
Improving KantanMT Training Efficiency with
fast align

Dimitar Shterionov dimitars@kantanmt.com

KantanLabs, Dublin, Ireland

Jinhua Du jinhua.du@adaptcentre.ie

ADAPT Centre, DCU, Dublin, Ireland

Marc Anthony Palminteri marcp@kantanmt.com

KantanMT.com, Dublin, Ireland

Laura Casanellas laurac@kantanmt.com

KantanMT.com, Dublin, Ireland

Tony O’Dowd tonyod@kantanmt.com

KantanMT.com, Dublin, Ireland

Andy Way andy.way@adaptcentre.ie

ADAPT Centre, DCU, Dublin, Ireland

Abstract
In recent years, statistical machine translation (SMT) has been widely deployed in translators’

workflow with significant improvement of productivity. However, prior to invoking an SMT

system to translate an unknown text, an SMT engine needs to be built. As such, building speed

of the engine is essential for the translation workflow, i.e., the sooner an engine is built, the

sooner it will be exploited.

With the increase of the computational capabilities of recent technology the building time for

an SMT engine has decreased substantially. For example, cloud-based SMT providers, such as

KantanMT, can built high-quality, ready-to-use, custom SMT engines in less than a couple of

days. To speed-up furthermore this process we look into optimizing the word alignment process

that takes place during building the SMT engine. Namely, we substitute the word alignment

tool used by KantanMT pipeline – Giza++ – with a more efficient one, i.e., fast_align.

In this work we present the design and the implementation of the KantanMT pipeline that uses

fast_align in place of Giza++. We also conduct a comparison between the two word

alignment tools with industry data and report on our findings. Up to our knowledge, such

extensive empirical evaluation of the two tools has not been done before.

1 Introduction

In recent years, statistical machine translation (SMT) systems have been widely deployed in

translators’ workflows with significant improvements in productivity. KantanMT is a cloud-

based SMT platform that allows its clients to train SMT engines that are customized for their

specific translation tasks by using their own data. Many factors contribute to the quality of

service provided by KantanMT, e.g. the speed for training an SMT engine with KantanMT is

an essential factor as it determines how fast clients can commence translating.1

1To date, SMT engines built using 250 million words of training data can be built with KantanMT in about 3 days.

Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1, 2016 | p. 222

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/200762282?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The KantanMT platform employs a cloud-based architecture that has two main compo-

nents: (i) an interface component to process, coordinate and distribute job requests and (ii) a

collection of processing steps to execute build, translation or analysis jobs. The architecture of

KantanMT is based on the Amazon Web Services (AWS)2. For any job request the interface

allocates a machine from the cloud. The machine is set-up to comply with KantanMT require-

ments and used afterwards to execute the specific job. For a build job, the KantanMT training

pipeline is composed of 14 steps.

Crucial for the efficiency of the KantanMT training pipeline is word alignment. Word

alignment is the task of identifying word-level translation relations between a source text and

its translation. Naturally, to date the KantanMT pipeline has been using Giza++ (Och and

Ney (2003)) – the most common word-alignment tool used by the SMT community – for word

alignment. An alternative to Giza++ is fast_align (Dyer et al. (2013)), a simple, fast,

yet effective tool to perform word alignment. Dyer et al. (2013) show that fast_align is

about 10 times faster than IBM Model 4 (Brown et al. (1993)). Moreover, fast_align
leads to translation performance comparable to MT engines trained using Giza++ (Dyer et al.

(2013)). Accordingly, with the aim of reducing the training time of KantanMT engines, we

introduced fast_align into the KantanMT pipeline in place of Giza++. Improved training

times would lead to better quality of service as well as reduced resource allocation, an important

issue for any cloud-based system.

In this work we present the integration of fast_align into the KantanMT training

pipeline. We focus on (i) our collaborative approach to integrating the fast_align tool

into a live production system; (ii) the improvements in training time; and (iii) a comparison of

the translation quality between MT engines built with Giza++ and with fast_align.3

2 Training KantanMT engines with Giza++

2.1 KantanMT training pipeline
Once a building request has been received and a dedicated machine has been allocated, there

are 14 processing steps that take place in order to train a KantanMT engine. Each processing

step applies on the output from the preceding step and provides input for the next4. These steps

can be divided into 5 major stages:

1. Instance setup. Required software is downloaded and installed; bilingual and monolin-

gual data is retrieved and verified.

2. Data preprocessing. Once the data is downloaded and verified it is subjected to prepro-

cessing, cleansing and partitioning. The bilingual data is divided into three sets – a training,

a tuning and a test set – that are used for training and optimizing the engine.

3. Building. Three models are built during this stage: (i) a language model that captures the

linguistic aspects of the target language and aims at improving MT output; (ii) a recaser

model to set the correct letter casing in the MT output and (iii) a translation model used for

decoding unseen text. Monolingual data (in the target language) is often used to improve

the quality of the language model. The KantanMT platform employs the open-source

toolkit Moses (Koehn et al. (2007)) to train the language, the translation and the recaser

models.

2https://aws.amazon.com/
3To the best of our knowledge, such an extensive empirical evaluation of these two word-alignment approaches with

industry data has not been performed to date.
4That is why we refer to the KantanMT architecture as a pipeline architecture.

2

Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1, 2016 | p. 223

Prepare FS

Install SW

Fetch data

Validate data

Instance setup

Prepare Data

Cleanse

Partition

Data preprocessing

Built LM

Build RM

Build TM

Building

Score

Optimize

Postprocessing

Pack

Store

Storing

Figure 1: KantanMT training pipeline.

4. Engine postprocessing. After the engine is built it is scored by calculating three evaluation

metrics: (i) BLEU score (Papineni et al. (2002)); (ii) F-Measure (van Rijsbergen (1979);

Melamed (1995)) and (iii) Translation Error Rate (TER) (Snover et al. (2006)). If required,

the engine is also optimized by using the tuning subset from the training data.

5. Storing. The models, configuration files and scores are packed and stored for future use.

Word alignment is invoked during building the translation model. To compute the word

alignment is one of the computationally most expensive tasks in the building step. Up to date,

KantanMT was using Giza++ to perform word alignment during this step.

Figure 1 shows the original (i.e., using the Giza++ word-alignment tool) KantanMT

pipeline for training an engine.

2.2 Faster word-alignment for faster end-user delivery
Giza++ implements IBM models 1 to 5 (Brown et al. (1993)) as well as an HMM word align-

ment model (Och and Ney (2003)). IBM models 1 and 2 are computationally inexpensive,

however, higher IBM models increase the complexity of training the models by adding addi-

tional components. For example, IBM Model 3 introduces a fertility model which can address

the issue of an input word producing multiple target words or zero words5.

A software platform oriented to provide MT services to industry, such as KantanMT, needs

to meet its clients requirements for quick service delivery. Moreover, there is a twofold gain

in improving engine build time: (i) faster delivery to the end-user – the faster MT engines are

trained, the sooner the client may start exploiting them; and (ii) optimized resource allocation –

allocated hardware is released sooner and can be ready to use for new tasks faster.

A recent project, conducted by the ADAPT centre6 (Du et al. (2015)), implements an SMT

pipeline where Giza++ is substituted by fast align (Dyer et al. (2013)). Motivated by the

results from their experiments and aiming to achieve faster delivery to the end-user as well as

improved resource allocation, we integrate the fast align word alignment tool in the KantanMT

platform.

3 KantanMT pipeline with fast align

In order to integrate fast align into the KantanMT training pipeline, an absolute prerequisite is

that it needs to be 100% compatible with the already used MT pipeline. This has two require-

5For more information about the IBM models and their complexity as well as about HMM models we refer the

interested reador to (Koehn (2010)).
6http://adaptcentre.ie

3

Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1, 2016 | p. 224

ments: (i) no task that KantanMT performs should see any degradation in performance; and (ii)

the user experience should not be negatively impacted.

3.1 A collaborative approach for industry-standard software development
In order to ensure the aforementioned requirements, we devised a systematic development ap-

proach that teamed state-of-the-art academic knowledge and experience with industry-leading

software development and quality assessment (QA). We developed our solution following an

AGILE-based methodology7 that involved three main stages:

1. Design. During the design stage we first analysed the current KantanMT pipeline and

identified the software requirements towards the pipeline for integrating a new word align-

ment tool. We then identified the software requirements of fast align. Joining the industry

experience and the academic know-how we formulated the system design, i.e., the func-

tional and technical specifications of the modified KantanMT pipeline8. Furthermore, we

reviewed and accepted any licences of additionally required software.

2. Implementation. Upon approval of the system design we implemented the new pipeline

according to the steps defined in the technical specification document. As a first part of

the quality assessment (QA) strategy we performed a series of tests to verify that each

component of the pipeline, including the newly introduced ones, works as designed (i.e.,

alpha testing).

3. Quality Assessment. Our QA strategy involved alpha testing performed in parallel with

the initial implementation; beta testing and life testing. While the alpha testing aimed to

verify the coherence of the modified pipeline, the latter two parts aimed to ensure that the

integrity of the whole system is intact. In addition, during the life testing we focused on

the efficiency and user experience of the platform, i.e., empirical evaluation.

The duration of the project for integrating fast_align into the KantanMT training

pipeline is 4 weeks plus 2 additional weeks for empirical evaluation.

3.2 System requirements
In order to incorporate fast_align into the KantanMT pipeline we first ensure that all soft-

ware requirements of fast_align are met (see http://www.cdec-decoder.org/
guide/ for details). Next we need to ensure that the input data requirements are met as well.

In the original KantanMT pipeline (i.e., using Giza++) we use two files that represent the par-

allel corpus: one for the source part of the corpus and another for the target part9. The fast align
tool uses a different input format. It requires a single file in which each line contains both the

source and target parts for one sentence, separated by a triple pipe (|||)10. Example 3.1 shows

such formatting for German source sentences and its English translation11.

Example 3.1 doch jetzt ist der Held gefallen . ||| but now the hero has fallen .

We use the paste_files.pl script from the cdec12 tool collection to join the

two files in one and therefore ensure the correct formatting for fast_align. We invoke

paste_files.pl right after the data cleansing (see Figure 1).

7http://agilemethodology.org/
8The functional specifications of the pipeline were outlined in a functional specification document; the technical

specifications – in a technical specification document.
9During the data preparation step (see Figure 1) the corpus is encoded in UTF-8.

10http://www.cdec-decoder.org/guide/fast_align.html
11http://www.cdec-decoder.org/guide/fast_align.html
12http://www.cdec-decoder.org/

4

Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1, 2016 | p. 225

Prepare FS

Install SW

Fetch data

Validate data

Instance setup

Prepare Data

Partition

Cleanse

Format for
fast_align

Data preprocessing

Build LM

Build RM

Build TM
- Skip Giza++
- Call fast_align

Building

Score

Optimize

Postprocessing

Pack

Store

Storing

Figure 2: KantanMT training pipeline modified to invoke fast align.

We run the fast_align tool in forward (source–target) and reversed (target–source)

directions. Each direction generates asymmetric alignments, i.e., by treating either the source or

target language in the parallel corpus as primary language being modeled. These two directional

fast_align will generate slightly different alignments and need to be then symmetrized.We

use the atools script from the cdec collection. The output from atools produces a word

alignment in the widely-used i− j Pharaoh format (Koehn (2003)). In this format, the pair i− j
indicates that the ith word (zero-indexed) of the source language is aligned to the jth word of

the target language. Example 3.2 shows the word alignment in Pharaoh format for the sentences

in Example 3.1.

Example 3.2 0-0 1-1 2-4 3-2 4-3 5-5 6-6

The word alignment in the Pharaoh format is compatible with the steps in the building

process that follow the word alignment step.

3.3 System architecture
In order to integrate fast_align we modify the original KantanMT pipeline as follows:

1. Incorporate additional data processing step where we invoke paste_file.pl to join

the two files of the parallel corpus in one according to the requirements of fast_align
(see Section 3.2).

2. During the build of the translation model we skip Giza++ and invoke fast_align.

3. Invoke atools to symmetrise the output of fast_align.

The rest of the pipeline remains the same. Our modifications are outlined in Figure 2.

The modularity of our pipelines – the original KantanMT training pipeline and the mod-

ified one – allow an easy switching between the two, i.e., between training an engine with

fast_align and with Giza++. To do so we use a global variable that acts as a switch be-

tween fast_align and Giza++. This ensures (i) higher control on the pipeline; (ii) quick

and easy rollback in case of unforeseen system issues.

4 Empirical evaluation

In order to determine the effectiveness of the fast_align word alignment tool, a series of

experiments were conducted in a closed, controlled system separate from the normal work-

flow of KantanMT. The goal of running these experiments was to quantify the performance

of the KantanMT training pipeline as well as the translation quality of engines trained using

fast_align as compared to the original pipeline that uses Giza++.

5

Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1, 2016 | p. 226

Language pair Relative size Word count Unique word count Engine reference
English-French Small 781 075 42 563 EN-FR-small

English-French Large 109 379 800 1 008 696 EN-FR-large

English-German Small 786 981 42 648 EN-DE-small

English-German Large 138 119 563 1 084 485 EN-DE-large

English-Spanish Small 861 557 44 375 EN-ES-small

English-Spanish Large 154 169 102 1 119 475 EN-ES-large

English-Italian Small 924 331 38 506 EN-IT-small

English-Italian Large 104 196 079 914 889 EN-IT-large

English-Chinese Small 810 134 33 281 EN-ZH-small

English-Chinese Large 58 274 131 550 862 EN-ZH-large

Table 1: Data sets used in our comparison experiments.

4.1 Set-up
Our tests involved building 10 engines from 10 different data sets with both Giza++ and

fast_align. These data sets are of varying sizes and language pairs. The data is from legal

and financial domain; it is part of the KantanLibraryTM 13. At the end of the experiments, speed,

performance, accuracy, and stability of each engine were compared to their counterpart for a

direct Giza++-to-fast_align assessment. Details about the used data sets are presented in

Table 1.

We decided to use small data sets in order to test whether the alignment tool would perform

better when given a small data set as compared to larger data sets. The engines built with the

larger data sets were used to derive close to realistic estimates on the overall engine performance

– i.e., automatic evaluation metrics and building time – when comparing the two alignment

tools. Typically, a specialised engine is built on around 10 million words. The language pairs

were selected based on the availability of professional linguists, translators or native speakers

who can evaluate the quality of translated files.

4.2 Experiments
4.2.1 Experiment 1 – Time consumption
The objective of Experiment 1 is to judge the speed of the KantanMT training pipeline. First

we broke down the steps to building an engine from the moment the training data is prepared

to when the final package is completed (see Figure 1 and Figure 2). Each step was launched

manually, monitored, and timed for all 10 engines for both pipelines – with Giza++ and with

fast_align. We then sum the time of each individual step in order to compute the total

training time. Table 2 summarises our results from timing each individual step. It shows the

time gain (T+) for building an engine with fast_align (Tfa) as compared to an engine built

using Giza++ (Tga): T+ =
Tga−Tfa

Tga
.

Table 2 reveals that each engine experienced a decrease in building time when using

fast_align, with the time gain being between 48% and 73%. We ought to noted that these

times do not account for the initial training data upload time, the instance setup, the data prepa-

ration, or the job clean-up which, when dealing with large engines, can add a significant amount

of time to a build, i.e., can take around 40− 60% of the total job time. In order to estimate the

impact of the new word alignment tool under life conditions we also measured the time for

training an engine launched from the online interface of the platform. Table 2 summerizes our

results from timing the engine build including the data upload time, instance setup, etc.

13KantanLibraryTM is the collection of industry-standard data that KantanMT provides to their clients.

6

Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1, 2016 | p. 227

Specific tasks Complete pipeline

Engine

G
i
z
a
+
+

(h
h:

m
m

:s
s)

f
a
s
t
a
l
i
n
g

(h
h:

m
m

:s
s)

Ti
m

e
ga

in

G
i
z
a
+
+

(h
h:

m
m

:s
s)

f
a
s
t
a
l
i
n
g

(h
h:

m
m

:s
s)

Ti
m

e
ga

in

EN-FR-small 00 : 09 : 23 00 : 03 : 49 59.00% 00 : 25 : 00 00 : 18 : 00 28.00%

EN-FR-large 10 : 35 : 11 04 : 02 : 14 62.00% 24 : 49 : 00 09 : 04 : 00 63.00%

EN-DE-small 00 : 10 : 06 00 : 03 : 57 61.00% 00 : 28 : 00 00 : 17 : 00 39.00%

EN-DE-large 15 : 33 : 43 04 : 13 : 57 73.00% 26 : 44 : 00 10 : 28 : 00 61.00%

EN-ES-small 00 : 10 : 21 00 : 04 : 20 58.00% 00 : 27 : 00 00 : 20 : 00 26.00%

EN-ES-large 14 : 07 : 21 04 : 54 : 12 65.00% 26 : 04 : 00 07 : 58 : 00 69.00%

EN-IT-small 00 : 11 : 03 00 : 04 : 32 59.00% 00 : 29 : 00 00 : 22 : 00 24.00%

EN-IT-large 11 : 09 : 32 05 : 46 : 41 48.00% 19 : 27 : 00 06 : 47 : 00 65.00%

EN-ZH-small 00 : 10 : 07 00 : 04 : 35 55.00% 00 : 20 : 00 00 : 16 : 00 20.00%

EN-ZH-large 10 : 08 : 16 03 : 34 : 13 65.00% 13 : 18 : 00 06 : 55 : 00 48.00%

Average: 60.50% Average: 44.30%

Table 2: Summary of the results from Experiment 1: time comparison.

Figure 3: Percentage time taken to complete each building phase.

These results show a more accurate interpretation as to how long a build job would take for

a user. For the smaller engines, the time gain from using fast_align has a smaller impact

due to the fact that the setup and shutdown times do not change, taking a larger proportion of

the total job time. In Figure 3 we show an time for initialization, training and cleanup for a

random small and a large engines.

Table 2 and Figure 3 indicate that the higher the word count of the training data the more

influenced the training is by the specific training steps of the pipeline, and in particular by the

word alignment. That is why, for larger engines fast_align typically leads to higher time

gain.

4.2.2 Experiment 2 – Automatic quality estimation
One of the final step in KantanMT training pipeline is to score the engines (see Figure 1). We

compare the F-Measure, BLEU and TER scores computed at that step for each engine in order

to determine the relative quality between engines built with Giza++ and engines built with

fast_aling. We summarize our results in Table 3.

For engines that were built with fast_align we notice maximum score decrease of 4.5
points (in the EN-DE-large engine) and maximum score increase of 2.2 points (in the EN-ES-

large engine). The average difference is 1 point in favour of engines built with Giza++.

Regarding, BLEU score, we notice a maximum decrease of 2.8 points (in the EN-DE-

small engine) and a maximum increase of 3.6 points (in the EN-DE-large engine). The average

7

Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1, 2016 | p. 228

F-Measure BLEU TER

Engine
G
i
z
a
+
+

f
a
s
t
a
l
i
n
g

A
bs

ol
ut

e

R
el

at
iv

e

G
i
z
a
+
+

f
a
s
t
a
l
i
n
g

A
bs

ol
ut

e

R
el

at
iv

e

G
i
z
a
+
+

f
a
s
t
a
l
i
n
g

A
bs

ol
ut

e

R
el

at
iv

e

EN-FR-small 63.0 61.8 −1.2 1.90% 62.7 60 −2.7 4.31% 51.9 53.5 1.6 −3.08%

EN-FR-large 70.4 69.5 −0.9 1.28% 61.8 62.2 0.4 −0.65% 42.7 43.5 0.8 −1.87%

EN-DE-small 57.3 58.6 1.3 −2.27% 55.6 59.2 3.6 −6.47% 58.9 55.1 −3.8 6.45%

EN-DE-large 70.8 66.3 −4.5 6.36% 66.2 63.4 −2.8 4.23% 43.7 49.6 5.9 −13.50%

EN-ES-small 69.5 67.1 −2.4 3.45% 59.2 56.9 −2.3 3.89% 44.9 48.6 3.7 −8.24%

EN-ES-large 73.7 75.9 2.2 −2.99% 60.5 63.5 3.0 −4.96% 40.2 37.2 −3 7.46%

EN-IT-small 61.9 61.0 −0.9 1.45% 54.2 53 −1.2 2.21% 52.6 54.4 1.8 −3.42%

EN-IT-large 71.0 66.6 −4.4 6.20% 60.5 61.3 0.8 −1.32% 41 44.6 3.6 −8.78%

EN-ZH-small 75.4 76.5 1.1 −1.46% 44.2 45.3 1.1 −2.49% 43.9 41.5 −2.4 5.47%

EN-ZH-large 74.7 74.4 −0.3 0.40% 53.7 52.2 −1.5 2.79% 48.7 48.8 0.1 −0.21%

Table 3: Summary of the results from Experiment 2: F-Measure, BLUE and TER scores.

difference is 0.16 points in favour of engines built with Giza++.

The last three columns in Table 3 refer to the TER score. It shows a maximum increase

of 5.9 points (in the EN-DE-large engine) and maximum decrease of 3.8 points (in the EN-

DE-small engine). On average there is an increased by 0.83 points for engines built with

fast_align
Although we notice a general tendency of automatic quality measurements to decrease for

engines built with fast_align (when compared to Giza++) we outh to point: (i) the fluctu-

ation we observe in Table 3 indicates that there is no sensible change in quality and (ii) the fact

that for different language pairs and data set sizes the scores alternate between fast_align
and Giza++ indicates that under specific conditions fast_align is better and under other

conditions Giza++ is better (the specifics of these conditions are out of the scope of this project

and remain a topic for future research).

Experiment 3 In order to be get a more specific estimate of the quality of engines built with

fast_align as compared to ones built with Giza++ we involved professional translators

and native speakers (members of the KantanMT Professional Services department as well as

the ADAPT centre at DCU) for human evaluation. We performed a blind comparison of 4

documents translated by engines built with fast_align and with Giza++ for each of the

language pairs and data set sizes. The human evaluators would indicate which of the documents

they considered to be better in terms of accuracy, fluency, and overall quality. The objective

was to determine which engines translation would read easier when assessed by a person who

is fluent in the target language.

For the small engines, all of translators independently said that the translation quality from

engines built with fast_align is the same as from engines built with Giza++. In practice,

due to the quantity of training data used by the smaller engines (being too small to translate to a

high standard) the overall quality for all pairs was rather low. Therefore, we consider the results

from the larger engines of practical value and focus on their analysis.

The translators had to answer two questions:

1. Which document has higher language quality?

2. Does the quality respond to their requirements as translators/native speakers?

All translators stated that both sets of documents were of a very high quality and that

they cannot make a distinctive decision. With one exception: for the EN-FR-large engine, had

translators disagreed as to which set of documents were better.

8

Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1, 2016 | p. 229

All translators consider both groups of translation documents to match their expectations.

They also claimed that there was very little difference between documents, with mainly minor

grammatical errors, e.g., two words in a long segment being in the wrong order. The results of

the blind test were satisfactory to our requirements for the project.

5 Conclusions

In this work we substituted the word alignment tool used in the KantanMT pipeline – Giza++ –

with the more efficient and yet effective fast_align. The latter has already been successfully

incorporated in other industrial products and has shown promising results. In our design and

implementation strategy we combined industry established software development practices with

academic know-how to effectively modify a large-scale online platform such as KantanMT with

no downtime or decay in KantanMT services.

To assess the impact of the new word alignment method into the efficiency of the Kan-

tanMT pipeline as well as the quality of the built engines we performed a series of tests with

industry based data. Our results show an average speed-up of 60% and comparable quality to

engines built with Giza++.

Our experiments also show that for languages that differ substantially in the word order

(such as English and German) fast_alignmay lead to a slight decrease in quality (according

to automatic measures). In the future, we aim to carry out more investigation on word alignment

results from fast_align and examine possible solutions of improving SMT performance.

References

Brown, P. F., Della-Pietra, S. A., Della-Pietra, V. J., and Mercer, R. L. (1993). The mathematics of

statistical machine translation: parameter estimation. Computational Linguistics, 19(2):263–311.

Du, J., Moorkens, J., Srivastava, A., Lauer, M., Way, A., Maldonado, A., and Lewis, D. (2015). D4.3:

Translation project – level evaluation distribution: Public federated active linguistic data curation (fal-

con).

Dyer, C., Chahuneau, V., and Smith, N. A. (2013). A simple, fast, and effective reparameterization of IBM

model 2. In Proceedings of the 2013 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 644–648, Atlanta, Georgia, USA.

Koehn, P. (2003). Pharaoh: a beam search decoder for phrase-based statistical machine translation models:

User manual and description for version 1.2.

Koehn, P. (2010). Statistical Machine Translation. Cambridge University Press, New York, NY, USA, 1st

edition.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W.,

Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E. (2007). Moses: Open source

toolkit for statistical machine translation. In Proceedings of the 45th Annual Meeting of the Association
for Computational Linguistics: Demo and Poster Sessions, pages 177–180, Prague, Czech Republic.

Melamed, I. D. (1995). Automatic evaluation and uniform filter cascades for inducing n-best translation

lexicons. In Proceedings of the third Workshop on Very Large Corpora, pages 184–198, Cambridge,

Massachusetts, USA.

Och, F. J. and Ney, H. (2003). A systematic comparison of various statistical alignment models. Compu-
tational Linguistics, 29(1):19–51.

9

Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1, 2016 | p. 230

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: A method for automatic evaluation of

machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006). A study of translation edit

rate with targeted human annotation. In In Proceedings of Association for Machine Translation in the
Americas, pages 223–231, Cambridge, Massachusetts, USA.

van Rijsbergen, C. J. (1979). Information Retrieval. Butterworth.

10

Proceedings of AMTA 2016, vol. 2: MT Users' Track Austin, Oct 28 - Nov 1, 2016 | p. 231

