
PhD-FSTC-2019-38

The Faculty of Sciences, Technology and Communication

Dissertation

Defence held on 14/05/2019 in Luxembourg

to obtain the degree of

Docteur De L’Université Du Luxembourg

En Informatique

by

Raja BEN ABDESSALEM EP HELALI
Born on 10th April 1987 in Sousse (Tunisia)

Effective Testing Of Advanced Driver
Assistance Systems Using Evolutionary

Algorithms And Machine Learning

Dissertation Defense Committee

Prof. Dr. Lionel C. Briand, Dissertation Supervisor
Professor, University of Luxembourg, Luxembourg

Dr. Mehrdad Sabetzadeh, Chairman
Senior Research Scientist, University of Luxembourg, Luxembourg

Dr. Shiva Nejati, Debuty Chairman
Senior Research Scientist, University of Luxembourg, Luxembourg

Prof. Dr. Benoit Baudry, Member
Professor, KTH Royal Institute of Technology, Sweden

Dr. Markus Borg, Member
Senior Researcher, RISE Research Institutes of Sweden AB, Sweden

Abstract

Context. Improving road safety is a major concern for most car manufacturers. In recent years,
the development of Advanced Driver Assistance Systems (ADAS) has subsequently seen a tremen-
dous boost. The development of such systems requires complex testing to ensure vehicle’s safety
and reliability. Performing road tests tends to be dangerous, time-consuming, and costly. Hence,
a large part of testing for ADAS has to be carried out using physics-based simulation platforms,
which are able to emulate a wide range of virtual traffic scenarios and road environments. The
main difficulties with simulation-based testing of ADAS are: (1) the test input space is large and
multidimensional, (2) simulation platforms provide no guidance to engineers as to which scenar-
ios should be selected for testing, and hence, simulation is limited to a small number of scenarios
hand-picked by engineers, and (3) test executions are computationally expensive because they of-
ten involve executing high-fidelity mathematical models capturing continuous dynamic behaviors
of vehicles and their environment. The complexity of testing ADAS is further exacerbated when
many ADAS are employed together in a self-driving system. In particular, when self-driving
systems include many ADAS (i.e., features), they tend to interact and impact one another’s be-
havior in an unknown way and may lead to conflicting situations. The main challenge here is
to detect and manage feature interactions, in particular, those that violate system safety require-
ments, hence leading to critical failures. In practice, once feature interaction failures are detected,
engineers need to devise resolution strategies to resolve potential conflicts between features. De-
veloping resolution strategies is a complex task and despite the extensive domain expertise, these
resolution strategies can be erroneous and are too complex to be manually repaired. In this dis-
sertation, in addition to testing individual ADAS, we focus on testing self-driving systems that
include several ADAS.

Approach. In this dissertation, we propose a set of approaches based on meta-heuristic search and
machine learning techniques to automate ADAS testing and to repair feature interaction failures in
self-driving systems. The work presented in this dissertation is motivated by ADAS testing needs
at IEE, a world-leading part supplier to the automotive industry. In this dissertation, we focus
on the problem of design time testing of ADAS in a simulated environment, relying on Simulink
models. To address the above-mentioned challenges, we propose the following techniques for
testing ADAS: (1) We propose a testing approach for ADAS by combining multi-objective search
with surrogate models developed based on neural networks. We use multi-objective search to
guide testing towards the most critical behaviors of ADAS. Surrogate models enable our testing
approach to explore a larger part of the input search space with less computational resources. (2)
We propose an automated testing algorithm that combines multi-objective search with decision
tree classification models to guide the search-based generation of tests faster towards test scenar-
ios leading to failures. Our approach produces a decision tree model that identifies the regions of a
test input space that are likely to contain most test scenarios leading to failures. (3) We propose an
automated technique to detect feature interaction failures by casting our approach into a search-
based test generation problem. We define a test guidance that combines existing search-based test

objectives with new heuristics specifically aimed at revealing feature interaction failures. (4) We
propose a strategy to identify errors in the feature interaction resolution rules for self-driving sys-
tems and to automatically repair these errors. We develop a new search-based repairing algorithm
that localizes faults and mutates the faulty rules to generate patches.

Our test generation techniques and repairing approach are evaluated using several industrial
ADAS from our partner company IEE.

Contributions. The main research contributions in this dissertation are:

1. A testing approach for ADAS that combines multi-objective search with surrogate models
to guide testing towards the most critical behaviors of ADAS, and to explore a larger part of
the input search space with less computational resources.

2. An automated testing algorithm that builds on learnable evolution models and uses clas-
sification decision trees to guide the generation of new test scenarios within complex and
multidimensional input spaces and help engineers interpret test results.

3. An automated technique that detects feature interaction failures in the context of self-driving
systems based on analyzing executable function models typically developed to specify sys-
tem behaviors at early development stages.

4. An automated technique that uses a new many-objective search algorithm to localize and
repair errors in the feature interaction resolution rules for self-driving systems.

ii

Acknowledgements

I would like to state my sincere gratitude to my supervisor, Lionel Briand, for his invaluable
support, feedback and guidance throughout the whole PhD project. I would like to thank him
for his significant effort to make my research work match the highest academic standards. I am
grateful to have had the opportunity to work with and learn from one of the best researchers in the
field.

I would like to express my infinite gratitude to my co-supervisor, Shiva Nejati, for her encour-
agement, inspiration, and counsel in both personal and professional matters. Her devotion, help
and advice were crucial for the realization of this PhD project. Her care and guidance were very
constructive and rich so that they helped me to hone my writing and presentation skills.

I would like to express my infinite gratitude to Annibale Pannichella. His availability and
comments are a relevant lead to the success of this work. I would like to thank him for his
insightful comments, his guidance, and support.

I am grateful to the members of my defense committee: Mehrdad Sabetzadeh, Benoit Baudry
and Markus Borg for dedicating time and effort to review this dissertation. I would like to thank
further Benoit Baudry and Markus Borg for taking the time to travel to Luxembourg to attend my
defense.

The research presented in this thesis was conducted under the collaboration between academia
and industry. I would like to thank IEE S.A. Luxembourg for supporting my work and providing
the case study systems that were the subject of my empirical studies. In particular, I would like to
thank Thomas Stifter for providing me with technical assistance and guidance related to the case
study systems, and for sharing his valuable time and insights with us.

Furthermore, I would like to thank my family for believing in me. Special thanks to my dear
husband Aymen Helali for his confidence in me, for his patience, love, support and encouragement
that motivated me to keep up the hard work during my PhD. I also would like to thank my parents,
my sister and my brothers for their lifelong support and for always encouraging me to pursue my
dreams.

Last but not least, I would like to thank my colleagues and friends at the Software Verification
Lab for the wonderful time we spent together. I am thankful for their helpful advice and for
contributing to a positive work environment.

Supported by the Fonds National
de la Recherche, Luxembourg (FN-
R/P10/03), the European Research
Council (ERC/694277), and IEE.

Contents

Contents v

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Context . 1
1.2 Challenges . 3
1.3 Research Contributions . 3
1.4 Dissertation Outline . 4

2 Background 6
2.1 Meta-Heuristic Search . 6

2.1.1 Non-dominated Sorting Genetic Algorithm version 2 (NSGAII) 7
2.1.2 Many-Objective Sorting Algorithm (MOSA) 8

2.2 Supervised Learning techniques . 9
2.2.1 Surrogate models . 9
2.2.2 Decision Trees . 11

2.3 Program repair . 12

3 Testing Advanced Driver Assistance Systems 14
3.1 Motivation and Challenges . 15
3.2 The PeVi System . 16
3.3 Surrogate Models . 20
3.4 Search with Surrogate Model . 21
3.5 Tailoring Search to PeVi . 24
3.6 Evaluation . 24
3.7 Conclusions . 30

4 Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms 32
4.1 Motivating Case Study . 33
4.2 ADAS Formalization . 36

v

Contents

4.3 Search Guided by Classifiers . 38
4.3.1 Multi-objective search . 38
4.3.2 Decision tree learning . 40
4.3.3 NSGAII guided by decision trees . 42

4.4 Evaluation . 44
4.4.1 Research Questions . 44
4.4.2 Metrics . 45
4.4.3 Experiment Design . 46
4.4.4 Results . 47
4.4.5 Threats to validity . 51

4.5 Conclusions . 52

5 Testing Autonomous Cars for Feature Interaction Failures using Many-Objective Search 53
5.1 Motivation . 55
5.2 Approach . 56

5.2.1 Testing Feature-Based Control Systems . 57
5.2.2 Test Inputs and Outputs . 57
5.2.3 Hybrid Test Objectives . 59
5.2.4 Search Algorithm . 63

5.3 Evaluation . 66
5.3.1 Research Questions . 66
5.3.2 Case Study Systems . 67
5.3.3 Experimental Settings . 68
5.3.4 Results . 68

5.4 Conclusions . 71

6 Automatic Localization and Repair of Feature Interaction Failures 72
6.1 Motivation . 73
6.2 Program Repair: State-of-the-art . 75
6.3 Approach . 76

6.3.1 Inputs . 77
6.3.1.1 Faulty IntC . 77
6.3.1.2 Test suite (TS) . 77

6.3.2 Fault Localization . 78
6.3.3 Generating a Patch . 80

6.3.3.1 Mutation Operators . 80
6.3.4 Evaluating a Patch . 82

6.3.4.1 Fitness Function . 83
6.3.4.2 Archive . 84

6.3.5 Search Algorithm . 85
6.4 Evaluation . 86

6.4.1 Research questions . 86

vi

Contents

6.4.2 Experiment Design . 86
6.4.3 Results . 87

6.5 Conclusions . 88

7 Related Work 90
7.1 Search-based testing . 90
7.2 Surrogate modeling . 90
7.3 Testing autonomous cars . 91
7.4 Feature interactions . 92

7.4.1 Feature interactions in software product lines 92
7.4.2 Feature interaction detection via model checking 92
7.4.3 Feature interaction resolution . 93

7.5 Program repair . 93

8 Conclusions and Future Work 95
8.1 Summary . 95
8.2 Future Work . 97

List of Papers 99

Bibliography 100

vii

List of Figures

1.1 A snapshot of the simulation platform used to test ADAS. 2

2.1 Simple artificial neuron. Here y is the output signal, φ is the activation function, n is
the number of connections to the perceptron, wi is the weight associated with the ith

connection, xi is the value of the ith connection, and b in the figure represents the thresh-
old [Honkela, 2001]. 10

2.2 Simple example of neural network. 11
2.3 An example of decision tree for distinguishing papayas. 11
2.4 Overview of a classical program repair. 13

3.1 PeVi’s warning areas. 16
3.2 A fragment of the PeVi domain model. 18
3.3 Comparing HV values obtained by (a) 40 runs of NSGAII and NSGAII-SM (cl=.95); (b)

40 runs of random search and NSGAII-SM (cl=.95); and (c) the worst runs of NSGAII,
NSGAII-SM (cl=.95) and random search. 28

4.1 An example of a vision-based control system: Automated Emergency Braking (AEB)
system. 34

4.2 The AEB domain model. 35
4.3 The ranges of the pedestrian position (xp

0 , yp
0) and orientation (θ p

0) for different road
topologies. 35

4.4 Decision trees generated our approach for the AEB system: (a) An initial decision tree,
and (b) A decision tree obtained after some iterations of the NSGAII-DT algorithm. . . . 41

4.5 Comparing HV, GD and SP values obtained by NSGAII and NSGAII-DT. 47
4.6 Evaluating the critical regions: (a) the RegionSize, (b) the GoodnessOfFit, and (c) the

GoodnessOfFit-crt values. 49
4.7 Examples of critical regions for the AEB case study . 49

5.1 Overview of a typical function model capturing the software subsystem (SUT) of a self-
driving car. 55

5.2 Early testing of control system function models using simulators. 57
5.3 Test inputs required to simulate SafeDrive, our case study system. 58

viii

List of Figures

5.4 Actuator command vectors generated at the feature-level and at the system-level by sim-
ulating SafeDrive. Vectors b f , a f and s f indicate command vectors generated by feature
f for the braking, acceleration and steering actuators, respectively. The IntC component
analyzes the command vectors generated by all the features and issues the final command
vectors b, a and s to the braking, acceleration and steering actuators, respectively. 59

5.5 The number of feature interaction failures found by Hybrid, Fail and Cov over time for
(a) SafeDrive1 and (b) SafeDrive2 systems. 69

6.1 Decision rules that determine which feature output should be applied at each time step
depending on the environment and other conditions. 74

6.2 Decision rules structure. 75
6.3 Example of decision rules structure. 75
6.4 modify operator. 81
6.5 Example of selecting bs (path condition) to be used for the shift operator. 82
6.6 Examples of applying the shift operator. 83
6.7 Time required for RUFI to repair IntC . 88

ix

List of Tables

4.1 Statistical test results for NSGAII-DT and NSGAII at 24h (the format is: metric (p-value
/ Â12)). 48

5.1 Safety requirements and failure distance functions for SafeDrive. 60
5.2 Statistical test results comparing the number of feature interaction failures found by Hy-

brid, Fail and Cov over time for SafeDrive1 and SafeDrive2 systems (see Figure 5.5). . . 70

x

List of Algorithms

1 NSGAII Algorithm . 7

2 Classical Program Repair Algorithm . 13

3 NSGAII-SM Algorithm . 22

4 NSGAII-DT . 43

5 Feature Interaction Testing (FITEST) . 64

6 GENERATE-PATCH . 81

7 RUN-EVALUATE . 84

8 UPDATE-ARCHIVE . 85

9 RUFI . 86

xi

Chapter 1

Introduction

1.1 Context
Recent years have seen a proliferation of complex Advanced Driver Assistance Systems (ADAS),
in particular, in the context of autonomous cars. Examples of ADAS include night vision, collision
avoidance systems and traffic sign recognition. ADAS are typically based on vision systems and
sensor technologies. They are meant to help drivers by providing proper warnings or by preventing
dangerous situations. This results in reducing the number of serious crashes, and hence, improving
road safety [Golias et al., 2002].

ADAS software for autonomous vehicles have to be tested and validated to ensure vehicles’ safety
and reliability. Many automotive companies take on-road test initiatives to drive their fleets of au-
tonomous vehicles on real roads. However, testing ADAS with real hardware and in the real envi-
ronment (e.g., by making a person or an animal cross a road while a car is approaching) is obviously
dangerous, time-consuming, costly and to a great extent infeasible. It is further impractical to per-
form a full-fledged on-road vehicle-level testing after every change to self-driving software systems.
To ensure safety of self-driving technologies, vehicle-level testing alone is neither enough nor prac-
tical. Therefore, it needs to be complemented by testing methods performed on computer software
simulators [Belbachir et al., 2012, Koopman and Wagner, 2016].

Simulation, i.e., design time testing of system models, is arguably the most practical and effective
way of testing software systems used for autonomous driving. Rich simulation environments are
able to replicate a wide range of virtual traffic and road environments. This includes simulating
various weather conditions, road types and topologies, intersections, infrastructures, vehicle types and
pedestrians. Further, such platforms are able to simulate sensor technologies such as radar, camera
and GPS. Simulation platforms enable engineers to execute scenarios describing different ways in
which pedestrians interact with the road traffic or vehicles interact with one another, and allow them
to run a much larger number of test scenarios compared to vehicle-level testing without being limited
by conditions enforced during on-road testing.

1

Chapter 1. Introduction

In this dissertation, we focus on the problem of design time testing of ADAS in a simulated envi-
ronment. This dissertation presents a set of approaches based on meta-heuristic search and machine
learning techniques to automate ADAS testing. The work presented in this dissertation has been done
in collaboration with IEE [IEE, 2019], a leading supplier in automotive sensing systems enhancing
safety and comfort in vehicles produced by major car manufacturers worldwide.

In this dissertation, we use the PreScan simulator [TASS-International, 2019] to test ADAS. PreS-
can is a widely-used, commercial ADAS simulator in the automotive sector and has been used by IEE
to test ADAS at early development stages. Figure 1.1 shows a snapshot of PreScan. The physics-based
simulation function of PreScan is enabled via a network of connected Matlab/Simulink models [Mat-
lab, 2019] implementing dynamic behavior of vehicles, pedestrians and sensors. To test ADAS, the
software under test (SUT) should be also developed in Simulink and should be integrated into PreScan
using inter-block connections between the Simulink models of the car and the SUT.

Figure 1.1. A snapshot of the simulation platform used to test ADAS.

Each ADAS is usually tested separately. However, autonomous cars are typically built as a com-
position of features (i.e., individual ADAS) that are independent units of functionality. Features tend
to interact and impact one another’s behavior in unknown ways. A feature interaction is a situation
where one feature impacts the behavior of another feature [Jackson and Zave, 1998, Calder et al.,
2003, Braithwaite and Atlee, 1994]. Some feature interactions are desirable, and some may result
in violations of system safety requirements and are therefore undesired. Detecting undesired feature
interactions (i.e., feature interactions leading to failures) is challenging. Once feature interactions are
detected, engineers develop algorithms to resolve potential conflicts between features. This requires
developing complex rules that determine what feature output should be prioritized at each situation
based on the environment factors as well as other conditions. In this dissertation, we focus on testing
individual ADAS as well as testing self-driving systems containing several ADAS.

2

1.2. Challenges

1.2 Challenges
Testing ADAS using existing simulation platforms, is limited to executing the ADAS models for a
small number of simulation scenarios hand-picked by engineers, and manually inspecting the results
of individual simulations. Manual test generation is expensive and time-consuming, and further,
manually picked test scenarios are unlikely to uncover faults that the engineers are not aware of a
priori.

Our primary goal in this thesis is to develop automated test generation techniques for testing
ADAS and to develop an automated repairing technique for feature interaction failures in autonomous
cars. To achieve this goal, we should address the following challenges:

• Existing simulation tools lack the intelligence and automation necessary to guide the simulation
scenarios in a direction such that they are likely uncover faulty behaviors.

• Executing simulation scenarios is computationally expensive. Hence, given a limited time bud-
get for testing, only a small fraction of system behaviors can be simulated and explored.

• The space of test input scenarios is complex and multidimensional. Engineers require tech-
niques that allow them to explore complex test input spaces and to identify critical test scenarios
(i.e., failure revealing test scenarios).

• Concerning the problem of feature interactions, feature interactions in self-driving systems are
numerous, complex and depend on several factors such as the characteristics of sensors and
actuators, car and pedestrian dynamics, weather conditions, road traffic and sidewalk objects.
Without effective and automated assistance, engineers cannot detect undesired feature inter-
actions within the search space of all possible interactions and cannot assess the impact of
complex environmental factors on feature interactions.

• Developing rules to resolve feature interactions is a difficult task, and requires extensive domain
expertise and a thorough analysis of system requirements. There is no guarantee that the set
of system requirements or the set of conflict resolution rules is complete. Further, the rules
or their implementation can be erroneous. The decision rules are too complex to be manually
repaired. Engineers require techniques that automatically repair the developed rules in order to
avoid conflicts between feature outputs.

1.3 Research Contributions
In this dissertation, we address the challenges of testing ADAS. Specifically, we propose the following
contributions:

1. A testing approach for ADAS that combines multi-objective search with surrogate models de-
veloped based on neural networks. Our approach uses multi-objective search to guide testing
towards the most critical behaviors of ADAS. Surrogate modeling enables our testing approach
to explore a larger part of the input search space with less computational resources. This contri-

3

Chapter 1. Introduction

bution has been published in a conference paper [Ben Abdessalem et al., 2016] and is presented
in Chapter 3.

2. An automated testing algorithm that builds on learnable evolutionary algorithms [Michalski,
2000, Wojtusiak and Michalski, 2004]. These algorithms rely on machine learning or a com-
bination of machine learning and Darwinian genetic operators to guide the generation of new
solutions (test scenarios in our context). Our approach combines multi-objective population-
based search algorithms and decision tree classification models to achieve the following goals:
First, classification models guide the search-based generation of tests faster towards critical test
scenarios (i.e., test scenarios leading to failures). Second, search algorithms refine classification
models so that the models can accurately characterize critical regions (i.e., the regions of a test
input space that are likely to contain most critical test scenarios). Using classification mod-
els helps explore the complex input space of ADAS by focusing the search on the most critical
parts of the space. This contribution has been published in a conference paper [Ben Abdessalem
et al., 2018a] and is presented in Chapter 4.

3. An automated technique that detects feature interaction failures in self-driving systems. We
cast the problem of detecting undesired feature interactions into a search-based test generation
problem. We define a set of hybrid test objectives (distance functions) that combine traditional
coverage-based heuristics with new heuristics specifically aimed at revealing feature interac-
tion failures. We develop a new search-based test generation algorithm, called FITEST, that is
guided by our hybrid test objectives. FITEST extends recently proposed many-objective evo-
lutionary algorithms [Panichella et al., 2018] to reduce the time required to compute fitness
values. This contribution has been published in a conference paper [Ben Abdessalem et al.,
2018b] and is presented in Chapter 5.

4. An automated technique that localizes and repairs feature interaction failures in self-driving
systems. We develop a new search-based repairing algorithm, called RUFI, that localizes faults
and mutates the faulty program (i.e., decision rules) to generate patches. We propose mutation
operators that are specifically designed to address the specificities of our problem, and hence,
increase the likelihood of generating correct patches. Our approach can repair programs with
multiple faults. This contribution is presented in Chapter 6.

5. We have evaluated all of our proposed techniques by applying them into real industrial case
studies from our industrial partner, IEE.

1.4 Dissertation Outline
Chapter 2 provides some foundational background on meta-heuristic search algorithms, supervised
learning techniques, and existing program repair approaches.

Chapter 3 describes our search-based approach for testing ADAS. The testing approach uses surro-
gate models to reduce the execution time of the search algorithm.

Chapter 4 presents a testing approach that helps in exploring the complex input space of ADAS and
identifying critical test scenarios.

4

1.4. Dissertation Outline

Chapter 5 introduces our approach for detecting feature interaction failures in self-driving systems.

Chapter 6 describes our automated repair algorithm for the decision rules of self-driving systems.

Chapter 7 discusses related work.

Chapter 8 summarizes the thesis contributions and discusses perspectives on future work.

5

Chapter 2

Background

This chapter presents several background concepts, which are used throughout this thesis. This chap-
ter is organized as follows: Section 2.1 introduces meta-heuristic search and describes the search
algorithms used in our work. Section 2.2 introduces supervised learning techniques that are used in
this dissertation. Section 2.3 presents the state-of-the-art automated repair techniques.

2.1 Meta-Heuristic Search
Meta-heuristic search is a randomized optimization method that aims to find optimal (or near optimal)
solutions to hard problems [Luke, 2013]. It has been applied to a wide range of problems, where no
analytic or numerical approximation technique can be used and brute force search is inapplicable due
to the large size of the input space.

Meta-heuristics algorithms can be classified into Single-state search and Population-based search.
Single-state meta-heuristic search algorithms keep only one single candidate solution in the solution
set. The most naive single-state meta-heuristic search algorithm is Random Search (RS). The RS al-
gorithm generates solutions randomly and evaluates them against the search criteria [Hamlet, 2002].
The generation process can continue until the time budget expires, and usually returns only the best
solution found. Population-based search algorithms, on the other hand, keep multiple candidate so-
lutions in the solution set, called the population. Genetic Algorithms (GAs) [Goldberg, 1989] are
examples of population-based algorithms. GAs rely on four basic features: (1) population of individ-
uals, (2) selection according to fitness, (3) crossover to produce new offsprings, and (4) mutation of
new offsprings. Each individual is referred to as chromosome, and represents a candidate solution for
a given problem. Chromosomes consist of a set of genes, where each gene encodes a value in the so-
lution. GA starts by randomly generating a population of chromosomes, and evaluating their fitness.
Then, the population is evolved toward better solutions through subsequent iterations. Specifically, at
each iteration, a pair of chromosomes is randomly selected with increasing probability according to
fitness. Then, the pair is crossed over to create two individuals (offspring), whose genes are then ran-

6

2.1. Meta-Heuristic Search

domly mutated. Finally, the offspring replaces two chromosomes, chosen with decreasing probability
according to the fitness.

Many variants of the standard GA have been proposed to solve single-objective, multi-objective,
or many-objective problems. Single-objective optimization problems have typically one solution (or
multiple solutions with the same optimal fitness value). Multi-objective and many-objective optimiza-
tion problems involve multiple and conflicting objective functions to be optimized at the same time.
Finding optimal solutions for problems with multiple objectives involves analyzing trade-offs. Multi-
objective optimization involves two or three objectives, while many-objective optimization refers
to a class of optimization problems that have more than three objectives. Below, we describe the
population-based search algorithms that we use in our work.

2.1.1 Non-dominated Sorting Genetic Algorithm version 2 (NSGAII)

Non-dominated Sorting Genetic Algorithm version 2 (NSGAII) [Deb et al., 2002, Luke, 2013] is a
multi-objective search optimization algorithm, which has been previously applied to several software
engineering problems. The NSGAII algorithm generates a set of solutions forming a Pareto nondom-
inated front [Deb et al., 2002, Luke, 2013]. A dominance relation over solutions is defined as follows:
A solution x dominates another solution y if x is not worse than y in all fitness values, and x is strictly
better than y in at least one fitness value. The output of NSGAII is a non-dominating (equally viable)
set of solutions, representing best-found trade-offs among fitness functions.

Algorithm 1: NSGAII Algorithm
Input: m: Population and archive size // |A| = |P| = m
Input: g: Maximum number of search iterations
Result: BestSolution: The best solutions found in g iterations

1 begin
2 A←− /0 // Empty archive
3 P←− {p1, . . . , pm} // Initial population (randomly selected)
4 for g iterations do
5 ComputeFitness(P) // For all p ∈ P, fitness values F1(p), . . .Fk(p) are computed
6 Q←− P∪A // |Q| = 2m
7 rank←− ComputeRanks(Q)
8 A←− /0
9 while |A|< m do

10 p←− BestRanked(Q,rank)
11 A←− A∪{p}
12 BestSolution←− A
13 P = Breed(A) // breeding a new population P from the parent archive A
14 return BestSolutionFound

Algorithm 1 illustrates the NSGAII algorithm. The algorithm works as follows: Initially, a random
population P is generated (Line 3). After computing fitness functions F1, . . . ,Fk for each individual in
P (Line 5), the individuals in P as well as those in the archive A from the previous iteration are sorted
based on the non-domination relation (Line 7). In particular, a partial order relation rank is computed
to sort elements in Q = P∪A based on the fitness functions F1, . . . ,Fk. Assuming that the goal of

7

Chapter 2. Background

optimization is to minimize the fitness functions F1 to Fk, the partial order rank⊆Q×Q is defined as
follows:

∀p, p′ ∈ Q · rank(p, p′) ⇔ ∀i ∈ {1, . . . ,k} ·Fi(p)≤ Fi(p′)
∧∃i ∈ {1, . . . ,k} ·Fi(p)< Fi(p′)

Specifically, rank(p, p′) if and only if p dominates p′ at least in one fitness value, i.e., p is not
worse (higher) than p′ in all the fitness values and p is strictly better (less) than p′ in at least one fitness
value. Note that it might happen for a given pair of individuals that neither of them dominates the
other. For these individuals, we use the notion of crowding distance [Deb et al., 2002], denoted by cd,
to be able to partially rank them. We write non-dominating(p, p′) when p and p′ are non-dominating,
and say that non-dominating(p, p′) holds iff:

∀i ∈ {1, . . . ,k} ·Fi(p) = Fi(p′)
∨∃i, i′ ∈ {1, . . . ,k} ·Fi(p)< Fi(p′)∧Fi′(p)> Fi′(p′)

Let R⊆ Q be such that for all p, p′ ∈ R, we have non-dominating(p, p′). For the elements in R, a
crowding distance function cd is defined that assigns a value to p ∈ R based on the distance between
p and other p′ ∈ R. The definition of the relation rank⊆Q×Q is then extended as follows: For every
p, p′ ∈ Q, we have rank(p, p′) iff:
(∀i ∈ {1, . . . ,k} ·Fi(p)≤ Fi(p′)∧∃i ∈ {1, . . . ,k} ·Fi(p)< Fi(p′))

∨
(non-dominating(p, p′)∧ cd(p′)< cd(p))

Having computed the rank partial order, the NSGAII algorithm then creates a new archive A of
the best solutions found so far by selecting the best individuals from Q based on rank (Lines 9-11).
Note that BestRanked(Q,rank) returns an element p ∈ Q such that no other p′ ∈ Q dominates p, i.e.,
¬rank(p′, p) for every p′ ∈ Q\{p}. When there are more than one individual that are not dominated
by any element in Q, BestRanked(Q,rank) returns the one that appears first in the lexicographic
ordering.

After computing the archive A, the algorithm breeds a new children population P from the parent
archive A by calling the Breed procedure (Line 13). This is done by selecting m/2 individuals as
parents from A using the tournament selection technique [Luke, 2013], and then creating m offsprings
from the m/2 selected parents using the crossover and mutation genetic operators. The NSGAII
algorithm uses the single-point crossover and bitwise mutation for binary-coded GA and the simulated
binary crossover (SBX) operator and polynomial mutation [Deb and Agrawal, 1995] for real-coded
GA. The algorithm terminates by returning the best solutions found within g generations.

2.1.2 Many-Objective Sorting Algorithm (MOSA)

Many-Objective Sorting Algorithm (MOSA) [Panichella et al., 2015] is a many-objective search opti-
mization algorithm. MOSA generates test cases that separately covers individual test objectives (e.g.,
branches) rather than finding solutions capturing well-distributed and diverse trade-offs among the
search objectives. MOSA is an extension of NSGAII that uses a preference sorting criterion to reward
the best tests for each uncovered test objective, regardless of their dominance relation with other tests

8

2.2. Supervised Learning techniques

in the population. MOSA uses an archive to store the tests that cover new test objectives, which aims
to avoid losing the best individuals for a given test objective after each iteration.

The MOSA algorithm works as follows: similar to NSGAII, MOSA starts with an initial set of
random solutions. Then, the offsprings are created by applying crossover and mutation. To select
the best individuals from the combined set of parents and offsprings, MOSA replaces the rank partial
order used in NSGAII with a new ranking algorithm based on a preference criterion. MOSA imposes
an order of preference among non-dominated test cases. To do so, MOSA rewards test cases that
cover at least one objective over those that yield a low value on several objectives without covering
any. In particular, test cases are ranked as follows: First, MOSA determines the test cases with the
lowest objective function for each uncovered test objective. All these test cases are assigned rank 0
(i.e., they are inserted into the first non-dominated front). Second, the remaining test cases are ranked
according to the traditional non-dominated sorting algorithm used by NSGAII (i.e., the rank partial
order defined for NSGAII). The preference criterion aims to focus the search effort on the test cases
that are closer to one or more uncovered test objectives. After determining the order of preference of
each test case, the archive that stores previously uncovered objectives is updated in order to yield the
final test suite.

2.2 Supervised Learning techniques
Machine learning is a part of artificial intelligence (AI) that provides systems the ability to auto-
matically learn and improve from past experiences without being explicitly programmed [Alpaydin,
2010a]. Machine learning techniques can generally be divided into two broad categories, supervised
and unsupervised. In supervised learning, the aim is to learn a mapping between a set of input objects
and output variables from labeled training data. In contrast, in unsupervised learning, data is trained
based on input data only.

In this dissertation, we use supervised learning techniques. Supervised learning techniques are
divided into regression and classification techniques where the goal is to predict real-valued and cat-
egorical outputs, respectively. We use surrogate models (artificial neural networks) in Chapter 3,
to predict simulation outputs within some confidence interval to bypass the execution of expensive
simulations. We use classification models (decision trees) in Chapter 4, to guide the search-based
generation of tests faster towards critical test scenarios (i.e., test scenarios leading to failures).

2.2.1 Surrogate models

Surrogate models are mathematical relations that aim to reduce computational cost by approximating
high-fidelity but computationally expensive models of physical phenomena [Alpaydin, 2010a]. Com-
mon examples of surrogate models are artificial neural networks, support vector machines, bayesian
networks, regression trees, and kriging models.

9

Chapter 2. Background

Figure 2.1. Simple artificial neuron. Here y is the output signal, φ is the activation function, n is the number
of connections to the perceptron, wi is the weight associated with the ith connection, xi is the value of the ith

connection, and b in the figure represents the threshold [Honkela, 2001].

In Chapter 3, we use neural networks to predict simulation outputs in order to reduce the exe-
cution time of our models. Artificial neural network models have been used as universal function
approximators [Cybenko, 1989, Hornik, 1991]. Neural networks take their inspiration from the brain.
The brain is composed of a very large number of cells, called neurons, that communicate via electri-
cal signals. The interneuron connections are mediated by electrochemical junctions called synapses,
which are located on branches of the cell referred to as dendrites. Each neuron receives thousands of
connections from other neurons and is therefore constantly receiving a multitude of incoming signals,
which eventually reach the cell body. In computer science, artificial neurons are processing units,
which represent the smallest building block of an artificial neural network. An example of a simple
artificial neuron is shown in Figure 2.1. Synapses are modelled by a single number or weight so that
each input is multiplied by a weight before being sent to the equivalent of the cell body. The weighted
signals are summed together by simple arithmetic addition to supply a node activation. If the com-
bined input exceeds a threshold, it will activate and send an output (conventionally "1"), otherwise it
outputs zero. The output it sends is determined by the activation function (φ in Figure 2.1).

Neural networks consist of a number of neurons. Figure 2.2 shows an example of neural network.
Each node is represented by a circle. All connections have implicit weights. The nodes are organized
in a layered structure. The first layer is the input layer followed by one or more hidden layers. The
last layer is the output layer. Each signal emanates from an input and passes via at least two nodes
before reaching an output beyond which it is no longer transformed.

Building a surrogate model by training neural networks requires a dataset that contains input
values and known output values. The dataset is divided into training and test sets. The training dataset
is used to modify the weights of the neural network using an error minimization objective function.
The back-propagation algorithm is usually used to train the network. Using the back-propagation
algorithm, the errors in the output layer are propagated backwards to the preceding hidden layers,
and their weights are adjusted to reduce the error. The objective function used for training the neural
network and updating its weights is the Mean-squared error (MSE), which is the most commonly used
measure. The test dataset is used to evaluate the accuracy of the surrogate model.

10

2.2. Supervised Learning techniques

Figure 2.2. Simple example of neural network.

Figure 2.3. An example of decision tree for distinguishing papayas.

2.2.2 Decision Trees

A decision tree is a hierarchical tree structure implementing the divide-and-conquer strategy on the
input objects [Alpaydin, 2010a]. Decision trees can be used for both regression and classification.
In this dissertation, we use classification decision trees [Witten et al., 2011]. Decision trees classify
instances by sorting them based on attributes (feature values). Each (non-leaf) node in a decision tree
represents an attribute in an instance to be classified, and each branch represents a value that the node
can assume (i.e., indicating the decision or prediction result). Decision trees classify an unknown
instance by sorting it down the tree according to the values of the attribute tested in successive nodes,
and when a leaf is reached the instance is classified according to the class assigned to the leaf. Deci-
sion trees generate classification rules [Hall et al., 2011], where a path from the root node of the tree
to any leaf is considered as a rule. These classification rules are easy to understand.

An example of a decision tree for checking if a given papaya is tasty or not is shown in Fig-
ure 2.3 [Shalev-Shwartz and Ben-David, 2014]. This decision tree is built based on a training set
that uses as attributes the color of the papaya (ranging from dark green, through orange and red to
dark brown) and the softness of the papaya (ranging from rock hard to mushy). In this example, the
training set is a sample of papayas that are examined for color and softness and then tasted to found
out whether they were tasty or not.

To check whether a given papaya is tasty or not, the decision tree first checks the color of the
papaya. If the color is not in the range from pale green to pale yellow, the tree will immediately predict

11

Chapter 2. Background

that the papaya is not tasty. Otherwise, the second step is to check the softness of the papaya. The
decision tree predicts the papaya is tasty when the papaya gives slightly to palm pressure. Otherwise,
the prediction result is "not-tasty". The resulting classifier is very simple to understand and interpret.

2.3 Program repair
The key idea of program repair techniques is to try to automatically repair software systems by local-
izing faults and modifying the software code to produce patches [Monperrus, 2018]. An overview of
a classical programs repair is shown in Figure 2.4. Program repair takes as inputs a valid test suite
and a faulty program. The test suite includes both passing and failing test cases. Program repair starts
by locating the parts of the code that is responsible for the faults. This step is known as Fault Local-
ization. Then, program repair tries to find patches for the faults to repair the program. This process is
repeated until the patch program is found.

A well-known Fault Localization approach, used by classical program repair, is statistical debug-
ging that uses coverage criteria as a heuristic to locate faults [Renieres and Reiss, 2003]. The idea is
to execute all the given test cases and for each program element (i.e., statement s) in the code, keep
track of how many failing and passing test cases execute them. Statistical debugging uses ranking
formulas to compute the suspiciousness scores of each statement s. A well-known statistical ranking
formula used for fault localization for source code is Tarantula [Jones et al., 2002]. Tarantula defines
the suspiciousness score of s, denoted by ScoreTa(s), as follows:

ScoreTa(s) =
f ailed(s)

f ailed
#passed(s)

#passed + # f ailed(s)
f ailed

(2.1)

such that, #passed(s) and # f ailed(s) are respectively the number of passing and failing test cases
that execute s, and #passed and # f ailed represent the total number of passing and failing test cases,
respectively. Using the suspiciousness score, statistical debugging, then, derives a statistical fault
ranking, specifying an ordered list of statements likely to be faulty. Traditional programs repair
consider such ranking to identify the fault, then tries to automatically identify patches for that fault.

Classical programs repair use a fitness function to evaluate each patch. The fitness function of a
program p is based on the number of failing and passing test cases. For each faulty program p, the
fitness function is defined as follows:

Fit(p) =WNeg×NFailed +WPos×NPassed (2.2)

where NFailed is the number of failed test cases and NPassed is the number of passed test cases.
Each passed test is weighted by the global parameter WPos; each failed test is weighted by the global
parameter WNeg. The lower the value of the fitness function, the better the patch.

12

2.3. Program repair

Figure 2.4. Overview of a classical program repair.

Traditional automated program repair techniques use Genetic Programming (GP) [Koza, 1992] to
maintain a population of individual patches and uses a single fitness function to evaluate each patch.
The pseudo-code of classical programs repair is given in Algorithm 2.

Algorithm 2: Classical Program Repair Algorithm
Input: m: Population size
Input: TS: Test suite
Result: Pop: Best patches found within the search time budget

1 begin
2 Pop←− {p1, . . . , pm} // Initial population (randomly selected)
3 ComputeFitness(Pop)
4 while not(Stop condition) do
5 O←− /0
6 O←− LocalizeFaultAndGeneratePatch(Pop, T S)
7 ComputeFitness(O)
8 Pop←− SelectBestPatches(Pop∪O)
9 return Pop

The algorithm works as follows: Initially, a random population Pop is generated (line 2). The
algorithm then computes the fitness function for every individual p ∈ Pop (line 3). Each iteration
of the algorithm consists of the following steps: First, the algorithm generates m offsprings, denoted
by O, by localizing the fault and applying mutation on each element p ∈ Pop (line 6). Second, the
offspring population is evaluated to compute the fitness function of every individual in O (line 7).
Third, the individuals in Pop, as well as the individuals in O, are sorted based on the fitness function.
Then, the algorithm updates Pop by selecting the best m individuals with the lowest fitness function
(line 8). The algorithm terminates by returning the best solutions found within the search time budget.
The best solutions contain the program versions with the least number of failing test cases.

13

Chapter 3

Testing Advanced Driver Assistance Systems

In this chapter, we provide a testing approach for ADAS by combining multi-objective search with
surrogate models developed based on neural networks. We use multi-objective search to guide testing
towards the most critical behaviors of ADAS. Given that executing simulation scenarios is computa-
tionally expensive, we use surrogate modeling to enable our testing approach to explore a larger part
of the input search space within limited computational resources.

The combination of multi-objective search with surrogate modeling proposed in this chapter is not
tied to our particular search-based testing algorithm and is applicable to any multi-objective search
algorithm that computes a set of Pareto optimal solutions [Luke, 2013, Ferrucci et al., 2013]. A so-
lution is called Pareto optimal if none of the fitness functions used by the search can be improved
in value without degrading some of the other fitness values [Zitzler et al., 2000]. In our work, we
use optimistic and pessimistic fitness function predictions computed based on surrogate models and
a given confidence level to rank Pareto fronts during search. We identify and prune from the search
space the candidate solutions that have a low probability to be selected in the best ranked Pareto front.
We show that when actual fitness values are not better than their respective optimistic predictions, the
search algorithm with surrogate modeling behaves the same as the original search algorithm without
surrogate modeling. Specifically, under this condition and provided with the same set of candidate
solutions at each iteration, search with and without surrogate modeling select the same solutions, but
the search with surrogate modeling is likely to call less simulations per iteration than the search with-
out surrogate modeling. Note that our proposed combination of multi-objective search with surrogate
modeling is more accurate than existing alternatives [Magnier and Haghighat, 2010, Efstathiou et al.,
2014] as it eventually uses the actual simulations instead of the predictions to compute Pareto optimal
fronts.

This chapter highlights the following research contributions:

1. We formulate our testing approach as a multi-objective search technique. We use multi-objective
search to obtain test scenarios that stress several critical aspects of the system and the environ-
ment at the same time.

14

3.1. Motivation and Challenges

2. We reduce the execution time of our search algorithm by proposing a new combination of multi-
objective search with surrogate models built based on supervised learning techniques [Hall
et al., 2011].

3. We evaluate our approach by applying it to an industrial ADAS.

Organization. This chapter is structured as follows. Section 3.1 motivates our work. Section 3.2
describes our case study system. Section 3.3 outlines our approach to developing surrogate models.
Section 3.4 provides our multi-objective search algorithm that uses surrogate modeling. Section 3.5
tailors our search algorithm to the ADAS. Section 3.6 presents our empirical evaluation. Section 3.7
concludes this chapter.

3.1 Motivation and Challenges
We motivate our work using an ADAS case study. Our case study is a Pedestrian Detection Vision
based (PeVi) system. Its main function is to improve the driver’s view by providing proper warnings
to the driver when pedestrians (people or animals) appear to be located in front of a vehicle in particu-
lar when the visibility is low due to poor weather conditions or due to low ambient light. PeVi consists
of a CCD camera, and software components implementing image processing and object recognition
algorithms as well as algorithms that determine when and which warning message should be shown
to the driver. Since testing PeVi with real hardware and in the real environment is obviously danger-
ous, time-consuming, costly and infeasible, we use physics-based simulation platforms, in particular
PreScan [TASS-International, 2019], to test PeVi. PeVi is developed in Simulink and is integrated
into PreScan using inter-block connections between the Simulink models of the car and PeVi.

Provided with a physics-based simulation platform, test case execution is framed as executing
models of the system under test and its environment. Existing simulation platforms are able to simu-
late ADAS behaviors with reasonable accuracy when provided with a set of input test data. However,
they have two important limitations: The first limitation is that simulation platforms provide no guid-
ance to engineers as to which test scenarios should be selected for simulation. Since test inputs are
specified manually in current platforms, simulation is limited to a small number of scenarios hand-
picked by engineers. Manual test generation is expensive and time-consuming, and further, manually
picked test cases are unlikely to uncover faults that the engineers are not aware of a priori. Hence, it
is important to augment these simulation platforms with some automated test strategy technique, i.e.,
a sampling strategy in the space of all possible simulation scenarios [Briand et al., 2016b], which at-
tempts to build a sufficient level of confidence about correctness of the system under analysis through
exercising only a small fraction of that space. The key question is how to choose an effective test
strategy for testing ADAS.

We note that the space of all possible test scenarios for ADAS is very large. Traditional test cov-
erage measures, which are common for small-scale, white-box testing, are infeasible and impractical
for testing applications with large test spaces. Following the intuitive and common practice of system
test engineers, we develop a test strategy that focuses on identifying high-risk test scenarios, that is

15

Chapter 3. Testing Advanced Driver Assistance Systems

scenarios that are more likely to reveal critical failures [Briand et al., 2016b]. In particular, we rely on
search techniques to devise a test strategy that focuses testing effort on an effective and minimal set
of scenarios. The search is guided by heuristics that characterize high risk scenarios on which testing
should focus. We develop meta-heuristics based on system requirements and critical environment
conditions and system behaviors.

The second limitation is that physics-based simulations are computationally expensive because
they often involve executing high-fidelity mathematical models capturing continuous dynamic behav-
iors of vehicles and their environment. To address this limitation, we rely on surrogate models [Jin,
2011] built based on machine learning techniques. Surrogate models are mathematical relations and
aim to reduce computational cost by approximating high-fidelity but computationally expensive mod-
els of physical phenomena [Barton, 1994, Booker et al., 1999]. They are able to predict simulation
outputs within some confidence interval allowing us, under certain conditions, to bypass the execution
of expensive simulations.

3.2 The PeVi System
In this section, we provide some further background on the PeVi system, its important inputs and
outputs and the fitness functions that we design to guide our test strategy to exercise PeVi’s most
critical behaviors.

PeVi Requirements. Based on the Pedestrian Detection Vision based (PeVi) specification, the cone-
shaped space in front of a car that is scanned by the PeVi camera is divided into three warning areas
illustrated in Figure 3.1. The size of the cone vertex, α , is a feature of the camera and is called
camera’s field of view. The warning areas are described as follows. (1) The acute warning area
(AWA) is the red rectangle in Figure 3.1. (2) The warning area (WA) is the orange area in Figure 3.1.
(3) The cross warning area (CWA) refers to the two yellow right-angled rectangles on the two sides
of WA in Figure 3.1.

 WAAWA

 CWA

 CWA

↵

dawa

wawa

lwa

wwa

�
lcwa

lawa

 WAAWA

 CWA

 CWA

↵

lawa

Figure 3.1. PeVi’s warning areas.

The size and the position of the above three areas depend on the type of the car on which PeVi
is deployed, the type of the camera used for PeVi, and the OEM (i.e., car maker) preferences. For

16

3.2. The PeVi System

example, in our case study, the field of view α is set to 40°, and the length of AWA (lawa) ranges
between 60m to 168m depending on the car speed.

The main requirement of PeVi is stated as follows: R = “The PeVi system shall generate a red,
orange, or yellow alert when it detects an object in AWA, WA, and CWA warning areas, respectively.
Further, PeVi shall fulfill this requirement under different weather conditions and while the car runs
on different types of roads with different speeds.” The requirement R, although summing up the main
function of PeVi, is still very broad. There are several scenarios where a pedestrian may end up being
in one of the dangerous area in front of a car when crossing a road. To focus testing on the most high
risk test scenarios among the numerous possibilities that requirement R characterizes, we identified
the following specific situations after discussions with engineers at our partner company: “It is more
critical for PeVi to detect pedestrians in the warning areas when pedestrians are closer to the car and
when the chance of collision is higher.”. We use these specific situations to define fitness functions
for our multi-objective search algorithm.

PeVi Input and Output. In general, PeVi’s function is impacted by several physical phenomena
and environment factors. For example, road friction or wind may affect vehicle speed, which in
turn, influences PeVi’s behavior. However, given that the testing budget both in terms of manual
and computational effort is limited, we identified, through our discussions with the domain expert,
the most essential elements impacting the PeVi system. We developed a domain model to precisely
capture these elements. This domain model essentially specifies a restricted simulation environment
that is sufficient for testing PeVi. Further, this domain model characterizes the PeVi inputs and the
outputs generated after simulating PeVi.

The domain model is shown in Figure 3.2. Based on this model a test scenario for PeVi contains
the following input: (1) the value of the scene light intensity; (2) the weather condition that can
be normal, foggy, rainy, or snowy; (3) The road type that can be straight, curved, or ramped; (4)
the roadside objects, namely, trees and cars parked next to the road; (5) the camera’s field of view;
(6) the initial speed of the vehicle; and (7) the initial position, the orientation (θ) and the speed of
the pedestrian. All these input elements except for the vehicle and the pedestrian properties are static
(i.e., immobile) during the execution of a test scenario. The vehicle and the pedestrian (human or
animal) are dynamic (i.e., mobile).

Our domain model makes some simplifying assumptions about PeVi’s test scenarios. For example,
we assume that the test scenarios contain only one pedestrian and one vehicle, and the vehicle and
the pedestrian speeds are constant. These assumptions are meant to reduce the complexity of test
scenarios and were suggested by the domain expert. However, we note that our search-based test
generation approach is general and is not restricted by these assumptions.

Each of the input elements in Figure 3.2 (i.e., the elements related by a composition relation to
the test scenario element in Figure 3.2) impacts PeVi’s behavior. For example, the weather condition
and the scene light intensity impact the quality of images and the accuracy of PeVi in detecting
pedestrians. The camera field of view (α) and the road shape (e.g., straight, curved and ramped)

17

Chapter 3. Testing Advanced Driver Assistance Systems

- intensity: Real
SceneLight

Dynamic
Object

1
- weatherType:
Condition

Weather

- fog
- rain
- snow
- normal

«enumeration»
Condition

Output
Trajectory

- field of view:
Real

Camera
Sensor

RoadSide
Object

- roadType: RT
Road

1 - curved
- straight
- ramped

«enumeration»
RT

- vc: Real
Vehicle

- x0: Real

- y0: Real

- θ: Real
- vp: Real

Pedestrian

- x: Real
- y: Real

Position

1

*

1

*

1
1

- state: Boolean
Collision

Parked
Cars

Trees
- simulationTime:
Real
- timeStep: Real

Test Scenario

PeVi

- state: Boolean
Detection

1
1

11

1
1

1
1

«positioned»

«uses»
1 1

Figure 3.2. A fragment of the PeVi domain model.

impact the topological positions of the three warning areas, which in turn, impact the pedestrian
detection function of PeVi. Roadside objects may block the camera’s field of view, hence leaving
PeVi with little time to detect a pedestrian and to react with a proper warning message. Finally,
PeVi’s function should be tested for various scenarios by varying the speed of the vehicle and the
pedestrian, and the position and orientation of the pedestrian.

Each test scenario is associated with a simulation time denoted by T and a time step denoted by
∆t. The simulation time T indicates the time we let a test scenario run. The simulation interval [0..T]
is divided into small equal time steps of size ∆t. In order to execute a test scenario, we need to provide
the simulator with the values of the input elements described in Figure 3.2 as well as T and ∆t.

In this chapter, we limit the PeVi test input to the properties of the vehicle and the pedestrian.
These properties can be directly manipulated by dynamically modifying the Simulink models imple-
menting the vehicle and the pedestrian. We manipulate other properties (e.g., road types and weather
conditions) manually. In Chapter 4, we will vary properties of all the input elements to generate test
cases. We define the PeVi’s test input as a vector (vc,x0,y0,θ ,vp) where vc is the car speed, x0 and
y0 specify the position of the pedestrian, θ is the orientation of the pedestrian, and vp is the speed
of the pedestrian. We assume that the initial position of the vehicle (xc

0, yc
0) is fixed in test scenarios

(i.e., xc
0 = 0m and yc

0 = 50m). We denote the value ranges for vc, x0, y0, θ and vp, respectively, by
Rvc , Rx0 , Ry0 , Rθ and Rvp such that Rvc=[3.5km/h, 90km/h], Rvp=[3.5km/h, 18km/h], Rθ =[40°, 160°],
Rx0=[xc

0+20m, xc
0+85m], and Ry0=[yc

0-15m,yc
0-2m]. Note that variables vc, x0, y0, θ and vp are all of

type float.

Having provided the input, PreScan simulates the behavior of PeVi, the vehicle and the pedestrian,
and generates the following output elements: (1) output trajectory vectors: each dynamic object (i.e.,
the vehicle and the pedestrian) is associated with an output trajectory vector that stores the position
of that object at each individual time step. The size of the trajectory vectors, denoted by k, is equal
to the number of time steps within the simulation time, i.e., k ≈ T

∆t . We denote the trajectory output
of the pedestrian by the following two functions: X p,Y p : {0,∆t,2 ·∆t, . . . ,k ·∆t}→ R. We write X p(t)

18

3.2. The PeVi System

and Y p(t) to denote the pedestrian position on x- and y-axes at time t, respectively. Similarly, we
define functions Xc,Y c : {0,∆t,2 ·∆t, . . . ,k ·∆t}→ R for the trajectory output of the car; (2) collision:
this is a Boolean property indicating whether there has been a collision between the vehicle and the
pedestrian during the simulation; and (3) detection: this is a Boolean property generated by PeVi
indicating whether PeVi has been able to detect the pedestrian or not.

Fitness Functions. Our goal is to define fitness functions that can guide the search into generating
test scenarios that break or are close to breaking the requirement R mentioned earlier. For example,
PeVi test scenarios should exercise behaviors during which a pedestrian appears in front of a car in
such a way that the possibility of a collision is high and the chance of detecting the pedestrian is low
because the pedestrian is very close to the car or because the camera’s field of view is blocked. Based
on our discussions with the domain expert, we identify the following three fitness functions.

1. Minimum distance between the car and the pedestrian. The first function, denoted by Dmin(p/car),
computes the minimum distance between the car and the pedestrian during the simulation time. We
denote the Euclidean distance between the pedestrian and the car at time t by D(p/car)(t). The
function Dmin(p/car) is then defined as follows:

Dmin(p/car) = Min{D(p/car)(t)}0≤t≤T (3.1)

The test scenarios during which the pedestrian gets closer to the car are more critical. Hence, our
search strategy attempts to minimize the fitness function Dmin(p/car).

2. Minimum distance between the pedestrian and AWA. The second function, denoted by Dmin(p/awa),
computes the minimum distance between the pedestrian and AWA during the simulation time. We de-
note the distance between the pedestrian and AWA at time t by D(p/awa)(t). This function depends
on the shape of the road, the orientation of the pedestrian, and her position at time t. The value of
D(p/awa) for time steps in which the pedestrian is inside AWA is zero. The function Dmin(p/awa) is
then defined as follows:

Dmin(p/awa) = Min{D(p/awa)(t)}0≤t≤T (3.2)

The goal of our search strategy is to minimize the second fitness function as well. This is because
in order to test PeVi’s function for AWA, we need to generate scenarios during which the pedestrian
crosses AWA or gets close to it. To test PeVi for the two other warning areas, WA and CWA, we mod-
ify Dmin(p/awa) to compute the distances between the pedestrian and WA and CWA, respectively.

3. Minimum time to collision. The third fitness function is referred to as the minimum Time To
Collision (TTC) and is denoted by TTCmin. The time to collision at time t, TTC(t), is the time required
for the car to hit the pedestrian if both the car and the pedestrian continue at their speed at time t and
do not change their paths. The function TTCmin is then defined as the minimum value of TTC(t) when
t ranges from 0 to T . TTCmin has proven to be an effective measure to estimate the collision risk and
to identify critical traffic situations [van der Horst and Hogema, 1993]. We are interested to generate
scenarios that yield a small TTCmin since these scenarios are more risky.

19

Chapter 3. Testing Advanced Driver Assistance Systems

We note that combining fitness functions into one function and using single-objective search is
less desired in this situation because: First, our three fitness functions are about different concepts
(i.e., time and distance). Second, engineers are typically interested in exploring interactions among
critical factors of the system and the environment. For example, they might be particularly interested
to inspect if PeVi is able to detect pedestrians when they are located on the borders of the camera’s
field of view. For this purpose, in our work, a multi-objective search algorithm that produces several
test cases that exercise different and equally critical interactions of the system and the environment is
preferred to a single-objective search algorithm that generates a single test case.

3.3 Surrogate Models
We use surrogate models in our work to mitigate the computation cost of executing physics-based
ADAS simulations. Specifically, in order to compute the three fitness functions described in Sec-
tion 3.2, we have to execute expensive physics-based simulations. We create a surrogate model for
each fitness function to predict the fitness values without running the actual simulations. Such surro-
gate models are often developed using machine learning techniques such as classification, regression
or neural networks [Alpaydin, 2010b]. Given that we are dealing with real-valued functions, regres-
sion or neural network techniques are more suitable for our purpose because classification techniques
are geared towards functions with categorical outputs. Many studies have shown that neural networks
perform better than regression techniques in particular when the input space under analysis is large
and when the relationship between inputs and outputs is complex [Nguyen and Cripps, 2001, Emadi
and Mahfoud, 2011]. Hence, we use neural networks to build surrogate models. Neural networks can
be used with supervised or unsupervised training algorithms [Haykin, 1998]. In our work, we are able
to obtain output values for training input data by running simulations. Hence, we use neural networks
in a supervised training mode.

Recall from Section 2.2.1 that neural networks consist of a number of neurons connected via
weighted links. The training process aims to synthesize a network by learning the weights on links
connecting the neurons. Learning is carried out in a number of iterations known as epochs. In this
work, we consider the following well-known training algorithms to develop our surrogate models:
Bayesian regularization backpropagation (BR) [MacKay, 1992], Levenberg-Marquardt (LM) [Hagan
and Menhaj, 1994], and Scaled conjugate gradient backpropagation (SCG) [Møller, 1993].

Given a fitness function F , we build a surrogate model of F by training a neural network. To
do so, we use a set of observations containing input values and known output values [Witten et al.,
2011]. We divide the observation set into a training set and a test set. The training set is used to infer
a predictive function F̂ . This is done by training a neural network of F̂ such that F̂ fits the training
data as well as possible, i.e., for the points in the training set, the differences between the output of
F and that of F̂ are minimized. The test set is, then, used to evaluate the accuracy of the predictions
produced by F̂ when applied to points outside the training set. Training neural networks requires
tuning a number of parameters, particularly the number of (hidden) layers, the number of neurons in
each hidden layer and the number of epochs. Further, we need to choose among the three training

20

3.4. Search with Surrogate Model

algorithms (i..e, BR, LM, and SCG). Finding the best values for these parameters and selecting the
best performing algorithm in our case is addressed in our empirical evaluation (Section 3.6).

In addition to building function F̂ to predict the values of a fitness function F , we develop an error
function F̂cl

ε that estimates the prediction error based on a given confidence level cl. The value of cl
is a percentage value between 0 and 100. For example, let F̂cl

ε be the error function computed for F̂
with respect to cl = 95. This implies that with a probability of 95%, the actual value of F(p) lies in
the interval of F̂(p)± F̂cl

ε . We compute F̂cl
ε based on the distribution of prediction errors obtained

based on the test sets.

3.4 Search with Surrogate Model
We cast the problem of test case generation for ADAS as a multi-objective search optimization prob-
lem [Luke, 2013]. Specifically, we identified three fitness functions in Section 3.2 to characterize
critical behaviors of the PeVi system and its environment. The solutions to our problem are obtained
by minimizing these three fitness functions using a multi-objective Pareto optimal approach [Luke,
2013, Ferrucci et al., 2013] that states that “A solution p is said to dominate another solution p′, if p
is not worse than p′ in all fitness values, and p is strictly better than p′ in at least one fitness value”.
The solutions on a Pareto optimal front are non-dominating, representing best-found test scenarios
that stress the system under analysis with respect to the three identified fitness functions.

In our work, we rely on population-based and multi-objective search optimization algorithms [Coello
et al., 2007, Deb, 2001]. In this class of algorithms, the dominance relation over chromosome pop-
ulations is used to guide the search towards Pareto-optimal fronts. In our work, we choose the NS-
GAII [Deb et al., 2002, Luke, 2013] algorithm which has been applied to several application domains
and has shown to be effective in particular when the number of objectives is small [Sayyad and Am-
mar, 2013]. NSGAII is described in Section 2.1.1. Algorithm 1 illustrates the NSGAII algorithm.
NSGAII uses an archive A of the best solutions. At each iteration, NSGAII breeds a new children
population P from the parent archive A by calling the Breed procedure. NSGAII runs the simulation
for every new element to compute the fitness functions. Then, NSGAII uses a partial order relation
rank to sort elements in Q = P∪A based on the fitness functions F1, . . . ,Fk. The rank is based on
the non-domination relation, discussed in Section 2.1.1. Having computed the rank partial order, the
NSGAII algorithm then creates a new archive A of the best solutions found so far by selecting the best
individuals from Q based on rank.

In this chapter, we change the NSGAII algorithm in Algorithm 1 to use, instead of the actual
fitness values, the predicted fitness values obtained from surrogate models to compute the partial
order rank and to select the best individuals A. We refer to our algorithm as NSGAII-SM. The main
goal of NSGAII-SM is to speed up the search by selecting an archive of best individuals A from the set
Q without the need to run costly simulations for every element in the newly bred children population
P. Specifically, we bypass execution of the simulation for any individual p ∈ P, if we can conclude
using predicted fitness values that p has a low probability to be included in A.

21

Chapter 3. Testing Advanced Driver Assistance Systems

Recall that the surrogate model for any fitness function F comprises a prediction function F̂ and
an error function F̂cl

ε that estimates the prediction errors of F̂ within the confidence level cl. Since our
optimization problem aims to minimize fitness values, for any individual p, we have a most optimistic
fitness value F̂(p)− F̂cl

ε (p) and a most pessimistic fitness value F̂(p)+ F̂cl
ε (p). The gap between these

two values widens by increasing the confidence level cl, and decreases by lowering cl.

Our NSGAII-SM algorithm is shown in Algorithm 3. The algorithm computes predicted fitness
values for every individual p ∈ P (Line 5). The algorithm, further, uses a set Predicted to keep track
of elements for which only predicted fitness values are known, i.e., the elements for which the actual
simulation has not yet been executed. The set Predicted is initially set to P since for the elements
in P, actual fitness values have not yet been computed. Then, the algorithm computes two partial
order relations rank− and rank+. The relation rank− is computed based on optimistic fitness values
(F̂(p)−F̂cl

ε (p)) for individuals in Predicted and actual fitness values (F) for other individuals. Dually,
the relation rank+ is computed based on pessimistic fitness values (F̂(p)+ F̂cl

ε (p)) for individuals in
Predicted and actual fitness values (F) for other individuals.

Algorithm 3: NSGAII-SM Algorithm
Input: m: Population and archive size // |A| = |P| = m
Input: g: Maximum number of search iterations
Result: BestSolution: The best solutions found in g iterations

1 begin
2 A←− /0 // archive
3 P←− {p1, . . . , pm} // Initial population (randomly selected)
4 for g iterations do
5 PredictFitness(P) // For every p ∈ P and every fitness function Fi s.t.

i ∈ {1, . . . ,k}, compute F̂i(p)− F̂cl
i,ε(p) and F̂i(p)+ F̂cl

ε,i(p)
6 Predicted←− P
7 Q←− P∪A // |Q| = 2m
8 rank−,rank+←− ComputeRanks(Q)
9 A←− /0

10 while |A|< m do
11 p←− BestRanked(Q,rank−)
12 while p 6∈ Predicted∧|A|< m do
13 A←− A∪{p}
14 Q←− Q\{p}
15 p←− BestRanked(Q,rank−)
16 if |A|= m then
17 break
18 p←− BestRanked(Predicted,rank+)
19 ComputeFitness({p}) // Run simulation and compute actual fitness

values F1, ..., Fk for p
20 Predicted←− Predicted \{p}
21 rank−,rank+←− ComputeRanks(Q) // re-rank the remaining elements in Q

after computing the actual fitness values for p
22 BestSolution←− A
23 P←− Breed(A) // breeding a new population from the parent archive
24 return BestSolutionFound

22

3.4. Search with Surrogate Model

Let rank be the partial order over Q computed based on the actual fitness values for every element
in Q (assuming that the actual fitness values are known for elements in Q). Then, we show the follow
lemma.

Lemma. Let BestRanked(Q,rank−) 6∈ Predicted. Suppose for every p ∈ Predicted and every fit-
ness function Fi ∈ {F1, . . . ,Fk}, we have F̂i(p)− F̂cl

i,ε(p) ≤ Fi(p). Then, BestRanked(Q,rank−) =
BestRanked(Q,rank).

Proof. By our assumption, the actual fitness value for any element p ∈ Predicted is higher than their
optimistic fitness value F̂i(p)− F̂cl

i,ε(p), which is the value used to create rank−. Hence, none of the
elements in Predicted could be ranked higher than BestRanked(Q,rank−) when we use the partial
order rank.�

The above lemma states that assuming that actual fitness values are not better than the optimistic
predictions and if BestRanked(Q,rank−) 6∈ Predicted, then BestRanked(Q,rank−) is equal to the best
ranked element computed in NSGAII where we do not use predictions.

Given the above lemma, in NSGAII-SM, we first add the elements of Q that are ranked best by
rank− and are not in Predicted to the archive of best elements A (Lines 11-15). After that, if A is
still short of elements (i.e., |A|< m), we compute actual fitness values for the predicted element that
is ranked highest by rank+, i.e., the partial order based on pessimistic fitness values of predicted
elements (Lines 18-20). We then recompute rank− and rank+ (Line 21), and continue until we select
m best elements from Q into A. For all the elements in A, the actual fitness values are already computed
(i.e., A∩Predicted = /0).

Upon termination of the while loop (Lines 10-21) in Algorithm 3, the set Predicted ⊆ Q con-
tains those elements that NSGAII-SM was able to discard without the need to compute the actual
fitness values for them. Hence, at each iteration, the size of Predicted indicates the number of sim-
ulation calls that our algorithm has been able to save. This is in contrast to the original NSGAII
algorithm (Algorithm 1) where at each iteration, simulation is called for m times. According to the
above Lemma, if actual fitness values are not better than the optimistic predictions, then NSGAII and
NSGAII-SM behave the same. That is, assuming that NSGAII and NSGAII-SM are provided with the
same set P at each iteration, they select the same candidate solutions (set A), but NSGAII-SM is likely
to perform less simulations per iteration than NSGAII. The probability of actual fitness values being
better than the optimistic predictions depends on the confidence level cl. For example, for cl = 95%,
with a probability of 2.5%, the actual fitness values are better than their optimistic predictions, and
hence, NSGAII-SM might select less optimal solutions compared to NSGAII given the same set P.
In Section 3.6, we empirically compare the quality of the solutions generated by NSGAII-SM and
NSGAII in particular by accounting for the randomness factor in generating P and by executing the
two algorithms within a limited and realistic time budget.

23

Chapter 3. Testing Advanced Driver Assistance Systems

3.5 Tailoring Search to PeVi
The algorithms NSGAII and NSGAII-SM described in Section 3.4 are generic. We tailor them to
our search-based test generation problem by specifying the search input representation, the fitness
functions, and the genetic operators.

Input representation. The input space of our search problem consists of vectors (vc,x0,y0,θ ,vp).
The variables vc, x0, y0, θ and vp and their ranges are defined in Section 3.2. Each value assignment
to the vector (vc,x0,y0,θ ,vp) represents a chromosome, and each value assignment to the variables of
this vector represents a gene.

Fitness functions. We use the three fitness functions, Dmin(p/car), Dmin(p/awa) and TTCmin, defined
in Section 3.2 for our search algorithm. A desired solution is expected to minimize these three fitness
functions.

Genetic operators. The Breed() procedure in the NSGAII and NSGAII-SM algorithms is imple-
mented based on the following operators:

- Selection. We use a binary tournament selection with replacement that has been used in the
original implementation of NSGAII algorithm [Deb et al., 2002].

- Crossover. We use the Simulated Binary Crossover operator (SBX) [Beyer and Deb, 2001, Deb
and Agrawal, 1995]. SBX creates two offsprings from two selected parent individuals. The difference
between offsprings and parents is controlled by a distribution index (η): The offsprings are closer to
the parents when η is large, while with a small η , the difference between offsprings and parents will
be larger [Deb and Beyer, 2001]. In this chapter, we chose a high value for η (i.e., η = 20) based on
the guidelines given in [Deb and Agrawal, 1995].

- Mutation. Mutation is applied after crossover to the genes of the children chromosomes with
a certain probability (mutation rate). Given a gene x (i.e., any of the variables vc, x0, y0, θ and vp),
our mutation operator shifts x by a value x′ selected from a normal distribution with mean µ = 0 and
variance σ2. To avoid invalid offsprings, if the result of a crossover or a mutation is greater than
the maximum, it is set to the maximum. If the result is below the minimum, it is clamped to the
minimum.

3.6 Evaluation
In this section, we investigate the following Research Questions (RQs) through our empirical evalua-
tion applied to the PeVi case study.

RQ1. (Comparing Random Search, NSGAII and NSGAII-SM) How do NSGAII, NSGAII-
SM and random search perform compared to one another? We start by comparing the time perfor-
mance and the quality of solutions obtained by our test generation strategy when we use NSGAII and

24

3.6. Evaluation

NSGAII-SM. Our goal is to determine whether NSGAII-SM is able to generate results with higher
quality than those obtained by NSGAII within the same time period. We then compare the algorithm
that performs better, between NSGAII and NSGAII-SM, with a random test generation algorithm (the
baseline of comparison typically adopted in SBSE research [Harman et al., 2012a]).

RQ2. (Usefulness) Does our approach help identify test scenarios that are useful in practice?
This question investigates whether the test scenarios generated by our approach were useful for the
domain experts and how they compared with the test scenarios that have been previously devised by
manual testing based on domain expertise.

Metrics. We evaluate the prediction accuracy of surrogate models using the coefficient of determina-
tion (R2) [Witten et al., 2011] that measures the predictive power of a surrogate model by identifying
how well a test set fits the model. Specifically, R2 measures the proportion of the total variance of
F explained by F̂ for the observations in the test set where F is a fitness function and F̂ is its corre-
sponding predictive function. The value of R2 ranges between 0 and 1. The higher the value of R2,
the more accurate the surrogate model is.

To assess and compare the quality of Pareto fronts obtained by our alternative search algorithms,
we use two well-known quality indicators [Knowles et al., 2006a], hypervolume (HV) and genera-
tional distance (GD). HV [Zitzler and Thiele, 1999a] measures the volume in the solution space that
is covered by members of a non-dominated set of solutions. The larger the volume (i.e., the higher
the value of HV), the better the results of the algorithm. GD [Van Veldhuizen and Lamont, 1998a]
compares the pareto front solutions computed by an algorithm with an optimal pareto front (or true
pareto front), i.e., the best non-dominated solutions that exist in a given space of solutions for a given
problem. In particular, GD [Van Veldhuizen and Lamont, 1998a] is the average distance between each
point in a computed Pareto front and the closest optimal pareto front solution to that point. A value of
0 for GD indicates that all the obtained solutions by a search algorithm are optimal. The lower GD,
the better the results of the algorithm. Computing an optimal pareto front is usually not feasible. As
suggested in the literature [Wang et al., 2016], instead, we use a reference pareto front that is a union
of all the non-dominated solutions computed by our search algorithms (i.e., NSGAII, NSGAII-SM
and random search). The HV and GD are selected from the combination and convergence quality in-
dicator categories, respectively. As discussed in [Wang et al., 2016], to assess the quality of computed
pareto fronts with respect to combination and convergence indicators, it is sufficient to choose only
one indicator from each of these two categories.

Experiment Design. We implemented the NSGAII and NSGAII-SM algorithms and the neural net-
work surrogate models in Matlab. In addition, we implemented a test generation strategy based on
random search. Random search [Luke, 2013] and our NSGAII-based search algorithms require to
interact with PreScan to execute simulations of the Simulink models of the pedestrian, the car and
the PeVi system embedded into the car (see Section 3.2). The NSGAII-SM algorithm, in addition to
calling the PreScan simulator, calls neural networks that are developed to serve as surrogate models.
We ran all the experiments on a laptop with a 2.5 GHz CPU and 16GB of memory. Based on our ex-
periments, each PeVi simulation (i.e., each call to PreScan), on average, takes 2 min with a min value

25

Chapter 3. Testing Advanced Driver Assistance Systems

of 1.2 min and a max value of 3.4 min. The simulation time variations are due to the variations in the
car and the pedestrian speeds and positions. Further, we may stop simulations before completion at a
point where we can conclusively determine the fitness function values.

To answer our research questions, we designed and performed the following experiment. First,
we identified the training algorithm and the configuration values that lead to the most accurate neural
network-based surrogate models for the PeVi case study. To do so, for each of our three PeVi fitness
functions, we compared 18 different neural network configurations. The comparison is based on
a k-fold cross validation with k = 5 [Alippi and Roveri, 2010, Efron, 1983]. Specifically, we first
selected (using adaptive random search [Luke, 2013]) 1000 observation points from the input search
space of the PeVi system. Adaptive random search was used to maximize diversity in our training
and test sets. It is an extension of the naive random search that attempts to maximize the Euclidean
distance between the points selected in the input space. Recall from Section 3.2 that each PeVi input
point is a vector (vc,x0,y0,θ ,vp) selected from a five dimensional space. We simulated each point
to obtain the actual values for each fitness function. In the experiment, we refer to fitness function
Dmin(p/car) by F1, to Dmin(p/awa) by F2, and to TTCmin by F3. The 1000 observation points are
randomly partitioned into five disjoint subsets with 200 points in each. We then randomly selected
four subsets to create a training set with 800 points, and the remaining subset is used as the test
set. This process is repeated for five times so that for each 5-fold cross validation, the R2 values are
computed on a test set containing the entire 1000 points. To account for randomness, we repeated the
5-fold cross validation ten times.

To develop neural networks with high prediction accuracy, we considered three training algo-
rithms, BR, LM and SCG, and we set different values to the following parameters: the number of
hidden layers (nl), the number of neurons in each hidden layer (nn) and the number of epochs (ne).
Specifically, we set nl = 2 as is common in the literature [Goyal and Goyal, 2012, Karsoliya, 2012].
There are various recommendations for setting nn. In particular, nn is recommended to be less than
twice or equal to 2

3 of the size of the input vector [Behera, 2014, Karsoliya, 2012], or to be a number
between the input and the output size [Behera, 2014, Karsoliya, 2012]. We considered the values 3
and 4 for nn. In addition, we considered the value 100 for nn because in some cases the accuracy may
improve when nn is set to values considerably larger than the input size [Sheela and Deepa, 2013].
Finally, we set ne to 10 and 100.

In total, we developed and trained 18 different neural network configurations. We computed R2

for 10 different repetitions of 5-fold cross validations of the 18 neural network configurations related
to our three fitness functions. We selected the following neural network configurations with highest
predictive accuracy (highest R2) for our three fitness functions: For F1, we selected the configuration
that was developed by the BR algorithm with nn = 100 and ne = 100 (R2 = 0.99). For F2, we selected
the configuration that was developed by the BR algorithm with nn = 100 and ne = 100 (R2 = 0.84),
and for F3, we selected the configuration that was developed by the LM algorithm with nn = 3 and ne
= 100 (R2 = 0.89). Note that R2 = 0.84 indicates that 84% of the variance in the test set is explained by
the predictive model. The high R2 values of the selected configurations indicate their high predictive
accuracy.

26

3.6. Evaluation

Having obtained the most accurate surrogate models to be used by the NSGAII-SM algorithm,
we now discuss value selection for the search algorithms’ parameters. Since our experiments, which
involve running physics-based simulations, are very time-intensive, we were not able to systematically
tune the search parameters (e.g., based on the guidelines provided in [Arcuri and Fraser, 2011a]).
Instead, we selected the parameters based on some small-scale preliminary experimentations as well
as existing experiences with multi-objective search algorithms. Specifically, we set the crossover
rate to 0.9, the mutation rate to 0.5 and the population size to 10. Our choice for the crossover rate is
within the suggested range of [0.45, ..,0.95] [Bowman et al., 2010]. Our preliminary experimentations
showed that more explorative search may lead to better results. Hence, we set the mutation rate to
0.5 which is higher than the suggest value of 1/l where l is the length of chromosome [Arcuri and
Fraser, 2011a]. Finally, we chose a relatively small population size to allow for more search iterations
(generations) within a fixed amount of time.

Results. Next, we discuss our RQs:

RQ1 (Comparing Random Search, NSGAII and NSGAII-SM). To answer RQ1, we ran Random
search, NSGAII and NSGAII-SM (with cl =.95) 40 times for 150 min. We computed the HV and the
GD values for the pareto front solutions obtained by these alternative search algorithms at every 10
min interval from 0 to 150 min. We used the resulting HV and GD values and the changes in these
values over time to first compare NSGAII and NSGAII-SM by focusing on their performance when
the algorithms are executed within a practical execution time budget (i.e., 150 min). Second, we com-
pare the better algorithm between NSGAII and NSGAII-SM with Random search. To statistically
compare the HV values, we performed the non-parametric pairwise Wilcoxon Paired Signed Ranks
test [Capon, 1991], and calculated the effect size using Cohen’s d [Cohen, 1977]. The level of signif-
icance (α) was set to 0.05, and, following standard practice, d was labeled “small” for 0.2≤ d < 0.5,
“medium” for 0.5≤ d < 0.8, and “high” for d ≥ 0.8 [Cohen, 1977].

Comparing NSGAII and NSGAII-SM. Figure 3.3(a) shows the HV values obtained by 40 runs of
NSGAII and NSGAII-SM up to 150 min. As shown in the figure, at the beginning both NSGAII
and NSGAII-SM are highly random. After executing these two algorithms for 50 min, the degree
of variance in HV values across NSGAII-SM runs reduces faster than the degree of variance in HV
values across NSGAII runs. Further, the average HV values obtained by NSGAII-SM grows faster
than the average HV values obtained by NSGAII. After executing the algorithms for 120 min, both
search algorithms converge towards their pareto optimal solutions and the difference in average HV
values between the two algorithms tends to narrow.

We note that the differences between the HV distributions of NSGAII and NSGAII-SM are not
statistically significant. This is likely because the number of runs is rather small (40), thus yielding
low statistical power. However, as shown in Figure 3.3(a), the medians and averages of the HV values
obtained by NSGAII-SM are higher than the medians and averages of the HV values obtained by
NSGAII. Given the large execution time of our test generation algorithm, in practice, testers will
likely have the time to run the algorithm only once. With NSGAII, certain runs really fare poorly,
even after the initial 50 min of execution. Figure 3.3(c) shows the HV results over time for the worst

27

Chapter 3. Testing Advanced Driver Assistance Systems

0.00

0.25

0.50

0.75

1.00

Time (min)

HV

50 100 15010

(a) Comparing HV values obtained
by NSGAII and NSGAII-SM

NSGAII (mean)
NSGAII-SM (mean)

0.00

0.25

0.50

0.75

1.00

Time (min)
50 100 15010

(b) Comparing HV values obtained
by RS and NSGAII-SM

HV

RS (mean)
NSGAII-SM (mean)

0.00

0.25

0.50

0.75

1.00

Time (min)

HV

50 100 15010

(c) HV values for worst runs of NSGAII,
NSGAII-SM and RS

RS

NSGAII-SM
NSGAII

Figure 3.3. Comparing HV values obtained by (a) 40 runs of NSGAII and NSGAII-SM (cl=.95); (b) 40 runs of
random search and NSGAII-SM (cl=.95); and (c) the worst runs of NSGAII, NSGAII-SM (cl=.95) and random
search.

run of NSGAII, NSGAII-SM and Random search among our 40 runs. As shown in the figure, the
worst run of NSGAII yields remarkably lower HV values compared to the worst run of NSGAII-SM.
With NSGAII, the tester might be unlucky, and by running the algorithm once, obtain a run similar

28

3.6. Evaluation

to the worst NSGAII run in Figure 3.3(c). Since the worst run of NSGAII-SM fares much better than
the worst run of NSGAII, we can consider NSGAII-SM to be a safer algorithm to use, especially
under tight time budget constraints. We note that as shown in Figure 3.3(c) the HV values do not
necessarily increase monotonically over time. This is because HV may decrease when, due to the
crowding distance factor, solutions in sparse areas but slightly away from the reference pareto front
are favored over other solutions in the same pareto front rank [Peng and Tang, 2011]. We further
compared the GD values obtained by NSGAII and NSGAII-SM for 40 runs of these algorithms up to
150 min. Similar to the HV results, after 50 min executing these algorithms, the average GD values
obtained by NSGAII-SM is better than the average GD values obtained by NSGAII.

In addition, we compared the average number of simulations per generation performed by NS-
GAII and NSGAII-SM. As expected, the average number of simulations per generation for NSGAII
is equal to the population size (i.e., ten). For NSGAII-SM, this average is equal to 7.9. Hence,
NSGAII-SM is able to perform more generations (iterations) than NSGAII within the same execution
time. As discussed in Section 3.4, for cl = 95%, at a given iteration and provided with the same set
P, NSGAII-SM behaves the same as NSGAII with a probability of 97.5%, and with a probability
of 2.5%, NSGAII-SM produces less accurate results compared to NSGAII. Therefore, given a fixed
execution time, NSGAII-SM is able to perform more iterations than NSGAII, and with a high proba-
bility (≈ 97.5%), the solutions generated by NSGAII-SM at each iteration are likely to be as accurate
as those would have been generated by NSGAII. As a result and as shown in Figure 3.3(a), given the
same time budget, NSGAII-SM is able to produce more optimal solutions compared to NSGAII.

Finally, we compared NSGAII-SM with three different confidence levels, i.e., cl = 0.95, 0.9 and
0.8. The HV and GD results indicated that NSGAII-SM performs best, and better than NSGAII, when
cl is set to 0.95.

Comparing with Random Search. Figure 3.3(b) shows the HV values obtained by Random search
and NSGAII-SM. As shown in the figure, after 30 min execution, NSGAII-SM yields better HV
results compared to Random search. The HV distributions obtained by running NSGAII-SM after 30
min and until 150 min are significantly better (with a large effect size) than those obtained by Random
search. Similarly, we compared the GD values obtained by NSGAII-SM and Random search. The
GD distributions obtained by NSGAII-SM after 30 min and until 150 min are significantly better than
those obtained by Random search with a large effect size at 100 min and 110 min and otherwise a
medium effect size at other times.

To summarize, when the search execution time is larger than 50 min, NSGAII-SM outperforms
NSGAII. With less than 50 min execution time, both algorithms show a high degree of randomness.
When engineers cannot afford to run the test generation algorithm for a long time, for example because
they make a change to the PeVi system and need to rerun the test execution procedure frequently,
NSGAII-SM is more likely to provide close to optimal solutions compared to NSGAII. Further, as
shown in Figure 3.3(c), the worst run of NSGAII-SM performs considerably better than the worst run

29

Chapter 3. Testing Advanced Driver Assistance Systems

of NSGAII. Finally, NSGAII-SM is able to find significantly better solutions compared to Random
search.

RQ2 (Usefulness). To demonstrate practical usefulness of our approach, we have made available
at [Ben Abdessalem, 2018b] some test scenario examples obtained by our NSGAII-based test genera-
tion algorithms. We presented these test scenarios as well as other scenarios to domain experts at our
partner company. The scenarios were generated for various stressful weather conditions (e.g., fog,
snow and rain) and for situations where roadside objects block the camera’s field of view or when
ramped and curved roads may interfere with the pedestrian detection function of PeVi. In all the
example scenarios at [Ben Abdessalem, 2018b] either PeVi fails to detect a pedestrian that appears in
the red warning area (AWA) in front of a car, or the detection happens very late and very close to the
collision time. As confirmed by our domain expert, such scenarios had not been previously developed
by manual testing based on domain expertise. These scenarios particularly helped engineers identify
particular car speed and pedestrian speed ranges and pedestrian orientations for which the PeVi’s de-
tection function is more likely to fail. In addition, the light scene intensity, the light orientation and
reflection may impact the detection capabilities of pedestrian detection algorithms. However, due to
the current imitations of PreScan (the PeVi simulation tool) discussed earlier, we were not able to
define fitness functions related to the scene light intensity.

To summarize, our NSGAII-based test generation algorithms are able to identify several critical
behaviors of the PeVi systems that have not been previously identified based on manual and expertise-
based simulations.

3.7 Conclusions
Physics-based simulation tools provide feasible and practical test platforms for control and perception
software components developed for self-driving cars. We identified the following two key challenges
that hinder systematic testing based on these simulation tools: (1) These tools lack the guidance and
automation required to generate test cases that would be likely to uncover faulty behaviors, and (2) ex-
ecuting individual test cases is very time-consuming. In this chapter, we proposed an approach based
on combination of multi-objective search and neural networks. We developed meta-heuristics captur-
ing critical aspects of the system and its environment to guide the search towards exercising behaviors
that are likely to reveal faults. Our proposed search algorithm relies on neural network predictions
to bypass actual costly simulations when predictions are sufficient to conclusively prune certain so-
lutions from the search space. Our evaluation performed on an industrial system shows that (1) our
search-based algorithm outperforms random test generation, (2) combining our search algorithm with
neural networks improves the quality of the generated test cases under a limited and realistic time
budget, and (3) our approach is able to identify critical system and environment behaviors.

In this Chapter, we relied on a subset of the PeVi input elements, i.e., the properties of the vehicle
and the pedestrian, to generate test cases. To account for various critical properties of the environment,

30

3.7. Conclusions

in the next chapter, we rely on properties of all the input elements, where we use a different ADAS
case study.

31

Chapter 4

Testing Vision-Based Control Systems Using
Learnable Evolutionary Algorithms

Vision-based control systems (i.e., ADAS) are key enablers of many autonomous vehicular systems,
including self-driving cars. Testing such systems is complicated by complex and multidimensional
input spaces. Search-based techniques are best suited for testing at the system level [Zeller, 2017].
They provide effective and flexible guidance for test generation, going beyond test generation based
on structural coverage that is not often effective or scalable for system testing. Even though evolu-
tionary search algorithms often scale well to large input spaces, their ability to effectively identify
critical test scenarios may diminish as the search space increases in size and dimensions. This is
mostly because the search may be stuck in local optima in less critical parts of the input space [Luke,
2013].

In this chapter, we provide an algorithm to improve effectiveness of the evolutionary search for
large and multidimensional input spaces. Our algorithm builds on learnable evolution models, a ma-
chine learning-guided form of evolutionary computation [Michalski, 2000, Wojtusiak and Michalski,
2004]. Specifically, we propose to use the set of scenarios generated at intermediary search iterations
to build decision tree classification models [Witten et al., 2011]. Decision trees learn the character-
istics of the critical test scenarios and identify critical regions in an input space (i.e., the regions of a
test input space that are likely to contain most critical test scenarios). We then focus the subsequent
search iterations on the critical regions, generating and evolving more critical test scenarios within
those regions using genetic operators. We iteratively build decision trees followed by search iterations
focused on critical regions identified by the trees. The process stops when we run out of our search
time budget. Our algorithm, in addition to guiding the search towards the critical test scenarios faster,
produces a decision tree model that identifies the critical regions of the system under test. The critical
region characterizations help engineers understand the conditions on input variables that may lead to
failures.

This chapter highlights the following research contributions:

32

4.1. Motivating Case Study

1. We propose a lightweight formalism for vision-based control systems used in self-driving cars
(i.e., ADAS). Our formalism specifies ADAS input and output variables and their critical behav-
iors. Our formalism is developed based on our analysis of different ADAS examples (see [data,
2017]) as well as the characteristics of a widely-used, industrial ADAS simulation tool [TASS-
International, 2019].

2. We propose a system testing algorithm that combines evolutionary search algorithms and de-
cision tree classification models. Our algorithm has two main objectives, which are important
in the context of testing ADAS systems: First, classification models guide the search-based
generation of tests faster towards critical test scenarios. Second, search algorithms refine clas-
sification models so that the models can accurately characterize critical regions.

3. We evaluate our approach on an industrial automotive system.

Organization. This chapter is structured as follows. Section 4.1 motivates our work. Section 4.2
provides an ADAS formalization. Section 4.3 describes our approach. Section 4.4 evaluates our
approach, and Section 4.5 concludes this chapter.

4.1 Motivating Case Study
Figure 4.1 shows an overview of an ADAS example referred to as the Automated Emergency Braking
(AEB) system. Its main function is to identify pedestrians in front of a vehicle and to avoid collision
by applying the brake when it is necessary. AEB has three main components: (1) The Sensor Com-
ponent. This component identifies the position and speed of objects in a cone-shaped area in front of
a vehicle (i.e., the field of view). It also computes the time to collision (TTC) that measures the time
required for a vehicle to hit an object if both continue with the same speed and do not change their
paths [van der Horst and Hogema, 1993]. When an object is detected in front of a vehicle and when
the TTC is below a defined threshold, the object position is sent to the vision component. (2) The
Vision (Camera) Component. This component detects object types and shapes after receiving their
positions from the sensor component. Specifically, they determine whether the object is a pedestrian
(human or animal), a car, a traffic-sign, etc. Then, the system is able to decide whether braking is
needed and sends a command to the brake control component when it is necessary. (3) The Braking
Control Component. This component applies the braking request.

To simulate AEB, we use the PreScan simulator. PreScan allows us to define and execute scenar-
ios capturing various road traffic situations and different pedestrian-to-vehicle and vehicle-to-vehicle
interactions. In addition, using PreScan, one can vary road-topologies, weather conditions and infras-
tructures in test scenarios.

Figure 4.2 shows a domain model capturing the test input space and the output of AEB. Based on
our analysis, we categorize the AEB input variables into two categories:

I. Static input variables. The values of these variables are fixed during ADAS simulation and they
include: (1) Different road types (e.g., straight, curved or ramped). For the curved and ramped roads,

33

Chapter 4. Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms

(FoV)

“Brake-request”

Decision making

Vision
(Camera)

Sensor

Brake
Controller

Objects’
position

Field of view

Figure 4.1. An example of a vision-based control system: Automated Emergency Braking (AEB) system.

we specify the curve radius and the ramp height, respectively. (2) Different weather types: normal,
rainy and snowy. For each of the snowy and rainy weather types, we specify the level of precipitation.
For each weather type, we may or may not have fog with different density levels. Finally, we specify
a visibility range, i.e., the distance at which the objects can be clearly seen. As Figure 4.2 shows, we
have defined enumerations for the road radius and height, the level of precipitation for rain and snow,
fog density, and visibility range. According to the domain experts in IEE, these enumerations provide
a desired level of granularity for analysis, and hence, static variables do not need to be real or integer.

II. Dynamic (mobile) objects. They indicate objects that change their positions during ADAS
simulation, i.e., pedestrians and vehicles. For AEB, we consider two mobile objects: one pedestrian
and one vehicle, and assume linear trajectories for them. These assumptions are meant to reduce the
complexity of test scenarios and were suggested by the domain experts. For the vehicle, we require to
know its initial speed (vc

0). The pedestrian has four variables characterizing its initial position along x
and y axes and relative to the position of the vehicle (xp

0 ,y
p
0), its orientation angle (θ p

0) and its initial
speed (vp

0). The dynamic objects variables are float. Figure 4.3 shows the ranges for the pedestrian
initial position and orientation variables when the road is curved, ramped and straight, respectively.
The ranges for vehicle and pedestrian speed variables are [1km/h..90km/h] and [1km/h..18km/h],
respectively.

In addition to variable ranges, the valid inputs of ADAS are determined by constraints defined over
the input variables. These constraints are either defined on static input variables, or they specify how
value assignments to static variables impact the ranges of the mobile object variables. An example of
the constraints defined over AEB static variables is shown using the OCL language [Group, 2017] in
Figure 4.2 (see WeatherC-OCL). The constraint states that when there is no fog, the visibility range
is set to maximum. The constraints that relate static variables of AEB to ranges of mobile object
variables are captured in Figure 4.3. Specifically, the figure specifies the valid ranges for pedestrian
position and orientation variables corresponding to different road topologies.

ADAS simulations have two outputs: I. Position vectors for mobile objects (i.e., position vectors
for the vehicle and the pedestrian in the AEB case study). The position vector related to each mobile

34

4.1. Motivating Case Study

- visibility:
VisibilityRange
- fog: Boolean
- fogColor:
FogColor

Weather

- frictionCoeff:
Real

Road1

- v0 : Real
Vehicle

- : Real
- : Real
- : Real
- :Real

Pedestrian

- simulationTime:
Real
- timeStep: Real

Test
Scenario

1
1

- ModerateRain
- HeavyRain
- VeryHeavyRain
- ExtremeRain

«enumeration»
RainType- ModerateSnow

- HeavySnow
- VeryHeavySnow
- ExtremeSnow

«enumeration»
SnowType

- DimGray
- Gray
- DarkGray
- Silver
- LightGray
- None

«enumeration»
FogColor

1

WeatherC
{{OCL} self.fog=false

implies self.visibility = “300”
and self.fogColor=None}

Straight

- height:
RampHeight

Ramped

- radius:
CurvedRadius

Curved

- snowType:
SnowType

Snow

- rainType:
RainType

Rain

Normal

- 5 - 10 - 15 - 20
- 25 - 30 - 35 - 40

«enumeration»
CurvedRadius (CR)

- 4 - 6 - 8 - 10 - 12

«enumeration»
RampHeight (RH)

- 10 - 20 - 30 - 40 - 50
- 60 - 70 - 80 - 90 - 100
- 110 - 120 - 130 - 140
- 150 - 160 - 170 - 180
- 190 - 200 - 210 - 220
- 230 - 240 - 250 - 260
- 270 - 280 - 290 - 300

«enumeration»
VisibilityRange

- : TTC: Real
- : certaintyOfDetection:
Real
- : braking: Boolean

AEB Output

- : Real
- : Real

Output functions

Mobile
object

Position
vector

- x: Real
- y: Real

Position
1 11

1

1

Static input

1

Output

1
1

Dynamic input

xp
0

yp
0

vp
0

✓p
0

vc
0

v3

v2

v1

F1
F2

Figure 4.2. The AEB domain model.

Range = [120..250]

Range = [32..50]

Range = [50..76]

✓p0
xp
0

yp
0

Range = [40..160]

Range = [60..95]

Range = [2..16]

✓p0
xp
0

yp
0

Range = [40 ..160]

Range = [30 ..85]

Range = [24 ..36]

✓p0
xp
0

yp
0

Curved road Ramped road Straight road

Figure 4.3. The ranges of the pedestrian position (xp
0 , yp

0) and orientation (θ p
0) for different road topologies.

object stores the position of that object at each simulation time step. II. Function specific output vari-
ables: Each ADAS, depending on its function, produces some outputs. For example, AEB produces
three outputs corresponding to its three main components: (1) Time to collision (TTC) generated by
the sensor component and discussed earlier. (2) certaintyOfDetection generated by the vision com-
ponent which is a percentage value indicating the probability that the detected object is a pedestrian.
(3) Braking that indicates whether a braking request has been triggered.

The following describes the main AEB critical (or failure) behavior extracted from the AEB re-
quirements: “AEB detects a pedestrian in front of the car with a high degree of certainty, but an acci-
dent happens where the car hits the pedestrian with a relatively high speed (i.e., more than 30km/h)".

35

Chapter 4. Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms

We denote this critical behavior by CB, and refer to any AEB simulation scenario exhibiting this
behavior as a critical test scenario of AEB.

The test input space of AEB is large and multidimensional. As we will specify in Section 4.2, it
consists of four enumeration (static) and five float (dynamic) variables. Considering only the static
AEB variables, their total number of value assignments is 11,242. Further, AEB simulations (and in
general ADAS simulations) are computationally expensive. This is because the underlying simulator
(e.g., PreScan) builds on high-fidelity mathematical models and takes a relatively large amount of
time to run (e.g., on average, each AEB simulation takes 1.2 min). Our goal is to provide an effective
algorithm that, within a reasonable testing time budget: (1) generates AEB critical test scenarios (i.e.,
those exhibiting CB), and (2) identifies under what conditions on the AEB input variables such critical
scenarios are more likely to occur. The latter will provide engineers with critical region characteriza-
tions, allowing them to better understand the conditions under which AEB fails to behave correctly.

4.2 ADAS Formalization
In this section, we formalize an ADAS system and its environment. Our formalization is meant to help
define our algorithm precisely, and to demonstrate how our work can be applied to other ADAS sys-
tems. Our formalization is developed based on our analysis of different ADAS examples [data, 2017]
and the input and configuration variables of the PreScan tool [TASS-International, 2019]. Generic
descriptions of our ADAS examples can be found on the Bosch website [Bosch, 2017].

Definition 4.2.1. We define an ADAS as a tuple (S,O, I,D,C), where

- S = {s1, . . . ,sn} is a set of variables specifying (immobile) static environment aspects.

- O is a set of mobile objects (pedestrians and vehicles).

- I = {i1, . . . , im} is a set of variables specifying initial states of the mobile objects in O. Each
variable in I is related to one mobile object in O, while each mobile object o ∈ O is related to one or
more variables in I.

- D is a set of domains of values for variables in S∪ I. In particular, D is partitioned into DS and
DI (D = DS ∪DI) such that DS = {D1, . . . ,Dn} is a set of finite value sets to variables in S, while
DI = {D′1, . . . ,D′m} is a set of infinite value sets to variables in I. Specifically, D j is the set of values
for s j ∈ S, and D′j is an interval [min...max] of real values specifying the values that i j ∈ I can take.

- C is a set of Boolean propositional constraints over S∪ I. The set C is partitioned into CS and
CI such that constraints in CS are defined on finite-domain variables in S, and constraints in CI relate
finite-domain variables in S to infinite-domain variables in I.

Example 4.2.1. We formalize AEB in Figure 4.1 as follows:

36

4.2. ADAS Formalization

- Static variables (S): s1 (precipitation), s2 (fogginess), s3 (road shape) and s4 (visibility range).

- Mobile objects (O): o1 (vehicle) and o2 (pedestrian).

- Dynamic variables (I): vc
0 (initial speed of vehicle), vp

0 (initial speed of pedestrian), xp
0 (initial

position of pedestrian on the x-axis), yp
0 (initial position of pedestrian on the y-axis) and θ

p
0 (the

orientation of pedestrian).

- The domain of s1 is the union of RainType and SnowType enumerations in Figure 4.2 as well as
a value for normal weather. Variable s2 takes values from the FogColor enumeration. The domain of
s3 is the union of RampedHeight and CurvedRadius enumerations and a value for the straight road.
Variable s4 takes values from the VisibilityRange enumeration. The ranges for dynamic variables
were discussed in Section 4.1.

- The constraints over static variables (CS) relate the level of fog (s2) to the visibility range (s4).
An example of a CS constraint is: (s2 = “DimGray”⇒ s4 = 10∨ . . .∨ s4 = 100). The constraints over
static and dynamic variables (CI) relate the shape of the road (s3) to different ranges for xp

0 , yp
0 and

θ
p
0 (see Figure 4.3). An example of a CI constraint is: (s3 = “RH4”∨ . . .∨ s3 = “RH12”⇒ DxP

0
=

[60..95]∧DyP
0
= [2..16]∧D

θ P
0
= [40..160]).

We denote by Z ⊆D1× . . .×Dn×D′1× . . .×D′m the set of value assignments to variables in S∪ I
satisfying all the constraints in C. An ADAS simulation function Σ takes as input a value assignment
z ∈ Z and a value T ∈N indicating the simulation duration (i.e., the number of simulation steps). The
output of Σ is (1) a set U of output vectors indicating the position and speed of mobile objects at each
simulation time step, and (2) a set V of (time-independent) output variables. Specifically, U captures
the dynamic behavior of ADAS and the environment (i.e., how mobile objects move over time).
Each position vector u ∈U corresponds to one and only one mobile object o ∈ O and is a function
u : {0,1, . . . ,T} → R3 where u(t) (t ∈ {0, . . . ,T}) is a triple (x,y,v) indicating the position (x,y) and
the speed v of the mobile object related to u at time t. The set V determines the function-specific
outputs produced by decision-making components of an ADAS.

Example 4.2.2. AEB generates two position vectors (U): u1 (for vehicle) and u2 (for pedestrian); and
three decision-making outputs (V): (1) TTC denoted by v1, (2) certaintyOfDetection denoted by v2,
and (3) braking denoted by v3 (see Figure 4.2).

To specify critical behaviors of ADAS, we define (auxiliary) functions over the dynamic system
outputs U . For example, let u1 and u2 be position vectors generated for AEB over simulation time T .
We define two functions: (1) F1(u1,u2) that computes the minimum distance between the pedestrian
(u2) and the field of view of the vehicle (u1), and (2) F2(u1,u2) that computes the speed of the car at
the time of collision, and returns −1 if collision does not occur.

37

Chapter 4. Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms

We formalize the AEB critical behavior CB described in Section 4.1. Given AEB outputs U =

{u1,u2} and V = {v1,v2,v3}, we define CB(U,V) as follows:

CB(U,V) = (F1(u1,u2)< 50cm)∧ (v2 > 0.5)∧ (F2(u1,u2)> 30km/h) (4.1)

The CB property states that: a pedestrian is in front of a car (F1(u1,u2) < 50cm), is detected
by AEB with a high certainty (v2 > 0.5), and the car hits the pedestrian with a speed higher than
30km/h (F2(u1,u2)> 30km/h). The constant values 50cm, 0.5 and 30km/h are taken from the AEB
specification. An AEB test scenario generating U and V is critical if and only if CB(U,V) is true.

4.3 Search Guided by Classifiers
In this section, we describe our ADAS testing algorithm that combines multi-objective search and
decision tree classification models.

4.3.1 Multi-objective search

The formalization of ADAS critical behaviors depends on several ADAS outputs. For example, for-
malizing the CB behavior (see equation 4.1) relies on three AEB outputs F1, F2 and v2. We cast the
problem of computing ADAS critical test scenarios as a multi-objective search optimization problem
where the ADAS outputs specifying its critical behaviors act as the search fitness functions. We use
the NSGAII algorithm, which is discussed in Section 2.1.1. NSGAII algorithm generates a set of
solutions forming a Pareto nondominated front. In our work, NSGAII generates a number of ADAS
critical test scenarios by maximizing or minimizing the ADAS outputs characterizing its critical be-
havior. In the following, we discuss how we tailor NSGAII to ADAS testing:

Representation. A feasible solution is a vector of values to static variables s1, . . . ,sn and dynamic
variables i1, . . . , im of the ADAS under analysis such that each vector satisfies the constraints in C.
Each such vector defines an ADAS test scenario. Simulating each vector generates outputs U and V
that can be used to compute fitness functions.

Initial population. An initial population for our search algorithm is a set P consisting of vectors
of ADAS test scenarios. We aim to generate P by selecting a diverse set of vectors from the in-
put space. We generate P with size q as follows: First, we generate q vectors of value assignments
to static variables s1, . . . ,sn using t-wise combinatorial testing [Kuhn et al., 2004] such that (1) the
CS constraints hold, and (2) the pairwise coverage of variables s1 to sn is maximized. We use the
PLEDGE tool [Henard et al., 2013] for this purpose. Second, we use an adaptive random search
algorithm [Luke, 2013] to generate a large number (> q) of value assignments to dynamic variables
i1, . . . , im. Adaptive random search is an extension of the naive random search that attempts to max-
imize the Euclidean distance between the points selected in the input space. Third, for each static

38

4.3. Search Guided by Classifiers

variable vector, we select a dynamic variable vector such that the constraints CI (i.e., constraints be-
tween static and dynamic variables) hold. If for some static variable vector v we cannot find such
dynamic variable vector among the existing randomly generated pool, we perform some more iter-
ations of (adaptive) random search within the value ranges accepted by the CI constraint for v. The
initial population set P is complete when every static variable vector is matched to one dynamic vari-
able vector. Note that in our ADAS formalization, we do not have any constraint among the dynamic
variables.

Fitness Functions. Fitness functions are defined based on the ADAS outputs specifying its critical
behavior. For the AEB case study, fitness functions are the two functions F1 and F2, and the output
variable v2. These are used to formalize the critical behavior of AEB (the CB behavior in Section 4.2).
To generate critical test scenarios, we maximize F2 and v2, and minimize F1. This is because for
scenarios exhibiting CB, the values of F2 and v2 should be larger than a threshold, and F1 should be
smaller than a threshold.

Genetic operators. The genetic operators of NSGAII should be defined such that the generated test
scenario vectors satisfy the CS and CI constraints. Here, we provide crossover and mutation operators
that respect pairwise CS constraints, and CI constraints relating one static variable to one or more
dynamic variables. The constraints of the ADAS systems we have studied in our work [data, 2017]
conform to these conditions. Specifically, in all of these systems, the CS constraints relate the weather
properties (e.g., fog-level (s2) to visibility range (s4)), and the CI constraints relate different road
shape types (s3) to the ranges of dynamic variables xp

0 , yp
0 , and θ

p
0 .

Selection: We use a binary tournament selection with replacement that has been used in the orig-
inal implementation of NSGAII [Deb et al., 2002].

Crossover: To avoid violating the CS constraints, crossover is not applied to the static segments of
the vectors. That is, our crossover operator is applied to dynamic segments of the vectors only (i.e.,
(i1, . . . , im)). To avoid violating the CI constraints, we match pairs of vectors with the same value for
the static variables participating in CI (e.g., the same value for s3 in the AEB case study). If we do
not find any match for some parent vector, we match two vectors with the smallest Euclidean distance
between the variables participating in the CI constraints. We then use Simulated Binary Crossover
operator (SBX) [Beyer and Deb, 2001, Deb and Agrawal, 1995] that has been previously applied to
vectors of float variables. The difference between offsprings generated by SBX and their parents is
controlled by a distribution index (η): The offsprings are closer to the parents when η is large, while
with a small η , the difference between offsprings and parents will be larger [Deb and Beyer, 2001]. In
this chapter, we chose a high value for η (i.e., η = 20) based on existing guidelines [Deb and Agrawal,
1995]. Given that η is large, even when parents do not have the same values for the static variables in
CI , the values of the dynamic variables in each of the two offsprings are likely to fall within the valid
ranges of their respective parent vector. Hence, the CI constraints are likely to still hold after applying
SBX in such situations. If the resulting values are out of variable ranges after crossover, we cap them
at the max or min of the ranges when they are closer to the max or min, respectively.

39

Chapter 4. Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms

Mutation: Mutation is applied after crossover to static and dynamic variables with a probability
(mutation rate). To avoid violation of the CI constraints, we do not mutate static variables participating
in the CI constraints. Note that since the initial population is generated by maximizing pairwise
coverage of static variables, different value combinations of the static variables in CI are already
present in the initial population. Except for static variables in CI , all other static and dynamic variables
can be mutated. We mutate a static variable not appearing in CS by randomly changing its value within
its valid range. For a pair si and s j of static variables appearing in a CS constraint we define a closed
mutation operator as follows: after mutating si (respectively s j), we identify the set of values for
s j (respectively si) consistent with the new value of si (respectively s j), and randomly change s j

(respectively si) to one of those values. To mutate a dynamic variable, we shift the variable by a value
selected from a normal distribution with mean µ = 0 and a small variance. Similar to the crossover
operator, if the resulting values are out of variable ranges, we cap them at the max or min of the ranges
when they are closer to the max or min, respectively.

4.3.2 Decision tree learning

Decision tree learning is a supervised learning classification technique [Witten et al., 2011, Alpaydin,
2010a]. They are divided into regression and classification techniques where the goal is to predict
real-valued and categorical outputs, respectively. In this chapter, we use classification decision trees.
Recall from Section 2.2 that supervised learning techniques are trained based on labeled data. In this
chapter, we use Boolean functions such as CB (see equation 4.1 in Section 4.2) to label each ADAS
test scenario as critical or non-critical. Alternatively, we could characterize the critical behavior as a
real-valued function and use regression trees instead.

In contrast to other learning techniques (e.g., SVM), decision tree boundaries are parallel to the
dimensions of the input space and expressible in terms of linear conditions over input variables. This
makes decision tree boundaries understandable by practitioners, and has been a main reason why we
selected them in our work.

Figure 4.4 shows two decision trees generated for the AEB case study. The input data for building
decision trees is a set of AEB test scenario vectors. The label for each scenario is computed by
first simulating the scenario and then labeling it either as critical or non-critical by applying the CB
function to the scenario simulation outputs. A decision tree model is built by partitioning the set
of labeled test scenarios in a stepwise manner aiming to create partitions with increasingly more
homogeneous labels (i.e., partitions in which the majority of scenarios are labeled either as critical
or non-critical). For example, the tree in Figure 4.4(a) shows that out of the 636 scenarios that use a
straight, ramped or curved (with CR = 5) road, 98% were not critical (did not exhibit CB).

The tree leaves containing more than 50% critical scenarios (i.e., leaves A to D in Figure 4.4)
are critical regions. For example, out of the total of 1200 scenarios, 230 of them are classified in the
critical region (A), and 69% of them are critical. Each critical region is specified by conjoining the
conditions appearing on the path from the root to the critical region. For example, the critical region
A is characterized as follows: vP

0 ≥ 7.2km/h ∧ θ P
0 < 218.6° ∧ (s3 = “CR10”∨ . . .∨ s3 = “CR40”).

40

4.3. Search Guided by Classifiers

All points
Count 1200

“non-critical” 79%
“critical” 21%

“non-critical” 59%
“critical” 41%

Count 564 Count 636
“non-critical” 98%
“critical” 2%

Count 412
“non-critical” 49%
“critical” 51%

Count 152
“non-critical” 84%
“critical” 16%

Count 230(A) Count 182

vp
0 >= 7.2km/h vp

0 < 7.2km/h

✓p0 < 218.6� ✓p0 >= 218.6�

RoadTopology(CR = 5,
Straight,RH = [4� 12](m))

RoadTopology
(CR = [10� 40](m))

(a)

“non-critical” 31%
“critical” 69%

“non-critical” 72%
“critical” 28%

All points
Count 3367

“non-critical” 58%
“critical” 42%

“non-critical” 43%
“critical” 57%

Count 2198 Count 1169
“non-critical” 88%
“critical” 12%

Count 338
“non-critical” 17%
“critical” 83%

Count 1860
“non-critical” 47%
“critical” 53%

(B)

“non-critical” 42%
“critical” 58%

Count 1438 Count 422
“non-critical” 64%
“critical” 36%

Count 553
“non-critical” 29%
“critical” 71%

Count 885
“non-critical” 51%
“critical” 49%

(C)

“non-critical” 37%
“critical” 63%

Count 548 Count 337
“non-critical” 73%
“critical” 27%

(D)

xp
0 >= 37.4 ^RoadTopology

(Straight,

RH = [4� 12])

xp
0 < 37.4^RoadTopology

(Straight,

✓p0 < 232.5�✓p0 >= 232.5�

xp
0 < 33xp

0 >= 33

✓p0 >= 185.6�✓p0 < 185.6�

yp
0 < 57.7yp

0 >= 57.7

^

^

^^

^

^ RoadTopology

RoadTopology

RoadTopologyRoadTopology

RoadTopology

RoadTopology

(Straight,

(CR = [5� 40])

(CR = [5� 40])

(CR = [5� 40])

(CR = [5� 40])

(Straight,

CR = [5� 40],

CR = [5� 40])

CR = [5� 40])

(b)

CR = [5� 40])

Figure 4.4. Decision trees generated our approach for the AEB system: (a) An initial decision tree, and (b) A
decision tree obtained after some iterations of the NSGAII-DT algorithm.

41

Chapter 4. Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms

At each (non-leaf) node, a decision tree partitions the data in that node based on a condition
on only one variable. However, due to the CS and CI constraints, a decision tree condition on a
variable v may additionally constrain variables other than v but related to v via CS or CI . As discussed
in Section 4.3.1, our genetic operators respect the CS and CI constraints. Hence, when our search
algorithm applies these operators to a specific critical region (as we will discuss in Section 4.3.3), the
operators automatically handle both the constraints explicitly identified by the tree and the additional
constraints implied by CS or CI . However, as critical region characterizations are among outputs of our
approach, we explicate these additional constraints in outputs presented to engineers. For example,
in Figure 4.4(b), the conditions in gray color are not generated by the decision tree but are implied by
the AEB constraints.

We note that, in this chapter, we do not use decision trees to predict whether a given ADAS
scenario is critical or not (i.e., the decision trees are not used as predictor models). We exclusively
use the decision trees: (1) to better guide the search, and (2) to characterize the critical regions
of the ADAS input space. Further, to avoid overfitting in the trees generated by our approach, in
Section 4.4.3, we define a stopping criterion to control the tree expansion such that the number of
vectors in each tree leaf does not fall below a certain threshold.

4.3.3 NSGAII guided by decision trees

Algorithm 4 shows our proposed algorithm, NSGAII-DT, that generates critical test scenarios and
critical regions for ADAS. NSGAII-DT receives as input an ADAS specification, a set of (quantita-
tive) fitness functions, a Boolean label function indicating whether a test scenario is critical or not,
and a parameter g indicating the number of search iterations we perform in each critical region. The
output of NSGAII-DT is a set of the critical test scenarios and the critical regions R1, . . . ,Rk of the
ADAS input space.

NSGAII-DT starts with an initial and randomly selected population set P (line 2). Each itera-
tion of NSGAII-DT consists of the following main steps: First, it performs a number of (genetic)
search iterations using NSGAII in critical regions of the input space (lines 6–10). Specifically, for
each critical region Ri, the set Q of the elements inside Ri is passed as the initial population to NS-
GAII along with the parameter g (i.e., the number of search iterations to be applied in Ri). We
further pass Ri and C to NSGAII. In particular, Ri specifies the ranges of input variables valid for
the critical region under search. Provided with the variable ranges and the constraints (i.e., the set
C), our mutation and crossover operators described in Section 4.3.1 can generate new vectors within
the region Ri. Note that in the first iteration, the only critical region is the entire input space (R1 in
line 4). NSGAII returns two sets: Q′ and B where Q′ is the set of all scenarios and B is the set of
most critical scenarios computed by NSGAII.

Second, NSGII-DT identifies the scenarios on the best Pareto front rank computed so far (lines 11–
12). In particular, it identifies the best Pareto front rank in set Best (i.e., the set of all best solutions
generated by all invocations of NSGAII). Third, NSGII-DT builds a decision tree based on the labeled
set of all the scenarios generated up to that point (lines 13–14). Specifically, it computes the label for

42

4.3. Search Guided by Classifiers

Algorithm 4: NSGAII-DT
Input: (S,O, I,D,C): An ADAS specification
Input: F1, . . . ,Fl : Search fitness functions
Input: label: A Boolean function to label scenarios as critical/non-critical
Input: g: Number of search iterations to be applied at each critical leaf

Result: criticalScenarios: A set of critical test scenarios
Result: R1, . . . ,Rk(⊆ D1× . . .×Dn×D′1× . . .×D′m): A set of critical regions

1 begin
2 Select an initial population set P randomly.

/*Each p ∈ P is a vector of values for (s1, . . . ,sn, i1, . . . , im) */
3 k← 1; Best← /0
4 R1← D1× . . .×Dn×D′1× . . .×D′m

/*R1 is the entire search space and includes all elements in P*/
5 repeat
6 for i = 1 to k do
7 Q← P∩Ri
8 B,Q′← NSGAII(g,Q,F1, . . . ,Fl ,Ri,C)

/*Inputs passed to NSGAII:
g: the number of search iterations applied to each critical leaf;
Q: the set of scenarios used as the initial population of NSGAII;
F1, . . . ,Fl : search fitness functions;
Ri: the critical leaf in which we want to run NSGAII; and
C: the ADAS constraints.
Outputs received from NSGAII:
Q′: all the solutions generated during search; and
B: best solutions generated by NSGAII.*/

9 P← P∪Q′

10 Best← B∪Best
11 rank1, . . . ,rankt ← ComputeRanks(Best)
12 criticalScenarios← rank1
13 (P+,P−)← ComputeLabel(label,P) /*P+ : non-critical, P− : critical*/
14 Build a decision tree Tree based on (P+,P−)
15 Let R1, . . . ,Rk characterize the leaves of Tree where P− has a higher probability than P+

/* For each region Ri = d1× . . .×dn×d′1× . . .×d′m,
we have: ∀ j ∈ {1, . . . ,n}⇒ d j ⊆ D j, and ∀ j ∈ {1, . . . ,m},
∃min ∈ D′j,∃max ∈ D′j s.t. min < max∧d′j = [min..max]*/

16 until search time has run out

each p ∈ P, partitions P into P+ (the non-critical set) and P− (the critical set), and builds a decision
tree based on the labeled data. Fourth, it updates the set of desired input space regions in which
subsequent search iterations are performed (line 15). Specifically, it identifies the critical leaves
R1, . . . ,Rk of the tree such that the probability of failure P− is higher than that of non-failure P+.
Each Ri is a sub-region of the ADAS input space and is specified as the conjunction of the conditions
on the tree paths leading to the leaves containing more elements from P− than from P+.

NSGAII-DT can be stopped when we run out of time. Alternatively, we can stop NSGAII-DT
when all the tree leaves classify critical scenarios with a high probability (e.g., more than 95%) or
when the fitness functions do not improve for the scenarios in the criticalScenarios set compared with
the previous iteration.

43

Chapter 4. Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms

For example, the decision trees in Figure 4.4 are computed by applying NSGAII-DT to the AEB
case study. Figure 4.4(a) shows an initial tree, and Figure 4.4(b) shows a tree after a few search
iterations. The tree in Figure 4.4(b) contains more conditions, and identifies three critical regions B,
C and D, instead of one such region in Figure 4.4(a). Further, the regions B, C and D are considerably
more specific than region A as they prune the domains of the input variables more.

We note three important aspects of NSGAII-DT: (1) In ADAS testing, the most time-consuming
part of the search is running simulations to compute fitness functions. NSGAII-DT does not increase
the number of simulations compared to NSGAII. The fitness values computed by the NSGAII search
(line 8) are reused at line 13 to label the new elements. (2) To rebuild the tree in line 14, we use all the
scenarios generated and simulated by NSGAII (i.e., Q′). Since computing simulations is expensive
and to build more accurate trees, we try to reuse as much as possible the simulation outputs computed
by NSGAII. (3) In our work, we run NSGAII in leaves that classify critical scenarios with a probability
lower than 95%. This is to use search time budget exploring the critical parts in the input space about
which we have less certainty regarding criticality. These are parts of the space where the tree may
need to be refined.

4.4 Evaluation
In this section, we present the result of our evaluation performed on the AEB case study.

4.4.1 Research Questions

RQ1. Does the decision tree technique help guide the evolutionary search and make it more effective?
The most important criterion for a search algorithm to be effective in the context of ADAS testing is
that it should be able to generate critical test scenarios, in particular, in large and multidimensional
search spaces. To answer this question, we determine whether NSGAII-DT (i.e., our proposed algo-
rithm that is guided by both decision trees and genetic operators) is able to generate scenarios that
are more critical compared to those obtained by the NSGAII algorithm (i.e., the baseline evolutionary
search algorithm).

RQ2. Does our approach help characterize and converge towards homogeneous critical regions?
After evaluating the ability of NSGAII-DT in generating critical test scenarios in RQ1, we evaluate
the critical regions. In particular, in RQ2, we investigate whether the decision trees generated by
NSGAII-DT are able to precisely characterize critical regions in ADAS input spaces and increasingly
do so better over NSGAII-DT iterations.

At the end of Section 4.4.4, we provide qualitative insights into the benefits of our approach from
the perspective of practitioners.

44

4.4. Evaluation

4.4.2 Metrics

To answer RQ1, we compare the Pareto fronts generated by NSGAII-DT and NSGAII using three
well-known quality indicators for evaluating multi-objective search results [Knowles et al., 2006b]:
Hypervolume (HV), Generational Distance (GD), and Spread (SP). To compute the quality indicators,
following existing guidelines in the literature [Wang et al., 2016], we compute a reference Pareto front
as the union of all the non-dominated solutions obtained from all runs of NSGAII-DT and NSGAII.
The HV quality indicator [Zitzler and Thiele, 1999b] measures the size of the space covered by
the members of a Pareto front generated by a search algorithm. The higher this size, the better the
results of the algorithm. The GD quality indicator [Van Veldhuizen and Lamont, 1998b] measures
the Euclidean distance between members of a Pareto front and the nearest solutions on a reference
Pareto front. The lower the value of GD, the more optimal the Pareto front solutions. The SP quality
indicator [Deb et al., 2002] measures the extent of spread among the members of a Pareto front
generated by a search algorithm [Deb et al., 2002]. The lower the SP values, the better spread out the
search outputs.

To answer RQ2, we use the RegionSize, the GoodnessOfFit and the GoodnessOfFit-crt metrics
defined below.

RegionSize measures the size of the critical regions as a percentage of the size of the entire input
space. It is used to determine whether the critical regions become smaller and more specific over
NSGAII-DT iterations. Let D1 to Dn and D′1 to D′m be the dimensions of the input space (as defined in
Section 4.2). Recall from the NSGAII-DT algorithm (line 15 in Algorithm 4) that the dimensions of
a region Ri are characterized by d1× . . .×dn×d′1× . . .×d′m such that d1 to dn are respectively (finite)
subsets of D1 to Dn, and d′1 to d′n are respectively sub-intervals of the intervals D′1 to D′m. We define
RegionSize(Ri) as follows:

RegionSize(Ri) =
n∏

j=1

|dj|
|Dj|
×

m∏
j=1

max(d′j)−min(d′j)
max(D′j)−min(D′j)

(4.2)

RegionSize for the entire input space is equal to one, and the lower RegionSize(R), the smaller
the region R. For example, for the tree in Figure 4.4(a), we have RegionSize(A) = 0.25, and for
that in Figure 4.4(b), we have RegionSize(B) = 0.02, RegionSize(C) = 0.03 and RegionSize(D) =

0.03, implying that the size of critical regions are reduced over subsequent iterations of NSGAII-
DT. As discussed in Section 4.3.2, in our work, input variable domains are reduced in two ways:
by the explicit conditions on tree edges and due to ADAS constraints, i.e., the gray conditions in
Figure 4.4(b). In order to accurately compute RegionSize (e.g., for B-D in Figure 4.4(b)), we consider
both explicit and implicit domain reductions.

GoodnessOfFit is used to determine how well the trees generated during the search fit to the set
of scenarios sampled during the search. Similarly, GoodnessOfFit-crt determines goodness of fit
for critical scenarios only. Each decision tree is built based on a labeled set P+ ∪P− of elements
(see line 14 in Algorithm 4). The GoodnessOfFit of each decision tree is the number of elements in

45

Chapter 4. Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms

P+∪P− that are correctly classified by the tree (either as critical or non-critical) divided by |P+∪P−|.
Similarly, the GoodnessOfFit-crt for each tree is the number of elements in P− that are correctly
classified by the tree (as critical) divided by |P−|. Note that since we do not use the classification
trees as prediction models, we do not evaluate them based on cross validation with test sets. Instead,
we assess how well the trees characterize critical scenarios, while avoiding overfitting as discussed in
Sections 4.4.3 and 4.4.4.

4.4.3 Experiment Design

We applied both NSGAII-DT and NSGAII to the AEB case study introduced in Section 4.1. For both
algorithms, we set the (initial) population size to 100, the mutation rate to 0.11, and the crossover rate
to 0.6. Specifically, the mutation rate is 1/l where l is the chromosome size (nine in our work). The
search parameter values are consistent with existing guidelines [Arcuri and Fraser, 2011b].

We set the search time to 24 hours. Based on our experiments, the HV, GD and SP quality indicator
values for both NSGAII and NSGAII-DT start to stabilize and reach a plateau within the search time
budget of 24h. Further, according to domain experts, longer search time budgets are not practical in
the context of ADAS testing.

To build NSGAII-DT decision trees, we use the Classification and Regression Trees (CART) [Breiman
et al., 1984] algorithm. We control the decision tree size (depth) by setting the value of minimum split
parameter (msp) to 10% of the size of the underlying data set. Our goal is thus to avoid overfitting
and obtain reasonable estimates in ADAS critical regions captured by the tree leaves labeled critical.
Moreover, we require that splitting a node reduces the miss-classification error of decision trees by at
least 1%.

Within the 24h search time budget, NSGAII performed, on average, 22 search iterations (gen-
erations). Note that the NSGAII-DT algorithm consists of two nested loops: The outer loop that
generates decision trees (lines 5–16 in Algorithm 4), and the inner loop that invokes NSGAII for
critical input space regions (lines 6–10 in Algorithm 4). We refer to each iteration of the outer loop
as tree generation. Corresponding to each tree generation, NSGAII is invoked one or more times
depending on the number critical tree leaves. We set the number of search iterations performed by
each NSGAII invocation to five (i.e., we set g = 5 in Algorithm 4). By setting g = 5, NSGAII-DT
performed between five to seven tree generations in 24h (i.e., each run of NSGAII-DT generated
between five to seven trees). Further, on average, NSGAII-DT performed 30 search iterations (i.e.,
NSGAII iterations) in 24h. Note that in our experiments, each run of NSGAII-DT performed more
search iterations than each run of NSGAII. This is because, in our experiments and within the 24h
search time budget, most search iterations of NSGAII-DT are applied to population sets smaller than
the initial population set, while all search iterations of NSGAII are applied to a fixed-size population
set equal to the size of the initial population. We reran each of the NSGAII and NSGAII-DT algo-
rithms for 15 times to account for their randomness. We have made our experimental results available
at [data, 2017].

46

4.4. Evaluation

H
V

0.0

0.4

0.8

G
D

0.05

0.15

0.25

SP

2
0.6

1.0

1.4

6 10 14 18 22 24
Time (h)

NSGAII-DT
NSGAII

Figure 4.5. Comparing HV, GD and SP values obtained by NSGAII and NSGAII-DT.

4.4.4 Results

RQ1. Figure 4.5 shows the HV, GD and SP values computed based on the outputs of NSGAII-DT
and NSGAII. We show the results at every four-hour time interval starting at 2h as well as the results
at the end of the search time limit (i.e., at 24h). Note that, on average, simulating the elements in
the initial population takes about 2h. Hence, the results at 2h are those obtained for the randomly
selected initial population and prior to any search iteration. As shown in the figure, the HV, GD and
SP values for NSGAII-DT are consistently better than those for NSGAII. Further, after executing the
algorithms for about 22h, both NSGAII-DT and NSGAII converge towards their respective Pareto
optimal solutions (i.e., for each algorithm, the differences in HV, GD and SP average values between
22h and 24h are negligible).

Following existing guidelines [Arcuri and Briand, 2014], to statistically compare HV, GD and SP
values, we use the nonparametric pairwise Wilcoxon rank sum test [Capon, 1991] and the Vargha-
Delaney’s Â12 effect size [Vargha and Delaney, 2000]. The level of significance (α) is set to 0.05.
Table 4.1 reports the statistical test results comparing NSGAII-DT and NSGAII at 24h. For HV and
SP comparisons, the p-values are less than 0.05, and the Â12 values show large effect sizes. The
differences between the GD distributions of NSGAII-DT and NSGAII are not statistically significant,
although the effect size value is in the medium range. However, as shown in Figure 4.5, the medians
and averages of the GD values obtained by NSGAII-DT are lower (i.e., better) than the medians and
averages of the GD values obtained by NSGAII.

47

Chapter 4. Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms

Table 4.1. Statistical test results for NSGAII-DT and NSGAII at 24h (the format is: metric (p-value / Â12)).

HV (0.01 / 0.9), GD (0.07 / 0.3), SP (0.01 / 0.1)

Finally, we evaluate the results of NSGAII-DT and NSGAII based on the number of distinct,
critical test scenarios generated by each algorithm. Recall that an AEB test scenario is a vector in the
AEB input space (i.e., a vector of values to four static and five dynamic variables). Also, an AEB test
scenario is critical if its simulation outputs satisfy the CB property (equation 4.1 in Section 4.2). Two
AEB test scenarios are distinct if they differ in the value of at least one static variable or in the value
of at least one dynamic variable with a significant margin.

Over the 15 runs, NSGAII generates 708 distinct AEB test scenarios among which 411 are critical.
In contrast, over the 15 runs, NSGAII-DT generates 1045 distinct AEB test scenarios among which
731 are critical. This result shows that, within the same search time budget, on average, NSGAII-DT
provides 78% more distinct, critical test scenarios compared to NSGAII, enabling the engineers to
better identify the limitations of AEB.

The answer to RQ1 is that, NSGAII-DT significantly outperforms NSGAII. Further, on average,
NSGAII-DT generates 78% more distinct, critical test scenarios compared to NSGAII.

RQ2. To answer this question, we focus on assessing the critical regions characterized by NSGAII-
DT (i.e., the algorithm that is shown, in RQ1, to outperform NSGAII). We further note that NSGAII,
or any search algorithm for that matter, has never been used to characterize critical regions and cannot
be used as a baseline of comparison for this research question.

Figure (a) shows the RegionSize values for the critical regions obtained from the decision trees
generated by NSGAII-DT. Recall that NSGAII-DT performs five to seven tree generations within
the 24h search time limit. In our experiments, each decision tree generated by NSGAII-DT had
between one and three critical leaves (i.e., critical regions). As shown in the figure, the critical regions
generated by NSGAII-DT become monotonically smaller (i.e., more specific) over successive tree
generations. In particular, the critical regions obtained from the first decision trees are on average
17.2% of the size of the entire input space, while the final trees generated by NSGAII-DT are on
average 3.5% of the input space.

Figures (b) and (c) show the GoodnessOfFit and the GoodnessOfFit-crt values for NSGAII-DT
decision trees, respectively. As shown in the figure, GoodnessOfFit increases from 57% to 77%, and
GoodnessOfFit-crt increases from 50% to 89% over the maximum seven tree generations of NSGAII-
DT. These results show that the decision trees generated by NSGAII-DT, compared to those generated
based on random initial populations, accurately classify on average 20% more critical and non-critical
scenarios, and almost 40% more critical scenarios. Hence, NSGAII-DT, over its successive tree
generations, produces decision trees that fit noticeably better to critical scenarios.

48

4.4. Evaluation

G
oo

dn
es

sO
fF
it

R
eg

io
nS

iz
e

1 5 642 3
0.40

0.50

0.60

0.70

tree generations

(b)
 0.80

71 5 642 3
0.00

0.05

0.10

0.15

tree generations

(a)
 0.20

7

G
oo

dn
es

sO
fF
it-

cr
t

1 5 642 3

0.30

0.50

0.70

tree generations

(c)
 0.90

7

Figure 4.6. Evaluating the critical regions: (a) the RegionSize, (b) the GoodnessOfFit, and (c) the
GoodnessOfFit-crt values.

50

69

36320

θ

yp
0

xp
0

~v
c
0

Curved road (radius
)

Conditions

(b) Region B

xp
0 2 [32� 36](cm)

yp
0 2 [50� 69](cm)

✓p
0 2 [240� � 250�]

vc
0 > 36km/h

vp
0 >= 6.1km/h

r 2 [15� 40](m)

50

76

36320

θ

yp
0

xp
0

~v
c
0

rr

(a) Region A
Conditions

Curved road (radius
)

xp
0 2 [32� 36](cm)

vc
0 > 36km/h

r 2 [15� 40](m)

vp
0 < 6.1km/h

yp
0 2 [50� 76](cm)

✓p
0 2 [120� � 250�]

Figure 4.7. Examples of critical regions for the AEB case study

The answer to RQ2 is that the RegionSize, GoodnessOfFit and GoodnessOfFit-crt values mono-
tonically improve across different tree generations, confirming that the generated critical regions
consistently become smaller, more homogeneous and more precise over successive tree genera-
tions of NSGAII-DT. In particular, the trees generated by NSGAII-DT, compared to those gener-
ated based on the initial randomly selected populations, fit on average to 40% more critical AEB
test scenarios.

Benefits from a practitioner’s perspective. Here, we investigate whether practitioners are able to
use and benefit from our approach. In particular, we intend to know whether the critical regions
computed by our approach are understandable, informative, and useful to practitioners. To do so,
we draw on the qualitative reflections of two semi-structured interview [Wohlin et al., 2012] sessions
that we conducted with three senior engineers at IEE. The reflections are based on the comments the
engineers made in two two-hour meetings with the researchers. The engineers were selected from
three different groups at IEE working on different aspects of ADAS development and testing. We
have been collaborating with one of these engineers on the research and the case study presented in

49

Chapter 4. Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms

this chapter. The two other engineers, however, did not have any interaction with the researchers prior
to the interview sessions. Further, they were not involved in our research nor in the development of
the AEB case study or any of our other ADAS examples.

To perform the interviews, we selected, among the decision trees generated by NSGAII-DT in our
experiments, the one with the highest goodness of fit. The selected tree characterized three critical
regions in the AEB input space. We created visually-enhanced representations of the three regions,
showing the regions individually without any reference to the tree structure. Figures (a) and (b)
illustrate the representations for two of the regions. The conditions specifying each region are shown
on the left side of each region diagram. Furthermore, some of these conditions (i.e., those on the road
type, and the initial position and orientation of the pedestrian) are visually shown on the right side of
each diagram. Region A specifies the AEB input scenarios where a car (speed > 36.6km/h) drives
on a curved road with a radius between 15m to 40m, while a pedestrian starts walking from a point
inside the dashed gray rectangle with a trajectory between 120° and 250° and crosses the road with a
low speed (< 6.1km/h). Region B specifies similar scenarios as those in A except that the pedestrian
walks with a high speed (>= 6.1km/h) within a much narrower trajectory and starts crossing the road
from a slightly smaller area compared to the one in A.

During the meetings, we presented the critical regions to the engineers, and asked the following
questions: (1) Are you able to understand the conditions specifying the regions? (2) Based on your
domain knowledge, do you think the regions specify situations where AEB is more likely to fail (i.e.,
exhibits CB)? (3) How can you utilize the knowledge you gain from the characterizations of the
regions to analyze AEB? These questions aim to assess, respectively, comprehension, intuitiveness
and usefulness of the critical region characterizations generated by our approach.

Regarding comprehension and intuitiveness, the engineers noted that the characterizations of the
regions are understandable and consistent with their intuition. For example, regions A and B indicate
that scenarios containing curved roads are more likely to exhibit CB. This is because, on such roads,
pedestrians appear relatively late in the camera’s field of view and will be detected late by AEB,
hence leaving little time to apply the brake. The regions further show that the probability of CB is
higher when the car speed is higher than 36.6km/h. Finally, the regions show that, in addition to the
road and vehicle characteristics, CB likely happens due to pedestrian dynamics. Specifically, critical
scenarios are more likely when pedestrians walk from particular areas on the sidewalk, or as shown
in B, running pedestrians with a particular trajectory (θ) are more likely to escape accidents if they
do not run towards the car.

Regarding the usefulness of our approach, the engineers noted that the information captured by
these regions can help them in the following ways: (1) Debugging the system or the simulator. The
region characterizations, particularly when they do not match the domain knowledge, may point to
errors in the system or the simulator. For example, in our early results, curved roads did not appear
as critical regions. Our investigation showed that due to an error in the AEB sensor output (i.e., the
TTC output), which resulted in some scenarios that actually led to collision to be wrongly labeled as
non-critical. Further, the pedestrian dynamic situations identified as critical may point to weaknesses

50

4.4. Evaluation

in pedestrian tracking algorithms [Philomin et al., 2000] typically used in ADAS. (2) Identifying
changes to hardware components to help increase ADAS safety. For example, in our work, we assume
AEB contains one camera located at the front center of the car with a specific value for its field of
view. Regions A and B indicate that a different type of camera with a larger field of view or two
cameras, although more expensive, may help detect pedestrians faster and better on curved roads.
(3) Identifying proper warnings to drivers. Some of ADAS critical behaviors may not be avoidable
due to real world and physical constraints. Nevertheless, our approach enables car makers to be aware
of such situations and consider mitigation strategies. For example, regions A and B indicate that AEB
may not be fully trusted on curved roads in residential zones where it is more likely for pedestrians
to cross roads. In such situations, a warning message may be shown to drivers to reduce their speed
(e.g., to lower than 30km/h).

4.4.5 Threats to validity

To mitigate the Internal validity risks caused by confounding factors, we compared NSGAII-DT and
NSGAII under identical parameter settings. Further, we present a detailed formal description of our
case study and search algorithm, and provide all the parameter settings to facilitate reproducibility.
Our case study is a real ADAS. The simulation data is obtained based on an industrial and widely-
used ADAS simulation tool. To assess usefulness of our approach, we conducted two semi-structured
interview sessions with three engineers from different groups at IEE with varying types of expertise
related to ADAS development.

Conclusion validity is related to random variations and inappropriate use of statistics. To mitigate
these threats, we have followed standard guidelines in search-based software engineering [Arcuri and
Fraser, 2011b] and ran the search algorithms 15 times. Further, we use the non-parametric pairwise
Wilcoxon Paired Signed Ranks test and Vargha and Delaney’s Â12 for statistical testing and effect
sizes.

The main threat to construct validity concerns unsuitable or incorrect metrics. To compare multi-
objective search algorithms we use standard quality indicators (i.e., HV, GD, SP). Further, we assess
the decision trees generated by our approach using our formally defined RegionSize and the standard
GoodnessOfFit metrics.

Regarding the external validity threats, we note that we provide in Section 4.2 a precise formaliza-
tion of the ADAS systems to which our testing approach is applied. Our ADAS formalism builds on
our experiences of studying different ADAS systems as well as the characteristics of the PreScan sim-
ulator. Our testing approach applies to any ADAS system that conforms to our formalism presented in
Section 4.2. Finally, we note that ADAS systems comprise an important and growing industry sector
with pressing needs regarding testing and verification.

51

Chapter 4. Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms

4.5 Conclusions
We proposed a simulation-based testing algorithm for vision-based control systems (i.e., ADAS). Our
algorithm builds on learnable evolution models and uses classification decision trees to guide the
generation of new test scenarios within complex and multidimensional input spaces. Our approach is
evaluated on an industrial ADAS. The results indicate that our classification-guided search algorithm
outperforms a baseline evolutionary search algorithm and generates 78% more distinct, critical test
scenarios compared to the baseline algorithm. Our approach, further, characterizes critical regions
of the ADAS input space. Based on our interviews with domain experts, such characterizations are
accurate and help engineers debug their systems. They further help engineers identify environment
conditions that are likely to lead to ADAS failures as well as hardware changes that can increase
ADAS safety.

52

Chapter 5

Testing Autonomous Cars for Feature
Interaction Failures using Many-Objective
Search

In this chapter, we focus on identifying feature interaction failures in self-driving systems. Complex
systems such as autonomous cars consist of units of functionality known as features. Individual fea-
tures are typically traceable to specific system requirements and are mostly independent and separate
from one another [Fisler and Krishnamurthi, 2005, Prehofer, 1997, Jackson and Zave, 1998]. A self-
driving system, for example, may include the following features, each automating an independent
driving function: An automated emergency braking (AEB), an adaptive cruise control (ACC) and a
traffic sign recognition (TSR).

Although features are typically designed to be independent, they may behave differently when
composed with other features. For example, in a self-driving system, feature interactions are likely
to arise when several features control the same actuators. More specifically, in a self-driving system,
both ACC and AEB control the braking actuator. A feature interaction may arise when a braking
command issued by AEB to immediately stop the car is overridden by ACC commanding the car to
maintain the same speed as that of the front car. Some feature interactions are desirable, and some
may result in violations of system safety requirements and are therefore undesired. For example, the
above feature interaction between AEB and ACC may lead to an accident, and hence, is undesirable.

The feature interaction problem has been extensively studied in the literature [Jackson and Zave,
1998, Calder et al., 2003, Braithwaite and Atlee, 1994, Apel et al., 2013a]. Some techniques focus on
identifying feature interactions at the requirements-level by analysis of formal or semi-formal require-
ments models [Zave, 1993, Bredereke, 2000, Blom et al., 1994]. Several techniques detect feature
interaction errors in implementations using test cases derived from feature models capturing features
and their dependencies [Oster et al., 2011, Patel et al., 2013, Ferber et al., 2002, Apel et al., 2013b].
Other approaches devise design and architectural resolution strategies to eliminate at runtime unde-
sired feature interactions identified at the requirements-level [Hay and Atlee, 2000, van der Linden,

53

Chapter 5. Testing Autonomous Cars for Feature Interaction Failures using Many-Objective Search

1994, Jackson and Zave, 1998, Zibaeenejad et al., 2017]. For self-driving systems, however, fea-
ture interactions should be identified as early as possible and before the implementation stage since
late resolution of undesired interactions can be too expensive and may involve changing hardware
components. Further, feature interactions in self-driving systems are numerous, complex and depend
on several factors such as the characteristics of sensors and actuators, car and pedestrian dynamics,
weather condition, road traffic and sidewalk objects.

In this chapter, we develop an automated approach to detect undesired feature interactions in self-
driving systems at an early stage. Our approach identifies undesired feature interactions based on
executable function models of self-driving systems embedded into a realistic simulator capturing the
self-driving system hardware and environment. Building function models at an early stage is standard
practice in model-based development of control systems and is commonly followed by the automo-
tive and aerospace industry [Zander et al., 2017, Wainer, 2009, Nise, 2004]. Function modeling takes
place after identification of system requirements and prior to software design and architecture ac-
tivities. Function models of control systems capture algorithmic behaviors of software components
and physic dynamics of hardware components. Similar to the automotive and aerospace industry, the
function models and the simulator of the self-driving system used in this chapter are specified in the
Matlab/Simulink language [Matlab, 2019].

We cast the problem of detecting undesired feature interactions into a search-based testing prob-
lem. Specifically, we aim to generate test inputs that expose undesired feature interactions when
applied to executable function models of self-driving systems. Search-based techniques have been
successfully applied to simulation-based testing of control systems and self-driving features [Matin-
nejad et al., 2016, Matinnejad et al., 2015, Bühler and Wegener, 2008, Abbas et al., 2013] as well as
various other testing problems such as unit testing [McMinn, 2004a, Tonella, 2004, Fraser and Arcuri,
2013a], regression testing [Li et al., 2007, Yoo and Harman, 2007] and optimizing machine learning
components [Suttorp and Igel, 2006].

This chapter highlights the following research contributions:

1. We define novel hybrid test objectives that determine how far candidate tests are from detecting
undesired interactions. Our test objectives combine three different heuristics: (i) A branch cov-
erage heuristic [McMinn, 2004a] ensuring that the generated test cases exercise all branches
of the component(s) integrating features. (ii) A failure-based heuristic based on system safety
requirements ensuring that test cases stress the system into breaking its safety requirements.
(iii) An unsafe overriding heuristic that aims to exhibit system behaviors where some feature
output is overridden by other features such that some system safety requirements may be vio-
lated.

2. We introduce FITEST (Feature Interaction TESTing), a new many-objective test generation
algorithm to detect undesired feature interactions. We opt for a many-objective optimization
algorithm since test generation in our context is driven by many competing test objectives re-
sulting from the combination of heuristics above.

54

5.1. Motivation

System Under Test (SUT)

...

sensors

cameras

feature 1

feature 2

feature n

 Integration
component actuators

Figure 5.1. Overview of a typical function model capturing the software subsystem (SUT) of a self-driving car.

3. We evaluate FITEST using two industrial self-driving systems from our partner company IEE.
Both systems represent a (partial) self-driving car consisting of four features.

Organization. This chapter is structured as follows. Section 5.1 motivates our work. Section 5.2
presents our approach. Section 5.3 describes our evaluation, and Section 5.4 concludes this chapter.

5.1 Motivation
Figure 5.1 shows an overview of a typical function model capturing the software subsystem of a self-
driving car. The system under test (SUT) consists of a set of self-driving features and a component
capturing the decision algorithm combining feature outputs. SUT receives its inputs from sensors/-
cameras and sends its outputs to actuators. Both inputs and outputs are sequences of timestamped
values. The entire SUT runs iteratively at regular time steps. At every time step, the features receive
sensor/camera values issued in that step, and output values are computed and sent to actuators by
the end of the step. Each feature controls one or more actuators. Actuators may receive commands
from more than one feature at the same time step, and sometimes these commands are conflicting.
The integration component has to generate final outputs to actuators after resolving conflicting feature
outputs.

Our goal is to identify feature interactions at the requirements-level and in terms of system func-
tional behavior. Hence, we base our analysis on function models specifying algorithmic and control
behaviors. Feature interaction failures due to software architecture and design issues are not studied
in this chapter.

We use a case study system, called SafeDrive, from our partner company IEE. SafeDrive contains
the following four self-driving features: Autonomous Cruise Control (ACC), Traffic Sign Recognition
(TSR), Pedestrian Protection (PP), and Automated Emergency Braking (AEB). ACC automatically
adjusts the car speed and direction to maintain a safe distance from a car ahead (or a leading car).
TSR detects traffic signs and applies appropriate braking, acceleration or steering commands to follow
the traffic rules. PP detects pedestrians in front of a car with whom there is a risk of collision and

55

Chapter 5. Testing Autonomous Cars for Feature Interaction Failures using Many-Objective Search

applies a braking command if needed. AEB is the same as PP but it prevents accidents with objects
other than pedestrians. Once the risk of an accident is over and the road is clear, both PP and AEB
issue acceleration commands to bring back the car to the same speed that the car had before their
intervention. All the features generate braking and acceleration commands to respectively control the
brake and the throttle actuators. TSR and ACC, additionally, generate steering commands.

The SafeDrive features may issue conflicting commands to the same actuators. For example,
Scenario-1: ACC orders the car to accelerate, while a pedestrian starts crossing the road. Hence, at
the same time, PP starts sending braking commands to avoid hitting the pedestrian. Scenario-2: The
car reaches an intersection while the traffic light turning from orange to red. ACC orders the car to
accelerate since the leading car has also accelerated to pass the intersection while the light is orange.
At the same time, TSR orders to brake since it detects that a red light is about to come.

When feature interactions are known, engineers can develop the decision logic of the integra-
tion component (see Figure 5.1) such that the interactions do not lead to failures (e.g., using existing
feature interaction resolution techniques [Jackson and Zave, 1998, Zibaeenejad et al., 2017]). For
example, for Scenario-1, engineers may decide to prioritize the braking command of PP over the
acceleration command of ACC to avoid hitting a pedestrian. The resolution strategy for Scenario-2
can be prioritizing TSR if the car can safely stop by the traffic light, and otherwise, prioritizing ACC.
However, feature interactions in SafeDrive are numerous and many of them may not be known, partic-
ularly at early development stages. Further, the feature interaction resolution strategies cannot always
be determined statically and may depend on complex environment factors. For example, deciding “if
the car can safely stop” in the resolution strategy for Scenario-2 depends on the speed and the position
of the car, the distance to the car behind, road topology and the weather condition. Therefore, we need
techniques that, at early development stages, (1) detect undesired feature interactions in SafeDrive,
and (2) test whether the proposed resolution strategies can avoid failures under different environment
conditions.

In the next sections, we present and evaluate a technique that tests the functional behavior of au-
tonomous cars to detect their undesired feature interactions. Our technique accounts for the impact
of the environment factors on the self-driving system behavior. It, further, ensures that feature inter-
action resolution strategies devised by engineers satisfy system safety requirements under different
environment conditions. We note that in Section 5.2.3, we will provide a precise formalization of the
context upon which we build. The formalism is generic and based on simple assumptions that can
be accommodated by many feature-based systems. Hence, in addition to autonomous cars, our work
applies to any feature-based system expressible using our formalism.

5.2 Approach
In this section, we present our feature interaction detection technique. As discussed earlier, our tech-
nique generates test inputs for function models of self-driving systems, exposing their undesired fea-
ture interactions. Section 5.2.1 describes how we integrate the function models into a high-fidelity,

56

5.2. Approach

SUT

Simulator

Model of the
(ego) car or
the physical

plant Pedestrians

Other cars

- Roads
- Traffic signs
- Weather

Outputs
Time-stamped vectors for:
- the SUT outputs
- the states of the physical
plant and the mobile
environment objects

sensors

cameras

actuators

Environment

mobile objects

static properties

Inputs
- the initial state of the
physical plant and the
mobile environment
objects
- the static environment
aspects

Figure 5.2. Early testing of control system function models using simulators.

physics-based simulator for self-driving systems. Section 5.2.2 characterizes the test inputs and
outputs for self-driving systems. Section 5.2.3 introduces our hybrid test objectives. Section 5.2.4
presents FITEST, our proposed many-objective test generation algorithm that utilizes our test objec-
tives to generate test inputs revealing feature interaction failures.

5.2.1 Testing Feature-Based Control Systems

Testing Cyber-Physical Systems (CPSs) at early stages is generally performed using simulators. To
test the function model in Figure 5.1, we connect the SUT model to a simulator such that it receives
inputs from the sensor and camera models of the simulator and sends its outputs to the actuator models
of the simulator (see Figure 5.2). The sensor, camera and actuator models are within a physical model
of a car (or a physical plant according to general CPS terminology) in the simulator. To run the
simulator, we specify the initial state of the simulator physical plant and mobile environment objects
as well as the static environment properties (e.g., weather condition and road shapes for self-driving
systems). The simulator can execute the SUT in a feedback loop with the plant and the environment.
For SafeDrive, we use the PreScan simulator. Some examples of SafeDrive simulations are available
online [Ben Abdessalem, 2018a].

5.2.2 Test Inputs and Outputs

The test inputs for a self-driving system are the inputs required to execute the simulation framework
in Figure 5.2. For example, to test SafeDrive, we start by instantiating the simulation framework
so that the simulator is able to exercise the behaviors of the PP, AEB, TSR and ACC features. Our
simulation framework contains the following objects: (1) An ego car equipped with SafeDrive, (2) a
leading car to test both the ACC and the AEB features of the ego car, and (3) a pedestrian that crosses

57

Chapter 5. Testing Autonomous Cars for Feature Interaction Failures using Many-Objective Search

xe
0 xl

0xp
0

yp
0

ye
0, y

l
0

✓p

xts x � axis

y � axis

~vp
0

~ve
0

~vl
0

X = (xp
0, y

p
0 , ✓p, ~vp

0 , ~ve
0,

~vl
0, x

l
0, x

ts, fg)Test input vector

Figure 5.3. Test inputs required to simulate SafeDrive, our case study system.

the road starting from an initial position on the sidewalk and is used to exercise PP. The simulation
environment, further, includes one traffic sign to test the TSR feature. We only consider a stop sign
or a speed limit sign for our case study. This setup is meant to reduce the complexity of simulations
and was suggested by the domain experts.

The test inputs of SafeDrive are shown in Figure 5.3. They include the following variables: (1) The
initial position xe

0, ye
0 and the initial speed ve

0 of the ego car. (2) The initial position xl
0, yl

0 and the initial
speed vl

0 of the leading car. (3) The initial position xp
0 , yp

0 , the initial speed vp
0 and the orientation θ p

of the pedestrian. (4) The position xts of the traffic sign that varies along the x-axis, but is fixed along
the y-axis. (5) The fog degree fg. In our simulator, among different weather-related properties (e.g.,
snow and rain), the fog level has the largest impact on the object detection capabilities of SafeDrive.
Hence, we include the fog level in the test inputs.

All the above variables except for fg are float numbers varying within ranges specified by domain
experts. The variable fg is an enumeration specifying ten different degrees of fog. In addition to the
domain value ranges, there are often some constraints over test inputs to ensure that simulations start
from a valid and meaningful state. Specifically, we have the following two constraints for SafeDrive:
(i) The ego car starts behind the leading car with a safety distance gap, denoted sd, and with a speed
close to the speed of the leading car. This constraint is specified as follows: sd−ε ≤ xl

0−xe
0 ≤ sd+ε

and |ve
0− vl

0| ≤ ε ′ where ε and ε ′ are two small constants, and sd, which is the safety distance gap
between the ego and the leading cars, is determined based on the car speeds. (ii) The traffic sign is
located within a sufficiently long distance from the ego car to give enough time to the TSR feature to
react (i.e., |xts−xe

0|< c where c is constant value). Finally, to simulate the system, we need to specify
the duration of the simulation T and the simulation step size δ .

As shown in Figure 5.2, the simulator outputs are time-stamped vectors specifying (1) SUT out-
puts, (2) states of the physical plants and (3) states of any mobile environment object. All these

58

5.2. Approach

PP

AEB

bPP
aPP

TSR

aAEB

bAEB

aTSRbTSR sTSR

ACC

sa

b

 : braking
 : acceleration
 : steering

b
a
s

if (condition)

IntC

T

�

0

T

�

0 40%(bAEB (0))

40%(bAEB (1))

80%(bPP (2))

80%(bPP (3))

80%(bPP (T/�))

....

80%

80%

80%
80%

...
T

�

0

PP
40%
40%

...
T

�

0

bACCaACCsACC

T

�

0

bPP

20%

0%

60%

40%

Figure 5.4. Actuator command vectors generated at the feature-level and at the system-level by simulating
SafeDrive. Vectors b f , a f and s f indicate command vectors generated by feature f for the braking, acceleration
and steering actuators, respectively. The IntC component analyzes the command vectors generated by all the
features and issues the final command vectors b, a and s to the braking, acceleration and steering actuators,
respectively.

outputs are vectors with T
δ

elements where the element at position i specifies the output at time i · δ .
For example, Figure 5.4 illustrates the SUT outputs generated by simulating SafeDrive. Specifically,
the SUT outputs in that figure include both the outputs of each feature inside the SUT and the output
of the integration component, i.e., the final command vector sent to the actuators.

5.2.3 Hybrid Test Objectives

Our test objectives aim to guide the test generation process towards test inputs that reveal undesired
feature interactions. We first present our formal notation and assumptions and then we introduce our
test objectives. Note that since in this chapter we are primarily interested in the feature interaction
problem, we design our test objectives such that they focus on detecting failures that arise due to
feature interactions, but not failures that arise due to an individual feature being faulty.

Notation. We define a feature-based control system F as a tuple (f1, . . . , fn, IntC) where f1, . . . , fn

are features and IntC is an integration component. The system F controls a set Act of actuators.
Each feature fi controls a set Actfi ⊆ Act of actuators. Since we are interested in identifying feature
interaction failures and not failures due to errors inside individual features, our approach does not
require any visibility into the internals of features. But, in our work, IntC is a white-box component.
The IntC behavior is typically conditional where each condition checks a specific feature interaction
situation and resolves potential conflicts that may arise under that condition. We assume F has a set

59

Chapter 5. Testing Autonomous Cars for Feature Interaction Failures using Many-Objective Search

Table 5.1. Safety requirements and failure distance functions for SafeDrive.

Feature Requirement Failure distance functions (FD1, . . . ,FD5)

PP No collision with pedestrians FD1(i) is the distance between the ego car and the pedes-
trian at step i.

AEB No collision with cars FD2(i) is the distance between the ego car and the leading
car at step i.

TSR Stop at a stop sign Let u(i) be the speed of the ego car at time step i if a stop
sign is detected, and let u(i) = 0 if there is no stop sign. We
define FD3(i)= 0 if u(i)≥ 5km/h; FD3(i)= 1

u(i) if u(i) 6= 0;
and otherwise, FD3(i) = 1.

TSR Respect the speed limit Let u′(i) be the difference between the speed of the ego car
and the speed limit at step i if a speed-limit sign is detected,
and let u′(i) = 0 if there is no speed-limit sign. We define
FD4(i) = 0 if u′(i) ≥ 10km/h; FD4(i) = 1

u′(i) if u′(i) 6= 0;
and otherwise, FD4(i) = 1.

ACC Respect the safety distance FD5(i) is the absolute difference between the safety dis-
tance sd and FD2(i).

of safety requirements such that each requirement is related to one feature which is responsible for
the satisfaction of that requirement. For example, the second column of Table 5.1 shows the safety
requirements for SafeDrive. The feature responsible for satisfying each requirement is shown in the
first column.

As discussed earlier, testing F is performed by connecting F to a simulation framework (see
Figure 5.2). A test case for F is a vector X of inputs required to execute the simulation framework
into which F is embedded (e.g., Figure 5.3 shows the test input vector for SafeDrive). The test output
of F includes: (1) a vector v f

act generated by every feature f and for every actuator act ∈ Actf ; (2) a
vector vact generated by IntC for each actuator act ∈ Act; and (3) a trajectory vector for the physical
plant and every mobile environment object.

Test objectives. A key aspect in search-based software testing [McMinn, 2004a, Harman et al.,
2012b] is the notion of distance functions D(.) that measure how far a candidate test X is from reach-
ing testing targets (e.g., covering branches in white-box testing). Our testing targets aim to reveal
undesired feature interactions. An undesired feature interaction is revealed when: (1) Some safety
requirement r is violated such that (2) the integration component (i.e., IntC) overrides the output of
the feature responsible for r. We note that if r is violated while IntC selects the output of the feature
responsible for r, then the violation is likely to be due to the internals of that feature and not due to
feature interactions. Therefore, we define two distance functions, namely failure distance and unsafe
overriding distance to respectively capture the conditions (1) and (2) above. Further, we ensure that
the generated tests exercise all branches of IntC. Hence, our third distance corresponds to the well-
known distance used in coverage-based testing [McMinn, 2004a]. In the following, we present each
distance separately and then we describe how we combine them to build our test objectives.

Coverage distance. First, the generated test cases have to exercise every branch of IntC. Given that
IntC is white-box, we rely on two widely-used heuristics in branch coverage, namely the approach

60

5.2. Approach

level [McMinn, 2004a] and the normalized branch distance [McMinn, 2004a, Fraser and Arcuri,
2013a]. Each branch bi in IntC has its own distance function BDi to minimize which is defined
according to the two heuristics above. The distance BDi is equal to zero iff a candidate test case tc
covers the associated branch bi.

Failure distance: The failure distance evaluates how close the system F is from violating its
safety requirements at each simulation time step. For each system safety requirement j ∈ {1, . . . ,m},
we define a failure distance FD j such that FD j(i) = 0 iff requirement j is violated at time step i. FD j

is a black-box heuristic, i.e., it relies on system outputs only.

For example, the third column of Table 5.1 describes functions FD1(i) to FD5(i) for the five safety
requirements of SafeDrive in the second column of that table. Since self-driving safety requirements
typically concern mobile environment objects and physical plants, the failure distance is computed
based on the trajectories of the physical plant and the environment mobile objects generated by sim-
ulation. Recall that for each safety requirement of F , there is only one feature that is responsible for
its satisfaction. Hence, each FD j is related to a feature f of F such that f is the feature responsible
for satisfying j. When any of the FD1(i) to FD5(i) functions in Table 5.1 yields a zero value at step i,
it means that a requirement failure corresponding to that function is detected. Further, small or large
values of these functions indicate that the system is, respectively, close to or far from exhibiting a
failure. For example, function FD1(i) related to PP measures the distance between the ego car and
the pedestrian. A search algorithm guided by FD1 generates simulations during which the distance
between the ego car and the pedestrian is minimized, hence increasing the likelihood of an accident.
As another example, the distance functions related to the TSR requirements are defined as the inverse
of the speed of the ego car for the stop sign, and the inverse of the difference between the speed of
the ego car and the speed limit for the speed limit sign. According to domain experts, the stop sign
requirement is certainly violated when the speed of the car never falls below 5km/h after detecting the
stop sign, and the speed limit sign requirement is certainly violated when the speed of the car exceeds
the speed limit by more than 10km/h. For both cases we set the concerned failure function to zero
indicating that a safety violation has occurred.

Unsafe overriding distance: This distance function aims to prioritize behaviors that violate safety
requirements due to errors inside IntC over the behaviors that fail due to errors inside features. At
each simulation time step, the IntC component prioritizes the output of some feature and overrides
those of the rest. Recall that for each actuator act, IntC always generates the vact vector, and every
feature f generates v f

act iff f controls act (i.e., act ∈ Act f). If vact(i) = v f
act(i), it means at time step i,

IntC prioritizes f over other features controlling act. Dually, if vact(i) 6= v f
act(i), it means at time step

i, IntC overrides the command issued by f for act. For example, in Figure 5.4, the IntC component
of SafeDrive prioritizes AEB over the other three features to control the braking actuator at time steps
0 and 1.

For an actuator act and at time step i, we say IntC unsafely overrides f if the command at vact(i) is
less safe than the command at v f

act(i) for act. We say a command c is less safe than a command c′ for an
actuator act, when act executing c is more likely to break some requirement compared to act executing

61

Chapter 5. Testing Autonomous Cars for Feature Interaction Failures using Many-Objective Search

c′. For example, in the SafeDrive system, a mild and late braking more likely leads to violating one
of the requirements in Table 5.1 compared to a firm and early braking. Dually, the requirements in
Table 5.1 are more likely to fail when we accelerate faster than when we accelerate more slowly.

Note that test cases that violate safety requirements without IntC unsafely overriding any feature
do not fail due to faults in IntC. This is because, for such test cases, either IntC does not override any
decision of any individual feature or its decision to override a feature does not increase the likelihood
of violating a safety requirement. Hence, such test cases fail due to a fault in a feature. For IntC to be
faulty, it is necessary that vact unsafely overrides v f

act in some simulation time step. For each feature
f , we define an unsafe overriding distance UOD f such that UOD f = 0 iff IntC unsafely overrides the
output of f at least once during the simulation, and otherwise, UOD f > 0. Such a distance guides the
search towards generating tests that cause IntC to unsafely override f .

To compute UOD f , we define UODact
f for each actuator act controlled by f . For actuators where

higher force values are safer (e.g., braking), IntC unsafely overrides f when v f
act(i) > vact(i) (i.e.,

when, at step i, f orders to brake more strongly than IntC). We use the traditional branch distance for
the greater-than condition [Korel, 1990] to translate this condition into a distance function. That is,
for such actuators, we define UODact

f at each simulation step i, as follows:

UODact
f (i) =

{
vact(i)− vf

act(i), if vf
act(i)< vact(i)

0, otherwise
(5.1)

Dually, for actuators that lower force values are safer (e.g., acceleration), IntC unsafely overrides
f when vact(i)> v f

act(i) (i.e., when the accelerating command of f is less than that of IntC at step i).
Following the traditional branch distance for the less-than condition [Korel, 1990], we define UODact

f
for this kind of actuators as follows:

UODact
f (i) =

{
vf

act(i)− vact(i), if vact(i)< vf
act(i)

0, otherwise
(5.2)

We compute UOD f (i) =
∑

act∈Actf UODact
f (i) where each UODact

f is defined as either one of the
above equations depending on the type of act. The UOD f function is our unsafe overriding distance
function. Specifically, UOD f (i) = 0 implies that IntC unsafely overrides the output of f at step i.
Similarly, a small or large value of UOD f (i) indicates that a test case is, respectively, close to or far
from causing IntC to unsafely override f at step i.

Combined distances. We now describe how we combine the three distance functions to obtain our
final hybrid test objectives for detecting undesired feature interactions. Note that coverage distance,
failure distance and unsafe overriding distance have different units of measure (e.g., km/h, meters)
and different ranges. Thus, we first normalize these distances before combining them into one single
hybrid function. To this aim, we rely on the well-known rational function ω1(x) = x/(x+ 1) since
prior studies [Arcuri, 2013] have empirically shown that, compared to other normalization functions,

62

5.2. Approach

it provides better guidance to the search for minimization problems (e.g., distance functions in our
case). In the following, we denote the normalized forms of the functions above as FD, UOD and BD,
respectively.

To maximize the likelihood of detecting undesired feature interactions, we aim to execute every
branch of IntC such that while executing that branch, IntC unsafely overrides every feature f , and
further, its outputs violate every safety requirement related to f . Therefore, for every branch j of
IntC, every safety requirement l of F , and every simulation time step i, we define a hybrid distance
Ω j,l(i) as follows:

Ω j,l(i) =


BD j(i)+UODmax +FDmax (1) If j is not covered (BD j(i)> 0)
UOD f (i)+FDmax (2) If j is covered, but f is not unsafely

overridden (BD j(i) = 0∧UOD f (i)> 0)
FDl(i) (3) Otherwise (BD j(i) = 0∧UOD f (i) = 0)

(5.3)

where f is the feature responsible for the requirement l, while FDmax = 1 and UODmax = 1, indicating
the maximum value of the normalized functions.

Each hybrid distance function Ω j,l(i) is defined for each simulation step i. Corresponding to each
hybrid distance function, we define a test objective Ω j,l for the entire simulation time interval as
follows: Ω j,l = Min{Ω j,l(i)}0≤i≤ T

δ

. Given a test case tc, each test objective Ω j,l(tc) always yields
a value in [0..3]; Ω j,l(tc) > 2 indicates that tc has not covered branch j; 2 ≥ Ω j,l(tc) > 1 indicates
that tc has covered branch j, but has not caused IntC to unsafely override some feature f related
to requirement l; 1 ≥ Ω j,l(tc) > 0 indicates that tc has covered branch j, and has caused IntC to
unsafely override some feature f related to requirement l, but has not violated requirement l; and
finally, Ω j,l(tc) is zero when tc has covered branch j, has caused IntC to unsafely override some
feature f related to l and has violated requirement l.

5.2.4 Search Algorithm

When testing a system we do not know a priori which safety requirements may be violated. Neither
do we know in which branches of IntC the violations may be detected. Therefore, we search for
any violation of system safety requirements that may arise when exercising any branch of IntC. This
leads to k×n test objectives where k is the number of branches of IntC and n is the number of safety
requirements. More formally, given a feature-based control system F under test, our test generation
problem can be formulated as follows:

Definition. Let Ω =
{

Ω1,1, . . . ,Ωk,n

}
be the set of test objectives for F , where k is the number of

branches in IntC and n is the number of safety requirements of F . Find a test suite that covers as
many objectives Ωi, j as possible.

Our problem is many-objective as we attempt to optimize a relatively large number of test ob-
jectives. As a consequence, we have to consider many-objective optimization algorithms, which are

63

Chapter 5. Testing Autonomous Cars for Feature Interaction Failures using Many-Objective Search

Algorithm 5: Feature Interaction Testing (FITEST)
Input: Ω: Set of objectives
Result: A: Archive

1 begin
2 P←− ADAPTIVE-RANDOM-POPULATION(|Ω |)
3 W ←− CALCULATE-OBJECTIVES(P, Ω)
4 [Ωc,Tc]←− GET-COVERED-OBJECTIVE(P,W)
5 A←− Tc
6 Ω←−Ω−Ωc

7 while not (stop_condition) do
8 Q←− RECOMBINE(P)
9 Q←− CORRECT-OFFSPRINGS(Q)

10 W ←− CALCULATE-OBJECTIVES(Q, Ω)
11 [Ωc,Tc]←− GET-COVERED-OBJECTIVE(P,W)
12 A←− A∪Tc // Update the archive
13 Ω←−Ω−Ωc // Update the set of objectives
14 F0←− ENVIRONMENTAL-SELECTION(P∪Q,Ω)
15 P←− F0 // New population
16 return A

a class of search algorithms suitably defined for problems with more than three objectives. Various
many-objective meta-heuristics have been proposed in the literature, such as NSGA-III [Deb and Jain,
2014], HypE [Bader and Zitzler, 2011]. These algorithms are designed to produce different alternative
trade-offs that can be made among the search objectives [Li et al., 2015].

Recently, Panichella et al. [Panichella et al., 2015, Panichella et al., 2018] argued that the pur-
pose of test case generation is to find test cases that separately cover individual test objectives rather
than finding solutions capturing well-distributed and diverse trade-offs among the search objectives.
Hence, they introduced a new search algorithm, namely MOSA [Panichella et al., 2015], which is
discussed in Section 2.1.2. MOSA (i) rewards test cases that cover at least one objective over those
that yield a low value on several objectives without covering any; (ii) focuses the search on the yet
uncovered objectives; and (iii) stores all tests covering one or more objectives into an archive. MOSA
has been introduced in the context of white-box unit testing and has shown to outperform alternative
search algorithms [Panichella et al., 2015, Panichella et al., 2018].

In this chapter, we introduce FITEST, a novel search algorithm that extends MOSA and adapts
it to testing feature-based self-driving systems. Below, we describe the main loop of FITEST whose
pseudo-code is shown in Algorithms 5. We then discuss the differences between FITEST and MOSA.

Main loop. As Algorithm 5 shows, FITEST starts by generating an initial set P of randomly
generated test cases (line 2), called population. Each test case X ∈ P is a vector of inputs required
to simulate the SUT (e.g., see Figure 5.3). After simulating each test X ∈ P, the test objectives
Ω j,l for X are computed based on the simulation results (see Section 5.2.3). Next, tests are evolved
through subsequent iterations (loop in lines 7-16), called generations. In each generation, the binary
tournament selection [Deb et al., 2002] is used to select pairs of fittest test cases for reproduction.
During reproduction (line 8), two tests (parents) are recombined to form new test cases (offsprings)
using the crossover and mutation operators. Finally, fittest tests are selected among the parents and

64

5.2. Approach

offsprings to form the new population for the next generation (line 14). Below, we describe the new
and specific features of FITEST.

Initialization. The size of the initial population in FITEST is equal to the number of test objec-
tives. This is because, in our context, running each single test case is expensive, taking up to few
minutes, as it requires running computationally intensive simulations. Hence, in FITEST, we aim to
cover each test objective at most once by at most one test case. Therefore, we do not need to start the
search with a population larger than the number of test objectives.

We select the initial population such that it includes a diverse and randomly selected set of test
input vectors. This is because we aim to include different traffic situations, (e.g., different trajectory
angles and speeds of pedestrians) in our initial population. To do so, we use an adaptive random search
algorithm [Luke, 2013], which is an extension of the naive random search that attempts to maximize
the Euclidean distance between the vectors selected in the input space. In contrast to FITEST, the
initial population in MOSA is a set of randomly generated tests without any diversity mechanism,
and the size of the population is an input parameter of the algorithm.

Genetic recombination. Since our test inputs (i.e., X) are vectors of float values (see Figure 5.3),
we use two widely-used genetic operators proposed for real number solution encodings: the simulated
binary crossover [Deb, 1995] (SBX) and the gaussian mutation [Deb and Deb, 2014]. Prior studies
[Herrera et al., 2003, Deb and Deb, 2014] show that, for numerical vectors, these operators outperform
the more classical ones. In contrast, MOSA uses the classical single-point crossover and uniform
mutation implemented in EvoSuite [Fraser and Arcuri, 2013a] to handle different types of test data,
e.g., strings, Java objects, etc.

Correction operator. Recall from Section 5.2.2 that our test inputs are characterized by con-
straints. Hence, genetic operators may yield invalid tests (e.g., a test input where the leading car is
behind the ego car). To modify and correct such cases, FITEST applies correction operators (line
9 in Algorithm 5). For example, in SafeDrive, if after applying genetic operators, the leading car
position (xl

0) and speed (vl
o), and the traffic sign position (xts) violate any of the constraints described

in Section 5.2.2, we discard their values and randomly select new values for these variables within
ranges enforced by the ego car position (xe

0) and speed (ve
0).

Archive. Similar to MOSA, every time new tests are generated and evaluated (either at the be-
ginning or during the search), FITEST uses the GET-COVERED-OBJECTIVE routine to identify
newly covered objectives and the test cases covering them. These objectives are removed from the
set of test objectives (line 6, 13) to not be used by the environmental selection in the subsequent iter-
ations. Further, test cases covering the removed test objectives are put in an archive [Panichella et al.,
2015, Panichella et al., 2018, Rojas et al., 2017] (i.e., A). The archive at the end contains the FITEST
results. Each test case in the archive covers one of the test objectives being satisfied during the search.
Note that some test objectives may not be covered within the search time or they may be infeasible
(unreachable).

65

Chapter 5. Testing Autonomous Cars for Feature Interaction Failures using Many-Objective Search

Environmental selection. In FITEST, at each iteration, a new population with a size not neces-
sarily the same as the previous population size is formed (line 15 in Algorithm 5) by selecting, for
each uncovered test objective Ωi, j, the test case in P∪Q that is closest to covering that objective
(preference criterion [Panichella et al., 2015]). The population size at each iteration is lower than
the number of objectives. It can even be less than the number of test objectives because a single test
case may be selected as the closest (fittest) test for multiple objectives. Further, the population size
is likely to decrease over iterations since, at each iteration, test objectives are covered and excluded
from the environmental selection in the subsequent iterations.

The population size represents the main difference between FITEST and similar search-based
test generation algorithms. In classical many-objective search algorithms, the environment selection
chooses a fixed number N of tests (i.e., to maintain a constant population size) from offsprings and
their parents (i.e., from P∪Q) using the Pareto optimality [Deb et al., 2002, Deb, 2014] (i.e., selecting
solutions that are non-dominated by any other solutions in P∪Q). In MOSA, the population size is
kept constant as well but the selection is performed by first selecting the test cases in the first front
F0 built using the preference criterion; then, if the size of F0 is less than N, MOSA uses the Pareto
optimality criterion to select enough test cases such that in total N test cases are selected.

In contrast, FITEST minimizes the number of test cases generated at each search iteration by
evolving only test cases that are closest to satisfying uncovered objectives, i.e., those in F0. This
helps reducing the search computation time compared to existing many-objective search algorithms
that typically maintain and evolve a fixed number of solutions at each iteration. This is particularly
important in the context of our work, since running each test case is expensive.

5.3 Evaluation
In this section, we evaluate our approach to detecting undesired feature interactions using real-world
automotive systems.

5.3.1 Research Questions

The goal of our study is to assess how effectively our hybrid test objectives (hereafter referred to as
Hybrid) guide the search toward revealing feature interaction failures. As described in Section 5.2.3,
Hybrid builds on three distance functions: (1) coverage, (2) failure and (3) unsafe overriding. Among
these, coverage distance is a well-known heuristic that has been extensively used in white-box test-
ing [McMinn, 2004a, Fraser and Arcuri, 2013a, Fraser and Arcuri, 2015]. For example, Fraser and
Arcuri [Fraser and Arcuri, 2015] showed that pure coverage-based distance can be used to gener-
ate unit tests capable of detecting real faults. Variations of the failure distance have also been used
in different contexts to generate tests revealing requirements violations [Briand et al., 2006a, Afzal
et al., 2009]. Therefore, we want to assess whether Hybrid provides any benefits compared to pure
coverage-based and failure-based objectives. In particular, we formulate the following research ques-
tions:

66

5.3. Evaluation

RQ. Does Hybrid reveal more feature interaction failures compared to coverage-based and failure-
based test objectives?

Coverage based-objectives, hereafter referred to as Cov, correspond to the BD functions described
in Section 5.2.3 and are computed as the sum of the approach level [McMinn, 2004b] and the normal-
ized branch distance [McMinn, 2004b]. Therefore, Cov aims to execute as many branches of IntC as
possible.

Failure-based test objectives, hereafter referred as to Fail, aim to generate test cases that execute
as many branches of IntC as possible while violating as many system safety requirements as possible
when executing each branch. Thus, Fail is defined by combining branch distance BD and failure
distance FD functions described in Section 5.2.3. More precisely, for each branch j of IntC and every
safety requirement l of F , a failure-based test objective is defined as Min{Fail j,l(i)}0≤i≤ T

δ

where

Fail j,l(i) =

BD j(i)+FDmax if j is not covered
FDl(i) otherwise

(5.4)

In this chapter, we focus our empirical evaluation on comparing Hybrid with alternative test ob-
jectives, but we do not compare FITEST with alternative many-objective search algorithms because,
as discussed in Section 5.2.4, our changes to MOSA are primarily motivated by the practical needs
of (1) using genetic operators for numerical vectors (often called real-coded operators [Herrera et al.,
2003, Deb and Deb, 2014]) and (2) lowering the running time of our algorithm by reducing the num-
ber of (expensive) fitness computations at each generation. In our preliminary experiments, running
MOSA with its default population size of 50 [Panichella et al., 2015] required more than 24 hours for
only 10 generations. Further, previous studies showed that MOSA, which is the algorithm underlying
FITEST, outperforms other search-based algorithms in unit testing, such as random search [Campos
et al., 2017], whole suite search [Campos et al., 2017, Panichella et al., 2015], and other many-
objective evolutionary algorithms [Panichella et al., 2018].

5.3.2 Case Study Systems

We evaluate our approach by applying it to two case study systems developed by IEE. Both systems
contain the four self-driving features introduced in Section 5.1. However since engineers had devel-
oped two alternative sets of rules to prioritize these features and to resolve their undesired interactions,
they developed two different function models for the integration component (i.e., IntC). Due to con-
fidentiality reasons, we do not share the details of the IntC models used in these two systems. Both
systems are developed in Matlab/Simulink and can be integrated into PreScan, the simulator used in
this chapter. We refer to these systems as SafeDrive1 and SafeDrive2.

67

Chapter 5. Testing Autonomous Cars for Feature Interaction Failures using Many-Objective Search

5.3.3 Experimental Settings

For the genetic operators used in FITEST, we use the parameter values suggested in the literature
[Cobb and Grefenstette, 1993, Briand et al., 2006b, Deb et al., 2002]: We use the simulated binary
crossover (SBX) with a crossover probability 0.60, as the recommended interval is [0.45,0.95] [Cobb
and Grefenstette, 1993, Briand et al., 2006b]. The gaussian mutation changes the test inputs by adding
a random value selected from a normal distribution G(µ,σ) with mean µ = 0 and variance σ2 = 1.0.
As the guidelines suggest [Deb et al., 2002], the mutation probability is set to 1/l where l is the length
of test inputs (chromosomes). In FITEST, we do not need to manually set the population size since,
as described in Section 5.2.4, it is dynamically updated at each generation. The search stops when all
the objectives are covered or when the timeout of 12 hours is reached. We set a timeout of 12 hours
because as we will discuss in Section 5.3.4, the search results start to stabilize and reach a plateau
within this time budget. Further, according to domain experts, longer search time budgets are not
practical.

To account for the randomness of the search algorithm, FITEST was executed 20 times on each
case study system and with each of the three test objectives. The total duration of the experiment
was 20 (repetitions) × 2 (systems) × 3 (test objectives) × 12 (hours) = 1440 hours (60 days). All
experiments were executed on the same machine with a 2.5 GHz Intel Core i7-4870HQ CPU and 16
GB DDR3 memory.

We use the number of feature interaction failures that each of the test objectives in our study
can reveal as our evaluation metric. We compute this metric by automatically checking test cases
generated by each test objective to determine whether or not they reveal a feature interaction failure.
A test case reveals a feature interaction failure iff: (1) it violates some system safety requirement in
Table 5.1 when it is applied to a system consisting of multiple features, but (2) it does not violate
that same safety requirement when it is applied to the feature responsible for the satisfaction of that
requirement. Specifically, a test case tc reveals a feature interaction if FDi(tc) = 0 for some safety
requirement i when tc is applied to SafeDrive1 or SafeDrive2, but FDi(tc) > 0 when tc is applied to
the feature responsible for requirement i.

5.3.4 Results

In this section, we answer our research question by comparing Hybrid, Fail and Cov test objectives.
Specifically, we run FITEST with Hybrid, Fail and Cov as test objectives separately and repeat each
run for 20 times. Figures 5.5(a) and (b) compare the number of feature interaction failures identified
over different runs of FITEST with Hybrid, Fail and Cov applied to SafeDrive1 and SaveDrive2,
respectively. We show the results at every one-hour interval from 0 to 12h. As shown in the two
figures, the average number of feature interaction failures computed using Hybrid is always larger than
those identified by Fail and Cov. Specifically, after 12h, on average, Hybrid is able to find 5.9 and 7.2
feature interaction failures for SafeDrive1 and SaveDrive2, respectively. In contrast, Fail uncovers, on
average, 2.1 and 2.8 feature interaction failures for SafeDrive1 and SaveDrive2, respectively; and Cov
only uncovers, on average, 0.4 and 1.8 feature interaction failures for SafeDrive1 and SaveDrive2,

68

5.3. Evaluation

4 80 2 6 10 12
Time (h)

(a) SafeDrive1
N

um
be

r o
f f

ea
tu

re
 in

te
ra

ct
io

n
fa

ilu
re

s

0

2

8

10

4

6

Hybrid (mean)

Fail (mean)
Cov (mean)

(b) SafeDrive2

0

2

8

10

4

6

Figure 5.5. The number of feature interaction failures found by Hybrid, Fail and Cov over time for (a)
SafeDrive1 and (b) SafeDrive2 systems.

respectively. Further, after executing the algorithms for 10h, the results obtained by the three test
objective alternatives reach a plateau.

Note that every run of FITEST with Hybrid, Fail and Cov achieved 100% branch coverage on the
function model of the integration component (i.e., IntC) for both SafeDrive1 and SafeDrive2. Hence,
Fail and Cov, despite being able to exercise all branches of IntC, perform poorly in terms of the num-
ber of feature interaction failures that they can reveal. Further, we note that, among the Hybrid, Fail
and Cov test objectives, only Cov was fully achieved by the generated test suites, while the Hybrid and
Fail test objectives were only partially achieved. This is expected since, as discussed in Section 5.2.4,
Hybrid and Fail search for violations of every safety requirement at every branch of IntC. Some of
these test objectives may be infeasible (uncoverable) because not all safety requirements may be vio-
lated at every branch of IntC. However, we cannot know a priori which objectives are infeasible, and

69

Chapter 5. Testing Autonomous Cars for Feature Interaction Failures using Many-Objective Search

Table 5.2. Statistical test results comparing the number of feature interaction failures found by Hybrid, Fail
and Cov over time for SafeDrive1 and SafeDrive2 systems (see Figure 5.5).

SafeDrive1 SafeDrive2
Hybrid vs. Cov Hybrid vs. Fail Hybrid vs. Cov Hybrid vs. Fail

time p-value Â12 p-value Â12 p-value Â12 p-value Â12
1h NA 0.5 (N) NA 0.5 (N) NA 0.5 (N) NA 0.5 (N)
2h 0.663 0.53 (N) 0.663 0.53 (N) 0.33 0.58 (S) 0.33 0.58 (S)
3h 8.83e-6 0.89 (L) 5.16e-5 0.86 (L) 0.003 0.77 (L) 0.009 0.73 (L)
4h 7.02e-8 0.98 (L) 4.68e-6 0.91 (L) 1.97e-7 0.97 (L) 5.27e-7 0.95 (L)
5h 3.08e-8 0.99 (L) 4.71e-7 0.95 (L) 9.97e-8 0.99 (L) 1.65e-7 0.98 (L)
6h 3.2e-8 1 (L) 1.43e-7 0.98 (L) 7.14e-8 0.99 (L) 1.0e-7 0.98 (L)
7h 3.32e-8 1 (L) 1.02e-7 0.98 (L) 5.52e-8 0.99 (L) 6.65e-8 0.99 (L)
8h 3.25e-8 1 (L) 7.78e-8 0.99 (L) 5.40e-8 1 (L) 4.74e-8 1 (L)
9h 2.9e-8 1 (L) 4.3e-8 1 (L) 5.54e-8 1 (L) 4.86e-8 1 (L)

10h 2.84e-8 1 (L) 4.16e-8 1 (L) 5.58e-8 1 (L) 4.98e-8 1 (L)
11h 2.96e-8 1 (L) 4.4e-8 1 (L) 5.58e-8 1 (L) 4.98e-8 1 (L)
12h 2.96e-8 1 (L) 4.23e-8 1 (L) 5.58e-8 1 (L) 4.98e-8 1 (L)

hence, we include all of them in our search.

We compare the results in Figure 5.5 using a statistical test. Following existing guidelines [Arcuri
and Briand, 2014], we use the non-parametric pairwise Wilcoxon rank sum test [Capon, 1991] and
the Vargha-Delaney’s Â12 effect size [Vargha and Delaney, 2000]. Table 5.2 reports the results of
the statistical tests obtained when comparing the number of feature interaction failures uncovered by
Hybrid, Fail and Cov, over time for SafeDrive1 and SafeDrive2. As shown in the table, the p-values
related to the results produced when the search time ranges between 3h and 12h are all lower than
0.05 and the Â12 statistics show large effect sizes. Hence, the number of feature interaction failures
obtained by Hybrid is significantly higher (with a large effect size) than those obtained by Fail and
Cov.

The answer to RQ is that our proposed test objectives (Hybrid) reveals significantly more feature
interaction failures compared to coverage-based and failure-based test objectives. In particular, on
average, Hybrid identifies more than twice as many feature interaction failures as the coverage-based
and failure-based test objectives.

Feedback from domain experts. We conclude this section by summarizing the qualitative feed-
back of the domain experts from IEE with whom we have been collaborating on the research presented
in this chapter. During two meetings, we presented to our domain experts four test scenarios reveal-
ing different feature interaction failures. The four test scenarios were selected randomly among the
ones detected by our approach. Each test scenario tc was presented by showing: (1) a video simula-
tion of tc generated by PreScan based on one of our case study systems (SafeDrive1 or SafeDrive2)
and violating one of the safety requirements in Table 5.1 and (2) a video simulation of tc generated
by PreScan based on running only the feature related to the violated requirement. Note that since

70

5.4. Conclusions

tc reveals a feature interaction failure, the latter simulation videos (i.e., the ones based on running
individual features) do not exhibit any requirements violation. After presenting the simulations, we
discussed with our domain experts each failure, its root causes and whether or how it can be addressed
by modifying the current feature interaction resolution rules implemented in IntC. We drew the fol-
lowing conclusions from our discussions: (1) Our domain experts agreed with us that the four failures
were due to interactions between the features and were not caused by faults in individual features,
(2) they confirmed that the failures were not previously known to them and (3) they identified ways
to modify or extend the integration component (IntC) to avoid the failures. The simulations and the
detailed failure descriptions used in our meetings are available online [Ben Abdessalem, 2018a].

5.4 Conclusions
We presented a technique for detecting feature interaction failures in the context of autonomous cars.
Our technique is based on analyzing executable function models typically developed in the cyber
physical domain to specify system behaviors at early development stages. Our contributions over
prior work include: (1) casting the problem of detecting undesired feature interactions into a search-
based testing problem, (2) defining a test guidance that combines existing search-based test objectives
with new heuristics specifically aimed at revealing feature interaction failures, (3) tailoring existing
many-objective search algorithms [Panichella et al., 2015, Panichella et al., 2018] to automatically re-
veal feature interaction failures in a scalable way, and (4) evaluating our approach using two versions
of an industrial self-driving system and demonstrating significant improvement in feature interaction
failure identification compared to baseline search-based testing approaches. The feedback from do-
main experts from IEE indicates that the detected feature interaction failures represent real faults in
their systems that were not previously identified based on analysis of the system features and their
requirements.

71

Chapter 6

Automatic Localization and Repair of
Feature Interaction Failures

In the previous chapter, we identified feature interaction failures. These failures may occur when the
feature interaction resolution rules or their implementation are erroneous. In this chapter, we propose
a strategy to identify errors in the feature interaction resolution rules for self-driving systems and
to automatically repair these errors. Our approach localizes errors by focusing on the rules that are
related to the most severe failures. Then, our approach generates patches by using a mutation-based
evolutionary algorithm.

We cast the problem of repairing decision rules into a search-based problem. Search-based
methodologies have been successfully applied to repair faults in software code [Le Goues et al.,
2012, Kim et al., 2013, Arcuri and Yao, 2008, Qi et al., 2014] . Most of the existing approaches [Le
Goues et al., 2012, Kim et al., 2013, Arcuri and Yao, 2008] use Genetic Programming (GP) and rely
on a single fitness function to evaluate each patch. GP maintains a population of individual patches,
where each patch evaluation requires to simulate the test suite. In our work, executing simulation
scenarios is computationally expensive. Hence, a population-based algorithm is not efficient for our
context purpose. Correct decision rules should satisfy the safety requirements of self-driving systems.
In our work, we define many objectives, where each objective is related to one safety requirement.
In this chapter, we propose a many-objective single-state search algorithm, which uses an archive to
keep track of partial patches.

This chapter reports on the following research contributions:

1. We propose new mutation operators that are specifically designed to address the specificities of
the errors in the decision rules for self-driving systems.

2. We introduce RUFI (Repair Undesired Feature interaction Interactions), a new many-objective
repair algorithm to repair decision rules of self-driving systems, and hence, to avoid undesired
feature interactions. RUFI localizes the errors and then uses the mutation operators to generate
patches.

72

6.1. Motivation

3. We evaluate RUFI on an industrial automotive system consisting of four features.

Organization. This chapter is structured as follows. Section 6.1 motivates our work. Section 6.2
discusses why existing program repair techniques are unlikely to effectively repair errors in decision
rules of self-driving systems. Section 6.3 presents our approach. Section 6.4 describes our evaluation,
and Section 6.5 concludes this chapter.

6.1 Motivation
We motivate our work using the self-driving system case study, SafeDrive, which is presented in the
previous chapter (Chapter 5). Recall that SafeDrive contains four self-driving features: Autonomous
Cruise Control (ACC), Traffic Sign Recognition (TSR), Pedestrian Protection (PP), and Automated
Emergency Braking (AEB). All the features generate braking and acceleration commands to respec-
tively control the brake and the throttle actuators. TSR and ACC, additionally, generate steering
commands.

Each SafeDrive feature receives its inputs from sensors/cameras and sends its outputs to actuators.
Both inputs and outputs are sequences of timestamped values. The system runs iteratively at regular
time steps. At every time step, the features receive sensor/camera values issued in that step, and output
values are computed and sent to actuators by the end of the step. Each feature controls one or more
actuators. Actuators may receive commands from more than one feature at the same time step, and
sometimes these commands are conflicting. For example, ACC orders the car to accelerate, while a
pedestrian starts crossing the road. Hence, at the same time, PP starts sending braking commands to
avoid hitting the pedestrian. In this scenario, ACC and PP send conflicting outputs to actuators. We
denote this scenario by Scenario-1.

Since features may issue conflicting outputs, engineers have to develop algorithms to resolve
potential conflicts between feature outputs and decide the most appropriate actuator command at
each time step. This requires developing complex rules that determine what feature output should be
prioritized at each time step based on the environment factors as well as other conditions. Figure 6.1
shows a small subset of such rules for the SafeDrive system. The left side of each rule shows a
conjunction of conditions on input or other system variables, and the right side shows the feature
whose command should be applied when the conditions on the left hold. For example, rule 1 states
that feature PP should be applied when a detected objective is a pedestrian, and the time to collision
(T TC) and the distance between a vehicle and a pedestrian (Dist(P/Car)) variables are respectively
less than their corresponding thresholds, denoted by T TCth and Distth. Note that T TC is a well-
known metric in self-driving systems measuring the time required for a vehicle to hit an object if both
continue with the same speed [van der Horst and Hogema, 1993], and Dist(P/Car) is the distance
between the car and the pedestrian during the simulation time. Dually, rule 4 in Figure 6.1 states
that if a detected object is not a pedestrian, but there is still a risk of collision (i.e., TTC is less than
its threshold), then AEB should be applied. Note that all the rules in Figure 6.1 are expected to be

73

Chapter 6. Automatic Localization and Repair of Feature Interaction Failures

Figure 6.1. Decision rules that determine which feature output should be applied at each time step depending
on the environment and other conditions.

executed periodically at regular time steps, and all the variables in the rules such as T TC, Dist(P/Car)
and car-speed specifically refer to the values of these variables at the current time instant.

Developing rules to resolve conflicts is a difficult task and requires extensive domain expertise and
a thorough analysis of system requirements. In general, we can never be sure if the set of conflict res-
olution rules is complete as we can never know if we have a complete set of system requirements [van
Lamsweerde, 2009]. But apart from the requirements incompleteness challenge, the developed rules
or their implementation might be erroneous as well. In particular, we identify two general ways
where the rules may be wrong, and hence lead to unsafe self-driving systems: (1) The conjunctive
conditions on the left side of the rules may be wrong. Specifically, there might be missing clauses
in the conditions, the thresholds used in each clause may not be accurate and there might be errors
in mathematical or relational operations of the clauses (i.e., using < instead of > or + instead of
−). (2) The second issue arises in determining the order of conflict resolution rules. As the rules in
Figure 6.1 show, there is already a partial order over such rules implied by the logical implication.
For example, the condition of rule 1 implies the condition of rule 5 (i.e., rule 1 is more specific than
rule 5). Hence, rule 1 has to be checked before rule 5 since otherwise, rule 1 would be unreachable.
Some rules are also mutually exclusive (e.g., rule-1 and rule-4), and hence, they can be applied in any
order. However, for some other rules, different rule orderings lead to different system behaviors and it
is not clear what order should be used. For example, rule-1 and rule-2 can be applied in two different
orders leading to two different system behaviors, one of which prioritizes PP and the other prioritizes
ACC when both of their left conditions hold. In such situations, engineers have to opt for one option
based on their domain knowledge. But the selected order may not be safe and may lead to unknown
of unforeseen errors. For example, for Scenario-1, when rule 2 is checked before rule 1, the output
of ACC is sent to the actuator. Hence, the car accelerates and hits the pedestrian. There are two cases
where rule 2 is checked before rule 1: either (1) rule 2 is placed before rule 1 in the ordered set of
rules, or (2) rule 1 is placed before rule 2, but one the thresholds in rule 1 makes the rule invalid (e.g.,
TTCth is too small).

74

6.2. Program Repair: State-of-the-art

Figure 6.2. Decision rules structure.

Figure 6.3. Example of decision rules structure.

The implementation of the decision rules (referred to as IntC is Chapter 5) is a sequence of or-
dered conditional statements (e.g., if-then-else statements). The structure of the rules can further be
represented as a tree. For example, Figure 6.2 shows the structure of the rules as a tree. Each leaf
node in the tree is a feature. The non-leaf nodes represent the conditions under which a feature should
be applied. We represent the rules as a set of paths Π = {π1 . . .πm}. The last node of each path is the
leaf representing the feature applied by that path. The middle nodes of each path correspond to the
prerequisite conditions that should hold to apply that feature. Figure 6.3 shows a simplified example
of IntC tree structure. The path on the left shows that when T TC < T TCth and the object detected is
a pedestrian, PP should be applied.

6.2 Program Repair: State-of-the-art
Studies have shown that most software bug fixing tasks are manual, time-consuming, and tedious [Tom
et al., 2014, Britton et al., 2019, Software, 2014]. Various techniques related to automated program
repair have been proposed in the literature to help automate these tasks [Weimer et al., 2009, Kim
et al., 2013, Qi et al., 2014, Gazzola et al., 2017]. The key objective of these techniques is to try to
automatically repair software systems with minimal human intervention. The inputs to these tech-
niques are a faulty program, a set of passing test cases that encode desired program behavior, and a

75

Chapter 6. Automatic Localization and Repair of Feature Interaction Failures

failing negative test case that demonstrates a defect. These techniques consist of three steps: (1) Fault
localization [Xie et al., 2013, Jin and Orso, 2013] that identifies the locations where a patch could be
applied. (2) Patch generation that modifies the software in the code locations returned by the fault
localization step, and (3) Patch validation that checks if the synthesized patch has actually repaired
the software.

Traditional automated program repair techniques use GP to search for a correct version of the
faulty program. Fault Localization techniques, used by classical program repair, rely on statistical
debugging [Renieres and Reiss, 2003] to localize faults. A well-known fault localization approach
(Tarantula [Jones et al., 2002]) and GP are discussed in Section 2.3. Most of traditional program
repair approaches are based on the following assumptions:

• A faulty program includes a single fault representing one program element (i.e., statement s) in
the code. They do not support multi-location bug fixing [Qi et al., 2015].

• Test execution time is usually negligible (i.e., fitness evaluation is inexpensive).
• All failures are equally critical. Traditional fault localization techniques rely on the number of

statements executed by passing and failing test cases to localize faults.
• Fitness evaluation requires executing the faulty program once.

Traditional program repair cannot be used in our context because (1) IntC includes multiple fail-
ures in different locations of the code. (2) Fitness evaluation is computationally expensive. Specifi-
cally, each system simulation takes around 2 min to run. This is because the physics-based simulator
for self-driving systems builds on high-fidelity mathematical models. Using GP is not adequate in
our context since for a population of 30 test cases, one single fitness evaluation requires 1 hour to
execute. (3) The system runs iteratively at regular time steps. Every statement is executed multiple
times by the same test case. When we run a test case, one decision rule may be executed at each
time step. Therefore, each test case generates several execution traces, one per each time step. When
we run a test suite, we thus obtain a large number of traces at each time step. Notice that many of
these traces can execute the same statements. As a result, traditional statistical debugging, discussed
in Section 2.3, may lead to many statements having the same suspiciousness scores. Therefore, in
our context, traditional statistical debugging techniques do not provide effective guidance to localize
faults.

6.3 Approach
In this section, we present our approach, called RUFI, to locate and repair faults in the decision rules
of self-driving systems. The overview of our approach is shown in Figure 2.4. The inputs to RUFI are
(1) a faulty IntC and (2) a test suite TS verifying the safety requirements of the system. Section 6.3.1
describes in more detail the inputs of our approach. The output is a repaired IntC. To address the
specificities of the faults described in Section 6.1, the steps in Figure 2.4 are different from the state
of the art in program repair as detailed in the following subsections.

76

6.3. Approach

6.3.1 Inputs

6.3.1.1 Faulty IntC

The goal of IntC is to select a feature output f to be executed by the car at every time step. Examples
of these feature outputs are a braking command issued by PP or an acceleration command issued by
ACC. A faulty IntC wrongly selects the feature output such that some safety requirement of feature
f is violated. In most cases, such faults are created because an engineer wrongly defines some rules
or makes mistakes in defining the order of the rules, i.e., either a conjunctive condition in a non-leaf
node is wrong or the tree topology is not correct and two leaf nodes should be swapped.

6.3.1.2 Test suite (TS)

The test suite TS should thoroughly exercise IntC, i.e., by covering all paths in the tree. TS includes
oracle's assertions to determine whether the test cases in T S are revealing feature interaction failures
or not. Specifically, each test case tc ∈ TS is composed of a set of input parameters, discussed in
section 5.2.2, and an assertion. An assertion fail(tc) is a Boolean function that is true when a test
case fails. To compute fail(tc), we define a distance function φ tc

l that determines whether feature
interactions failures are revealed. In the following, we describe how we define φ tc

l .

Recall from Chapter 5 that a feature interaction failure is revealed when: (1) Some safety re-
quirement r is violated because (2) IntC overrides the output of the feature responsible for r. As
discussed in Section 5.2.3, we defined two distance functions, failure distance (FD) and unsafe over-
riding distance (UOD) to respectively capture the conditions (1) and (2) above. FDl evaluates how
close SafeDrive is from violating its safety requirement l, and UOD f computes how close SafeDrive
is from causing IntC to unsafely override f . To define φ tc, we combine the two distance functions FD
and UOD. For every safety requirement l of SafeDrive where f is the feature responsible for l, and
for every simulation time step i, we define a distance φ tc

l (i) as follows:

φ tc
l (i) =


UOD f (i)+FDmax If f is not unsafely overridden

(UOD f (i)> 0)
FDl(i) Otherwise (UOD f (i) = 0)

where FD and UOD are the normalized form of FD and UOD, respectively. To normalize FDk, we
rely on the well-known rational function f1(x) = x/(x+1) [Arcuri, 2013]. FDmax = 1 and UODmax =

1, indicating the maximum value of the normalized functions. Each distance function φ tc
l (i) is defined

for each simulation step i. We define a distance φ tc
l for the entire simulation time interval as follows:

φ
tc
l = Min{φ tc

l (i)}0≤i≤ T
δ

(6.1)

where, T is the duration of the simulation and δ is the simulation step size.

If there exists l such that φ tc
l is equal to zero, fail(tc) is true, otherwise fail(tc) is false. After

running each tc in T S and computing fail(tc), TS is partitioned into TSp and TSf (i.e., TS = TSp∪TSf),
where TSp is a set of passing test cases and TSf is a set of failing test cases.

77

Chapter 6. Automatic Localization and Repair of Feature Interaction Failures

6.3.2 Fault Localization

As discussed in Section 6.2, existing statistical debugging techniques assume that faulty programs
contain one single fault that can be confined in one individual statement. The premise of statistical
debugging techniques is that they rank individual statements, and then pick the top statements in the
ranked list and try to fix them. However, the two high-level errors, discussed in Section 6.1, cannot
be pinpointed at the level of statements. This is because our errors are at the level of rules whose
implementation spans several lines of code. Hence, the failures are related to different locations in
the code and not to one single statement.

In our context, each test case covers a large portion of IntC (one path in each time step). As a
consequence, both failing and non-failing tests cover the same (large) set of paths of the code albeit
with different data values. Indeed, each test case executes one path at each time step, which leads to
cover multiple paths through different subsequent steps (within the simulation window). Recall from
Section 6.2 that the system is executed within a continuous loop over time.

Existing statistical debugging techniques assign a suspicious score (suspiciousness) to each state-
ment in the program to repair. Since each test (either failing or passing) covers multiple paths, Taran-
tula will assign the same high suspiciousness to most of the statements in IntC in a way that is
proportional to the total number of failing tests. This leads to a very large search space as patches can
be applied almost everywhere in IntC.

Based on this information, we modify the Tarantula formula (Equation 2.1) by (1) focusing on
the path/trace covered at the time of failure, and (2) considering the “severity” of the failure. In the
following, we describe how we rank test cases and how test cases can guide us to the faulty path in
the tree.

Localizing the faulty path. The goal is to determine the path executed by each tcj ∈ TSf that is
more likely to be associated with the fault. Recall that each test case in TS is executed over the entire
simulation time T . At each simulation time step, one tree path is executed, and only one decision
rule is selected. We denote by tftcj ∈ [0 . . .T] the time when the failure detected by tcj has happened.
Recall from section 6.1 that a fault in IntC may be due to (1) the conjunctive conditions on the left
side of the rules are not correctly defined (i.e., the conditions on the input variables at the non-leaf
nodes on a tree path were not adequately defined) or (2) the order of the rules is not correct (i.e., the
leaf nodes on a path are not properly ordered). We assume that the rule selected at tftcj , is wrong (i.e,
the conditions on the left side of the rule is wrong, or this rule should not have been selected at tftcj).
Hence, given a test case tcj, the faulty path is the one selected at tftcj . We denote it by πtcj .

The severity of the failure. In state-of-the-art statistical debugging techniques, failing tests have
the same weight (i.e., one) in the formula for computing the statement suspiciousness. However,
in case of multiple faults, this strategy does not provide priorities to the (likely) faulty statements
to repair first. Focusing on faulty statements that are related to the most severe failures can lead to
patches with the largest potential benefits (gain) to the overall fitness function. To this aim, we rely

78

6.3. Approach

on the failure distance function discussed in Section 5.2.3. For each test case, SafeDrive has several
safety requirements to fulfill. Let SR be the set of safety requirement of SafeDrive. For every safety
requirement l ∈ SR, we have a failure distance function FDl that shows how close SafeDrive is from
violating l. A failing test case exposes a failure whose severity is inversely proportional to the failure
distance function FDl. For example, let us consider the safety requirement: “the minimum distance
between the ego and the leading cars must be larger than a certain threshold Dth”. A failure happens
when the distance between the two cars becomes lower than Dth within the simulation time, and its
severity is 1/(d +1).

In general, a failing test case tc j exposes a violation to the safety requirement l whose failure
severity within the entire simulation time interval is defined as:

ωl(tcj) =
1

Min{FDl(i)}0≤i≤ T
δ

+1
(6.2)

where ωl(tcj) takes a value between 0 and 1. The lower the value of FDl , the higher the severity of
the failure for the requirement l. We note that when a test case is passing, ∀l ∈ SR,ωl(tcj) = 0.

For each failing test case tcj ∈ T S f , we aggregate the severity of the failure related to each safety
requirement l ∈ SR as follows:

ω(tcj) =
∑

l∈SR
ωl(tcj) (6.3)

We refer to ω(tcj) as the severity of failures exposed by a test case tcj. If the test case passes then
the severity ω(tcj) is zero otherwise it takes value in [0,1].

Our fault localization formula. We define the suspiciousness of each statement s by considering
both failure severity and faulty paths as follows:

Score(s) =
∑

tcj∈T S f

Itcj(s) (6.4)

where,

Itcj(s) =
{

0 if s /∈ faulty path πtcj

ω(tcj) otherwise
(6.5)

Selecting a statement. Instead of systematically selecting the single worst statement (top-ranked),
we select in a randomized manner a statement among the most suspicious ones. First, fault localiza-
tion is probabilistic. The tree path matching the worst statement might not be the one that requires
change. Second, in our work, we have multiple failures in multiple locations of the code. To make
a patched version, we therefore must mutate in multiple locations, which are associated with differ-
ent failures. Third, if we keep selecting the same worst statement and keep focusing on repairing
faults exposed by the corresponding test cases, we are less likely to improve than if we consider other
statements as well.

79

Chapter 6. Automatic Localization and Repair of Feature Interaction Failures

To select a statement among the most suspicious ones, we use Roulette Wheel Selection (RWS) [Hol-
land, 1992] that assigns a probability for each statement. The probability is based on the score of each
statement. The higher the score of a statement, the higher its probability of being selected. We note
that by using RWS, though we dedicate more execution time to fixing the most suspicious failures,
we consider all failures. RWS defines the probability as follows:

prob(s) =
Score(s)∑
si Score(si)

(6.6)

Let F(s) be the set of failing test cases that cover the selected statement s. For each test case
tc ∈ F(s), it exists a path πtc that has covered s at tftc. We select one of these paths randomly and we
denote it π , where π covers s at the time of failure tf . The outputs of the fault localization step are s
and π .

6.3.3 Generating a Patch

Having located a faulty path and statement, the goal is to generate a patch for that faulty path or
statement by mutating it. Algorithm 6 describes how to generate a patch. Algorithm 6 receives a
faulty IntC and a set TS of test cases. Algorithm 6 starts by localizing the fault (line 2), and then
applies mutation operators to mutate the faulty IntC (generate a patch). Fault localization is described
in Section 6.3.2. Fault localization produces the faulty path π and the faulty statement s. In this
section, we first describe how patch generation is done (line 3-9 in Algorithm 6) and then we describe
in details the mutation operators that are used for patch generation (line 6).

Algorithm 6 iteratively applies a mutation operator to IntC. At each iteration, a mutation operator
is selected randomly. The number of iterations is determined by a probability. At each iteration, the
loop condition compares the probability with a threshold, which is reduced subsequently. Specifically,
at each iteration, the threshold is equal to σ i, where i is the iteration. Using the probability σ , mutation
can be applied many times but it is at least applied once, since the counter is initially equal to 0
(σ0 = 1). The reason of applying a sequence of mutation operators is to increase the probability of
fixing faults in IntC. We describe below the two mutation operators modify and shift that are used
in line 6 of Algorithm 6. Note that these mutation operators receive π and s that are produced by the
fault localization step.

6.3.3.1 Mutation Operators

We define two search operators modify and shift based on the error types in the decision rules defined
in Section 6.1. Specifically, modify aims to modify conditions at the non-leaf nodes and shift aims
to modify the tree structure of IntC (i.e., the order of the decision rules) to correct the fault. The two
operators modify and shift are defined as follows:

- Operator modify: The statement s is represented by a node in the tree. Figure 6.4 illustrates an
example of node to be modified by the modify operator. In the fault localization step, the statement s

80

6.3. Approach

Algorithm 6: GENERATE-PATCH
Input: P: A faulty IntC version
Input: TS: Test suite
Input: σ : A probability value
Input: Σ: Severity of failure exposed by all test cases
Result: O: A mutant of P

1 begin
2 {π,s}←− FL(P,TS,Σ) // FL is explained in section 6.3.2
3 counter←− 0
4 threshold←− (σ)counter

5 while rand(1) ≤ threshold do
6 O←− APPLY-MUTATION({modify, shift}, π , s)
7 counter←− counter+1
8 threshold←− (σ)counter

9 return O

Figure 6.4. modify operator.

is selected in such a way it is a non-leaf node. Therefore, the node (i.e., statement s) has conditions.
Operator modify modifies the statement s, by performing the following types of changes: changing a
threshold value, altering the direction of a relational operator (e.g., ≤ to ≥), or swapping arithmetic
operations (e.g., + to −).

- Operator shift: This operator aims to change the order of the decision rules. Changing the
order of rules may correct the errors since, as discussed in Section 6.1, the rule ordering selected by
engineers may not be correct. Recall from Section 6.1 that the decision rules are represented by a
tree. The idea of shift operator is to change the order of rules by changing the structure of the tree
such that the path π is not executed at the time of failure.

Recall from Section 6.3.2 that s is in π . To change π and swap s, we randomly select one node
among all the nodes in the tree that are either an ancestor of s, or have s as an ancestor, and we refer to
it as bs. Figure 6.5 shows an example of possible nodes to be selected for the shift operator. As shown
in Figure 6.5, the ancestor nodes of s or the nodes that have s as ancestor, in gray, are the non-leaf

81

Chapter 6. Automatic Localization and Repair of Feature Interaction Failures

Figure 6.5. Example of selecting bs (path condition) to be used for the shift operator.

nodes in π and the non-leaf nodes in the sub-tree below s.

When bs is an ancestor of s, the shift action consists of removing (shifting) the left subtree of s,
and placing it on top of bs such that the first node in the right subtree of s becomes bs (i.e., s is the
parent of bs). Figure 6.6(a) shows an example of this case. Dually, when s is an ancestor of bs, the
shift action consists of removing (shifting) the left subtree of bs, and placing it on top of s such that
bs becomes the parent of s. Figure 6.6(b) shows an example of this case.

The reason of selecting bs as an ancestor of s or selecting bs in such a way that s is an ancestor of
bs, is that we want bs to be control dependent on s, which ensures to avoid meaningless rules (because
the conditions on the non-leaf nodes of π , except s, also hold for the nodes that have s as ancestor).

As discussed in section 6.1, each feature has a set of rules that are partially ordered. Hence, when
we apply shift, the partial order among each feature should be respected.

6.3.4 Evaluating a Patch

This step takes as input the patch (i.e., IntC version) generated in the previous step and evaluates it.
The pseudo-code of this step is shown in Algorithm 7. To evaluate the patch, each test case tc ∈ T S
needs to be simulated using the new patch. We simulate all test cases and not only the ones impacted
by the mutation since (1) we need to guarantee that the applied mutations (modifications) do not inject
new errors and (2) since each test case in T S is executed over the entire simulation time T , the IntC
code is executed within a loop (i.e., at each simulation time step, one tree path and its corresponding
leaf node (feature) are selected. Thus, every change in iteration i is going to impact all the paths
covered in the next iterations.

82

6.3. Approach

Figure 6.6. Examples of applying the shift operator.

After simulating all test cases in T S, we compute fitness functions, and we use an archive to keep
the best patches found at each iteration of the search. In the following, we describe how we define the
fitness functions and discuss how the archive is updated at each iteration.

6.3.4.1 Fitness Function

Our goal is to define fitness functions that can guide the search into repairing IntC. Computing only
the number of violated safety requirements or the number of test cases passed by IntC (i.e., number of
passing test cases), similar to classical programs repair, will not provide enough gradient to the search
(i.e., will not provide guidance to correct faults). Thus, we use a quantitative measure formalizing
the severity of the failures exposed by failing test cases. Specifically, for every safety requirement l
and each test case tc ∈ T S, this measure computes the failure severity exposed by the violation of the
safety requirement l (ωl(tc)) discussed in Section 6.3.2 (Equation 6.2).

Our goal is to repair IntC by minimizing the severity of failures exposed by test cases until even-
tually they all pass. At the same time, we want to be sure that the passing test cases remain correct.

83

Chapter 6. Automatic Localization and Repair of Feature Interaction Failures

Algorithm 7: RUN-EVALUATE
Input: O: A mutant of IntC
Input: TS: Test suite
Result: Ω: Fitness functions
Result: Σ: DistanceFromViolations of test cases

1 begin
2 for tc ∈ TS do
3 SIMULATE-SYSTEM(O, tc)
4 for l ∈ SR do
5 ωl(tc)←− CALCULATE-SEVERITY-OF-FAILURE-TC(tc) // Equation 6.2
6
7 ω(tc)←− CALCULATE-SEVERITY-OF-FAILURE(ωl(tc)) // Equation 6.3
8 for l ∈ SR do
9 Ωl(TS)←− CALCULATE-FITNESS({ωl(tc1), . . . ,ωl(tcn)}) // Equation 6.7, n = |TS|

10 Σ←− {ω(tc1), . . . ,ω(tcn)}
11 Ω←− {Ω1, . . . ,Ωm} // m = |SR|
12 return (Ω,Σ)

Hence, for every safety requirement l, we define a fitness function Ωl by taking the maximum value of
the severity of failure ωl exposed by all test cases in T S. For every safety requirement l of SafeDrive,
we define Ωl as follows:

Ωl = max
tc∈TS

ωl(tc) (6.7)

To repair IntC, our goal is to minimize Ωl for all l ∈ SR (SR is the set of safety requirements of
SafeDrive).

6.3.4.2 Archive

At the beginning, the faulty IntC is stored in an archive. Every time a new patch is created and
evaluated, we compare it with the patches stored in the archive. Specifically, to compare between two
patches and determine which one is optimal with respect to the identified fitness functions, we use
the notion of dominance, defined in Pareto optimal approaches [Luke, 2013] “A solution x dominates
another solution y, if x is not worse than y in all fitness values, and x is strictly better than y in at least
one fitness value”.

This step takes as input the values of the fitness functions of the new patch. Then, the new patch
is compared with every element in the archive. If the new patch dominates an element in the archive,
we replace that element with the new patch. Otherwise, if there is no element in the archive that
dominates the new patch, the new patch is added to the archive. The pseudo-code of this step is
shown in Algorithm 8.

The archive at the end includes the found non-dominated solutions (i.e., the best-found patches
with respect to the fitness functions). Since the number of non-dominated solutions may be extremely
large, we define a maximum size for the archive, denoted by sA. The value of sA is twice the number
of safety requirements. If the size of the archive exceeds sA, we evaluate each patch in the archive by
computing the severity of failure exposed by a test suite T S, denoted by D. Then, we select the sA

84

6.3. Approach

patches that have the lowest D values. To compute D, we aggregate the severity of failure exposed by
test cases (defined in Equation 6.3):

D =
∑

tc∈T S
ω(tc) (6.8)

Algorithm 8: UPDATE-ARCHIVE
Input: A: Archive
Input: O: A mutant of IntC
Input: Ω: Fitness funtions
Result: A′: An updated archive

1 begin
2 A′←− A
3 isDominated←− false
4 for a ∈ A′ do
5 if O dominates a // the dominance uses Ω

6 then
7 remove a
8 A′←− A′∪{O}
9 else

10 if a dominates O then
11 isDominated←− true
12 if isDominated = false then
13 A′←− A′∪{O}
14 return A

6.3.5 Search Algorithm

As discussed in Section 6.2, the GP used by traditional program repair techniques is not adequate in
our context. Therefore, we opt for a single solution algorithm instead of a population-based algorithm.
Our approach is applied iteratively to repair IntC. We use a many-objective search optimization
algorithm to guide the repair of IntC. Algorithm 9 shows our proposed algorithm, RUFI, that repairs
IntC. RUFI receives as input a faulty IntC, and a test suite T S. The output is a repaired IntC version.
Given the faulty IntC and the set of failing test cases, RUFI starts by localizing the fault and creating a
patch for that fault (line 3). This step is discussed in section 6.3.2. Then, RUFI simulates each test case
tc ∈ TS using the new patch and computes the fitness functions (line 4), as explained in section 6.3.4.
At the beginning of the search, the faulty IntC is stored into an archive. After evaluating the new
patch, RUFI updates the archive (line 5) by comparing the new patch with the faulty IntC. The update
archive step is discussed in section 6.3.4. Our algorithm, then, searches for the best solution (IntC
version) through subsequent iterations (loop in lines 6-10). In each iteration, one of the elements
(i.e., patches) from the archive is selected randomly (line 7). Then, RUFI localizes the fault and
creates a new patch (line 8). Next, the new patch is evaluated by computing the fitness functions (line
9). Finally, RUFI updates the archive by comparing the new patch with each element in the archive
(line 10). At each iteration, the archive contains the best-found patches with respect to the fitness

85

Chapter 6. Automatic Localization and Repair of Feature Interaction Failures

functions. The search stops when the archive includes one patch such that the number of failing test
cases is equal to zero.

Algorithm 9: RUFI
Input: Pf : Faulty IntC
Input: TS: Test suite
Result: A: A patch of Pf satisfying all tc ∈ TS

1 begin
2 A←− Pf
3 O←− GENERATE-PATCH(Pf ,TS)
4 {Ω,Σ}←− RUN-EVALUATE(O,TS)
5 A←− UPDATE-ARCHIVE(A,O,Ω)
6 while not(One element in A satisfies all tc ∈ TS) do
7 P←− SELECT-A-PARENT(A) // P is selected randomly
8 O←− GENERATE-PATCH(P,TS,Σ)
9 {Ω,Σ}←− RUN-EVALUATE(O,TS)

10 A←− UPDATE-ARCHIVE(A,O,Ω)
11 return A

6.4 Evaluation
In this section, we evaluate our approach to repairing undesired feature interactions using real-world
automotive systems.

6.4.1 Research questions

RQ1: How effective and efficient is our approach in localizing and repairing faults? This question
aims at evaluating the extent to which RUFI is able to effectively and efficiently repair the decision
rules of self-driving systems. An effective approach should be able to fix all the bugs in the decision
rules. An approach is deemed efficient if it can find a correct version of the faulty rules in a practical
amount of time.

RQ2: How does our approach compare to a traditional program repair approach? This question aims
at evaluating the benefits obtained from our many-objective single-state search algorithm (RUFI),
which uses an archive to keep track of partial patches, compared to the baseline relying on GP with
single-objective optimization. To answer this question, we need to compare the performance in terms
of execution time.

6.4.2 Experiment Design

We evaluate our approach by applying it to the SafeDrive case study system introduced in Chapter 5
(Section 5.1). We use the common GP algorithm used for program repair [Weimer et al., 2009, Le
Goues et al., 2012], described in Section 2.3, as a baseline of comparison for answering RQ2. We
note that based on the state of the art, this is the most commonly used algorithm for program repair.

86

6.4. Evaluation

However, to address the specificities of the faults described in Section 6.1, we must slightly adapt the
GP algorithm to our context by using our proposed fault localization and mutation techniques.

Test cases. As suggested in the literature, we use a small number of test cases [Weimer et al., 2009, Le
Goues et al., 2012, Qi et al., 2014], which allows for more search iterations within a fixed amount
of time (i.e., the more test cases are used, the more computational resources are required by fitness
evaluations). However, if too few test cases are used, the repair may overlook some of the system
functionalities. The test suite should include both passing and failing test cases. To select failing test
cases, we use our approach proposed in Chapter 5 that automatically detects conflicts between feature
outputs by generating failing test cases. The detected failures were related to the violation of four
safety requirements, discussed in Section 5.2.3 (Table 5.1). For each safety requirement, we selected
one failing test case. As for the passing test cases, we selected four test cases that satisfy these four
safety requirements. Therefore, we set the test suite size to eight.

Parameters. The mutation probability σ is set to 0.5 as suggested in the literature [Fraser and Ar-
curi, 2013b]. In RUFI, we do not need to set the archive size arbitrarily since, as described in Sec-
tion 6.3.4.2, it is dynamically updated at each iteration. For the Baseline, we set the (initial) population
size to 40, which represents the recommended value used in the literature [Weimer et al., 2009, Le
Goues et al., 2012]. For computing fitness (discussed in Section 2.3), we set WNeg = 10 and WPos = 1
as suggested in the literature [Weimer et al., 2009, Le Goues et al., 2012].

The search stops when a patch passes all the test cases or when the timeout of 16 hours is reached.
We set a timeout of 16 hours because as we will discuss in Section 6.4.3, it is sufficient to repair our
decision rules. We ran all the experiments on a laptop with a 2.5 GHz CPU and 16GB of memory.

6.4.3 Results

RQ1. To answer RQ1, we ran RUFI 20 times for 16 hours to account for the randomness of the
search algorithm. The search stops when a repaired program is found. Our experiments show that our
approach can successfully repair IntC within the search time budget. Hence, our approach is effective
for repairing faults in the decision rules of self driving-cars.

To evaluate the efficiency of our approach, we report the time needed by our approach to repair
IntC. The boxplot in Figure 6.7 shows the variation of the time needed for RUFI to repair IntC across
20 independent runs. The average amount of time spent by our approach to repair IntC is five hours.
This time is significantly less than the time required (Chapters 4 and 5) for testing self-driving features
using a simulation environment, i.e., 12 hours and 20 hours, respectively, to test self-driving systems.
More importantly, such repairs, in practice, take place over night, thus leading to a fixed set of rules
the next day. Such results indicate that RUFI is efficient for repairing decision rules (in our case, for
self-driving cars).

RQ2. To answer RQ2, we would need to compare the time needed for each algorithm to repair
IntC. However, we were not able to run the baseline because computing the fitness of a population

87

Chapter 6. Automatic Localization and Repair of Feature Interaction Failures

Figure 6.7. Time required for RUFI to repair IntC

of 40 individuals takes on average 10 hours. Each test case takes on average 2 minutes to simulate
SafeDrive (2 minutes (test case)×8 (test suite size)×40 (population size) = 10 hours). Therefore, not
only it is impossible for us to experiment with the baseline in our context but also such computation
times make it impractical. We conclude RUFI is clearly more adequate in our context, and it is more
efficient than repair algorithms based on population solutions in terms of the time it takes to repair a
faulty program.

Our approach effectively repairs the faulty IntC. Hence, the repaired version of IntC can be used
by engineers to avoid conflicts between feature outputs. Further, our approach can help engineers to
extend IntC for including new features. Specifically, when a new feature fa is added to the system,
engineers develop a new list of rules that specifies under what conditions the new feature output
should be prioritized. Then, they integrate the developed rules based on their domain knowledge
into IntC to specify how fa interacts with existing features. However, the order of the rules or the
conjunctive conditions of the newly developed rules may not be correct. Our approach can help order
the rules and correct the conjunctive conditions of each new rule if they are wrong. Our approach
requires engineers to add additional test cases to the test suite. The new test cases should include at
least one passing test case that satisfies the safety requirement of fa, and at least one failing test case
that violates the safety requirement of fa. We note that the proposed is general and is applicable to
any system that resolves feature interactions through a dedicated integration component.

6.5 Conclusions
The resolution rules that are developed to resolve conflicts between features require extensive domain
expertise and a thorough analysis of system requirements. When the rules or their implementation are

88

6.5. Conclusions

erroneous, this may result in undesired feature interactions. Therefore, faulty decision rules should
be repaired and preferably automatically so when a system test suite is available.

In this chapter, we presented an automated technique for identifying and repairing errors in the
feature interaction resolution rules for self-driving systems. We developed a search-based repairing
algorithm that localizes faults and mutates the faulty decision rules to generate patches. To local-
ize faults, we defined a fault localization formula that aims to compute the suspiciousness of each
statement by considering both the severity of failures and faulty paths. To mutate decision rules, we
proposed mutation operators that are designed to address the specificities of the errors in the decision
rules for self-driving systems. Our approach is evaluated on an industrial ADAS. The results indicate
that our approach efficiently and effectively repairs decision rules of self-driving cars. Our approach,
further, can help engineers with extending their systems for including new features.

89

Chapter 7

Related Work

This chapter provides an overview of existing work related to the approaches researched and devel-
oped in this dissertation: search-based testing, surrogate modeling, testing autonomous cars, analysis
of feature interactions, and program repair techniques.

7.1 Search-based testing
Search-based testing has largely focused on unit testing and has rarely been used for system testing.
Exceptions include GUI testing [Gross et al., 2012, Mariani et al., 2014] and the generation of system
test cases to exercise non-functional behaviors such as quality-of-service constraints [Shams et al.,
2006], computational resources consumption and deadline misses [Briand et al., 2006a]. Embedded
software systems and their environments are prevalently captured and simulated using physics-based
models such as those captured by MATLAB/Simulink. Some of the test automation techniques for
MATLAB/Simulink use meta-heuristic search to guide testing towards the maximisation of coverage
criteria [Windisch, 2010, Zhan and Clark, 2006], for example path coverage [Zhan and Clark, 2006],
or towards the generation of input signals that satisfy certain signal shape patterns [Baresel et al.,
2003] or temporal constraints [Wilmes and Windisch, 2010]. These testing strategies have mostly
focused on unit/function-level testing, aiming to maximize coverage or diversity of test inputs. These
strategies, however, are inadequate for testing complex physics-based dynamic models such as those
used for self-driving systems. Our testing approach, proposed in Chapter 3 and Chapter 4, in contrast,
is driven by system-level requirements as well as critical and stressful situations of the system and its
environment.

7.2 Surrogate modeling
Surrogate modeling has been previously used to approximate expensive fitness computations and
simulations in the context of evolutionary and meta-heuristic search algorithms. Surrogate modeling
has been applied to scale up search-based solutions to optimization problems in avionics [Ong et al.,

90

7.3. Testing autonomous cars

2003], chemical systems [Caballero and Grossmann, 2008], and the medical domain [Douguet, 2010].
In particular, combination of surrogate modeling and multi-objective population-based search algo-
rithms has been applied to optimization problems in mobile ad hoc networks [Efstathiou et al., 2014],
manufacturing [Syberfeldt et al., 2008], and optimizing energy consumption in buildings [Magnier
and Haghighat, 2010]. These techniques, however, solely rely on surrogate model predictions to se-
lect best candidate solutions without using the prediction errors and confidence levels. This may lead
to a significant deviation between the best solutions selected based on surrogate model predictions
and those solutions that would have been selected based on actual fitness computations. In contrast,
in our work discussed in Chapter 3, we use the prediction errors to decide whether we should compute
actual fitness values for candidate solutions or not. Further, we show that when actual fitness values
are not better than their respective optimistic predictions, NSGAII and NSGAII-SM behave the same,
but NSGAII-SM is likely to call less simulations per iteration than NSGAII. In [Matinnejad et al.,
2014], surrogate modeling has been used in conjunction with single-objective local search such that
prediction errors and actual fitness values are used to ensure the search algorithm accuracy. Our work
described in Chapter 3 differs from the work of [Matinnejad et al., 2014] as we combine surrogate
modeling with multi-objective population search algorithms.

7.3 Testing autonomous cars
Simulation, i.e., design time testing of system models, is arguably the most practical and effective
way of testing autonomous cars [Belbachir et al., 2012]. This is because rich simulation environ-
ments are able to replicate various real world traffic situations. The main difficulty with simulation-
based testing of ADAS is that the space of test input scenarios is complex and multidimensional. To
address this limitation, many techniques rely on search-based system testing to automate test gen-
eration for ADAS [Bühler and Wegener, 2008]. For example, search-based system testing has been
applied to a vehicle-to-vehicle braking assistance [Buehler and Wegener, 2005], and an autonomous
parking [Bühler and Wegener, 2004]. Bühler and Wegener [Buehler and Wegener, 2005, Bühler and
Wegener, 2004] base their testing on a single-objective search algorithm. Recently, Tian et. al. [Tian
et al., 2018] and Zhang et. al. [Zhang et al., 2018] proposed a notion of neuron coverage and used
it to guide the generation of tests for neural networks used in autonomous cars. In contrast to our
proposed approach in Chapter 4, none of these approaches consider (static) environment variables
in the test input space, and they vary only mobile objects’ variables in test scenarios. Hence, these
approaches are not able to automatically explore different environment conditions (e.g., different road
types and weather conditions). Further, the above-cited work focuses on identifying individual critical
simulation scenarios only. Our work in Chapter 4 deals with a considerably larger test input space
that includes environment variables. Further, we provide in Chapter 4 a novel search-based testing
algorithm that, in addition to identifying individual critical scenarios, characterizes critical regions of
the ADAS test input space.

Further, none of the above-cited work study the feature interaction problem in autonomous cars.
In Chapter 5, we advance the research on testing autonomous cars by devising test objectives that

91

Chapter 7. Related Work

specifically detect feature interaction failures. Our test objectives combine existing software test-
ing heuristics (i.e., branch-coverage [McMinn, 2004a, Tonella, 2004, Fraser and Arcuri, 2013a] and
failure-based [Bühler and Wegener, 2008, Afzal et al., 2009, Briand et al., 2006a]) with our proposed
unsafe overriding heuristic. Further, we tailor existing many-objective search algorithms [Panichella
et al., 2015, Panichella et al., 2018] to detect feature interaction failures in our context.

7.4 Feature interactions
In this section, we compare our work with feature interactions approaches in software product lines,
feature interaction detection techniques via model checking, and feature interaction resolution strate-
gies.

7.4.1 Feature interactions in software product lines

In the context of software product lines (SPL), testing approaches are proposed to ensure product
implementations satisfy their feature specifications [Oster et al., 2011, Patel et al., 2013, Lochau et al.,
2012]. These approaches largely follow a model-based testing paradigm [Ammann and Offutt, 2008].
For example, they use combinatorial testing to drive test cases and oracles from feature models to
verify individual products [Oster et al., 2011, Patel et al., 2013]. Our work in Chapter 5, in contrast, is
model testing [Briand et al., 2016a]. Specifically, we take advantage of the availability of executable
function models and test executable function models of the system and its environment. Further, in
contrast to the SPL testing work, our approach in Chapter 5 does not need descriptions of features
and their dependencies to be provided.

Some SPL approaches are proposed to automatically derive feature dependencies specifying valid
feature combinations [Apel et al., 2013a, Kolesnikov et al., 2017, Ferreira et al., 2015]. For exam-
ple, interactions between observable feature behaviors (i.e., external feature interactions [Apel et al.,
2013a]) have been identified by static analysis of software code [Kolesnikov et al., 2017, Ferreira
et al., 2015]. In contrast, our approach in Chapter 5 detects feature interactions prior to any software
coding. It dynamically detects undesired feature interactions by testing function models capturing the
SUT and its environment.

7.4.2 Feature interaction detection via model checking

Several approaches are proposed to detect feature interactions by model checking requirements or de-
sign artifacts against formal specifications [Apel et al., 2013b, Arora et al., 2012, Juarez-Dominguez
et al., 2008, Sobotka and Novak, 2013, Plath and Ryan, 2001]. For example, Apel et. al. [Apel
et al., 2013b] verify features described in a formal feature-oriented language against temporal logic
properties [Clarke et al., 1999]. Arora et. al. verify features defined as state machines against live
sequence charts specifications. Dominguez et. al. [Juarez-Dominguez et al., 2008] verify features
captured as StateFlows, and Sobotka and J. Novak [Sobotka and Novak, 2013] specify features in

92

7.5. Program repair

timed automata [Alur, 1999]. Similar to our work in Chapter 5, these approaches verify early require-
ments and design models against system requirements. However, our work differs with this line of
research in the following ways: First, most of these approaches identify pairwise feature interactions
only. We can, however, identify feature interactions between an arbitrary number of features. Sec-
ond, these techniques model system features only. However, to analyze autonomous cars, we have to
capture, in addition to features, system’s sensors and actuators, and the system environment. Third,
in contrast to these approaches, our approach does not require additional formal modeling. We take
advantage of the availability of function models, which are developed anyway in the CPS domain, to
test the system in its environment. Fourth, our function models use numerical and continuous Mat-
lab/Simulink computations to capture dynamics of cars and pedestrians. These models are not, in
general, amenable to model checking due to scalability and incompatibility issues [Matinnejad et al.,
2016, Abbas et al., 2013, Matinnejad et al., 2018]. Therefore, as suggested in the recent research on
testing CPS models [Matinnejad et al., 2016, Abbas et al., 2013, Matinnejad et al., 2018, Zuliani et al.,
2013], instead of model checking, we rely on simulation-based testing guided by meta-heuristics to
analyze our function models.

7.4.3 Feature interaction resolution

Several approaches are proposed to devise resolution strategies to eliminate undesired feature inter-
actions, for example, by proposing specific feature-oriented architectures [Jackson and Zave, 1998,
van der Linden, 1994], by statically prioritizing features [Zimmer and Atlee, 2012, Hay and Atlee,
2000] or using runtime resolution mechanisms [Bocovich and Atlee, 2014, Zibaeenejad et al., 2017].
These techniques are complementary to our approach. They can be used to develop the integration
component (IntC) to resolve undesired feature interactions, but our approach proposed in Chapter 5
is still necessary to test the system behavior and to determine if the proposed resolution strategy can
eliminate undesired behaviors under different environment conditions.

7.5 Program repair
Automated program repair has been the subject of considerable recent attention in the software
engineering research community. Several techniques have been proposed to automatically repair
faulty programs without human intervention [Monperrus, 2018]. These automated repair methods in-
clude search-based methodologies [Arcuri and Yao, 2008, Arcuri and Fraser, 2011b, Le Goues et al.,
2012, Kim et al., 2013, Qi et al., 2014] and semantics-based methodologies [Nguyen et al., 2013].
Search-based methods explore the space of possible repairs and generate a repair candidate and vali-
date this repair candidate against the provided test-suite. Arcuri et. al. [Arcuri and Yao, 2008, Arcuri
and Fraser, 2011b] introduced the idea of using GP to repair software bugs automatically. They pro-
posed a co-evolutionary model of bug fixing that relies on formal specifications for fitness evaluation.
Their evaluation was limited to small programs such as bubble sorting and triangle classification.
GenProg [Le Goues et al., 2012] and Par [Kim et al., 2013] also use GP to evolve patches to a buggy

93

Chapter 7. Related Work

program. GenProg generates a population of candidate patches by modifying source code using mu-
tation and crossover. GenProg reuses existing code to synthesize the patches. To improve the repair
quality obtained by GenProg, Par [Kim et al., 2013] generates candidate patches learned from human-
written patches. Among the techniques that rely on GP [Le Goues et al., 2012, Kim et al., 2013, Arcuri
and Yao, 2008, Weimer et al., 2009], GenProg and its extension [Le Goues et al., 2012] have shown
the most promising results since it scales to large-scale real-world software. Other techniques using
randomized search for patch generation have also been proposed. For example, RSRepair [Qi et al.,
2014] replaces the GenProg genetic search algorithm with random search. Although this work indi-
cates that random search performs better than GenProg in terms of the number of patch trials required
to search a valid patch, a recent study [Kong et al., 2015] showed that GenProg performs better that
RSRepair when applied to subjects different from those included in the original dataset of GenProg.
Further, as discussed in [Arcuri and Fraser, 2011b], random search is unlikely to yield a correct im-
plementation of any non-trivial software [Arcuri and Fraser, 2011b]. Hence, we do not use it as a
baseline of comparison for our approach and instead we use a slightly adapted version of GenProg.

In contrast to search-based heuristic approaches, semantic approaches synthesize a repair using
semantic information (via symbolic execution and constraint solving). For example, SemFix [Nguyen
et al., 2013] uses semantic analysis to repair a program by relying on test cases as implicit program
specification to guide the patch synthesis process. Although SemFix is shown to be more efficient than
GenProg in terms of repairability and running time, SemFix can only be applied to small programs.

Our work in Chapter 6 differs from this line of research in the following ways: First, the above-
mentioned approaches repair programs with a single fault and do not support multi-location bug
fixing [Qi et al., 2015]. In contrast, our approach repairs a program with multiple faults. Second,
existing techniques using GP assess the quality of the generated patches based on a single objective
function that measures the number of passing test cases in a test suite (i.e., the patches with the
most passing test cases are selected for continued evolution in the next generation). Instead, in our
work, we define many objectives, where each objective is related to one safety requirement. We
compute the objectives based on the distance from violating the safety requirements related to each
test case, and therefore we provide more guidance to the search compared to existing techniques
(e.g., GenProc). Third, existing approaches localize faults using statistical debugging techniques
that rely on the number of statements executed by passing and failing test cases. This may lead to
many statements having the same suspiciousness scores. In contrast, in our work, to determine the
suspiciousness of each statement, we rely on the distance from violating safety requirements. Fourth,
the existing approaches for repairing software code assume that a patch can often be reconstructed
from fragments of code that already exist in the faulty program. However, in Chapter 6, we address
a different repair problem since our goal is to repair decision rules of self-driving systems instead of
software code. In our work, our mutation operators are designed in a domain specific way (i.e., to
address the specificities of our repair problem).

94

Chapter 8

Conclusions and Future Work

In this chapter we summarize the contributions of this dissertation and discuss some perspectives on
potential future work in this area.

8.1 Summary
In this dissertation, we focused on the problem of design time testing of ADAS in a simulated envi-
ronment. The main challenges of simulation-based testing are that test execution is computationally
expensive, the test input space is complex, large, and multidimensional, and the search space in-
cludes many local optima. In addition to testing individual ADAS, in this dissertation we address the
testing of self-driving systems that include several ADAS. When self-driving systems include many
features (i.e., individual ADAS), they may interact and impact one another’s behavior in unknown
ways, which is referred to as the feature interaction problem. To ensure the reliability of self-driving
systems, feature interaction failures should be detected and resolution strategies should be deployed
to resolve conflicts. In self-driving systems, feature interactions are numerous, complex and depend
on several factors, and hence, are hard to detect. Developing resolution strategies is a complex task
and despite the extensive domain expertise, such strategies can be erroneous and are too complex to
be manually repaired.

In this dissertation, we proposed several approaches to alleviate the above challenges. We used a
combination of multi-objective search and surrogate models to generate test scenarios indicating criti-
cal ADAS behaviors within an acceptable time budget. We relied on a combination of multi-objective
search and decision tree classification models to generate test scenarios identifying critical scenarios
within complex and multidimensional input spaces, and to characterize critical regions of the ADAS
test input space. We presented an approach that generates test scenarios revealing feature interaction
failures among ADAS systems. Further, we introduced an automated approach for repairing faults
exposed by the identified feature interaction failures. The work presented in this dissertation has
been done in collaboration with IEE [IEE, 2019], a leading supplier in automotive sensing systems
enhancing safety and comfort in vehicles produced by major car manufacturers worldwide.

95

Chapter 8. Conclusions and Future Work

Chapter 3 presented our automated approach for testing ADAS that generates test cases indicat-
ing critical ADAS behaviors within an acceptable time budget. Our proposed technique relies on a
combination of multi-objective search and neural networks. We developed meta-heuristics capturing
critical aspects of the system and its environment to guide the search towards exercising behaviors
that are likely to reveal faults. Our proposed search algorithm relies on neural network predictions to
bypass costly simulations when predictions are sufficient to conclusively prune certain solutions from
the search space. We evaluated our approach by applying it to an industrial automotive system. Our
experiments showed that our search-based algorithm outperforms random test generation. Further,
our approach is able to identify critical system and environment behaviors, and surrogate models help
improve the quality of the generated test cases under a limited and realistic time budget.

Chapter 4 introduced our automated testing approach for ADAS that guides the search-based
generation of tests faster towards critical test scenarios (i.e., test scenarios leading to failures) and
accurately characterizes critical regions (i.e., the regions of a test input space that are likely to contain
most critical test scenarios). Our algorithm builds on learnable evolution models and uses classifi-
cation decision trees to guide the generation of new test scenarios within complex and multidimen-
sional input spaces. We evaluated our approach on an industrial ADAS. The results indicate that our
classification-guided search algorithm outperforms a baseline evolutionary search algorithm and gen-
erates 78% more distinct, critical test scenarios compared to the baseline algorithm. Our approach,
further, characterizes critical regions of the ADAS input space. Based on our interviews with domain
experts, such characterizations are accurate and help engineers debug their systems. They further help
engineers identify environment conditions that are likely to lead to ADAS failures as well as hardware
changes that can increase ADAS safety.

Chapter 5 described a technique for detecting feature interaction failures, among interacting ADAS,
in the context of autonomous cars. Our technique is based on analyzing executable function models
typically developed in the cyber physical domain to specify system behaviors at early development
stages. We casted the problem of detecting undesired feature interactions into a search-based test-
ing problem. We defined a test guidance that combines existing search-based test objectives with
new heuristics specifically aimed at revealing feature interaction failures. We tailored existing many-
objective search algorithms [35], [36] to automatically reveal feature interaction failures in a scalable
way. We evaluated our approach using two versions of an industrial self-driving system. Our experi-
ments demonstrated significant improvement in feature interaction failure identification compared to
baseline search-based testing approaches. The feedback from domain experts from IEE indicates that
the detected feature interaction failures represent real faults in their systems that were not previously
identified based on analysis of the system features and their requirements.

Chapter 6 presented an automated technique for identifying and repairing errors in the feature
interaction resolution rules for self-driving systems. We developed a search-based repairing algorithm
that localizes faults and mutates the faulty decision rules to generate patches. To localize faults, we
defined a fault localization formula that aims to compute the suspiciousness of each statement by
considering both the severity of failures and faulty paths. To mutate decision rules, we proposed
mutation operators that are designed to address the specificities of the errors in the decision rules

96

8.2. Future Work

for self-driving systems. Our approach is evaluated on an industrial ADAS including four features.
The experiments showed that our approach efficiently and effectively repairs decision rules of self-
driving systems. Our approach, further, can help engineers with extending their systems to include
new features.

8.2 Future Work
In this dissertation, we focused on the problem of testing ADAS in a simulated environment. In the
future, we would like to further assess the generalizability of our solutions (Chapter 3 to Chapter 6).
In particular, we only have evaluated our approaches on four industrial ADAS, i.e., PP, AEB, TSR,
and ACC. To better assess the applicability and effectiveness of our approaches, we should consider
other well-known industrial cases such as: 1) Lane Keeping Assist (LKA) that keeps the vehicle in
the center of the lane, and 2) Parking Aid (PA) that detects the presence of an object when the vehicle
is moving in reverse, and alerts the driver in case he might hit objects. Furthermore, our solutions are
potentially usable in other cyber-physical domains, e.g., aerospace, satellite.

In Chapter 6, we proposed an automated approach for repairing feature interaction failures in
self-driving systems. Our repair algorithm produces various correct versions of the decision rules
for self-driving systems. We would like to investigate whether the repaired decision rules produced
by our approach are useful to practitioners and match their domain knowledge. To do so, we have
planned to conduct semi-structured interview sessions with senior engineers at IEE. In the sessions,
we plan to present the various versions of the correct decision rules and ask the practitioners whether
the different versions match their domain knowledge or not. If there exist a correct decision rule that
does not match such domain knowledge, this may point to an error in the system or the simulator.

IEE has shown interest in using our testing approaches, discussed in Chapter 3 and Chapter 4,
to minimize the cost of their sensing technologies. In the future, we plan to use our approaches to
choose optimal products (configurations) that satisfy safety requirements. We expect this to result in
a trade-off between cost and safety of self-driving systems. For example, to select the best camera
Field of View (FoV) that fulfills some specific requirements, we can decrease the FoV of the camera,
and we use our solutions to check whether we identify test scenarios revealing critical failures.

We plan to develop a suite of tools to operationalize the proposed test generation approaches.
These tools aim to help IEE in testing software systems in their development cycle. The suite of tools
should provide informative and convenient user interfaces that can provide engineers with a better
understanding about faults in their systems under test.

Cooperative vehicle systems and infrastructure, such as Vehicle-to-Vehicle (V2V) and Vehicle-
to-Infrastructure (V2I), have shown to provide enormous benefits in terms of mobility and safety.
Many self-driving systems rely on cooperative driving systems to further improve road safety [Kato
and Tsugawa, 2001]. Potential interaction conflicts between automated vehicles in shared traffic
spaces, such as highways, parking places or intersecting regions, need to be identified and solved

97

Chapter 8. Conclusions and Future Work

in a cooperative way. Testing cooperative systems of autonomous vehicles is more complex than
testing ADAS because more vehicles are involved, and the number of possible interactions between
these vehicles or between vehicles and infrastructures is huge. In the future, we plan to devise an
automated strategy to identify possible interactions in cooperative driving of autonomous vehicles
and to guide engineers to resolve potential conflicts.

98

List of Papers

Published papers included in this dissertation:

1. Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. “Testing advanced
driver assistance systems using multi-objective search and neural networks”. In Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering
(ASE’16), Singapore, September 3-7, pp. 63-74, 2016.

2. Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. “Testing Vision-
Based Control Systems Using Learnable Evolutionary Algorithms”. In Proceedings of the
40th IEEE/ACM International Conference on Software Engineering (ICSE’18), Gothenburg,
Sweden, May 27 - June 3, pp. 1016-1026, 2018.

3. Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C. Briand, and Thomas Stifter.
“Testing Autonomous Cars for Feature Interaction Failures Using Many-objective Search”.
In Proceedings of the 33rd IEEE/ACM International Conference on Automated Software Engi-
neering (ASE’18), Montpellier, France, September 3-7, pp. 143-154, 2018.

99

Bibliography

[Abbas et al., 2013] Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivančić, F., and Gupta, A.
(2013). Probabilistic temporal logic falsification of cyber-physical systems. ACM Transactions
on Embedded Computing Systems (TECS), 12(2s):95.

[Afzal et al., 2009] Afzal, W., Torkar, R., and Feldt, R. (2009). A systematic review of search-based
testing for non-functional system properties. Information and Software Technology, 51(6):957–
976.

[Alippi and Roveri, 2010] Alippi, C. and Roveri, M. (2010). Virtual k-fold cross validation: An
effective method for accuracy assessment. In Proceedings of the International Joint Conference
on Neural Networks (IJCNN’10), pages 1–6.

[Alpaydin, 2010a] Alpaydin, E. (2010a). Introduction to Machine Learning. MIT Press, Cambridge,
Massachusetts, USA, 2nd edition.

[Alpaydin, 2010b] Alpaydin, E. (2010b). Introduction to Machine Learning. The MIT Press, 2nd
edition.

[Alur, 1999] Alur, R. (1999). Timed automata. In Proceedings of the International Conference on
Computer Aided Verification (CAV’99), pages 8–22, Trento, Italy. Springer.

[Ammann and Offutt, 2008] Ammann, P. and Offutt, J. (2008). Introduction to Software Testing.
Cambridge University Press, New York, NY, USA, 1 edition.

[Apel et al., 2013a] Apel, S., Kolesnikov, S., Siegmund, N., Kästner, C., and Garvin, B. (2013a).
Exploring feature interactions in the wild: the new feature-interaction challenge. In Proceedings
of the International Workshop on Feature-Oriented Software Development (FOSD’13), pages 1–8,
Indianapolis, USA. ACM.

[Apel et al., 2013b] Apel, S., Von Rhein, A., ThüM, T., and KäStner, C. (2013b). Feature-interaction
detection based on feature-based specifications. Computer Networks, 57(12):2399–2409.

[Arcuri, 2013] Arcuri, A. (2013). It really does matter how you normalize the branch distance in
search-based software testing. Software Testing, Verification and Reliability, 23(2):119–147.

100

Bibliography

[Arcuri and Briand, 2014] Arcuri, A. and Briand, L. (2014). A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software Testing, Verification and
Reliability, 24(3):219–250.

[Arcuri and Fraser, 2011a] Arcuri, A. and Fraser, G. (2011a). On parameter tuning in search based
software engineering. In Proceedings of the International Symposium on Search Based Software
Engineering (SSBSE’11), pages 33–47.

[Arcuri and Fraser, 2011b] Arcuri, A. and Fraser, G. (2011b). On parameter tuning in search based
software engineering. In Proceedings of the International Symposium on Search Based Software
Engineering (SSBSE’11), pages 33–47, Berlin, Heidelberg. Springer.

[Arcuri and Yao, 2008] Arcuri, A. and Yao, X. (2008). A novel co-evolutionary approach to auto-
matic software bug fixing. In Proceedings of the IEEE Congress on Evolutionary Computation
(IEEE World Congress on Computational Intelligence), pages 162–168. IEEE.

[Arora et al., 2012] Arora, S., Sampath, P., and Ramesh, S. (2012). Resolving uncertainty in automo-
tive feature interactions. In Proceedings of the International Requirements Engineering Conference
(RE’12), pages 21–30, Chicago, Illinois, USA.

[Bader and Zitzler, 2011] Bader, J. and Zitzler, E. (2011). Hype: An algorithm for fast hypervolume-
based many-objective optimization. IEEE Transactions on Evolutionary computation, 19(1):45–
76.

[Baresel et al., 2003] Baresel, A., Pohlheim, H., and Sadeghipour, S. (2003). Structural and func-
tional sequence test of dynamic and state-based software with evolutionary algorithms. In Pro-
ceedings of the Annual Conference on Genetic and Evolutionary Computation (GECCO’03), pages
2428–2441.

[Barton, 1994] Barton, R. (1994). Metamodeling: a state of the art review. In Proceedings of the
conference on Winter simulation (WSC’94), pages 237–244.

[Behera, 2014] Behera, R. N. (2014). Artificial neural network: A soft computing application in bio-
logical sequence analysis. International Journal of Computational Engineering Research, 4(4):1–
13.

[Belbachir et al., 2012] Belbachir, A., Smal, J.-C., Blosseville, J.-M., and Gruyer, D. (2012).
Simulation-driven validation of advanced driving-assistance systems. Procedia-Social and Be-
havioral Sciences, 48:1205–1214.

[Ben Abdessalem, 2018a] Ben Abdessalem, R. (2018a). Supplementary materials. https://

figshare.com/s/50193ea5652147d2f036.

[Ben Abdessalem, 2018b] Ben Abdessalem, R. (2018b). Test scenarios for Pedestrian Detection Vi-
sion based system (PeVi). https://sites.google.com/site/testingpevi.

101

https://figshare.com/s/50193ea5652147d2f036
https://figshare.com/s/50193ea5652147d2f036
https://sites.google.com/site/testingpevi

Bibliography

[Ben Abdessalem et al., 2016] Ben Abdessalem, R., Nejati, S., Briand, L. C., and Stifter, T. (2016).
Testing advanced driver assistance systems using multi-objective search and neural networks. In
Proceedings of the International Conference on Automated Software Engineering (ASE’16), pages
63–74, Singapore. IEEE.

[Ben Abdessalem et al., 2018a] Ben Abdessalem, R., Nejati, S., Briand, L. C., and Stifter, T. (2018a).
Testing vision-based control systems using learnable evolutionary algorithms. In Proceedings of
the International Conference on Software Engineering (ICSE’18), page to appear, Gothenburg,
Sweden. ACM.

[Ben Abdessalem et al., 2018b] Ben Abdessalem, R., Panichella, A., Nejati, S., Briand, L. C., and
Stifter, T. (2018b). Testing autonomous cars for feature interaction failures using many-objective
search. In Proceedings of the International Conference on Automated Software Engineering
(ASE’18), pages 143–154, Montpellier, France. IEEE.

[Beyer and Deb, 2001] Beyer, H.-G. and Deb, K. (2001). On self-adaptive features in real-parameter
evolutionary algorithms. Transactions on Evolutionary Computation, 5(3):250–270.

[Blom et al., 1994] Blom, J., Jonsson, B., and Kempe, L. (1994). Using temporal logic for modular
specification of telephone services. In Proceedings of the International Workshop on Feature
Interactions in Telecommunications Systems (FIW’94), pages 197–216, Amsterdam, Netherlands.
IOS Press.

[Bocovich and Atlee, 2014] Bocovich, C. and Atlee, J. M. (2014). Variable-specific resolutions for
feature interactions. In Proceedings of the ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (FSE’14), pages 553–563, Hong Kong, China. ACM.

[Booker et al., 1999] Booker, A. J., Dennis Jr, J., Frank, P. D., Serafini, D. B., Torczon, V., and Tros-
set, M. W. (1999). A rigorous framework for optimization of expensive functions by surrogates.
Structural Optimization, 17(1):1–13.

[Bosch, 2017] Bosch (2017). Driving safety systems for passenger cars.

[Bowman et al., 2010] Bowman, M., Briand, L. C., and Labiche, Y. (2010). Solving the class respon-
sibility assignment problem in object-oriented analysis with multi-objective genetic algorithms.
IEEE Transactions on Software Engineering, 36(6):817–837.

[Braithwaite and Atlee, 1994] Braithwaite, K. H. and Atlee, J. M. (1994). Towards automated detec-
tion of feature interactions. In Proceedings of the International Workshop on Feature Interactions
in Telecommunications Systems (FIW’94), pages 36–59, Amsterdam, Netherlands. IOS Press.

[Bredereke, 2000] Bredereke, J. (2000). Families of formal requirements in telephone switching. In
Proceedings of the International Workshop on Feature Interactions in Telecommunications and
Software Systems(FIW’00), pages 257–273, Glasgow, Scotland, UK. IOS Press.

102

Bibliography

[Breiman et al., 1984] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classifi-
cation and Regression Trees. Wadsworth, Belmont, CA, U.S.A.

[Briand et al., 2016a] Briand, L., Nejati, S., Sabetzadeh, M., and Bianculli, D. (2016a). Testing the
untestable: model testing of complex software-intensive systems. In Proceedings of the Interna-
tional Conference on Software Engineering Companion (ICSE’16), pages 789–792, Austin, TX,
US. ACM.

[Briand et al., 2006a] Briand, L. C., Labiche, Y., and Shousha, M. (2006a). Using genetic algorithms
for early schedulability analysis and stress testing in real-time systems. Genetic Programming and
Evolvable Machines, 7(2):145–170.

[Briand et al., 2006b] Briand, L. C., Labiche, Y., and Shousha, M. (2006b). Using genetic algorithms
for early schedulability analysis and stress testing in real-time systems. Genetic Programming and
Evolvable Machines, 7(2):145–170.

[Briand et al., 2016b] Briand, L. C., Nejati, S., Sabetzadeh, M., and Bianculli, D. (2016b). Testing
the untestable: model testing of complex software-intensive systems. In Proceedings of the In-
ternational Conference on Software Engineering, (ICSE’16) 2016, Austin, TX, USA, May 14-22,
2016 - Companion Volume, pages 789–792.

[Britton et al., 2019] Britton, T., Jeng, L., Carver, G., and Cheak, P. (2019). Reversible debugging
software - quantify the time and cost saved using reversible debuggers.

[Buehler and Wegener, 2005] Buehler, O. and Wegener, J. (2005). Evolutionary functional testing of
a vehicle brake assistant system. In Proceedings of the Metaheuristics International Conference
(MIC’05), pages 157–162, Vienna Austria. -.

[Bühler and Wegener, 2004] Bühler, O. and Wegener, J. (2004). Automatic testing of an autonomous
parking system using evolutionary computation. Technical report, SAE Technical Paper.

[Bühler and Wegener, 2008] Bühler, O. and Wegener, J. (2008). Evolutionary functional testing.
Computers & Operations Research, 35(10):3144–3160.

[Caballero and Grossmann, 2008] Caballero, J. A. and Grossmann, I. E. (2008). An algorithm for the
use of surrogate models in modular flowsheet optimization. AIChE journal, 54(10):2633–2650.

[Calder et al., 2003] Calder, M., Kolberg, M., Magill, E. H., and Reiff-Marganiec, S. (2003). Feature
interaction: a critical review and considered forecast. Computer Networks, 41(1):115–141.

[Campos et al., 2017] Campos, J., Ge, Y., Fraser, G., Eler, M., and Arcuri, A. (2017). An empirical
evaluation of evolutionary algorithms for test suite generation. In Proceedings of the Interna-
tional Symposium on Search Based Software Engineering (SSBSE’17), pages 33–48, Paderborn,
Germany.

[Capon, 1991] Capon, J. A. (1991). Elementary Statistics for the Social Sciences: Study Guide.
Wadsworth Publishing Company, Belmont, CA, USA.

103

Bibliography

[Clarke et al., 1999] Clarke, Jr., E. M., Grumberg, O., and Peled, D. A. (1999). Model Checking.
MIT Press.

[Cobb and Grefenstette, 1993] Cobb, H. G. and Grefenstette, J. J. (1993). Genetic algorithms for
tracking changing environments. In Proceedings of the International Conference on Genetic Algo-
rithms (ICGA’93), pages 523–530, San Francisco, CA, USA. Morgan Kaufmann Publishers.

[Coello et al., 2007] Coello, C. A. C., Lamont, G. B., and Veldhuizen, D. A. V. (2007). Evolutionary
Algorithms for Solving Multi-Objective Problems. Genetic and Evolutionary Computation. Kluwer
Academic.

[Cohen, 1977] Cohen, J. (1977). Statistical power analysis for the behavioral sciences (rev).
Lawrence Erlbaum Associates, Inc.

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303–314.

[data, 2017] data, E. (2017). Experiments data.

[Deb, 1995] Deb, K. (1995). Simulated binary crossover for continuous search space. Complex
systems, 9:115–148.

[Deb, 2001] Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. John Wiley
& Sons, Chichester, New York.

[Deb, 2014] Deb, K. (2014). Multi-objective optimization. In Search Methodologies, pages 403–449.
Springer US.

[Deb and Agrawal, 1995] Deb, K. and Agrawal, R. B. (1995). Simulated binary crossover for con-
tinuous search space. Complex systems, 9(2):115–148.

[Deb and Beyer, 2001] Deb, K. and Beyer, H.-g. (2001). Self-adaptive genetic algorithms with sim-
ulated binary crossover. Evolutionary Computation, 9(2):197–221.

[Deb and Deb, 2014] Deb, K. and Deb, D. (2014). Analysing mutation schemes for real-parameter
genetic algorithms. International Journal of Artificial Intelligence and Soft Computing, 4(1):1–28.

[Deb and Jain, 2014] Deb, K. and Jain, H. (2014). An evolutionary many-objective optimization
algorithm using reference-point-based nondominated sorting approach, part i: Solving problems
with box constraints. IEEE Transactions on Evolutionary Computation, 18(4):577–601.

[Deb et al., 2002] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,
6(2):182–197.

[Douguet, 2010] Douguet, D. (2010). e-LEA3D: a computational-aided drug design web server.
Nucleic Acids Research, 38:615–621.

104

Bibliography

[Efron, 1983] Efron, B. (1983). Estimating the error rate of a prediction rule: Improvement on cross-
validation. Journal of the American Statistical Association, 78(382):316–331.

[Efstathiou et al., 2014] Efstathiou, D., McBurney, P., Zschaler, S., and Bourcier, J. (2014). Efficient
multi-objective optimisation of service compositions in mobile ad hoc networks using lightweight
surrogate models. Journal of Universal Computer Science, 20(8):1089–1108.

[Emadi and Mahfoud, 2011] Emadi, D. and Mahfoud, M. (2011). Comparison of artificial neural
network and multiple regression analysis techniques in predicting the mechanical properties of
{A3} 56 alloy. Procedia Engineering, 10:589–594.

[Ferber et al., 2002] Ferber, S., Haag, J., and Savolainen, J. (2002). Feature interaction and depen-
dencies: Modeling features for reengineering a legacy product line. In Proceedings of the Interna-
tional Conference on Software Product Lines (SPLC’02), pages 235–256, San Diego, CA, USA.
Springer.

[Ferreira et al., 2015] Ferreira, G., Kästner, C., Pfeffer, J., and Apel, S. (2015). Characterizing com-
plexity of highly-configurable systems with variational call graphs: analyzing configuration op-
tions interactions complexity in function calls. In Proceedings of the Symposium and Bootcamp
on the Science of Security (HotSoS’15), page 17, Urbana, IL, USA. ACM.

[Ferrucci et al., 2013] Ferrucci, F., Harman, M., Ren, J., and Sarro, F. (2013). Not going to take this
anymore: multi-objective overtime planning for software engineering projects. In Proceedings of
the International Conference on Software Engineering (ICSE’13), pages 462–471.

[Fisler and Krishnamurthi, 2005] Fisler, K. and Krishnamurthi, S. (2005). Decomposing verification
by features. In Proceedings of the International Conference on Verified Software: Theories, Tools
and Experiments (VSTTE’05), Zurich, Switzerland.

[Fraser and Arcuri, 2013a] Fraser, G. and Arcuri, A. (2013a). Whole test suite generation. IEEE
Transactions on Software Engineering, 39(2):276–291.

[Fraser and Arcuri, 2013b] Fraser, G. and Arcuri, A. (2013b). Whole test suite generation. IEEE
Transactions on Software Engineering, 39(2):276–291.

[Fraser and Arcuri, 2015] Fraser, G. and Arcuri, A. (2015). 1600 faults in 100 projects: automati-
cally finding faults while achieving high coverage with evosuite. Empirical Software Engineering,
20(3):611–639.

[Gazzola et al., 2017] Gazzola, L., Micucci, D., and Mariani, L. (2017). Automatic software repair:
A survey. IEEE Transactions on Software Engineering.

[Goldberg, 1989] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition.

105

Bibliography

[Golias et al., 2002] Golias, J., Yannis, G., and Antoniou, C. (2002). Classification of driver-
assistance systems according to their impact on road safety and traffic efficiency. Transport re-
views, 22(2):179–196.

[Goyal and Goyal, 2012] Goyal, S. and Goyal, G. K. (2012). Article: Study on single and double hid-
den layers of cascade artificial neural intelligence neurocomputing models for predicting sensory
quality of roasted coffee flavoured sterilized drink. International Journal of Applied Information
Systems, 1(3):1–4.

[Gross et al., 2012] Gross, F., Fraser, G., and Zeller, A. (2012). Search-based system testing: High
coverage, no false alarms. In Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA’12), pages 67–77.

[Group, 2017] Group, O. M. (2017). Object constraint language (ocl).

[Hagan and Menhaj, 1994] Hagan, M. T. and Menhaj, M. B. (1994). Training feedforward networks
with the marquardt algorithm. Neural Networks, IEEE Transactions on, 5(6):989–993.

[Hall et al., 2011] Hall, M., Witten, I., and Frank, E. (2011). Data mining: Practical machine learn-
ing tools and techniques (3rd edition). Morgan Kaufmann.

[Hamlet, 2002] Hamlet, R. (2002). Random testing. Encyclopedia of software Engineering.

[Harman et al., 2012a] Harman, M., Mansouri, S. A., and Zhang, Y. (2012a). Search-based software
engineering: Trends, techniques and applications. ACM Computing Surveys, 45(1):11.

[Harman et al., 2012b] Harman, M., Mansouri, S. A., and Zhang, Y. (2012b). Search-based software
engineering: Trends, techniques and applications. ACM Computing Surveys, 45(1):11:1–11:61.

[Hay and Atlee, 2000] Hay, J. D. and Atlee, J. M. (2000). Composing features and resolving inter-
actions. In ACM SIGSOFT Software Engineering Notes (SEN’00), volume 25, pages 110–119.
ACM.

[Haykin, 1998] Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. Prentice Hall
PTR, 2nd edition.

[Henard et al., 2013] Henard, C., Papadakis, M., Perrouin, G., Klein, J., and Traon, Y. L. (2013).
Pledge: a product line editor and test generation tool. In Proceedings of the International Software
Product Line Conference co-located workshops (SPLC’13), pages 126–129, New York, NY, USA.
ACM.

[Herrera et al., 2003] Herrera, F., Lozano, M., and S·nchez, A. M. (2003). A taxonomy for the
crossover operator for real-coded genetic algorithms: An experimental study. International Jour-
nal of Intelligent Systems, 18(3):309–338.

106

Bibliography

[Holland, 1992] Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge,
MA, USA.

[Honkela, 2001] Honkela, A. (2001). Nonlinear switching state-space models. Master’s thesis,
Helsinki University of Technology, Espoo, Finland.

[Hornik, 1991] Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks.
Neural networks, 4(2):251–257.

[IEE, 2019] IEE (2019). International electronics & engineering. https://www.iee.lu/.

[Jackson and Zave, 1998] Jackson, M. and Zave, P. (1998). Distributed feature composition: a virtual
architecture for telecommunications services. IEEE TSE, 24(10):831–847.

[Jin and Orso, 2013] Jin, W. and Orso, A. (2013). F3: fault localization for field failures. In Proceed-
ings of the International Symposium on Software Testing and Analysis (ISSTA:13), pages 213–223.
ACM.

[Jin, 2011] Jin, Y. (2011). Surrogate-assisted evolutionary computation: Recent advances and future
challenges. Swarm and Evolutionary Computation, 1(2):61–70.

[Jones et al., 2002] Jones, J. A., Harrold, M. J., and Stasko, J. (2002). Visualization of test infor-
mation to assist fault localization. In Proceedings of the International Conference on Software
Engineering (ICSE ’02), pages 467–477, New York, NY, USA. ACM.

[Juarez-Dominguez et al., 2008] Juarez-Dominguez, A. L., Day, N. A., and Joyce, J. J. (2008). Mod-
elling feature interactions in the automotive domain. In Proceedings of the International Workshop
on Modeling in Software Engineering (MISE’08), pages 45–50, Leipzig, Germany. ACM.

[Karsoliya, 2012] Karsoliya, S. (2012). Approximating number of hidden layer neurons in multiple
hidden layer BPNN architecture. International Journal of Engineering Trends and Technology,
3(6):713–717.

[Kato and Tsugawa, 2001] Kato, S. and Tsugawa, S. (2001). Cooperative driving of autonomous
vehicles based on localization, inter-vehicle communications and vision systems. Jsae Review,
22(4):503–509.

[Kim et al., 2013] Kim, D., Nam, J., Song, J., and Kim, S. (2013). Automatic patch generation
learned from human-written patches. In Proceedings of the International Conference on Software
Engineering (ICSE’13), pages 802–811. IEEE.

[Knowles et al., 2006a] Knowles, J., Thiele, L., and Zitzler, E. (2006a). A Tutorial on the Perfor-
mance Assessment of Stochastic Multiobjective Optimizers. Technical report, Computer Engi-
neering and Networks Laboratory of Zurich.

107

https://www.iee.lu/

Bibliography

[Knowles et al., 2006b] Knowles, J. D., Thiele, L., and Zitzler, E. (2006b). A Tutorial on the Per-
formance Assessment of Stochastic Multiobjective Optimizers. Technical report, Computer Engi-
neering and Networks Laboratory of Zurich.

[Kolesnikov et al., 2017] Kolesnikov, S., Siegmund, N., Kästner, C., and Apel, S. (2017). On the re-
lation of external and internal feature interactions: A case study. arXiv preprint arXiv:1712.07440.

[Kong et al., 2015] Kong, X., Zhang, L., Wong, W. E., and Li, B. (2015). Experience report: How
do techniques, programs, and tests impact automated program repair? In Proceedings of the
International Symposium on Software Reliability Engineering (ISSRE’15), pages 194–204.

[Koopman and Wagner, 2016] Koopman, P. and Wagner, M. (2016). Challenges in autonomous ve-
hicle testing and validation. SAE International Journal of Transportation Safety, 4(1):15–24.

[Korel, 1990] Korel, B. (1990). Automated software test data generation. IEEE Transactions on
Software Engineering, 16(8):870–879.

[Koza, 1992] Koza, J. R. (1992). Genetic programming: on the programming of computers by means
of natural selection, volume 1. MIT press.

[Kuhn et al., 2004] Kuhn, D. R., Wallace, D. R., and Gallo, A. M. (2004). Software fault interactions
and implications for software testing. IEEE Transactions on Software Engineering, 30(6):418–421.

[Le Goues et al., 2012] Le Goues, C., Dewey-Vogt, M., Forrest, S., and Weimer, W. (2012). A sys-
tematic study of automated program repair: Fixing 55 out of 105 bugs for $8 each. In Proceedings
of the International Conference on Software Engineering (ICSE ’12), pages 3–13, Piscataway, NJ,
USA. IEEE Press.

[Le Goues et al., 2012] Le Goues, C., Nguyen, T., Forrest, S., and Weimer, W. (2012). Genprog: A
generic method for automatic software repair. IEEE Transactions on Software Engineering (TSE),
38(1):54–72.

[Li et al., 2015] Li, B., Li, J., Tang, K., and Yao, X. (2015). Many-objective evolutionary algorithms:
A survey. ACM Computing Surveys (CSUR), 48(1):13.

[Li et al., 2007] Li, Z., Harman, M., and Hierons, R. M. (2007). Search algorithms for regression test
case prioritization. IEEE Transactions on Software Engineering, 33(4).

[Lochau et al., 2012] Lochau, M., Oster, S., Goltz, U., and Schürr, A. (2012). Model-based pairwise
testing for feature interaction coverage in software product line engineering. Software Quality
Journal, 20(3-4):567–604.

[Luke, 2013] Luke, S. (2013). Essentials of Metaheuristics. Lulu, Fairfax, Virginie, USA, second
edition. Available for free at http://cs.gmu.edu/∼sean/book/metaheuristics/.

[MacKay, 1992] MacKay, D. J. C. (1992). Bayesian interpolation. Neural Computation, 4(3):415–
447.

108

Bibliography

[Magnier and Haghighat, 2010] Magnier, L. and Haghighat, F. (2010). Multiobjective optimization
of building design using TRNSYS simulations, genetic algorithm, and artificial neural network.
Building and Environment, 45(3):739–746.

[Mariani et al., 2014] Mariani, L., Pezzè, M., Riganelli, O., and Santoro, M. (2014). Automatic
testing of gui-based applications. Software Testing Verification and Reliability, 24(5):341–366.

[Matinnejad et al., 2014] Matinnejad, R., Nejati, S., Briand, L., and Brcukmann, T. (2014). MiL
testing of highly configurable continuous controllers: scalable search using surrogate models. In
Proceedings of the International Conference on Automated Software Engineering (ASE’14), pages
163–174.

[Matinnejad et al., 2018] Matinnejad, R., Nejati, S., Briand, L., and Bruckmann, T. (2018). Test
generation and test prioritization for simulink models with dynamic behavior. IEEE Transactions
on Software Engineering, page to appear.

[Matinnejad et al., 2015] Matinnejad, R., Nejati, S., Briand, L., Bruckmann, T., and Poull, C. (2015).
Search-based automated testing of continuous controllers: Framework, tool support, and case stud-
ies. Information and Software Technology, 57:705–722.

[Matinnejad et al., 2016] Matinnejad, R., Nejati, S., Briand, L. C., and Bruckmann, T. (2016). Au-
tomated test suite generation for time-continuous simulink models. In Proceedings of the Interna-
tional Conference on Software Engineering (ICSE’16), pages 595–606, Austin, TX, US. ACM.

[Matlab, 2019] Matlab (2019). Matlab/simulink. https://nl.mathworks.com/products/
simulink.html.

[McMinn, 2004a] McMinn, P. (2004a). Search-based software test data generation: a survey. Soft-
ware testing, Verification and reliability, 14(2):105–156.

[McMinn, 2004b] McMinn, P. (2004b). Search-based software test data generation: a survey. Soft-
ware Testing Verification and Reliability Journal, 14(2):105–156.

[Michalski, 2000] Michalski, R. S. (2000). Learnable evolution model: Evolutionary processes
guided by machine learning. Machine learning, 38(1):9–40.

[Møller, 1993] Møller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learn-
ing. Neural networks, 6(4):525–533.

[Monperrus, 2018] Monperrus, M. (2018). Automatic software repair: A bibliography. ACM Com-
put. Surv., 51(1):17:1–17:24.

[Nguyen et al., 2013] Nguyen, H. D. T., Qi, D., Roychoudhury, A., and Chandra, S. (2013). Semfix:
Program repair via semantic analysis. In Proceedings of the International Conference on Software
Engineering (ICSE ’13), pages 772–781, Piscataway, NJ, USA. IEEE Press.

109

https://nl.mathworks.com/products/simulink.html
https://nl.mathworks.com/products/simulink.html

Bibliography

[Nguyen and Cripps, 2001] Nguyen, N. and Cripps, A. (2001). Predicting housing value: A compari-
son of multiple regression analysis and artificial neural networks. Journal of Real Estate Research,
22(3):313–336.

[Nise, 2004] Nise, N. S. (2004). Control Systems Engineering, 4th ed. John-Wiely Sons.

[Ong et al., 2003] Ong, Y. S., Nair, P. B., and Keane, A. J. (2003). Evolutionary optimization of
computationally expensive problems via surrogate modeling. AIAA journal, 41(4):687–696.

[Oster et al., 2011] Oster, S., Zink, M., Lochau, M., and Grechanik, M. (2011). Pairwise feature-
interaction testing for spls: potentials and limitations. In Proceedings of the International Software
Product Line Conference, Volume 2 (SPLC’11), page 6, Munich, Germany. ACM.

[Panichella et al., 2015] Panichella, A., Kifetew, F. M., and Tonella, P. (2015). Reformulating branch
coverage as a many-objective optimization problem. In Proceedings of the International Confer-
ence on Software Testing, Verification and Validation, (ICST’15), pages 1–10, Graz, Austria.

[Panichella et al., 2018] Panichella, A., Kifetew, F. M., and Tonella, P. (2018). Automated test case
generation as a many-objective optimisation problem with dynamic selection of the targets. IEEE
Transactions on Software Engineering, 44(2):122–158.

[Patel et al., 2013] Patel, S., Gupta, P., and Shah, V. (2013). Feature interaction testing of variability
intensive systems. In Proceedings of the International Workshop on Product Line Approaches in
Software Engineering (PLEASE’13), pages 53–56, San Francisco, CA, USA. IEEE.

[Peng and Tang, 2011] Peng, F. and Tang, K. (2011). Alleviate the hypervolume degeneration prob-
lem of NSGA-II. In Proceedings of the International Conference on Neural Information Process-
ing (ICONIP’11), pages 425–434.

[Philomin et al., 2000] Philomin, V., Duraiswami, R., and Davis, L. (2000). Pedestrian tracking from
a moving vehicle. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV’2000), pages
350–355, Dearborn, MI, USA. IEEE.

[Plath and Ryan, 2001] Plath, M. and Ryan, M. (2001). Feature integration using a feature construct.
Science of Computer Programming, 41(1):53–84.

[Prehofer, 1997] Prehofer, C. (1997). Feature-oriented programming: A fresh look at objects. In
Proceedings of the European Conference on Object-Oriented Programming (ECOOP’97), pages
419–443, Jyväskylä, Finland.

[Qi et al., 2014] Qi, Y., Mao, X., Lei, Y., Dai, Z., and Wang, C. (2014). The strength of random
search on automated program repair. In Proceedings of the International Conference on Software
Engineering (ICSE’14), pages 254–265, New York, USA. ACM.

[Qi et al., 2015] Qi, Z., Long, F., Achour, S., and Rinard, M. (2015). An analysis of patch plausi-
bility and correctness for generate-and-validate patch generation systems. In Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA’15), pages 24–36. ACM.

110

Bibliography

[Renieres and Reiss, 2003] Renieres, M. and Reiss, S. P. (2003). Fault localization with nearest
neighbor queries. In Proceedings of the International Conference on Automated Software En-
gineering (ASE’03), pages 30–39.

[Rojas et al., 2017] Rojas, J. M., Vivanti, M., Arcuri, A., and Fraser, G. (2017). A detailed in-
vestigation of the effectiveness of whole test suite generation. Empirical Software Engineering,
22(2):852–893.

[Sayyad and Ammar, 2013] Sayyad, A. S. and Ammar, H. (2013). Pareto-optimal search-based soft-
ware engineering (POSBSE): A literature survey. In Proceedings of the International Workshop
on Realizing Artificial Intelligence Synergies in Software Engineering (RAISE’13), pages 21–27.

[Shalev-Shwartz and Ben-David, 2014] Shalev-Shwartz, S. and Ben-David, S. (2014). Understand-
ing machine learning: From theory to algorithms. Cambridge university press.

[Shams et al., 2006] Shams, M., Krishnamurthy, D., and Far, B. (2006). A model-based approach
for testing the performance of web applications. In Proceedings of the International Workshop on
Software Quality Assurance (SOQUA’06), pages 54–61.

[Sheela and Deepa, 2013] Sheela, K. G. and Deepa, S. N. (2013). Review on methods to fix number
of hidden neurons in neural networks. Mathematical Problems in Engineering, 2013:1–11.

[Sobotka and Novak, 2013] Sobotka, J. and Novak, J. (2013). Automation of automotive integration
testing process. In Proceedings of the International Conference on Intelligent Data Acquisition and
Advanced Computing Systems (IDAACS’13), volume 1, pages 349–352, Berlin, Germany. IEEE.

[Software, 2014] Software, U. (2014). Increasing software development productivity with reversible
debugging. Technical report, Undo Software.

[Suttorp and Igel, 2006] Suttorp, T. and Igel, C. (2006). Multi-objective optimization of support
vector machines. In Multi-objective machine learning, pages 199–220. Springer, -.

[Syberfeldt et al., 2008] Syberfeldt, A., Grimm, H., Ng, A., and John, R. I. (2008). A parallel
surrogate-assisted multi-objective evolutionary algorithm for computationally expensive optimiza-
tion problems. In Proceedings of the Congress on Evolutionary Computation (CEC’08), pages
3177–3184.

[TASS-International, 2019] TASS-International (2019). Prescan. https://www.

tassinternational.com/prescan.

[Tian et al., 2018] Tian, Y., Pei, K., Jana, S., and Ray, B. (2018). Deeptest: Automated testing of
deep-neural-network-driven autonomous cars. In Proceedings of the International Conference on
Software Engineering (ICSE’18), page to appear, Gothenburg, Sweden. ACM.

[Tom et al., 2014] Tom, B., Lisa, J., Graham, C., Paul, C., and Tomer, K. (2014). Reversible debug-
ging software. Technical report, University of Cambridge, UK.

111

https://www.tassinternational.com/prescan
https://www.tassinternational.com/prescan

Bibliography

[Tonella, 2004] Tonella, P. (2004). Evolutionary testing of classes. In Proceedings of the ACM SIG-
SOFT International Symposium on Software Testing and Analysis (ISSTA’04), volume 29, pages
119–128, Boston, MA, USA. ACM.

[van der Horst and Hogema, 1993] van der Horst, R. and Hogema, J. (1993). Time-to-collision and
collision avoidance systems. In Proceedings of the workshop of the International Cooperation on
Theories and Concepts in Traffic Safety (ICTCT’93), pages 109–121.

[van der Linden, 1994] van der Linden, R. (1994). Using an architecture to help beat feature interac-
tion. In Proceedings of the International Workshop on Feature Interactions in Telecommunications
Systems (FIW’94), pages 24–35, Amsterdam, Netherlands. IOS Press.

[van Lamsweerde, 2009] van Lamsweerde, A. (2009). Requirements Engineering: From System
Goals to UML Models to Software Specifications. Wiley Publishing, 1st edition.

[Van Veldhuizen and Lamont, 1998a] Van Veldhuizen, D. A. and Lamont, G. B. (1998a). Multiobjec-
tive evolutionary algorithm research: A history and analysis. Technical report, Air Force Institute
of Technology.

[Van Veldhuizen and Lamont, 1998b] Van Veldhuizen, D. A. and Lamont, G. B. (1998b). Multi-
objective evolutionary algorithm research: A history and analysis. Technical report, Air Force
Institute of Technology.

[Vargha and Delaney, 2000] Vargha, A. and Delaney, H. D. (2000). A critique and improvement of
the cl common language effect size statistics of mcgraw and wong. Journal of Educational and
Behavioral Statistics, 25(2):101–132.

[Wainer, 2009] Wainer, G. A. (2009). Discrete-event modeling and simulation: a practitioner’s ap-
proach. CRC press.

[Wang et al., 2016] Wang, S., Ali, S., Yue, T., Li, Y., and Liaaen, M. (2016). A practical guide
to select quality indicators for assessing pareto-based search algorithms in search-based software
engineering. In Proceedings of the International Conference on Software Engineering (ICSE’16),
pages 631–642, New York, NY, USA. ACM.

[Weimer et al., 2009] Weimer, W., Nguyen, T., Le Goues, C., and Forrest, S. (2009). Automatically
finding patches using genetic programming. In Proceedings of the International Conference on
Software Engineering (ICSE’09), pages 364–374. IEEE.

[Wilmes and Windisch, 2010] Wilmes, B. and Windisch, A. (2010). Considering signal constraints
in search-based testing of continuous systems. In Proceedings of the International Conference on
Software Testing, Verification, and Validation Workshops (ICSTW’10), pages 202–211.

[Windisch, 2010] Windisch, A. (2010). Search-based test data generation from stateflow statecharts.
In Proceedings of the Annual Conference on Genetic and Evolutionary Computation (GECCO’10),
pages 1349–1356.

112

Bibliography

[Witten et al., 2011] Witten, I. H., Frank, E., and Hall, M. A. (2011). Data Mining: Practical Ma-
chine Learning Tools and Techniques. Morgan Kaufmann Publishers Inc., 3rd edition.

[Wohlin et al., 2012] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén,
A. (2012). Experimentation in software engineering. Springer-Verlag, Berlin Heidelberg.

[Wojtusiak and Michalski, 2004] Wojtusiak, J. and Michalski, R. S. (2004). The lem3 implemen-
tation of learnable evolution model: user’s guide. In Proceedings of the Machine Learning and
Inference Laboratory, George Mason University, (MLI’04), pages 04–05, Fairfax, Virginie, USA.
Citeseer.

[Xie et al., 2013] Xie, X., Chen, T. Y., Kuo, F.-C., and Xu, B. (2013). A theoretical analysis of the
risk evaluation formulas for spectrum-based fault localization. ACM Transactions on Software
Engineering and Methodology (TOSEM), 22(4):31.

[Yoo and Harman, 2007] Yoo, S. and Harman, M. (2007). Pareto efficient multi-objective test case
selection. In Proceedings of tthe ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA’07), pages 140–150, London, UK. ACM.

[Zander et al., 2017] Zander, J., Schieferdecker, I., and Mosterman, P. J. (2017). Model-based testing
for embedded systems. CRC press.

[Zave, 1993] Zave, P. (1993). Feature interactions and formal specifications in telecommunications.
Computer, 26(8):20–28.

[Zeller, 2017] Zeller, A. (2017). Search-based testing and system testing: A marriage in heaven. In
Proceedings of the International Workshop on Search-Based Software Testing (SBST’17), pages
49–50, Piscataway, NJ, USA. IEEE.

[Zhan and Clark, 2006] Zhan, Y. and Clark, J. A. (2006). The state problem for test generation in
simulink. In Proceedings of the Annual Conference on Genetic and Evolutionary Computation
(GECCO’06), pages 1941–1948.

[Zhang et al., 2018] Zhang, M., Zhang, Y., Zhang, L., Liu, C., and Khurshid, S. (2018). Deeproad:
Gan-based metamorphic testing and input validation framework for autonomous driving systems.
In Proceedings of the International Conference on Automated Software Engineering (ICSE’18),
ASE 2018, pages 132–142, New York, NY, USA. ACM.

[Zibaeenejad et al., 2017] Zibaeenejad, M. H., Zhang, C., and Atlee, J. M. (2017). Continuous
variable-specific resolutions of feature interactions. In Proceedings of the Joint Meeting on Foun-
dations of Software Engineering (ESEC/FSE’17), pages 408–418, Paderborn, Germany. ACM.

[Zimmer and Atlee, 2012] Zimmer, P. A. and Atlee, J. M. (2012). Ordering features by category.
Journal of Systems and Software, 85(8):1782–1800.

[Zitzler et al., 2000] Zitzler, E., Deb, K., and Thiele, L. (2000). Comparison of multiobjective evolu-
tionary algorithms: Empirical results. Evolutionary Computation, 8(2):173–195.

113

Bibliography

[Zitzler and Thiele, 1999a] Zitzler, E. and Thiele, L. (1999a). Multiobjective evolutionary algo-
rithms: a comparative case study and the strength pareto approach. Transactions on Evolutionary
Computation, 3(4):257–271.

[Zitzler and Thiele, 1999b] Zitzler, E. and Thiele, L. (1999b). Multiobjective evolutionary algo-
rithms: a comparative case study and the strength pareto approach. IEEE Transactions on Evolu-
tionary Computation, 3(4):257–271.

[Zuliani et al., 2013] Zuliani, P., Platzer, A., and Clarke, E. M. (2013). Bayesian statistical model
checking with application to stateflow/simulink verification. Formal Methods in System Design,
43(2):338–367.

114

	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Challenges
	Research Contributions
	Dissertation Outline

	Background
	Meta-Heuristic Search
	Non-dominated Sorting Genetic Algorithm version 2 (NSGAII)
	Many-Objective Sorting Algorithm (MOSA)

	Supervised Learning techniques
	Surrogate models
	Decision Trees

	Program repair

	Testing Advanced Driver Assistance Systems
	Motivation and Challenges
	The PeVi System
	Surrogate Models
	Search with Surrogate Model
	Tailoring Search to PeVi
	Evaluation
	Conclusions

	Testing Vision-Based Control Systems Using Learnable Evolutionary Algorithms
	Motivating Case Study
	ADAS Formalization
	Search Guided by Classifiers
	Multi-objective search
	Decision tree learning
	NSGAII guided by decision trees

	Evaluation
	Research Questions
	Metrics
	Experiment Design
	Results
	Threats to validity

	Conclusions

	Testing Autonomous Cars for Feature Interaction Failures using Many-Objective Search
	Motivation
	Approach
	Testing Feature-Based Control Systems
	Test Inputs and Outputs
	Hybrid Test Objectives
	Search Algorithm

	Evaluation
	Research Questions
	Case Study Systems
	Experimental Settings
	Results

	Conclusions

	Automatic Localization and Repair of Feature Interaction Failures
	Motivation
	Program Repair: State-of-the-art
	 Approach
	Inputs
	Faulty IntC
	Test suite (TS)

	Fault Localization
	Generating a Patch
	Mutation Operators

	Evaluating a Patch
	Fitness Function
	Archive

	Search Algorithm

	 Evaluation
	Research questions
	Experiment Design
	Results

	Conclusions

	Related Work
	Search-based testing
	Surrogate modeling
	Testing autonomous cars
	Feature interactions
	Feature interactions in software product lines
	Feature interaction detection via model checking
	Feature interaction resolution

	Program repair

	Conclusions and Future Work
	Summary
	Future Work

	List of Papers
	Bibliography

