
LSTM LANGUAGE MODEL ADAPTATION WITH IMAGES AND TITLES FOR
MULTIMEDIA AUTOMATIC SPEECH RECOGNITION

Yasufumi Moriya, Gareth. J. F. Jones

ADAPT Centre, School of Computing, Dublin City University, Dublin 9, Ireland

ABSTRACT

Transcription of multimedia data sources is often a challeng-
ing automatic speech recognition (ASR) task. The incorpo-
ration of visual features as additional contextual information
as a means to improve ASR for this data has recently drawn
attention from researchers. Our investigation extends exist-
ing ASR methods by using images and video titles to adapt a
recurrent neural network (RNN) language model with a long-
short term memory (LSTM) network. Our language model
is tested on transcription of an existing corpus of instruction
videos and on a new corpus consisting of lecture videos. Con-
sistent reduction in perplexity by 5-10 is observed on both
datasets. When the non-adapted model is combined with the
image adaptation and video title adaptation models for n-best
ASR hypotheses re-ranking, additionally the word error rate
(WER) is decreased by around 0.5% on both datasets. By
analysing the output word probabilities of the model, it is
found that both image adaptation and video title adaptation
give the model more confidence in the choice of contextually
correct informative words

Index Terms— ASR, LSTM, multimodal language
model adaptation

1. INTRODUCTION

The growth in archives of multimedia content is increas-
ing demands for effective spoken content retrieval (SCR)
systems. While searching multimedia archives using visual
content has attracted much interest, the basis of many SCR
systems is the use of transcripts of the spoken information
stream generated using automatic speech recognition (ASR)
[1]. Unsurprisingly, it has been found that errors in spoken
transcripts, particularly semantic errors, can degrade the ef-
fectiveness of search systems [2]. The difficulty of building a
robust ASR system for multimedia content has been demon-
strated in previous work. For example, it has been found
that the word error rate of speech recognition on YouTube
videos can reach 40% [3]. In the MGB challenge 2015, the
best performing system has a WER of 30-40%, when recog-
nising more spontaneous speech in comedy and TV dramas
[4]. WERs of this order are sufficient to greatly affect the
behaviour of SCR systems. The primary goal of our work

is to improve ASR accuracy from the perspective of SCR,
ultimately focusing in particular on the accurate recognition
of words in transcripts useful for effective SCR.

Our focus in this work is on the incorporation of infor-
mation from non-speech channels into ASR. This builds on
recent research which has shown success in grounding con-
textual information from non-speech channels into an ASR
system for multimedia content. For example, Gupta et al. [5]
extracted place and object features (referred to as visual fea-
tures) from visual signals of instruction videos, and adapted
both acoustic and language models with these features. Their
latest work on the same dataset incorporates the same visual
features into end-to-end connectionist temporal classification
(CTC) and sequence-to-sequence models [6]. Similarly, Sun
et al. [7] demonstrated that object features extracted from im-
ages can be useful for recognition of the spoken version of the
Flickr8k image caption data.

The underlying principle of this work follows the line of
research developed in these existing investigations, and seeks
to extend the grounding contextual information for more ef-
fective ASR on multimedia data in which audio quality is typ-
ically less controlled and encompasses more diverse topics
than is typical in other ASR settings. In our current study, we
investigate whether metadata associated with multimedia con-
tent can provide an ASR system with information about con-
cepts and activities of the content able to improve ASR accu-
racy. Specifically, video titles are embedded into fixed-length
vectors and fed to a recurrent neural network (RNN) language
model incorporating a long-short term memory (LSTM) net-
work as additional contextual information [8, 9]. As well as
video titles, visual adaptation of the LSTM language model is
also performed for comparison. These language models are
used to re-rank n-best ASR hypotheses. The adapted mod-
els are tested on the existing CMU “How-to” corpus, and on a
new corpus, that is a collection of lecture videos from Udacity
(https://eu.udacity.com/) [5]. Consistent gain in perplexity is
observed with contextual adaptation of the language model.
Combination of the non-adapted model with adapted mod-
els also leads to WER reduction by around 0.5% on both the
datasets. By analysing the behaviour of the models, it was
found that the contextually adapted models have more con-
fidence in prediction of semantically meaningful words, but
prediction accuracy of frequent words such as “a” and “in”

219978-1-5386-4334-1/18/$31.00 ©2018 IEEE SLT 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/200762319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

would appear to be negatively impacted by this adaptation.
The remainder of this paper is organised as follows: Sec-

tion 2 introduces the methods used in our work, Section 3 de-
scribes our experimental setup, Section 4 gives results of our
study, Section 5 provides analysis, and Section 6 concludes
and gives directions for further work.

2. METHODOLOGY

In this section we introduce the methodologies for our inves-
tigations. We first introduce feature extraction, followed by
adaptation of LSTM language models, and finally re-ranking
of n-best ASR hypotheses.

2.1. Feature extraction

As outlined in the previous section, in this work we explore
the use of two contextual features in ASR: visual information
and video titles. We introduce these in more detail here.

Application of visual features in ASR has been explored
in several existing studies [5, 6, 7]. In the visual adaptation
setting, each utterance is accompanied by an image, or a
video frame. A convolutional neural network (CNN) model
extracts a fixed-length vector from the image or the video
frame. In addition, the model can be fine-tuned using a col-
lection of images of places labeled with the type of place
(e.g., “tennis court”, and “school”). In [5], a CNN model
consisting of 5 convolutional layers followed by 3 fully-
connected layers (known as AlexNet) [10] was employed to
obtain a 1000 dimensional object probabilities from video
frames. They further fine-tuned the CNN model with the
MIT Places dataset [11] containing 2.5 million images asso-
ciated with 205 scene categories to extract 205 dimensional
place probabilities from video frames. These two adaptation
vectors were fed to both the acoustic, and language model.
They found that the adapted models reduced the WER on the
“How to” dataset.

In our work, image embedding is extracted from video
frames by the penultimate layer (fc7) of a pre-trained 19-layer
convolutional neural network model from the visual geome-
tory group of Oxford university (VGG19) [12]. The VGG19
model was pre-trained on the ImageNet dataset for the object
recognition task [13]. We did not fine-tune the CNN model on
a particular dataset, as the visual feature was merely used for
comparison to the video title feature. We refer to the visual
feature as i-emb throughout the paper.

The second contextual feature that we use is video titles.
These serve as very short summaries of the multimedia con-
tent. We hypothesise that keywords present in video titles
are good predictors of the domain of language spoken in the
related video. At the pre-processing stage, the NLTK part-of-
speech tagger identifies nouns, verbs, and adjectives among
words in video titles [14]. The remainder of the words are re-
moved to retain only content words, i.e. it is assumed that fre-

quent function words such as “the” and “to” in video titles do
not carry meaningful semantics associated with transcripts. A
bag of words representation is then created by removing mul-
tiple occurrences of the same word. Unlike i-emb, several
utterances can belong to one video, and one video title vector
can be shared by multiple utterances.

The video title vector is produced by either the internal
word embedding module of the language model, or the exter-
nal fastText library [15]. fastText is an open-source library,
that can transform a word into a continuous vector, even if
the word is out-of-vocabulary, since the model is trained on
word substrings. The potential advantage of using the inter-
nal word embedding module for creating video title represen-
tation is that the module can be tuned both for video title em-
bedding and for general word embedding, both of which are
input to the LSTM language model. The vectors can either
be summed together or averaged to form a video title feature.
It is known that summation and subtraction of word vectors
can induce a new concept (e.g., king - man + woman = queen)
[16]. On the other hand, averaging word vectors is claimed to
be a good sentence representation according to [17, 18]. To
explore the best approach to inducing video title representa-
tion for the language model adaptation, the video title vec-
tor is produced by (1) the internal word embedding module,
and external fastText, and by (2) summation and averaging of
word vectors. Comparative results of above approaches are
provided in the results section. The video title feature is re-
ferred to as t-emb throughout the paper.

2.2. LSTM language model adaptation

Fig. 1. Adaptation of an LSTM language model with either
i-emb or t-emb. A raw image is transformed into i-emb by
going through VGG19 up to the fc7 layer, two fully con-
nected layers and a sigmoid function. Summing, or averag-
ing of word embedding vectors creates t-emb. Weights of the
components of the model coloured in grey are updated during
training.

220

Figure 1 shows adaptation of the model performed in our
work. The LSTM language model takes either i-emb or t-emb
as initial input to predict the first word of a sentence w1. The
LSTM cell propagates this contextual information for predic-
tion of the rest of the words in the sentence [9]. When i-emb
is fed to the language model, it goes through two fully con-
nected layers to match the dimensionality of i-emb with that
of the word embedding input. A sigmoid function is set on
top of the two fully connected layers. The weights of the two
fully connected layers are updated during training of the lan-
guage model. As mentioned above, t-emb is either the sum
or average of the word embedding vectors of a video title.
In Figure 1, fastText creates word embedding vectors of the
title. The internal word embedding module (WE module in
the figure) was also tested for this purpose, as mentioned in
Section 2.1. The output of an LSTM layer is fed to one fully
connected layer before the softmax function.

When image embedding is input, this architecture is sim-
ilar to one of the first neural image caption generation models
proposed by [19]. The difference between image caption gen-
eration and multimodal ASR, is that all the training examples
of image caption data have strong correlation between text
and images, whereas spoken transcripts of ASR data are not
always strongly associated with an accompanying image or
video title.

2.3. Re-ranking n-best ASR hypotheses

Both adapted and non-adapted models compute a negative log
likelihood of a hypothesis as in Equation 1.

LRNN (h) = −
I∑

i=1

logP (xi|x0...xi−1) (1)

where h is a hypothesis, I is the number of words in the hy-
pothesis, and x0 is i-emb or t-emb, when the model is adapted,
and a start of sentence symbol <sos>, when the model is non-
adapted. The total cost of the hypothesis is interpolated with
the cost of the acoustic model as in Equation 2.

L(h) = AM(h) +
1

M

M∑
m=1

LMm(h) (2)

where AM(h) is the negative log likelihood of the hypothesis
of an acoustic model, LMm(h) is the negative log likelihood
of the hypothesis of a language model, and M is the number
of language models to be interpolated. In this work, M is set
to 2 when the LSTM language model is combined with the n-
gram language model, and to 4 when the non-adapted, i-emb
and t-emb models are all combined with the n-gram model.
Since the likelihood is a negative log probability, the lower
the score, the better the hypothesis.

3. EXPERIMENTAL SETUP

This section describes the two datasets used for our experi-
ments, the procedures used to obtain the n-best ASR hypothe-
ses of the recognised utterances for these datasets, and the
configuration of the LSTM language model.

3.1. Datasets

As outlined above, two multimedia datasets were used for our
ASR experiments.

3.1.1. Udacity Lecture Video Collection

The first is a collection of lecture videos from Udacity. Lec-
ture videos show lecture slides and speakers. Transcripts
of the videos were downloaded from each Udacity lecture
website. All the numbers and symbols in transcripts were
removed or expanded to words, and letters were converted
to uppercase. Raw audio files and transcripts were pre-
processed as follows:

• step 1: Audio files were aligned with transcripts
through first-pass decoding with a deep neural network
(DNN) acoustic model trained on the LibriSpeech cor-
pus, and a biased language model. The language model
was “biased”, as the model was trained only on tran-
scripts of a corresponding audio file. Decoded output
was segmented into utterances at the point where si-
lence and a sentence boundary coincide [20]. If an
utterance was longer than 30 seconds, it was further
split into sub-segments at the longest silence of the
utterance.

• step 2: After second-pass decoding, the decoded out-
put of utterances was compared to their references. All
utterances, that had a mismatch with a reference were
rejected since the transcripts may not be accurate.

• step 3: An internal DNN acoustic model was trained on
clean utterances kept in the step 2. The decoding was
performed on utterances segmented in step 1 with the
internal DNN acoustic model, and with the biased lan-
guage model from transcripts. This reduced the number
of potential mismatches of speech with the transcripts,
since the model was internal, and the quality of decod-
ing output was improved.

The process to retain clean utterances of the corpus was
based on the development of the LibriSpeech corpus [20].
In total, the collection contains 60 courses on engineering,
science and programming topics, each with video title avail-
able. 50 courses were allocated for the training set, and 5
courses each for the validation and the test sets. Although
some speakers appear in multiple courses, data was carefully
partitioned, so that speakers in the training and validation sets

221

are not present in the test set. The duration of the training
set is 163 hours, and that of the dev and test sets is roughly
3.5 hours each. The total vocabulary size of all 60 courses is
21,619.

3.1.2. CMU “How to” corpus

The other dataset used is the CMU “How-to” corpus consist-
ing of a collection of instruction videos [5, 6]. Due to copy-
right issues, pre-processing of the corpus is different from that
reported in [5, 6] and their results are not directly comparable
to ours. We pre-processed the corpus in the same manner as
the Udacity corpus. The full version of the dataset was used
for experiments. The total duration of the corpus is 523 hours,
which is roughly 3 times larger than the Udacity corpus. The
same data partition was used as that described in [5, 6]. 512
hours of data are allocated for the training set, 5.5 hours for
the validation set, and 4.7 hours for the test set. All 19,804
videos have a title. The vocabulary size of all of the data is
38,596.

3.2. Generation of n-best ASR hypotheses

The ASR system used to generate n-best hypotheses was built
with Kaldi [21]. The acoustic model was trained with the
nnet3 module, and the n-gram language model for decoding
word graphs was 3-gram with modified Kneser-Ney interpo-
lation using the SRILM toolkit [22, 23, 24]. The validation
set in the experiments was only used to find the best epoch
of the LSTM language model, and was not decoded by ASR.
For this reason, the n-gram language model was trained on
the training set combined with the validation set. N was set to
30 in the experiments, this value was also used in [5].

3.3. LSTM language model configuration

Both the non-adapted and contextually adapted language
models were two-layer LSTMs, whose hidden size was set
to 512. The video frames were transformed into 4096 di-
mensional vectors by VGG19. Then, the size of vectors was
further reduced from 4096 to 512, and from 512 to 100 by
two fully connected layers. The size of the LSTM hidden
layers, and the intermediate size of image embedding were
decided to be 512, which was empirically better than the size
256 and 1024.

For given input, the LSTM language model produced
output probabilities of the next word. The probabilities
were used to compute a cross entropy error of a reference
word. The error was accumulated through a sentence, and
the weights of the language model was updated with the
backpropagation through time algorithm.

The model training began with the learning rate 20, and
was divided by 4 when no improvement was seen on the val-
idation set after each training epoch. The model was trained
with 50 epochs. Dropout was applied to the word embedding

Table 1. Comparative results of different methods to produce
t-emb on the Udacity and CMU How-to dataset. The internal
word embedding module is “internal”, and the fastText library
is ”fastText” [15]. “sum” and “ave” indicate summation and
averaging of word embedding vectors. PPL is perplexity, and
WER is word error rate.

Udacity How-to
PPL WER PPL WER

internal, sum 138.50 14.67 63.21 18.33
internal, ave 138.87 14.70 64.12 18.44
fastText, sum 129.07 14.49 61.16 18.40
fastText, ave 131.69 14.48 60.03 18.27

module and the LSTM layers with rate 0.2. The mini-batch
size was set to 100 for the Udacity corpus, and 90 for the
CMU How-to corpus. The start/end of a sentence symbol
<sos> and <eos> were added to each training example of
the non-adapted model, while only <eos> was added to data
of adapted language models. This is because either t-emb or
i-emb takes a position of <sos> to predict the first word of a
sentence. Video frames were taken from the middle of each
utterance. When no words remained after pre-processing of
video titles described in section 2.1, a zero vector of size 100
was substituted for t-emb for utterances without an accom-
panied video title. This happened for 28 video titles of the
CMU How-to corpus, all of which belonged to the training
set. Out-of-vocabulary words were not explicitly modelled.
Implementation of the language models was based on Py-
Torch [25].

4. RESULTS

Table 1 shows comparison of approaches to generating t-emb.
Overall, employing an external library (i.e., fastText) to pro-
duce t-emb was better than the internal word embedding mod-
ule. Both perplexity and WER were lower on both datasets,
except summation of word embedding with fastText which
slightly increased the WER compared to summation of word
embedding with the internal module. There is not a large dif-
ference between summation and averaging of word embed-
ding to form t-emb in these metrics. Thus, pre-computing
t-emb before training a language model is our recommended
approach.

Table 2 presents perplexity and WER of the non-adapted
model, and the adapted models with i-emb and t-emb on the
Udacity and CMU How-to corpus. Compared to the non-
adapted model, i-emb reduced perplexity by 5 on both cor-
pora, and t-emb by 5 on the Udacity corpus, and by more
than 10 on the CMU How-to corpus. However, i-emb in-
creased WER on the Udacity corpus by around 0.2%, and
decreased WER on the How-to corpus by 0.12%. t-emb pro-
duced a comparative WER to the non-adapted model on the

222

Table 2. Experimental results for the non-adapted, i-emb, and
t-emb models on the Udacity and CMU How-to datasets. t-
emb is produced with fastText and averaging word embed-
ding of video titles. “first-pass” is raw output of decoded
transcripts without n-best hypothesis re-ranking. “oracle” is
the best achievable WER of the n-best hypotheses. WERs
of “combined” were obtained by averaging cost from the n-
gram, non-adapted, i-emb and t-emb models, then interpo-
lated with cost of the acoustic model.

Udacity How-to
PPL WER PPL WER

first-pass - 16.70 - 20.25
non-adapted 136.00 14.50 71.43 18.56
i-emb 131.29 14.71 65.79 18.43
t-emb 131.69 14.48 60.03 18.27
combined - 13.97 - 17.98
oracle - 9.20 - 15.13

Udacity corpus, and reduced WER by 0.29% on the How-
to corpus. When the non-adapted, i-emb and t-emb models
were combined to re-rank hypotheses, WER was further re-
duced by 0.53% and 0.58% on the Udacity, and CMU How-to
datasets, respectively.

Overall, both i-emb and t-emb models produced consis-
tent improvement in perplexity on both the corpora. While
lower perplexity resulted in lower WER on the CMU How-to
dataset, this effect was not observed on the Udacity dataset.
The image feature extractor was trained for the object recog-
nition task. For this reason, i-emb could be more meaningful
on the CMU How-to dataset, as videos in this corpus show
objects such as a tennis racket and a basketball more often.
In the Udacity corpus, the videos present lecture slides (e.g.,
characters, equations, flowcharts, and programming code), or
humans (e.g., lecturers, and interviewees), which are not nec-
essarily part of the ImageNet dataset. As for t-emb, video
titles in the CMU How-to corpus tend to be longer (e.g., In-
termediate Western Calligraphy Tips: The Acanthus Leaf &
Calligraphy: Part 1) than in the Udacity corpus (e.g., How to
Build a Startup). The language model could have more diffi-
culty in learning with short video titles.

5. MODEL ANALYSIS

To further analyse how i-emb and t-emb affect prediction of
words by the language model, one utterance each from the test
split of the Udacity corpus and the CMU How-to corpus was
fed to the non-adapted, i-emb and t-emb models. Embedding
of video titles was produced with fastText and averaging of
title word vectors. Softmax was used instead of log softmax
to have more interpretable values.

Figure 2 shows word probabilities of a short region of an
utterance taken from the test split of the CMU How-to cor-

Transcript:
A Peter Pan collar is
like ...
Video title:
Fashion Design for Small
Collars: Fashion Design for
Peter Pan Collar & Trim
Processed title:
Fashion Design Small
Collars Peter Pan Collar
Trim

Fig. 2. One utterance from the test split of the How-to cor-
pus with its aligned image, transcription, video title and the
processed version of and video title. The lower graph shows
probabilities of words produced by the adapted and non-
adapted models.

pus, its accompanied image, video title and the processed
version of the video title. For this example, both i-emb and
t-emb models gave a higher probability to “Pan”, and “col-
lar” than the non-adapted model. Interestingly, the accompa-
nying image shows a collar-like object, and “Pan” and “col-
lar” are included in the video title. Figure 3 shows the exam-
ple utterance taken from the test split of the Udacity corpus.
This utterance is taken from a Python introduction course.
The image shows Python code, and the video title contains
“Python”. Both i-emb and t-emb models predicted “Python”
with a higher probability than the non-adapted model. How-
ever, the non-adapted model had more confidence in predic-
tion of common words such as “a” and “in” in these examples.

Table 3 summarises averaged probabilities of nouns pro-
duced by the three models. Each noun is one of the keywords
of a video. For example, most of the “testing” on the test set
of the Udacity corpus occurs in the course “AB Testing for
Analysis Business”, and many examples of “nose” on the test
set of the How-to corpus are found in “Cosmetics: Narrow
the Nose with Makeup”.

Generally, the model benefited from t-emb and i-emb for
prediction of the words in the table. The t-emb model was es-
pecially good at giving higher confidence in the nouns listed

223

Transcript:
Indentation levels in
Python are always ...
Video title:
Introduction to Python
Programming
Processed title:
Introduction Python
Programming

Fig. 3. One utterance from the test split of the Udacity
corpus with its aligned image, transcription, video title and
the processed version of and video title. The bottom graph
shows probabilities of words produced by the adapted and
non-adapted models.

in the table, except for “python” and “chord”, in compari-
son to the non-adapted model. The i-emb model produced a
higher or comparable probability for all but “python”, “collar”
and “golf” than the non-adapted model. This proved that the
model was more aware of context, where speech was uttered,
thanks to visual or video title information, so that semanti-
cally important words received a higher probability.

6. CONCLUSIONS AND FUTURE WORK

This work has investigated use of images and video titles for
LSTM language model adaptation. Previous work showed
that WER tends to be higher, when an ASR system is ap-
plied to multimedia data. This could be a bottleneck for SCR
systems, as these systems rely on ASR transcripts for search
operation on multimedia archives. It has also been demon-
strated in previous work that adapting language and acoustic
models with visual features can reduce WER on multimedia
data. Our work extended previous methods by also adding
video titles as contextual features, tested the adapted LSTM
language model on existing and new multimedia corpora, and
provided an in-depth analysis on behaviour of the models on
keywords of the content.

Our findings are that: (1) when transforming a video title
into a fixed-length vector, it is better to pre-train a word em-
bedding module (e.g., fastText), and not to update the module

Table 3. Word probabilities produced by the adapted and non-
adapted models. The probabilities were averaged by the total
occurrence on the test set. All of the probability values are
multiplied by 100 for readability. The train column shows
frequencies of the words on the training split of the corpora,
and the test column on the test split of the corpora

non-adapted i-emb t-emb train test
Udacity

ad 0.06 0.04 0.37 107 205
analysis 0.08 0.34 0.19 263 47
python 0.44 0.19 0.41 467 43
readme 0.004 0.01 0.04 20 17
testing 0.18 1.33 1.73 367 12
How-to
chord 21.56 20.86 20.82 495 10
collar 0.55 0.18 0.85 245 5
fish 2.34 6.07 14.49 812 36
golf 0.55 0.39 1.42 346 8
nose 0.6 5.01 6.85 752 11

weights jointly while training a language model; (2) a steady
decrease in perplexity was obtained on both the Udacity and
CMU How-to corpora with visual, and video title adaptation,
while reduction in WER was only marginal; (3) the language
model adapted with i-emb and t-emb tended to give a higher
probability to keyword nouns of the content, while this might
affect accuracy of prediction of common words such as “a”
and “in”.

For future work, several extensions of this work can be
considered. Firstly, the model architecture in this work was
quite basic, and a more sophisticated mechanism such as at-
tention could be incorporated. Attention mechanisms have
been actively investigated in the computer vision community
for image caption generation [26, 27]. Nevertheless, such a
model should be carefully designed, as the nature of data is
different between image caption generation and multimedia
ASR, as discussed in section 2.2. Secondly, rather than re-
ranking n-best ASR hypotheses, re-scoring a lattice with an
existing neural language model toolkit may be more effective
for WER reduction [28]. Thirdly, contextual features could
be further developed. For example, feeding multiple video
frames for a single utterance to the language model instead of
a single one image, or exploring more types of metadata.

7. ACKNOWLEDGEMENT

This work was supported by Science Foundation Ireland
as part of the ADAPT Centre (Grant 13/RC/2106) (www.
adaptcentre.ie) at Dublin City University.

224

8. REFERENCES

[1] M. Larson and G. J. F. Jones, “Spoken Content Re-
trieval: A survey of techniques and technologies,” Foun-
dations and Trends in Information Retrieval, vol. 4, no.
4-5, pp. 235–422, 2012.

[2] L. Lee, J. Glass, H. Lee, and C. Chan, “Spoken content
retrieval: beyond cascading speech recognition with text
retrieval,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 23, no. 9, pp. 1389–
1420, 2015.

[3] H. Liao, E. McDermott, and A. Senior, “Large scale
deep neural network acoustic modeling with semi-
supervised training data for YouTube video transcrip-
tion,” in Proceedings of IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU), 2013,
pp. 368–373.

[4] P. Bell, M. J. F. Gales, T. Hain, J. Kilgour, P. Lanchantin,
X. Liu, A. McParland, S. Renals, O. Saz, M. Wester,
and P. C. Woodland, “The MGB challenge: Evaluating
multi-genre broadcast media recognition,” in Proceed-
ings of IEEE Workshop on Automatic Speech Recogni-
tion and Understanding (ASRU), 2015, pp. 687–693.

[5] A. Gupta, Y. Miao, L. Neves, and F. Metze, “Visual
features for context-aware speech recognition,” in Pro-
ceedings of IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2017, pp.
5020–5024.

[6] S. Palaskar, R. Sanabria, and F. Metze, “End-to-End
Multimodal Speech Recognition,” ArXiv 1804.09713,
2018.

[7] F. Sun, D. Harwath, and J. Glass, “Look, listen, and
decode: Multimodal speech recognition with images,”
in Proceedings of IEEE Workshop on Spoken Language
Technology (SLT), 2016, pp. 573–578.

[8] T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and
S. Khudanpur, “Recurrent neural network based lan-
guage model,” in Proceedings of Interspeech, 2010, pp.
1045–1048.

[9] S Hochreiter and J Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, no. 8, pp. 1735–
80, 1997.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton, “Imagenet classification with deep convolutional
neural networks,” in Proceedings of Advances in Neu-
ral Information Processing Systems (NIPS), 2012, pp.
1097–1105.

[11] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and
A. Oliva, “Learning deep features for scene recognition
using places database,” in Proceedings of Advances in
Neural Information Processing Systems (NIPS), 2014,
pp. 487–495.

[12] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” Pro-
ceedings of International Conference on Learning Rep-
resentations (ICLR), 2015.

[13] Jia D., Wei D., R. Socher, Li-Jia L., Kai L., and Li F. F.,
“ImageNet: A large-scale hierarchical image database,”
in Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2009, pp. 248–255.

[14] S. Bird, E. Klein, and E. Loper, Natural Language Pro-
cessing with Python, O’Reilly Media, 2009.

[15] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov,
“Enriching word vectors with subword information,”
Transactions of the Association for Computational Lin-
guistics, vol. 5, pp. 135–146, 2016.

[16] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean, “Distributed representations of words and
phrases and their compositionality,” in Proceedings
of Advances in Neural Information Processing Systems
(NIPS), 2013, pp. 3111–3119.

[17] J. Wieting, M. Bansal, K. Gimpel, and K. Livescu, “To-
wards Universal Paraphrastic Sentence Embeddings,”
Proceedings of International Conference on Learning
Representations (ICLR), 2016.

[18] S. Arora, Y. Liang, and T. Ma, “A simple but tough to
beat baseline for sentence embeddings,” Proceedings of
International Conference on Learning Representations
(ICLR), 2017.

[19] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show
and tell: A neural image caption generator,” in Pro-
ceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015, pp. 3156–3164.

[20] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur,
“Librispeech: An ASR corpus based on public domain
audio books,” in Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2015, pp. 5206–5210.

[21] D. Povey, A. Ghoshal, G. Boulianne, L. Burget,
O. Glembek, N. Goel, M. Hannemann, P. Motlicek,
Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, and
K. Vesely, “The Kaldi speech recognition toolkit,” in
Proceedings of IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), 2011, pp. 1–
4.

225

[22] V. Peddinti, D. Povey, and S. Khudanpur, “A time de-
lay neural network architecture for efficient modeling of
long temporal contexts,” in Proceedings of Interspeech,
2015, pp. 2–6.

[23] S. F. Chen and J. Goodman, “An empirical study of
smoothing techniques for language modeling,” Com-
puter Speech and Language, pp. 310–318, 1995.

[24] A. Stolcke, “SRILM-an extensible language modeling
toolkit,” in Proceedings of International Conference on
Spoken Language Processing (ICSLP), 2002.

[25] A. Paszke, G. Chanan, Z. Lin, S. Gross, E. Yang,
L. Antiga, and Z. Devito, “Automatic differentiation in
PyTorch,” Proceedings of Advances in Neural Informa-
tion Processing Systems (NIPS), pp. 1–4, 2017.

[26] Ke. Xu, J. Ba, R. Kiros, K. Cho, A. Courville,
R. Salakhutdinov, R. Zemel, and Y. Bengio, “Show, at-
tend and tell: Neural image caption generation with vi-
sual attention,” IEEE Transactions on Neural Networks,
vol. 5, no. 2, pp. 157–66, 2015.

[27] J. Lu, C. Xiong, D. Parikh, and R. Socher, “Knowing
when to look: Adaptive attention via a visual sentinel for
image captioning,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 3242–3250.

[28] X. Chen, X. Liu, Y. Qian, M. J. F. Gales, and P. C. Wood-
land, “CUED-RNNLM An open-source toolkit for effi-
cient training and evaluation of recurrent neural network
language models,” in Proceedings of IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2016, pp. 6000–6004.

226

