto (code size hardness)

* Password hashing (memory hardness)

* Key derivation functions (KDF) (time hardness)
* Big key encryption (code size hardness)

* Time-lock puzzles, PoSW, VDFs (sequential time
hardness)

* Proof-of-X (all kinds of hardness)

Resource Hardness Framework

Symmetric vs Asymmetric Resource hardness:

 Symmetric — computation is R hard for all the
users

* Asymmetric — computation is easy for
“privileged” users knowing the secret K

Resource Hardness Framework

Time Memory Code size
N KDF, Password hashing, White-box crypto,
Applications
time-lock egalitarian computing big-key encryption
Symmetrically Argon2 [BDK16], XKEY2 [BKR16],
. PBKDF2 [Kal00]
hard functions Balloon [BCGS16] WHALE (Sec. 5.2)

White-box block ciphers
DIODON (Sec. 2.4.3) [BBK14, BI15, FKKM16]
[BIT16]

Asymmetrically RSA-lock [RSW96],

hard functions SKIPPER (Sec. 5.1)

Table 1: Six types of hardness and their applications.

Resource Hardness Framework

Definition 2 (R-hardness). We say that a function f : X — Y is R-hard against
2P-adversaries for some tuple R = (p,u,€(p)) with p € {Time, Code, RAM} if
evaluating the function f using less than u units of the resource p and at most
2P units of storage is possible only with probability €(p). More formally, the
probability for a 2P-adversary to win the efficient approximation game, which is
described below, must be upper-bounded by €(p).

1. The challenger chooses a function f from a predefined set of functions
requiring more than u units of p to be evaluated.

2. The challenger sends [to the adversary.

3. The adversary computes an approrimation f' of f which, unlike f, can be
computed using less than u units of the resource p.

4. The challenger picks an input x of X uniformly at random and sends it
to the adversary.

5. The adversary wins if f'(x) = f(x).

*Generalized from definition of incompressibility from [FKKM16]

Resource Hardness Framework

challenger 2P-adversary

Choose f
f

f' + Precompute(f)

fz) = f'(2)?

Figure 2: The game corresponding to the definition of (p,u,€e(p))-hardness
against 2P-adversaries.

Resource Hardness Framework

* How to achieve required R-hardness?

e The framework allows us to construct
primitives with any hardness type:

the idea of p/lugs with specific hardness type

Plugs: Time-Hardness

Symmetric:

* |terHash (t,n) — iterates t-bit hash n times (n < 2%2 to avoid
cycles)

Asymmetric
* RSAlock(t,n) (time-lock) n squarings mod N, N=pqg = 2t

RSAlock! () = 22" mod N

Secret owner first computes e=2" mod (p-1)(g-1)
Then he computes x® mod N (or CRT)

Plugs: Code-Hardness

Symmetric:
* BiglLUT (t,v) —a table with 2t random v-bit entries

Asymmetric

* BcCounter(t,v) = E,(0¥] | x), E, is a v-bit block cipher
with secret key k, |k|=> v

Secret owner knows k

Hardness for the common user:

(Code, 2P, 2P~ *)-hard

Plugs: Code-Hardness

Symmetric:
e BiglUT (t,v) — a table with 2t random v-bit entries

Asymmetric
* BcCounter(t,v) = E, (0| |x), E, is a v-bit block cipher with secret key k,
lk|=v, |x]|=t, t<v

Secret owner knows k

Improvement for small t: (parallel application of / tables | x| = V)
f(xol|--||lze—1) = @;ZgEx(byte(i)||0" " °|z;)

Hardness for the common user:

(Code, 2P, max(2P~", (2P~ /¢)*))-hard.

Plugs: Memory-Hardness

Symmetric:
* Argon2(t,M) with input size t and memory size M
(memory hard password hashing function)

Asymmetric
* Diodon (more details later)

Our collection of R-hard plugs

Hardness Symmetric Asymmetric
t t
Time ?cerHashf,7 BSAlock?7
(Time, n, 2P~ 1) (Time, n, 2P~ 1)
Argon2 DI1ODON
Memory

(RAM, M/5,2P=%) (RAM, M/10, 2P~)

BigLUT}, BcCounter!,

Cod
e (Code, 2P, 2P~ 1) (Code, 2P, 2P 1)

Table 2: Possible plugs, i.e. sub-components for our constructions which we
assume to be R-hard against 2P-adversaries.

Modes of Plug Usage

The plugs can be used in different modes
* Plug-then-randomize (PTR)

* Hard block cipher mode (HBC)

 Hard sponge mode (HSp)

Mode: Plug-then-Randomize

//t P’ //’n,—’U—t

Figure 3: Evaluating the plugged function (F - P)

Here F is a random (permutation) oracle
Iterate to increase hardness:

(p, u, max(e(p)”, 2P~™))-hard against 2P -adversaries

Mode: Hard block cipher

— - — - >€f s
Ey P Erai
— - — - -
r times

Figure 4: The HBC block cipher mode.
* Given related-key-secure n-bit block cipher E,, k>n

(p, u, max(e(p)”, 2P~™))-hard against 2P -adversaries

Example: Time-hard block cipher Skipper

Algorithm 5 SKIPPER encryption
Inputs: n-bit plaintext z; k-bit key £; RSA modulus N
Output: n-bit ciphertext y

y < AESk(x)

for all 7 € {1,2} do
Y1 || y2 < y, where |y;| = 88 and |ys| = 40
Y2 < y2 ® Tyo(y; mod N)
y < AESkei(y1l[y2)

end for

return y

e The plugis: (Time,n,27*)-hard Skjpper is:
(Time, n, max (244128 (27%0)?))-hard

Hard Sponge Mode (HSp)

e Sponges can be used to construct hash
functions, stream ciphers, MACs and AE

mo mi ho h1
0 z: >€T§ >é T T
c g g 9
IV —
Initialization Absorption Squeezing

Figure 5: A sponge-based hash function.

Hard Sponge Mode (HSp)

* |teratively use Plug-then-Randomize mode

L~ L~/ L~ »
4 ¢ 4 v 47
N
P %P
~ ~- > ~ -)
5 > .t bnt o mo my hg hy
capacity (c bits rate S
9 9 g
V——A 1 |]
Initialization ~ Absorption Squeezing
re 5: A sponge-based hash function.

* In the paper: Code-hard hash function based on
Keccak which we called Whale.

Example: Memory-Hard function Diodon

Algorithm 1 DI1ODON Asymmetrically memory-hard function
Inputs: t-bit block x; RSA modulus N of n, bits; M, L;
Output: u-bit output y

W=z

for alli e {1,...,M — 1} do
V; =VZ#, mod N

end for

S =Vu_1

for alli € {0,...,L — 1} do
j=5 mod M
S = H(571/])

end for

return 7, (S5)

g 21 21 20 20

Example: Memory-Hard function Diodon

Algorithm 2 DIODON for privileged users
Inputs: t-bit block x; RSA factors q,q¢’; n; M, T,
Output: u-bit output y

a=2~1X% mod (g—1){¢ =1)
S =2x¢ mod (qq’)
for all i € {0,...,L — 1} do
j =S mod M
e; = 27X mod (¢ —1)(¢’ — 1)
S =H(S,(z% mod (¢q")))
end for
return 7T, (S5)

Resource hardness Framework

Parameters Conservative Fast

t 128 128

u 128 128

T 2048 1024

n 2048 1

M 4,000 8,000, 000

L 4,000 20, 000
RAM (basic user) 1 Mb 1 Gb
Time (basic user) 10.00 s 9.87 s
Time (privileged) 13.49 s 10.65 s

n,— bits in RSA modulus; t,u —input/output sizes; M, L-
upper/lower chain length

Resource hardness Framework

Parameters Conservative Fast

t 128 128

U 128 128

ny 2048 1024

n 2048 1

M 4,000 8,000, 000

L 4,000 20, 000
RAM (basic user) 1 Mb 1 Gb
Time (basic user) 10.00 s 9.87 s
Time (privileged) 13.49 s 10.65 s

Open problem: Diodon is based on scrypt which has
lousy linear TM-tradeoff. Also slow due to RSA. Improve?

Few other things

R-hardness and code obfuscation

Using obfuscation idea from [BK'16*]:
 Compiler that runs some resource hard function F(pwd, x)

* Computes R-hard bits F(pwd,x) = b, and then makes code
transformations:

forb; =0

if x&&b; then A
else B
if x then A
else B \
if x&b; thenB

for b; = 1. else A

*Biryukov, Khovratovich, Egalitarian Computing, Usenix’16

R-hardness and code obfuscation

Using obfuscation idea from [BK'16]:
 Compiler that runs some resource hard function F(pwd, x)

* Computes R-hard bits F(pwd,x) = b, and then makes code
transformations:

for b; =0

if x&&b; then A
else B
if x then A

else B

if x&b; thenB
for b; = 1 else A

 The user will have to run R-hard function F(pwd,x) at least once

R-hardness and code obfuscation

Using obfuscation idea from [BK'16]:
 Compiler that runs some resource hard function F(pwd, x)

* Computes R-hard bits F(pwd,x) = b, and then makes code
transformations:

for b; =0

if x&b; then A
else B
if x then A

else B \ for b; = 1.
if x&&b; thenB
else A

* This could work well for previously unseen code.

R-hardness and code obfuscation

Using obfuscation idea from [BK'16]:
 Compiler that runs some resource hard function F(pwd, x)

* Computes R-hard bits F(pwd,x) = b, and then makes code
transformation:

for b; =0

if x&&b; then A
else B
if x then A

else B \ forby="1,
if x©ob; thenB
else A

Would this approach work to make
Incompressible, password protected INC-AES ?

R-hardness and code obfuscation

* Not really. Unless we already have K-
unextractable/unbreakable UBK-AES.

* However it shows hope that at least in some
cases UBK => INC

Related topics

Related research topics

Code Obfuscation (for structure hiding)

Cross-pollination with GreyBox crypto (for
value hiding)

10
Malicious crypto — adversarial crypto design
PK crypto based on new ideas

Open problems

Can we design a WBC-friendly cipher?

Would Even-Mansour cipher be a good
candidate?

Design Diodon-like asymmetric memory hard
functions with non-linear TM tradeoffs and
faster operations

INC-PWD-AES?

End

(and we are hiring postdocs on
WBC and other topics)

cryptolux.org i
m | .l

UNIVERSITE DU
LUXEMBOURG

securityandtrust.lu

