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Abstract

Recently, neural machine translation
(NMT) has emerged as a powerful alterna-
tive to conventional statistical approaches.
However, its performance drops consider-
ably in the presence of morphologically
rich languages (MRLs). Neural engines
usually fail to tackle the large vocabulary
and high out-of-vocabulary (OOV) word
rate of MRLs. Therefore, it is not suitable
to exploit existing word-based models
to translate this set of languages. In this
paper, we propose an extension to the
state-of-the-art model of Chung et al.
(2016), which works at the character level
and boosts the decoder with target-side
morphological information. In our archi-
tecture, an additional morphology table
is plugged into the model. Each time the
decoder samples from a target vocabulary,
the table sends auxiliary signals from the
most relevant affixes in order to enrich the
decoder’s current state and constrain it to
provide better predictions. We evaluated
our model to translate English into Ger-
man, Russian, and Turkish as three MRLs
and observed significant improvements.

1 Introduction

Morphologically complex words (MCWs) are
multi-layer structures which consist of different
subunits, each of which carries semantic informa-
tion and has a specific syntactic role. Table 1 gives
a Turkish example to show this type of complexity.
This example is a clear indication that word-based
models are not suitable to process such complex
languages. Accordingly, when translating MRLs,
it might not be a good idea to treat words as atomic
units as it demands a large vocabulary that im-

poses extra overhead. Since MCWs can appear
in various forms we require a very large vocabu-
lary to i) cover as many morphological forms and
words as we can, and ii) reduce the number of
OOVs. Neural models by their nature are com-
plex, and we do not want to make them more com-
plicated by working with large vocabularies. Fur-
thermore, even if we have quite a large vocabulary
set, clearly some words would remain uncovered
by that. This means that a large vocabulary not
only complicates the entire process, but also does
not necessarily mitigate the OOV problem. For
these reasons we propose an NMT engine which
works at the character level.

Word Translation

terbiye good manners
terbiye.siz rude
terbiye.siz.lik rudeness
terbiye.siz.lik.leri their rudeness
terbiye.siz.lik.leri.nden from their rudeness

Table 1: Illustrating subword units in MCWs. The
boldfaced part indicates the stem.

In this paper, we focus on translating into MRLs
and issues associated with word formation on the
target side. To provide a better translation we
do not necessarily need a large target lexicon, as
an MCW can be gradually formed during decod-
ing by means of its subunits, similar to the solu-
tion proposed in character-based decoding models
(Chung et al., 2016). Generating a complex word
character-by-character is a better approach com-
pared to word-level sampling, but it has other dis-
advantages.

One character can co-occur with another with
almost no constraint, but a particular word or mor-
pheme can only collocate with a very limited num-
ber of other constituents. Unlike words, characters
are not meaning-bearing units and do not preserve
syntactic information, so (in the extreme case) the
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chance of sampling each character by the decoder
is almost equal to the others, but this situation is
less likely for words. The only constraint that pri-
oritize which character should be sampled is in-
formation stored in the decoder, which we believe
is insufficient to cope with all ambiguities. Fur-
thermore, when everything is segmented into char-
acters the target sentence with a limited number
of words is changed to a very long sequence of
characters, which clearly makes it harder for the
decoder to remember such a long history. Ac-
cordingly, character-based information flows in
the decoder may not be as informative as word-
or morpheme-based information.

In the character-based NMT model everything
is almost the same as its word-based counterpart
except the target vocabulary whose size is consid-
erably reduced from thousands of words to just
hundreds of characters. If we consider the de-
coder as a classifier, it should in principle be able
to perform much better over hundreds of classes
(characters) rather than thousands (words), but the
performance of character-based models is almost
the same as or slightly better than their word-
based versions. This underlines the fact that the
character-based decoder is perhaps not fed with
sufficient information to provide improved perfor-
mance compared to word-based models.

Character-level decoding limits the search space
by dramatically reducing the size of the target vo-
cabulary, but at the same time widens the search
space by working with characters whose sampling
seems to be harder than words. The freedom in
selection and sampling of characters can mislead
the decoder, which prevents us from taking the
maximum advantages of character-level decoding.
If we can control the selection process with other
constraints, we may obtain further benefit from re-
stricting the vocabulary set, which is the main goal
followed in this paper.

In order to address the aforementioned prob-
lems we redesign the neural decoder in three dif-
ferent scenarios. In the first scenario we equip the
decoder with an additional morphology table in-
cluding target-side affixes. We place an attention
module on top of the table which is controlled by
the decoder. At each step, as the decoder samples a
character, it searches the table to find the most rel-
evant information which can enrich its state. Sig-
nals sent from the table can be interpreted as addi-
tional constraints. In the second scenario we share

the decoder between two output channels. The
first one samples the target character and the other
one predicts the morphological annotation of the
character. This multi-tasking approach forces the
decoder to send morphology-aware information to
the final layer which results in better predictions.
In the third scenario we combine these two mod-
els. Section 3 provides more details on our mod-
els.

Together with different findings that will be dis-
cussed in the next sections, there are two main
contributions in this paper. We redesigned and
tuned the NMT framework for translating into
MRLs. It is quite challenging to show the impact
of external knowledge such as morphological in-
formation in neural models especially in the pres-
ence of large parallel corpora. However, our mod-
els are able to incorporate morphological informa-
tion into decoding and boost its quality. We inject
the decoder with morphological properties of the
target language. Furthermore, the novel architec-
ture proposed here is not limited to morphological
information alone and is flexible enough to pro-
vide other types of information for the decoder.

2 NMT for MRLs

There are several models for NMT of MRLs which
are designed to deal with morphological complex-
ities. García-Martínez et al. (2016) and Sennrich
and Haddow (2016) adapted the factored machine
translation approach to neural models. Morpho-
logical annotations can be treated as extra factors
in such models. Jean et al. (2015) proposed a
model to handle very large vocabularies. Luong
et al. (2015) addressed the problem of rare words
and OOVs with the help of a post-translation phase
to exchange unknown tokens with their poten-
tial translations. Sennrich et al. (2016) used sub-
word units for NMT. The model relies on frequent
subword units instead of words. Costa-jussà and
Fonollosa (2016) designed a model for translating
from MRLs. The model encodes source words
with a convolutional module proposed by Kim
et al. (2016). Each word is represented by a con-
volutional combination of its characters.

Luong and Manning (2016) used a hybrid
model for representing words. In their model,
unseen and complex words are encoded with a
character-based representation, with other words
encoded via the usual surface-form embed-
dings. Vylomova et al. (2016) compared differ-
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ent representation models (word-, morpheme, and
character-level models) which try to capture com-
plexities on the source side, for the task of trans-
lating from MRLs.

Chung et al. (2016) proposed an architec-
ture which benefits from different segmentation
schemes. On the encoder side, words are seg-
mented into subunits with the byte-pair segmen-
tation model (bpe) (Sennrich et al., 2016), and
on the decoder side, one target character is pro-
duced at each time step. Accordingly, the tar-
get sequence is treated as a long chain of charac-
ters without explicit segmentation. Grönroos et al.
(2017) focused on translating from English into
Finnish and implicitly incorporated morphological
information into NMT through multi-task learn-
ing. Passban (2018) comprehensively studied the
problem of translating MRLs and addressed po-
tential challenges in the field.

Among all the models reviewed in this section,
the network proposed by Chung et al. (2016) could
be seen as the best alternative for translating into
MRLs as it works at the character level on the de-
coder side and it was evaluated in different settings
on different languages. Consequently, we consider
it as a baseline model in our experiments.

3 Proposed Architecture

We propose a compatible neural architecture for
translating into MRLs. The model benefits from
subword- and character-level information and im-
proves upon the state-of-the-art model of Chung
et al. (2016). We manipulated the model to incor-
porate morphological information and developed
three new extensions, which are discussed in Sec-
tions 3.1, 3.2, and 3.3.

3.1 The Embedded Morphology Table

In the first extension an additional table containing
the morphological information of the target lan-
guage is plugged into the decoder to assist with
word formation. Each time the decoder samples
from the target vocabulary, it searches the mor-
phology table to find the most relevant affixes
given its current state. Items selected from the ta-
ble act as guiding signals to help the decoder sam-
ple a better character.

Our base model is an encoder-decoder model
with attention (Bahdanau et al., 2014), imple-
mented using gated recurrent units (GRUs) (Cho
et al., 2014). We use a four-layer model in our

experiments. Similar to Chung et al. (2016) and
Wu et al. (2016), we use bidirectional units to en-
code the source sequence. Bidirectional GRUs are
placed only at the input layer. The forward GRU
reads the input sequence in its original order and
the backward GRU reads the input in the reverse
order. Each hidden state of the encoder in one
time step is a concatenation of the forward and
backward states at the same time step. This type
of bidirectional processing provides a richer rep-
resentation of the input sequence.

On the decoder side, one target character is sam-
pled from a target vocabulary at each time step.
In the original encoder-decoder model, the proba-
bility of predicting the next token yi is estimated
based on i) the current hidden state of the de-
coder, ii) the last predicted token, and iii) the
context vector. This process can be formulated as
p(yi|y1, ..., yi−1,x) = g(hi, yi−1, ci), where g(.)
is a softmax function, yi is the target token (to
be predicted), x is the representation of the input
sequence, hi is the decoder’s hidden state at the
i-th time step, and ci indicates the context vec-
tor which is a weighted summary of the input se-
quence generated by the attention module. ci is
generated via the procedure shown in (1):

ci =
n∑

j=1

αijsj

αij =
exp (eij)∑
n
k=1 exp (eik)

; eij = a(sj , hi−1)

(1)

where αij denotes the weight of the j-th hidden
state of the encoder (sj) when the decoder predicts
the i-th target token, and a() shows a combinato-
rial function which can be modeled through a sim-
ple feed-forward connection. n is the length of the
input sequence.

In our first extension, the prediction prob-
ability is conditioned on one more constraint
in addition to those three existing ones, as in
p(yi|y1, ..., yi−1,x) = g(hi, yi−1, ci, cmi ), where
cmi is the morphological context vector and car-
ries information from those useful affixes which
can enrich the decoder’s information. cmi is gener-
ated via an attention module over the morphology
table which works in a similar manner to word-
based attention model. The attention procedure for
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Figure 1: The target label that each output channel is supposed to predict when generating the Turkish sequence
‘bu1 terbiyesizlik2 için3’ meaning ‘because3 of3 this1 rudeness2’.

generating cmi is formulated as in (2):

cmi =

|A|∑

u=1

βiufu

βiu =
exp (emiu)∑ |A|
v=1 exp (eiv)

; emiu = am(fu, hi−1)

(2)
where fu represents the embedding of the u-th af-
fix (u-th column) in the morphology/affix tableA,
βiu is the weight assigned to fu when predicting
the i-th target token, and am is a feed-forward con-
nection between the morphology table and the de-
coder.

The attention module in general can be consid-
ered as a search mechanism, e.g. in the origi-
nal encoder-decoder architecture the basic atten-
tion module finds the most relevant input words to
make the prediction. In multi-modal NMT (Huang
et al., 2016; Calixto et al., 2017) an extra attention
module is added to the basic one in order to search
the image input to find the most relevant image
segments. In our case we have a similar additional
attention module which searches the morphology
table.

In this scenario, the morphology table including
the target language’s affixes can be considered as
an external knowledge repository that sends auxil-
iary signals which accompany the main input se-
quence at all time steps. Such a table certainly
includes useful information for the decoder. As
we are not sure which affix preserves those pieces
of useful information, we use an attention module
to search for the best match. The attention mod-
ule over the table works as a filter which excludes
irrelevant affixes and amplifies the impact of rel-
evant ones by assigning different weights (β val-
ues).

3.2 The Auxiliary Output Channel
In the first scenario, we embedded a morphology
table into the decoder in the hope that it can enrich
sampling information. Mathematically speaking,
such an architecture establishes an extra constraint

for sampling and can control the decoder’s predic-
tions. However, this is not the only way of con-
straining the decoder. In the second scenario, we
define extra supervision to the network via another
predictor (output channel). The first channel is re-
sponsible for generating translations and predicts
one character at each time step, and the other one
tries to understand the morphological status of the
decoder by predicting the morphological annota-
tion (li) of the target character.

The approach in the second scenario proposes
a multi-task learning architecture, by which in one
task we learn translations and in the other one mor-
phological annotations. Therefore, all network
modules –especially the last hidden layer just be-
fore the predictors– should provide information
which is useful enough to make correct predictions
in both channels, i.e. the decoder should preserve
translation as well as morphological knowledge.
Since we are translating into MRLs this type of
mixed information (morphology+translation) can
be quite useful.

In our setting, the morphological annotation li
predicted via the second channel shows to which
part of the word or morpheme the target character
belongs, i.e. the label for the character is the mor-
pheme that includes it. We clarify the prediction
procedure via an example from our training set
(see Section 4). When the Turkish word ‘terbiye-
sizlik’ is generated, the first channel is supposed to
predict t, e, r, up to k, one after another. For the
same word, the second channel is supposed to pre-
dict stem-C for the fist 7 steps as the first 7 charac-
ters ‘terbiye’ belong to the stem of the word. The
C sign indicates that stem-C is a class label. The
second channel should also predict siz-C when the
first channel predicts s (eighth character), i (ninth
character), and z (tenth character), and lik-C when
the first channel samples the last three characters.
Clearly, the second channel is a classifier which
works over the {stem-C, siz-C, lik-C, ...} classes.
Figure 1 illustrates a segment of a sentence includ-
ing this Turkish word and explains which class
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tags should be predicted by each channel.
To implement the second scenario we re-

quire a single-source double-target training cor-
pus: [source sentence]→ [sequence of target char-
acters & sequence of morphological annotations]
(see Section 4). The objective function should also
be manipulated accordingly. Given a training set
{xt,yt,mt}Tt=1 the goal is to maximize the joint
loss function shown in (3):

λ
T∑

t=1

logP (yt|xt; θ)+(1−λ)
T∑

t=1

logP (mt|xt; θ)

(3)
where xt is the t-th input sentence whose transla-
tion is a sequence of target characters shown by
yt. mt is the sequence of morphological annota-
tions and T is the size of the training set. θ is the
set of network parameters and λ is a scalar to bal-
ance the contribution of each cost function. λ is
adjusted on the development set during training.

3.3 Combining the Extended Output Layer
and the Embedded Morphology Table

In the first scenario, we aim to provide the de-
coder with useful information about morphologi-
cal properties of the target language, but we are not
sure whether signals sent from the table are what
we really need. They might be helpful or even
harmful, so there should be a mechanism to con-
trol their quality. In the second scenario we also
have a similar problem as the last layer requires
some information to predict the correct morpho-
logical class through the second channel, but there
is no guarantee to ensure that information in the
decoder is sufficient for this sort of prediction. In
order to address these problems, in the third exten-
sion we combine both scenarios as they are com-
plementary and can potentially help each other.

The morphology table acts as an additional use-
ful source of knowledge as it already consists of
affixes, but its content should be adapted accord-
ing to the decoder and its actual needs. Accord-
ingly, we need a trainer to update the table prop-
erly. The extra prediction channel plays this role
for us as it forces the network to predict the tar-
get language’s affixes at the output layer. The
error computed in the second channel is back-
propagated to the network including the morphol-
ogy table and updates its affix information into
what the decoder actually needs for its predic-
tion. Therefore, the second output channel helps
us train better affix embeddings.

The morphology table also helps the second
predictor. Without considering the table, the last
layer only includes information about the input se-
quence and previously predicted outputs, which
is not directly related to morphological informa-
tion. The second attention module retrieves useful
affixes from the morphology table and concate-
nates to the last layer, which means the decoder
is explicitly fed with morphological information.
Therefore, these two modules mutually help each
other. The external channel helps update the mor-
phology table with high-quality affixes (backward
pass) and the table sends its high-quality signals to
the prediction layer (forward pass). The relation
between these modules and the NMT architecture
is illustrated in Figure 2.
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Figure 2: The architecture of the NMT model with an
auxiliary prediction channel and an extra morphology
table. This network includes only one decoder layer
and one encoder layer. ⊕ shows the attention modules.

4 Experimental Study

As previously reviewed, different models try to
capture complexities on the encoder side, but to
the best of our knowledge the only model which
proposes a technique to deal with complex con-
stituents on the decoder side is that of Chung et al.
(2016), which should be an appropriate baseline
for our comparisons. Moreover, it outperforms
other existing NMT models, so we prefer to com-
pare our network to the best existing model. This
model is referred to as CDNMT in our experi-
ments. In the next sections first we explain our
experimental setting, corpora, and how we build
the morphology table (Section 4.1), and then re-
port experimental results (Section 4.2).
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4.1 Experimental Setting
In order to make our work comparable we try
to follow the same experimental setting used in
CDNMT, where the GRU size is 1024, the affix
and word embedding size is 512, and the beam
width is 20. Our models are trained using stochas-
tic gradient descent with Adam (Kingma and Ba,
2015). Chung et al. (2016) and Sennrich et al.
(2016) demonstrated that bpe boosts NMT, so sim-
ilar to CDNMT we also preprocess the source
side of our corpora using bpe. We use WMT-15
corpora1 to train the models, newstest-2013
for tuning and newstest-2015 as the test
sets. For English–Turkish (En–Tr) we use
the OpenSubtitle2016 collection (Lison and
Tiedemann, 2016). The training side of the
English–German (En–De), English–Russian (En–
Ru), and En–Tr corpora include 4.5, 2.1, and 4
million parallel sentences, respectively. We ran-
domly select 3K sentences for each of the develop-
ment and test sets for En–Tr. For all language pairs
we keep the 400 most frequent characters as the
target-side character set and replace the remainder
(infrequent characters) with a specific character.

One of the key modules in our architecture is the
morphology table. In order to implement it we use
a look-up table whose columns include embed-
dings for the target language’s affixes (each col-
umn represents one affix) which are updated dur-
ing training. As previously mentioned, the table
is intended to provide useful, morphological in-
formation so it should be initialized properly, for
which we use a morphology-aware embedding-
learning model. To this end, we use the neural
language model of Botha and Blunsom (2014) in
which each word is represented via a linear com-
bination of the embeddings of its surface form and
subunits, e.g.

−−−−−−−−−→
terbiyesizlik =

−−−−−−−−−→
terbiyesizlik +−−−−→

terbiye +
−→
siz +

−→
lik. Given a sequence of words,

the neural language model tries to predict the next
word, so it learns sentence-level dependencies as
well as intra-word relations. The model trains sur-
face form and subword-level embeddings which
provides us with high-quality affix embeddings.

Our neural language model is a recurrent net-
work with a single 1000-dimensional GRU layer,
which is trained on the target sides of our paral-
lel corpora. The embedding size is 512 and we
use a batch size of 100 to train the model. Be-
fore training the neural language model, we need

1http://www.statmt.org/wmt15/

to manipulate the training corpus to decompose
words into morphemes for which we use Morfes-
sor (Smit et al., 2014), an unsupervised morpho-
logical analyzer. Using Morfessor each word is
segmented into different subunits where we con-
sider the longest part as the stem of each word;
what appears before the stem is taken as a member
of the set of prefixes (there might be one or more
prefixes) and what follows the stem is considered
as a member of the set of suffixes.

Since Morfessor is an unsupervised analyzer, in
order to minimize segmentation errors and avoid
noisy results we filter its output and exclude sub-
units which occur fewer than 500 times.2 Af-
ter decomposing, filtering, and separating stems
from affixes, we extracted several affixes which
are reported in Table 2. We emphasize that there
might be wrong segmentations in Morfessor’s out-
put, e.g. Turkish is a suffix-based language, so
there are no prefixes in this language, but based
on what Morfessor generated we extracted 11 dif-
ferent types of prefixes. We do not post-process
Morfessor’s outputs.

Language Prefix Suffix

German 75 160
Russian 110 260
Turkish 11 293

Table 2: The number of affixes extracted for each lan-
guage.

Using the neural language model we train word,
stem, and affix embeddings, and initialize the
look-up table (but not other parts) of the decoder
using those affixes. The look-up table includes
high-quality affixes trained on the target side of
the parallel corpus by which we train the transla-
tion model. Clearly, such an affix table is an ad-
ditional knowledge source for the decoder. It pre-
serves information which is very close to what the
decoder actually needs. However, there might be
some missing pieces of information or some in-
compatibility between the decoder and the table,
so we do not freeze the morphology table during
training, but let the decoder update it with respect
to its needs in the forward and backward passes.

2The number may seem a little high, but for a corpus with
more than 115M words this is not a strict threshold in prac-
tice.
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4.2 Experimental Results
Table 3 summarizes our experimental results. We
report results for the bpe→char setting, which
means the source token is a bpe unit and the de-
coder samples a character at each time step. CD-
NMT is the baseline model. Table 3 includes
scores reported from the original CDNMT model
(Chung et al., 2016) as well as the scores from our
reimplementation. To make our work comparable
and show the impact of the new architecture, we
tried to replicate CDNMT’s results in our exper-
imental setting, we kept everything (parameters,
iterations, epochs etc.) unchanged and evaluated
the extended model in the same setting. Table 3
reports BLEU scores (Papineni et al., 2002) of our
NMT models.

Model En→De En→Ru En→Tr

CDNMT 21.33 26.00 -
CDNMT∗ 21.01 26.23 18.01
CDNMT∗

m 21.27 26.78 18.44
CDNMT∗

o 21.39 26.39 18.59
CDNMT∗

mo 21.48 26.84 18.70

Table 3: CDNMT∗ is our implementation of CDNMT.
m and o indicates that the base model is extended with
the morphology table and the additional output chan-
nel, respectively. mo is the combination of both the ex-
tensions. The improvement provided by the boldfaced
number compared to CDNMT∗ is statistically signifi-
cant according to paired bootstrap re-sampling (Koehn,
2004) with p = 0.05.

Table 3 can be interpreted from different per-
spectives but the main findings are summarized as
follows:

• The morphology table yields significant im-
provements for all languages and settings.

• The morphology table boosts the En–Tr en-
gine more than others and we think this is be-
cause of the nature of the language. Turkish
is an agglutinative language in which mor-
phemes are clearly separable from each other,
but in German and Russian morphological
transformations rely more on fusional oper-
ations rather than agglutination.

• It seems that there is a direct relation between
the size of the morphology table and the gain
provided for the decoder, because Russian
and Turkish have bigger tables and benefit
from the table more than German which has
fewer affixes.

• The auxiliary output channel is even more
useful than the morphology table for all set-
tings but En–Ru, and we think this is because
of the morpheme-per-word ratio in Russian.
The number of morphemes attached to a Rus-
sian word is usually more than those of Ger-
man and Turkish words in our corpora, and it
makes the prediction harder for the classifier
(the more the number of suffixes attached to
a word, the harder the classification task).

• The combination of the morphology table
and the extra output channel provides the best
result for all languages.

Figure 3 depicts the impact of the morphology ta-
ble and the extra output channel for each language.

En–De En–Ru En–Tr
0

0.2

0.4

0.6

0.8

0.26

0.55

0.44
0.38

0.16

0.59

0.47

0.61
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Figure 3: The y axis shows the difference between
the BLEU score of CDNMT∗ and the extended model.
The first, second, and third bars show the m, o, and mo
extensions, respectively.

To further study our models’ behaviour and
ensure that our extensions do not generate ran-
dom improvements we visualized some attention
weights when generating ‘terbiyesizlik’. In Figure
4, the upper figure shows attention weights for all
Turkish affixes, where the y axis shows different
time steps and the x axis includes attention weights
of all affixes (304 columns) for those time steps,
e.g. the first row and the first column represents
the attention weight assigned to the first Turkish
affix when sampling t in ‘terbiyesizlik’. While at
the first glance the figure may appear to be some-
what confusing, but it provides some interesting
insights which we elaborate next.

In addition to the whole attention matrix we also
visualized a subset of weights to show how the
morphology table provides useful information. In
the second figure we study the behaviour of the
morphology table for the first (t1), fifth (i5), ninth
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Figure 4: Visualizing the attention weights between the morphology table and the decoder when generating ‘ter-
biyesizlik.

(i9), and twelfth (i12) time steps when generating
the same Turkish word ‘t1erbi5yesi9zli12k’. t1 is
the first character of the word. We also have three
i characters from different morphemes, where the
first one is part of the stem, the second one be-
longs to the suffix ‘siz’, and the third one to ‘lik’.
It is interesting to see how the table reacts to the
same character from different parts. For each time
step we selected the top-10 affixes which have the
highest attention weights. The set of top-10 affixes
can be different for each step, so we made a union
of those sets which gives us 22 affixes. The bot-
tom part of Figure 4 shows the attention weights
for those 22 affixes at each time step.

After analyzing the weights we observed inter-
esting properties about the morphology table and
the auxiliary attention module.3 The main findings
about the behaviour of the table are as follows:

• The model assigns high attention weights to
stem-C for almost all time steps. However,
the weights assigned to this class for t1 and i5
are much higher than those of affix characters
(as they are part of the stem). The vertical
lines in both figures approve this feature (bad
behaviour).

• For some unknown reasons there are some
affixes which have no direct relation to that
particulate time step but they receive a high
attention, such as maz in t12 (bad behaviour).

• For almost all time steps the highest attention
weight belongs to the class which is expected

3Our observations are not based on this example alone
as we studied other random examples, and the table shows
consistent behaviour for all examples.

to be selected, e.g. weights for (i5,stem-C) or
(i9,siz-C) (good behaviour).

• The morphology table may send bad or good
signals but it is consistent for similar or co-
occurring characters, e.g. for the last three
time steps l11, i12, and k13, almost the same
set of affixes receives the highest attention
weights. This consistency is exactly what
we are looking for, as it can define a reliable
external constraint for the decoder to guide
it. Vertical lines on the figure also confirm
this fact. They show that for a set of con-
secutive characters which belong to the same
morpheme the attention module sends a sig-
nal from a particular affix (good behaviour).

• There are some affixes which might not be
directly related to that time step but receive
high attention weights. This is because
those affixes either include the same charac-
ter which the decoder tries to predict (e.g. i-C
for i4 or t-C and tin-C for t1), or frequently
appear with that part of the word which in-
cludes the target character (e.g. mi-C has a
high weight when predicting t1 because t1 be-
longs to terbiye which frequently collocates
with mi-C: terbiye+mi) (good behaviour).

Finally, in order to complete our evaluation
study we feed the English-to-German NMT model
with the sentence ‘Terms and conditions for send-
ing contributions to the BBC’, to show how the
model behaves differently and generates a better
target sentence. Translations generated by our
models are illustrated in Table 4.
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Reference: Geschäftsbedingungen für das Senden von Beiträgen an die BBC
CDNMT∗ allgemeinen geschaftsbedingungen fur die versendung von Beiträgen an die BBC
CDNMT∗mo Geschäft s bedingungen für die versendung von Beiträgen zum BBC

Table 4: Comparing translation results for the CDNMT∗ (baseline) and CDNMT∗
mo (improved) models when the

input sentence is ‘Terms and conditions for sending contributions to the BBC’.

The table demonstrates that our architecture is
able to control the decoder and limit its selections,
e.g. the word ‘allgemeinen’ generated by the base-
line model is redundant. There is no constraint to
inform the baseline model that this word should
not be generated, whereas our proposed architec-
ture controls the decoder in such situations. Af-
ter analyzing our model, we realized that there are
strong attention weights assigned to the w-space
(indicating white space characters) and BOS (be-
ginning of the sequence) columns of the affix ta-
ble while sampling the first character of the word
‘Geschäft’, which shows that the decoder is in-
formed about the start point of the sequence. Sim-
ilar to the baseline model’s decoder, our decoder
can sample any character including ‘a’ of ‘allge-
meinen’ or ‘G’ of ‘Geschäft’. Translation informa-
tion stored in the baseline decoder is not sufficient
for selecting the right character ‘G’, so the de-
coder wrongly starts with ‘i’ and continues along
a wrong path up to generating the whole word.
However, our decoder’s information is accompa-
nied with signals from the affix table which force
it to start with a better initial character, whose sam-
pling leads to generating the correct target word.

Another interesting feature about the table is the
new structure ‘Geschäft s bedingungen’ generated
by the improved model. As the reference transla-
tion shows, in the correct form these two structures
should be glued together via ‘s’, which can be con-
sidered as an infix. As our model is supposed to
detect this sort of intra-word relation, it treats the
whole structure as two compounds which are con-
nected to one another via an infix. Although this is
not a correct translation and it would be trivial to
post-edit into the correct output form, it is interest-
ing to see how our mechanism forces the decoder
to pay attention to intra-word relations.

Apart from these two interesting findings, the
number of wrong character selections in the base-
line model is considerably reduced in the im-
proved model because of our enhanced architec-
ture.

5 Conclusion and Future Work

In this paper we proposed a new architecture to
incorporate morphological information into the
NMT pipeline. We extended the state-of-the-art
NMT model (Chung et al., 2016) with a morphol-
ogy table. The table could be considered as an
external knowledge source which is helpful as it
increases the capacity of the model by increasing
the number of network parameters. We tried to
benefit from this advantage. Moreover, we man-
aged to fill the table with morphological informa-
tion to further boost the NMT model when trans-
lating into MRLs. Apart from the table we also de-
signed an additional output channel which forces
the decoder to predict morphological annotations.
The error signals coming from the second chan-
nel during training inform the decoder with mor-
phological properties of the target language. Ex-
perimental results show that our techniques were
useful for NMT of MRLs.

As our future work we follow three main ideas.
i) We try to find more efficient ways to supply
morphological information for both the encoder
and decoder. ii) We plan to benefit from other
types of information such as syntactic and seman-
tic annotations to boost the decoder, as the table
is not limited to morphological information alone
and can preserve other sorts of information. iii)
Finally, we target sequence generation for fusional
languages. Although our model showed signifi-
cant improvements for both German and Russian,
the proposed model is more suitable for generating
sequences in agglutinative languages.
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