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The problem addressed here is a combinatorial bilevel programming problem called the uncapacitated facility location problem
with customer’s preferences. A hybrid algorithm is developed for solving a battery of benchmark instances. The algorithm
hybridizes an evolutionary algorithm with path relinking; the latter procedure is added into the crossover phase for exploring the
trajectory between both parents. The proposed algorithm outperforms the evolutionary algorithm already existing in the literature.
Results show that including a more sophisticated procedure for improving the population through the generations accelerates the
convergence of the algorithm. In order to support the latter statement, a reduction of around the half of the computational time is
obtained by using the hybrid algorithm. Moreover, due to the nature of bilevel problems, if feasible solutions are desired, then the
lower level must be solved for each change in the upper level’s current solution. A study for illustrating the impact in the algorithm’s

performance when solving the lower level through three different exact or heuristic approaches is made.

1. Introduction

Location theory is an area of operational research which has
attracted many researchers due to the existing necessity to
abstract real day-to-day situations into mathematical models.
One of the main problems is the facility location problem,
which stems from Weber’s problems, which consists in deter-
mining the point that minimizes the sum of the Euclidean
distances from that point to all other given points. Further
explanation is detailed in [1]. In the facility location problem,
there is a set of customers that are distributed in a predefined
space. They desire that their demands of a particular service
or product are met by one or more facilities. The problem
is to determine where to locate facilities and how customers
should be allocated in order to minimize location and distri-
bution costs associated with that particular decision. This sit-
uation is known as the classic facility location problem (FLP).

The FLP has led to several extensions. For example, the
simple plant location problem (SPLP) arises when the facility

has an infinite capacity and can meet all the demands of any
customer; the model for this problem was proposed in [2]. A
taxonomy of location models including relevant issues and
a classification is provided in [3]. Another variant appears
when a new objective function is considered as in [4]. It
includes the most popular objectives functions of location
models and penalizes the distance between the customer and
the facility according to the position occupied by the cus-
tomer. In other words, a customer will have different penalties
depending on how near or far it is regarding the facility.
Having an ordering problem within a location one
increases its complexity in both the formulation and the
methodology of solution. The Discrete Ordered Median
Problem (DOMP) was introduced in [5], in which two
formulations are proposed: as an integer linear program and
as an integer nonlinear program. Then, in [6], an alternative
integer linear programming formulation for the DOMP is
proposed. A comparison with the existing ones is made
showing that the proposed formulation is strengthened.



Moreover, some properties regarding optimal solutions that
allow the elimination of a subset of variables are found.
Taking advantage of the properties, a branch and bound
algorithm was developed and it was used for solving a set of
benchmark instances.

In [7], an extension of the DOMP called the ordered
capacitated facility location (OCFL) problem is proposed and
it was modeled from three different points of view. In the first
model, the customer’s demand can be divided; in the second
model, fixed costs for locating facilities are considered; and in
the third model, the shipping and locating costs are taken into
account in the objective function. Also, in the latter model,
they examine three approaches for incorporating shipping
costs: the costs are paid (i) by the customers, (ii) by the distri-
bution centers, or (iii) by the logistics provider. To consider
the abovementioned approaches, they used the objective
function proposed in [8]. The locating and shipping costs
are ordered before the evaluation of the objective function is
made. Two formulations of the model are proposed and some
improvements for particular cases are introduced.

A different perspective regarding an ordering within
the location problem can be achieved by considering the
customer’s preferences towards the facilities. The first paper
which considered the customer’s preferences in the simple
plant location problem (SPLP) is [9], in which they assumed
the location of a single facility and added restrictions to
ensure that the preferences were considered. Furthermore,
they presented different ways to include this set of constraints
and proposed a greedy heuristic based on branch and bound
for solving the problem. The problem is known as the simple
plant location problem with order (SPLPO). It is shown in
[10] that this problem and all its generalizations are classified
as NP-Hard.

The consideration of customer’s preferences may be seen
as an optimization problem within the constraints of the loca-
tion problem. These kind of problems can be modeled with
bilevel programming. The first bilevel model for the SPLPO
was proposed in [11]. The bilevel model is reformulated as
a single-level problem by introducing pseudo-Boolean func-
tions. Then, valid bounds are obtained through a relaxation
of the lower level problem. Additional assumptions were
made during that research: the optimal solution of follower
is unique for any arbitrary solution of leader and all values of
the customer’s preferences are different.

Most articles that addressed the bilevel model of the
SPLPO reformulate the bilevel model into a single-level one
and solve the reformulation. For example, for the aforemen-
tioned purposes in [12], valid inequalities are used and in
[13] a combinatorial formulation is considered. The main
motivation for avoiding solving the bilevel version of the
problem relies in the difficulty of solving an optimization
problem for each configuration of facilities located.

Therefore, it is convenient to emphasize that it is
extremely important to obtain the optimal solution of the
lower level problem in order to obtain a bilevel feasible solu-
tion. For the uncapacitated facility location bilevel problem
(UFLBP), the lower level consists of an allocation problem,
which can be solved in an efficient manner by an optimizer.
Moreover, due to the nature of the allocation problem,
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alternative exact methods can be easily adapted for solving it.
For instance, in [14, 15], an exact method based on the ordered
matrix of preferences is considered for solving the bilevel
version of UFLBP. However, the construction of efficient
exact methods cannot be always obtained for solving the
lower level problemy; it clearly depends on its structure.

For clarifying the latter idea, some papers in which the
lower level is solved in a heuristic manner are described. For
example, in [16], a new formulation for the ring star problem
as a bilevel model is proposed, in which they considered the
existence of a leader and two independent followers. One
of the followers must solve a travelling salesman problem
and the use of a greedy algorithm with 2-opt and 3-opt
local searches is applied. Another example is found in [17]
where a bilevel urban transportation network design model
is studied. In order to avoid finding the optimal solution
for the follower, a local approach was designed for getting
the follower’s response. Then, in [18], a topological design
of Local Area Networks bilevel problem is considered. The
lower level must construct a capacitated spanning tree and
it is solved by a greedy constructive algorithm similar to
Kruskal’s algorithm. Also, in [19], a competitive facility
location problem is considered; a branch and bound method
is applied for solving a nonlinear programming relaxation
of the lower level problem. Finally, in [20], an ant colony
optimization algorithm for solving a bilevel production-
distribution problem was implemented. They illustrated the
behavior of the algorithm when the lower level is solved in
an exact manner or by a heuristic procedure. In the case
when the heuristic procedure was applied to the lower level,
it corresponds to a differential evolution algorithm.

Asitis mentioned above, in order to obtain bilevel feasible
solutions, the lower level problem must be optimally solved
by an optimizer or by an exact method. But this is not always
possible and the problem needs to be solved somehow. Hence,
a heuristic procedure that balances efficiency and computa-
tional effort would be desired. Commonly, the utilization of
heuristic procedures for solving the bilevel problem results
very costly in terms of computational time due to the number
of times that the lower level problem is solved. Then, the
exploration of methodologies in which the search is guided
without the resolution of the lower level turns out to be a
matter of interest.

In this paper, we proposed a hybrid algorithm for solving
the bilevel version of the uncapacitated facility location
problem with preferences of the customers. Also, a discussion
is presented about the effects that result from solving the
allocation problem with an optimizer, by an alternative exact
procedure or by a methodology that avoids solving it at each
step. The paper is organized as follows: in Section 3, we
present the classical mathematical bilevel formulation of the
problem. Section 3 describes the proposed algorithm that
hybridizes an evolutionary algorithm with path relinking.
The computational experimentation and its corresponding
interpretation of the results are shown in Section 4. Finally,
Section 5 states the final remarks that arose from the findings
derived from the previous section and some ideas for further
research.
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2. Description of the Problem

In this section, the problem and its mathematical formulation
are described. The bilevel model considered in this paper is
proposed in [12], where the leader aims to minimize the total
cost, that is, the locating and distributing costs. On the other
hand, the follower aims to minimize the customer’s prefer-
ences. The sets, parameters, decision variables involved in the
mathematical formulation, and the assumptions considered
during the research are presented next.

Leti € I'and j € ] be the indexes of the facilities and
customers, respectively. Let ¢;; represent the costs of supplying
all the customer’s j demand for the facility i. Let f; denote the
cost of locating facility i. Finally, p;; represents the preference
that customer j places for being served by facility i.

The decision variables of the problem are two and are of
binary nature, where

1 if the facility i is located
Ji =
0 otherwise

Xij 1

{1 if the facility 7 satisfies the demand of the customer j

0 otherwise.

The following two assumptions are considered in the prob-
lem:

(1) Customers delivered a list of ordered preferences
which reflected their desire of being served by each
facility; the first position in the list, that is, the Ist,
indicates the most preferred facility and therefore
|I|th represents the least preferred facility.

(2) The facilities have no capacity; therefore, a facility can
supply multiple customers but a customer must be
served by a single facility.

The mathematical model for the UFLBP is as follows:

min Y Y e+ ) fiyi 2)

i€l jeJ iel

subject to:  y; €{0,1} Viel (3)

X € arg min z Zg,-]-x,»j (4)

iel jeJ

subject to: inj =1 Vje] (5)
i€l
X < Y Viel, je]J (6)
xije{O,l} Viel, je]. 7)

The problem in the upper level is defined by (2)-(4), where (2)
represents the leader’s objective function who seeks to min-
imize both location and distribution costs, (3) establish the
binary constraints for each variable y;, and finally (4) is the
constraint that indicates that the variables x;; are controlled
by the follower; these variables are implicitly determined

by the optimal solution of the lower level. This problem is
defined by (4)-(7); the follower’s objective function is defined
in (4) where she/he tries to minimize the ordered preferences
of the customers, (5) ensures that each customer is supplied
by a single facility, (6) indicates that the customer’s allocation
can be made only to the located facilities, and, finally, (7)
indicates the binary constraints for the decision variables x;;.

The existence and uniqueness of the lower level’s solution
are guaranteed due to the way the preferences are given; that
is, they are ordered and are different from each other. In other
words, it is not allowed to assign the same preference value to
more than one facility. The proof which validates the latter is
shown in [12]. By assuming this, the bilevel problem is well
defined.

3. A Hybrid Evolutionary Algorithm with
Path Relinking

In this section, the hybrid algorithm and its components are
described. Hybrid algorithms combine advantages of two or
more heuristics to solve a problem, where the best part of each
heuristic is taken in order to obtain either better solutions or
a quick convergence. Some applications of hybrid algorithms
are shown in [21]. They identify connections and contrasts
between heuristics (genetic algorithms and Tabu search) that
offer an almost untapped area for empirical research. In
[22], a genetic algorithm and particle swarm optimization
algorithms are hybridized showing good performance in
some applications.

Considering the discussed improvements for hybrid algo-
rithms, in this paper, hybridization between an evolutionary
algorithm and path relinking is proposed. The main idea for
including the path relinking scheme is basically in order to
substitute the common random crossover. On the other hand,
the motivations for developing an evolutionary algorithm
(EA) are as follows: first, a population based algorithm gives
more information about the interaction between leader and
follower due to the large number of solutions being explored,;
second, it is well known that EAs can handle not-easy-to-
solve problems in an efficient manner; and, finally, the EAs
perform random movements allowing a wider exploration of
the solution space while the quality of solutions is intended
to be improved.

The EA consists in three phases: in the first one, the
construction of the initial population containing feasible
solutions is made; the second phase concerns the genetics
operators, crossover and mutation; and the last one is the
selection mechanism of survival solutions, which depends on
two features, quality and diversity. Commonly, the criteria
selected in the genetic operators are chosen in a random fash-
ion. The latter might affect the algorithm’s performance due
to the lack of exploration within the current neighborhood
between both solutions. Hence, we decided to implement a
combinatorial method called path relinking (PR) for reach-
ing the local optimum in the current neighborhood. Path
relinking begins with a pair of good quality solutions, parts
from the first one, and changes its components once a time to
convert this initial solution into the second one. Furthermore,



Procedure Evolutionary algorithm
P <90
P, — Generate Initial Population(P,)
f « Fitness(P,)
while t < Generations
P,., < Selection(P,, P,,,, f)
P,., < Crossover(P,)
P,,, < Mutation(P,)
17
te—t+1
end while
return P,
end Procedure

PseupOCODE 1: Pseudocode of evolutionary algorithm.

PR explores all the trajectory between leader’s solutions. If the
second solution is identical to the first one, then the method
stops and returns the best solution found in the trajectory.
It is important to highlight the notion that since the aim of
the proposed algorithm is to solve a bilevel problem, when
computing the corresponding objective function value, the
follower’s problem is solved for each movement. This issue
clearly affects the algorithm’s efficiency and it is discussed in
the next section.

The addition of PR in other algorithm’s frameworks has
shown a good performance and has attracted the attention
of researchers. For example, in [23], there is a description
of the elements and methods that conform Scatter Search
(SS), including the most recent elements incorporated in
successful applications in both global and combinatorial
optimization. They also described the hybridization of PR
and genetic algorithms (GA) and displayed the notion that
the use of PR almost always improves the performance of
the heuristic. Also, in [24], a project scheduling problem is
considered, where hybridization of PR and a GA is developed
to solve it. The performance of the hybrid algorithm is
examined on an available test set, and it is shown that PR is
more efficient than GA in this specific problem. Moreover,
the combination of PR with SS is analyzed in [25]; they
solved the capacitated p-median problem (CpMP). In the
CpMP, the intention is to make a partition over a set of
costumers, each of them has known demands, in exactly p
facilities. They conducted a series of experiments on different
sets, and the results were satisfactory in terms of the quality
of the solutions found. Furthermore, they declared that the
combination of PR with SS gave the best results. Recently,
in [26, 27], path relinking is also hybridized with other
heuristics showing good results. Based on these results, we
were motivated for hybridizing this procedure within the
evolutionary framework.

Next, the principal components and the phases involved
in the hybrid algorithm are detailed and depicted in Pseu-
docode 1.

3.1 Solution Encoding. Besides the fact that we are dealing
with two subsets of decision variables, solutions that are of
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Procedure Path relinking (y,, y,)
ynew — 0
D —d(yy,)
min <« oo
for i = 1: number_diference
y' « change(y,, D, i)
x «— Solve_lower _level( y')
c(y') « fitness(y’, x)
if ¢(y') < min
min « c(y")
Ynew < V'
end if
end for
return y,...
end Procedure

PSEUDOCODE 2: Pseudocode of path relinking.

principal interest will be those referring to leader’s solutions,
that is, the facilities that will be opened. The bilevel nature
of the problem allows for considering the solutions within
the algorithm in that way. Hence, leader’s solutions are rep-
resented as a binary string of size |I|, in which it is indicated
if the facility is opened or not. It is clear that the follower’s
problem also must be solved and its corresponding solution
is stored for computing the leader’s objective function value.
However, the encoding of the allocation of customers to
facilities does not affect the hybrid algorithm. In next section,
it is pointed out that the method selected for solving the
follower’s problem affects the performance of the algorithm,
not its representation.

3.2. Initial Population. In this phase, a predetermined num-
ber of solutions are generated. We decided to create feasible
solutions in a random manner. For constructing a solution,
we generate a vector of random numbers from the same
size of the total number of facilities and revise component
by component as follows: if the respective number is less
(greater) than 0.5, then the corresponding facility remains
closed (opened).

3.3. Selection Mechanism. In this part, a number of solutions
are chosen for being mated. We selected the solutions accord-
ing to their fitness; while the solutions are better, they have
more opportunity of being selected. The strategy that is used
in this algorithm for achieving the latter is the tournament
selection. This procedure consists in randomly matching each
solution with another one from the population, and the best
of both solutions is selected.

3.4. Crossover (Path Relinking). Crossover is executed after
the selection. The path relinking procedure is used in the
crossover phase. A pseudocode is shown in Pseudocode 2. In
[28], a brief description of the PR is given; its main objective
is to explore the search path between a set of (two) solutions.
Additionally, PR generates a set of new solutions from the
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FIGURE 1: Path relinking.

good solutions in the set. Also, in [23], PR is described as
an intensification strategy to explore trajectories connecting
elite solutions obtained by heuristic methods. In this case,
pairs of solutions are selected in a random way from the
population and a crossover point is randomly selected. Here,
the first solution suddenly becomes into the second one, so
the trajectory is created. After the trajectory is obtained, the
two best solutions are chosen. The crossover point is used in
order to have a starting point for changing the elements of
the first solution. This means that the first component which
is different in both solutions after the crossover point will be
changed in the first solution; that is, if the component is 0,
then it will be changed into 1, or vice versa. This procedure is
repeated for all subsequent elements until all components are
explored (see Figure 1).

3.5. Mutation. After the selection and crossover of individu-
als were performed and if a random number is greater than
a threshold value, the mutation takes place. The mutation
involves changing some components of the string from 0
to 1 or vice versa. The associated probability for switching a
component is given by an independent number for each one
of them. Then, the components of the solutions are mutated in
an independent manner; that is, the mutation of a component
does not affect the mutation probability of another one.

Finally, the update of the population is given in the elitist
way by using their corresponding fitness value. After the
proposed algorithm has been described, the computational
experimentation for showing its good performance will be
presented in the next section.

4. Computational Experimentation

In this section, the methodologies used to solve the UFLBP
are described. Also, the computational results obtained from
applying those methodologies are presented. First, we con-
sidered an evolutionary algorithm (EA) proposed in [15]
and conducted the experimentation. Then, we hybridize the
EA with a path relinking (PR) procedure, included in the
crossover phase, as we mentioned in the previous section.
Furthermore, within this hybridization, we propose three
alternative ways to solve the lower level problem, which are as
follows: (i) solving to optimality by using CPLEX, (ii) solving

to optimality by using an ordered matrix of preferences, and
(iii) not solving the lower level at each step in the PR.

The latter alternative is based on the fact that, for having
feasible solutions for the bilevel problem, the lower level
needs to be optimally solved for each leader’s solution. In the
local procedure (PR), a new leader’s solution is obtained in
each move. Therefore, in order to measure the contribution of
that specific move, the lower level problem is solved. Hence,
the computational cost for following that scheme is high.
Thus, it is interesting to investigate the possibility of not
solving the lower level for the new leader’s solution during
all the PR procedure. By doing this, semifeasible solutions
are being considered but after the methodology is done the
lower level is optimally solved for the incumbent solution.
However, due to the structure of the problem considered here,
after a PR’s move has been conducted, the customers must
be reallocated. In other words, in the PR, a facility could be
opened, closed, or interchanged and some of the customers
allocated to that specific facility will need to be associated
with other opened or more preferred facilities.

The experimentation was conducted on 3.60 GHz Intel
Core i7-4790 with 32.00 GB RAM running under Windows
8.1 Pro operative system. Those algorithms were implemented
on Visual Studio Express 2012 with C++ and, for the first
alternative, the lower level was solved with CPLEX 12.6.1. The
set of benchmark instances is the same as the one used in [15].
The set consists in 36 instances from three different sizes: 12
small, 12 medium, and 12 large size instances. The small ones
contain 50 facilities and 50 customers. On the other hand, the
medium size instances contain 50 facilities and 75 customers.
Finally, 75 facilities and 100 customers are considered in the
large size instances.

Initial testing indicates that the required time to solve
the small size instances with the proposed hybrid algorithm
(EA+PR) with CPLEX is 4410.455 seconds. As a consequence
of the excessive computational time required by CPLEX for
solving the lower level, we decided to discard this approach.
Hence, we used the ordered matrix of customers’ preferences
for solving the lower level. In the case where we decide to
avoid solving the lower level (this approach will be referred
to as EA+PRw) at each step in the PR, two approaches
for allocating the customers were proposed. For example,
consider the situation presented in Figure 2(a) where an
ordered pair associated with each customer represents the
nearest open facility and the most preferred open facility,
respectively. Consider the case when facility [3] is opened
and facility [4] is closed; if we are under the approach
when the lower level is not solved at each move of the PR,
then the customers that were allocated to facility [4] are
now unassigned (see Figure 2(b)). Hence, the first approach
considered is when customers will be assigned to their
nearest facility (see Figure 2(c)). The second approach is
when customers will be assigned to their most preferred
facility (see Figure 2(d)). Both approaches do not guarantee
the customer’s optimal allocation and semifeasible solutions
are being considered at that time. However, once the PR
procedure has finished, the optimal resolution of the lower
level is done for obtaining bilevel feasible solutions.
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FI1GURE 2: Exemplification for reallocating the customers.

Regarding the EA+PRw, the two considered approaches
were analyzed and we can observe that both have good
quality solutions (see Figures 3 and 4); we can observe that
within the first 20 generations the “most preferred” approach
has a better development, but in the next generations, the
performance is almost the same for the “nearest” and “most
preferred” approaches. Since this behavior remained for all
the instances, half of the computational experimentation was
done with the “nearest” approach and the other half under the
“most preferred” approach.

In order to assess the performance of the hybrid algo-
rithm, proper parameter identification has to be done. The
parameters considered in the EA+PR are the size of the
population (n), the number of generations (G), and the
number of tournaments (T). The selected parameters for the
EA and the ones chosen for the probability in the genetic

operators (crossover and mutation) were selected exactly asin
[15]. The parameter configuration selected for the EA+PR was
obtained after preliminary tests; the corresponding values
are n = 100, G = 150, and T = 5. The main reason for
reducing the number of generations in EA+PR is because
its convergence to the optimal solution is faster than the
convergence in the EA (see Figures 5 and 6).

In Tables 1, 2, and 3, the results obtained from applying
10 times the EA, EA+PR, and EA+PRw for each instance are
shown. Table 1 corresponds to the results for the small size
instances; this set is composed of three subsets of instances,
132,133, and 134, that differ from each other on the values of
distribution and fixed costs. All those instances consider four
different matrices of preferences. The same structure is used
in the medium and large size instances, which are presented
in Tables 2 and 3, respectively. Each table contains the best
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FIGURE 4: Illustrating the convergence for both approaches of
EA+PRw in instance b-2 large.

gap found among the 10 runs, that is, the gap between the
optimal value and the best value obtained for each approach
(EA, EA+PR, and EA+PRw). Also, the average gap, which is
the gap between the optimal value and the average of the last
population value, is presented in the tables. And, finally, the
average time, in seconds, consumed for solving each instance
is shown. The gaps described above are computed as follows:

7
1900000 o - - - -« o oo
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1
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|
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1100000
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FIGURE 5: Illustrating the convergence for EA and EA+PR in
instance 132-1.
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FIGURe 6: Illustrating the convergence for EA and EA+PR in
instance b-1 large.

gap = 100 x ((x — x*)/x"), where x represents the obtained
solution and x* the value. It is convenient to remark that
optimal values for these instances are known in the literature.

It can be observed from Table 1 that there is no difference
in the best gap between EA and EA+PR. In other words,
both algorithms showed the same effectiveness but in the
computational time the EA+PR is down to almost half of
the EA. Regarding the EA+PRw, we can observe that the
computational time is shorter than the other ones but for the
best gap it is shown that the reached objective function value
is worse in most of the instances with the selected parameter
configuration than that for EA+PR.

From Table 2, it can be seen again that both EA and
EA+PR seem to have the same good performance. However,
the required computational time from EA+PR remains as low
as half of the EA. Moreover, for the average gap, in 11 of the
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TABLE 1: Results for the small size instances.

Instance EA EA+PR EA+PRw

Bestgap  Averagegap  Time (sec) Bestgap  Averagegap  Time (sec) Bestgap  Averagegap  Time (sec)
132-1 0.00% 5.41% 1.51 0.00% 5.73% 0.76 0.00% 7.91% 0.72
132-2 0.00% 4.40% 1.45 0.00% 4.14% 0.74 0.00% 4.46% 0.73
132-3 0.00% 7.81% 1.53 0.00% 6.90% 0.77 0.00% 8.59% 0.73
132-4 0.00% 4.05% 1.49 0.00% 4.12% 0.78 0.00% 4.08% 0.74
133-1 0.00% 5.13% 1.53 0.00% 4.61% 0.76 0.28% 5.03% 0.74
133-2 0.00% 5.99% 1.51 0.00% 6.99% 0.72 0.00% 6.42% 0.71
133-3 0.00% 7.45% 1.54 0.15% 6.98% 0.79 0.15% 7.96% 0.73
133-4 0.00% 2.34% 1.50 0.00% 2.04% 0.75 0.00% 2.47% 0.71
134-1 0.00% 6.72% 1.52 0.00% 6.07% 0.78 0.00% 6.78% 0.74
134-2 0.00% 6.20% 1.54 0.00% 5.67% 0.78 0.00% 6.44% 0.73
134-3 0.00% 5.72% 1.52 0.00% 5.00% 0.78 0.00% 5.69% 0.74
134-4 0.00% 4.95% 1.50 0.00% 5.07% 0.75 0.00% 5.21% 0.71

TABLE 2: Results for the medium size instances.

Instance EA EA+PR EA+PRw

Bestgap  Averagegap  Time (sec) Bestgap  Averagegap  Time(sec) Bestgap  Averagegap  Time (sec)
a-1 0.09% 4.89% 2.07 0.00% 4.44% 1.04 0.09% 5.04% 0.93
a-2 0.00% 6.51% 2.08 0.00% 5.59% L1 0.00% 6.86% 1.00
a-3 0.04% 4.72% 2.08 0.00% 4.22% 110 0.00% 4.93% 0.98
a-4 0.00% 5.48% 2.07 0.00% 5.02% 1.07 0.00% 5.57% 1.00
b-1 0.00% 5.68% 2.06 0.00% 5.76% 1.08 0.00% 6.08% 1.00
b-2 0.10% 3.70% 2.07 0.00% 3.10% 112 0.00% 4.72% 1.08
b-3 0.00% 5.06% 2.07 0.00% 4.52% 1.10 0.49% 5.57% 1.02
b-4 0.00% 4.80% 2.04 0.02% 4.45% 1.02 0.52% 5.06% 0.98
c-1 0.26% 2.95% 2.03 0.26% 2.54% 1.10 0.26% 2.96% 1.04
c-2 0.25% 3.46% 2.04 0.00% 3.12% 1.10 0.00% 3.92% 1.04
c-3 0.00% 3.71% 2.01 0.00% 3.52% 1.06 0.00% 3.91% 1.00
c-4 0.00% 3.03% 2.04 0.00% 2.72% 1.05 0.00% 3.14% 0.99

TABLE 3: Results for the large size instances.

Instance EA EA+PR EA+PRw

Bestgap  Averagegap  Time (sec) Bestgap  Averagegap  Time(sec) Bestgap  Averagegap  Time (sec)
a-1 0.00% 9.76% 3.55 0.00% 8.89% 2.07 0.00% 9.89% 1.84
a-2 0.00% 6.94% 3.49 0.00% 6.30% 2.02 0.00% 712% 1.77
a-3 0.00% 7.23% 3.48 0.00% 6.25% 2.09 0.00% 7.23% 1.86
a-4 0.00% 5.85% 3.61 0.00% 5.08% 2.11 0.00% 5.72% 1.85
b-1 0.77% 5.39% 3.67 0.77% 4.72% 2.35 0.87% 6.09% 2.09
b-2 1.01% 4.71% 3.65 0.29% 4.00% 2.16 0.63% 5.29% 2.05
b-3 0.00% 4.37% 3.65 0.00% 4.07% 2.13 0.86% 4.48% 2.00
b-4 0.00% 6.47% 3.71 0.00% 5.88% 2.25 1.14% 6.74% 2.08
c-1 0.00% 4.04% 3.69 0.00% 3.65% 2.22 0.00% 4.21% 2.00
c-2 0.00% 3.82% 3.65 0.00% 4.17% 2.28 0.00% 4.62% 2.05
c-3 0.00% 4.53% 3.61 0.00% 4.05% 2.12 0.00% 4.91% 2.00

c-4 0.00% 4.67% 3.69 0.00% 4.35% 2.25 0.00% 5.14% 2.05
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FIGURE 7: Comparing the average gaps.

12 instances, the EA+PR has a lower value than the EA. The
latter can be interpreted as that the quality, in terms of leader’s
objective function value, from the entire population is better
for the EA+PR. On the other hand, when comparing the
EA+PR with EA+PRw, we can observe that the performance
gets worse in most of the cases despite the fact that the
computational time is lower than the EA+PR and EA. In a
reasoned way, this was expected; that is, avoiding solving the
lower level problem at each step during the local search leads
to a blinded exploration. Furthermore, semifeasible solutions
are being considered, which later will have to be repaired for
reaching bilevel feasibility.

Finally, the behavior discussed in the above paragraphs
is maintained for the large size instances. The “best gap” and
“average gap” columns do not show a significant difference
between EA and EA+PR. However, as before, the computa-
tional time required for the EA+PR is also 1 second less than
the EA. In addition, the EA+PR has a better performance in
terms of quality than the EA+PRw but the consumed time is
almost the same. This is caused because in the EA+PRw when
a facility is closed, the customers associated with it need to be
reallocated following a predefined criterion. Hence, a quickly
reallocation is made; but the required time for solving the
lower level problem using the ordered matrix of preferences is
very low. Then, when the algorithm reaches its stop criterion,
the cumulative time reduction is not as significant as we
expected.

The average gap’s values obtained by both EA+PR and
EA+PRw are plotted in Figure 7 for all the tested instances.
The results support the ideas obtained from the discussion
presented previously; that is, the performance of the EA+PRw
is not as good as the EA+PR in most of the cases due to the
semifeasible solutions. It can be seen from Figure 7 that only
twice (instances 132-4 and 133-2) the value for the EA+PRw
is better than the value that corresponds for the EA+PR, but
in all other instances, it is the worst. For example, in the 132-1
and b-2 (medium size) instances, the difference between the
gaps is 2.17 and 1.62, respectively.

5. Conclusions and Further Research

In this paper, a hybrid evolutionary algorithm with path
relinking for solving the uncapacitated facility location

problem with customer’s preferences is proposed. A compu-
tational analysis which involves three approaches for dealing
with the preferences’ problem associated with the lower level
is presented. First, the EA is implemented in the same manner
as it was proposed in [15]. Then, the hybrid EA+PR is
developed for exploiting the bilevel structure of the problem.
Finally, a variant of the hybrid named EA+PRw was tested.
The variant consisted in the fact of not having to solve the
lower level in each movement within path relinking.

As a result from the computational experimentation, it
seems that the computational time required to solve the
lower level is very short. For example, as we showed in Sec-
tion 4, EA+PR has a better performance than EA+PRw; and
regarding the computational time, there is an insignificant
difference between both algorithms. However, if solving the
lower level requires an excessive computational time, then it
will be convenient not to solve the lower level for each leader’s
solution. Thus, semifeasible solutions will be recommended
for guiding the search. As a result of the latter approach,
we can observe that the quality of the solutions would not
improve significantly; in spite of that, the computational time
will decrease noticeably. Hence, we remark the importance
of having alternative options for optimally solving the lower
level problem instead of using commercial optimization
software. Nevertheless, this issue depends on the structure of
the problem being studied.

Picking up the abovementioned ideas, future research
directions could involve the advantage of some particular
properties existing in the lower level that may help to sort this
issue. That is to avoid a blind search in the lower level, because
of the use of semifeasible solutions due to the fact that the
lower level is not solved in several consecutive iterations in
the methodology selected.

For example, recently in [29], an attempt for approxi-
mating the lower level optimal solutions without explicitly
solving it is presented. The approximation consists in creating
quadratic functions based on a set of initial bilevel feasible
solutions. Then, for an upper level solution, the lower level
reaction is approximated by using those functions. After a
fixed number of steps following this approach, the lower
level is optimally solved for each upper level solution. By
doing this, bilevel feasible solutions are obtained replacing
the bilevel semifeasible ones. These ideas can be used in the
EA+PRw for improving its performance.

Another option is to apply a decomposition approach
based on the primal and dual relationships of the problem, for
example, as in [30] in which a decomposition approach was
applied for obtaining high quality solutions in a short term
generation planning. In that problem, the computational
effort is increased in an exponential manner as the number
of the components involved in the problem also augments.
Hence, the decomposition approach showed that it is a good
alternative for dealing with high complexity problems.
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